stringtranslate.com

Locomotora de vapor

La LNER Clase A4 4468 Mallard es oficialmente la locomotora de vapor más rápida, alcanzando 126 mph (203 km/h) el 3 de julio de 1938.
La LNER Clase A3 4472 Flying Scotsman fue la primera locomotora de vapor en alcanzar oficialmente las 100 mph (160 km/h), el 30 de noviembre de 1934.
41 018 subiendo el Schiefe Ebene con 01 1066 como locomotora de empuje (vídeo 34,4 MB)

Una locomotora de vapor es una locomotora que proporciona la fuerza para moverse a sí misma y a otros vehículos mediante la expansión del vapor . [1] : 80  Se alimenta quemando material combustible (generalmente carbón , petróleo o, raramente, madera ) para calentar el agua en la caldera de la locomotora hasta el punto en que se vuelve gaseosa y su volumen aumenta 1.700 veces. Funcionalmente, es una máquina de vapor sobre ruedas. [2]

En la mayoría de las locomotoras, el vapor se introduce alternativamente en cada extremo de sus cilindros , en los que los pistones están conectados mecánicamente a las ruedas principales de la locomotora. Los suministros de combustible y agua suelen transportarse con la locomotora, ya sea en la propia locomotora o en un ténder acoplado a ella. Las variaciones de este diseño general incluyen calderas accionadas eléctricamente, turbinas en lugar de pistones y el uso de vapor generado externamente.

Las locomotoras de vapor se desarrollaron por primera vez en el Reino Unido a principios del siglo XIX y se utilizaron para el transporte ferroviario hasta mediados del siglo XX. Richard Trevithick construyó la primera locomotora de vapor conocida por haber transportado una carga a gran distancia en Pen-y-darren en 1804, aunque produjo una locomotora anterior para prueba en Coalbrookdale en 1802. [3] Salamanca , construida en 1812 por Matthew Murray para el ferrocarril de Middleton , fue la primera locomotora de vapor comercialmente exitosa. [4] La Locomotora No. 1 , construida por George Stephenson y la compañía de su hijo Robert, Robert Stephenson and Company , fue la primera locomotora de vapor en transportar pasajeros en un ferrocarril público, el Stockton and Darlington Railway , en 1825. Se produjo un rápido desarrollo; En 1830, George Stephenson inauguró el primer ferrocarril interurbano público, el Liverpool and Manchester Railway , después de que el éxito de Rocket en las pruebas de Rainhill de 1829 demostrara que las locomotoras de vapor podían realizar tales tareas. Robert Stephenson and Company fue el constructor preeminente de locomotoras de vapor en las primeras décadas del vapor para ferrocarriles en el Reino Unido, Estados Unidos y gran parte de Europa. [5]

Hacia el final de la era del vapor, un énfasis británico de larga data en la velocidad culminó en un récord, aún intacto, de 126 millas por hora (203 kilómetros por hora) por la LNER Clase A4 4468 Mallard , [6] sin embargo, hay afirmaciones de larga data de que la clase S1 del ferrocarril de Pensilvania alcanzó velocidades de más de 150 mph, aunque esto nunca fue probado oficialmente. [7] [8] [9] [10] En los Estados Unidos, los gálibos de carga más grandes permitieron el desarrollo de locomotoras muy grandes y pesadas como la Union Pacific Big Boy , que pesa 540 toneladas largas (550  t ; 600 toneladas cortas ) y tiene un esfuerzo de tracción de 135,375 libras-fuerza (602,180 newtons). [11] [nota 1]

A principios del siglo XX, las locomotoras de vapor fueron reemplazadas gradualmente por locomotoras eléctricas y diésel , y los ferrocarriles comenzaron a utilizar energía eléctrica y diésel por completo a fines de la década de 1930. La mayoría de las locomotoras de vapor se retiraron del servicio regular en la década de 1980, aunque varias continúan funcionando en líneas turísticas y patrimoniales. [12]

Historia

Gran Bretaña

Los primeros ferrocarriles empleaban caballos para tirar de carros a lo largo de las vías del tren . [13] En 1784, William Murdoch , un inventor escocés , construyó un prototipo a pequeña escala de una locomotora de vapor para carreteras en Birmingham . [14] [15] William Reynolds propuso una locomotora de vapor a escala real sobre rieles alrededor de 1787. [16] Un modelo funcional temprano de una locomotora de vapor sobre rieles fue diseñado y construido por el pionero de los barcos de vapor John Fitch en los EE. UU. durante 1794. [17] Algunas fuentes afirman que el modelo de Fitch ya estaba en funcionamiento en la década de 1780 y que demostró su locomotora a George Washington . [18] Su locomotora de vapor usaba ruedas con álabes interiores guiadas por rieles o vías. El modelo todavía existe en el Museo de la Sociedad Histórica de Ohio en Columbus, EE. UU. [19] La autenticidad y fecha de esta locomotora es cuestionada por algunos expertos y un tren de vapor funcional tendría que esperar a la invención de la máquina de vapor de alta presión por Richard Trevithick , quien fue pionero en el uso de locomotoras de vapor. [20]

Locomotora Coalbrookdale de Trevithick de 1802

La primera locomotora de vapor ferroviaria en funcionamiento a gran escala fue la locomotora Coalbrookdale de ancho de vía de 3 pies ( 914 mm ) construida por Trevithick en 1802. Fue construida para la fundición Coalbrookdale en Shropshire en el Reino Unido , aunque no ha sobrevivido ningún registro de su funcionamiento allí. [21] El 21 de febrero de 1804, tuvo lugar el primer viaje ferroviario a vapor registrado cuando otra de las locomotoras de Trevithick arrastró un tren a lo largo del tranvía de 4 pies 4 pulgadas ( 1321 mm ) de ancho desde la fundición Pen-y-darren , cerca de Merthyr Tydfil , hasta Abercynon en el sur de Gales. [22] [23] Acompañado por Andrew Vivian , funcionó con un éxito mixto. [24] El diseño incorporó una serie de innovaciones importantes que incluían el uso de vapor a alta presión que reducía el peso del motor y aumentaba su eficiencia.

Trevithick visitó la zona de Newcastle en 1804 y tuvo una audiencia dispuesta de propietarios e ingenieros de minas de carbón. La visita tuvo tanto éxito que los ferrocarriles mineros del noreste de Inglaterra se convirtieron en el principal centro de experimentación y desarrollo de la locomotora de vapor. [25] Trevithick continuó sus propios experimentos de propulsión a vapor a través de otro trío de locomotoras, concluyendo con la Catch Me Who Can en 1808, la primera en el mundo en transportar pasajeros que pagaban tarifa.

La locomotora de Salamanca
La locomoción en el centro y museo ferroviario de Darlington

En 1812, la exitosa locomotora de cremallera de dos cilindros Salamanca de Matthew Murray funcionó por primera vez en el ferrocarril de piñón y cremallera con rieles de borde de Middleton Railway . [26] Otra locomotora temprana conocida fue Puffing Billy , construida entre 1813 y 1814 por el ingeniero William Hedley . Estaba destinada a funcionar en la mina de carbón Wylam cerca de Newcastle upon Tyne. Esta locomotora es la más antigua conservada y se exhibe estáticamente en el Museo de Ciencias de Londres .

George Stephenson

George Stephenson , un ex minero que trabajaba como mecánico de máquinas en la mina de carbón de Killingworth , desarrolló hasta dieciséis locomotoras Killingworth , incluidas una Blücher en 1814, otra en 1815 y una Killingworth Billy (recién identificada) en 1816. También construyó The Duke en 1817 para el ferrocarril de Kilmarnock y Troon , que fue la primera locomotora de vapor que funcionó en Escocia.

En 1825, Stephenson construyó la Locomotion No. 1 para el Ferrocarril Stockton y Darlington , al noreste de Inglaterra, que fue el primer ferrocarril de vapor público del mundo. En 1829, su hijo Robert construyó en Newcastle The Rocket , que participó y ganó las Rainhill Trials . Este éxito llevó a la compañía a emerger como el constructor preeminente de locomotoras de vapor utilizadas en ferrocarriles en el Reino Unido, EE. UU. y gran parte de Europa. [27] El Ferrocarril Liverpool y Manchester abrió un año después haciendo uso exclusivo de la energía de vapor para trenes de pasajeros y mercancías .

Estados Unidos

El león de Stourbridge

Antes de la llegada de las importaciones británicas, se construyeron y probaron algunos prototipos de locomotoras de vapor nacionales en los Estados Unidos, incluido el prototipo en miniatura de John Fitch. Un ejemplo destacado en tamaño real fue el "vagón de vapor" del coronel John Steven , que se exhibió en un circuito de vías en Hoboken, Nueva Jersey, en 1825. [28]

Muchas de las primeras locomotoras para uso comercial en los ferrocarriles estadounidenses fueron importadas de Gran Bretaña, incluyendo primero la Stourbridge Lion y más tarde la John Bull . Sin embargo, pronto se estableció una industria nacional de fabricación de locomotoras. En 1830, la Tom Thumb de Baltimore and Ohio Railroad , diseñada por Peter Cooper , [29] fue la primera locomotora comercial construida en Estados Unidos que funcionó en América; fue pensada como una demostración del potencial de la tracción a vapor en lugar de como una locomotora generadora de ingresos. La DeWitt Clinton , construida en 1831 para Mohawk and Hudson Railroad , fue una notable locomotora temprana. [27] [30]

A partir de 2021 , el John Bull original estaba en exhibición estática en el Museo Nacional de Historia Estadounidense en Washington, DC [31] La réplica se conserva en el Museo del Ferrocarril de Pensilvania . [32]

Europa continental

Una maqueta de La Gironde de 1848 en un museo de Le Creusot

El primer servicio ferroviario fuera del Reino Unido y Norteamérica se inauguró en 1829 en Francia entre Saint-Etienne y Lyon ; inicialmente se limitó a tracción animal y se convirtió en tracción a vapor a principios de 1831, utilizando locomotoras Seguin . La primera locomotora de vapor en servicio en Europa fuera de Francia se llamó The Elephant y el 5 de mayo de 1835 arrastró un tren en la primera línea de Bélgica, uniendo Malinas y Bruselas.

Fotografía del Adler tomada a principios de la década de 1850.

En Alemania, la primera locomotora de vapor en funcionamiento fue una locomotora de piñón y cremallera, similar a la Salamanca , diseñada por el pionero británico de las locomotoras John Blenkinsop . Construida en junio de 1816 por Johann Friedrich Krigar en la Fundición de Hierro Real de Berlín ( Königliche Eisengießerei zu Berlin), la locomotora circulaba por una vía circular en el patio de la fábrica. Fue la primera locomotora que se construyó en el continente europeo y el primer servicio de pasajeros propulsado por vapor; los curiosos podían viajar en los vagones adjuntos pagando una tarifa. Está retratada en una insignia de Año Nuevo de la Fundición Real fechada en 1816. Se construyó otra locomotora utilizando el mismo sistema en 1817. Se iban a utilizar en los ferrocarriles de foso en Königshütte y en Luisenthal en el Sarre (hoy parte de Völklingen ), pero ninguna pudo volver a funcionar después de ser desmantelada, trasladada y reensamblada. El 7 de diciembre de 1835, la Adler circuló por primera vez entre Núremberg y Fürth en el Ferrocarril Ludwig de Baviera . Era la locomotora número 118 de la fábrica de locomotoras de Robert Stephenson y estaba protegida por patente.

Primera locomotora en Rusia. 1834

En Rusia, la primera locomotora de vapor fue construida en 1834 por Cherepanovs , sin embargo, sufrió por la falta de carbón en la zona y fue reemplazada por tracción a caballo después de que se talaran todos los bosques cercanos. El primer ferrocarril de vapor ruso Tsarskoye Selo comenzó a funcionar en 1837 con locomotoras compradas a Robert Stephenson and Company .

En 1837 empezó a funcionar en Austria el primer ferrocarril de vapor, el Ferrocarril del Norte del Emperador Fernando, entre Viena-Floridsdorf y Deutsch-Wagram . En Austria también circula la máquina de vapor más antigua del mundo que sigue funcionando: la GKB 671, construida en 1860, nunca ha sido retirada del servicio y todavía se utiliza para viajes especiales.

En 1838, la tercera locomotora de vapor construida en Alemania, la Saxonia , fue fabricada por la Maschinenbaufirma Übigau cerca de Dresde , construida por el profesor Johann Andreas Schubert . La primera locomotora diseñada independientemente en Alemania fue la Beuth , construida por August Borsig en 1841. La primera locomotora producida por Henschel-Werke en Kassel , la Drache , fue entregada en 1848.

Las primeras locomotoras de vapor que circularon en Italia fueron la Bayard y la Vesuvio , que circulaban por la línea Nápoles-Portici , en el Reino de las Dos Sicilias.

La primera línea ferroviaria sobre territorio suizo fue la línea Estrasburgo - Basilea , inaugurada en 1844. Tres años más tarde, en 1847, se inauguró la primera línea ferroviaria totalmente suiza, la Spanisch Brötli Bahn , de Zúrich a Baden.

Australia

La naturaleza árida del sur de Australia planteó desafíos distintivos para su red de locomoción a vapor inicial. La alta concentración de cloruro de magnesio en el agua de pozo ( agua de perforación ) utilizada en las calderas de las locomotoras en el Ferrocarril Transaustraliano causó problemas de mantenimiento graves y costosos. En ningún punto a lo largo de su ruta la línea cruza un curso de agua dulce permanente, por lo que se tuvo que depender del agua de perforación. No había disponible un tratamiento económico para el agua altamente mineralizada, y las calderas de las locomotoras duraban menos de una cuarta parte del tiempo normalmente esperado. [33] En los días de la locomoción a vapor, aproximadamente la mitad de la carga total del tren era agua para el motor. El operador de la línea, Commonwealth Railways , fue uno de los primeros en adoptar la locomotora diésel-eléctrica .

Componentes

Los componentes principales de una locomotora de vapor (haga clic para ampliar)
Los componentes principales de una locomotora de vapor (haga clic para ampliar)

Caldera

La caldera pirotubular era una práctica habitual en las locomotoras de vapor. [ ¿Por qué? ] Aunque se evaluaron otros tipos de calderas, no se utilizaron ampliamente, a excepción de unas 1.000 locomotoras en Hungría que utilizaban la caldera acuotubular Brotan . [ Cita requerida ]

Una locomotora de vapor con la caldera y la cámara de combustión expuestas (cámara de combustión a la izquierda)

Una caldera consta de una caja de fuego donde se quema el combustible, un barril donde el agua se convierte en vapor y una caja de humo que se mantiene a una presión ligeramente inferior a la del exterior de la caja de fuego.

El combustible sólido, como madera, carbón o coque, se introduce en la cámara de combustión a través de una puerta por un bombero , sobre un conjunto de rejillas que mantienen el combustible en un lecho mientras se quema. La ceniza cae a través de la rejilla a un cenicero. Si se utiliza petróleo como combustible, se necesita una puerta para ajustar el flujo de aire, realizar el mantenimiento de la cámara de combustión y limpiar los inyectores de petróleo.

La caldera pirotubular tiene tubos internos que conectan la caja de fuego con la caja de humos a través de los cuales fluyen los gases de combustión transfiriendo calor al agua. Todos los tubos juntos proporcionan una gran área de contacto, llamada superficie de calentamiento del tubo, entre el gas y el agua en la caldera. El agua de la caldera rodea la caja de fuego para evitar que el metal se caliente demasiado. Esta es otra área donde el gas transfiere calor al agua y se llama superficie de calentamiento de la caja de fuego. La ceniza y el carbón se acumulan en la caja de humos a medida que el gas sube por la chimenea ( chimenea o chimenea en los EE. UU.) por el vapor de escape de los cilindros.

La presión en la caldera debe controlarse mediante un manómetro montado en la cabina. El conductor o el bombero pueden liberar manualmente la presión del vapor. Si la presión alcanza el límite de trabajo de diseño de la caldera, se abre automáticamente una válvula de seguridad para reducir la presión [34] y evitar un accidente catastrófico.

Consecuencias de la explosión de una caldera en una locomotora de ferrocarril, alrededor de 1850

El vapor de escape de los cilindros del motor sale por una boquilla que apunta hacia la chimenea de la caja de humos. El vapor arrastra los gases de la caja de humos, lo que mantiene una presión más baja en la caja de humos que debajo de la rejilla de la cámara de combustión. Esta diferencia de presión hace que el aire fluya hacia arriba a través del lecho de carbón y mantiene el fuego encendido.

La búsqueda de una eficiencia térmica superior a la de una caldera pirotubular típica llevó a ingenieros como Nigel Gresley a considerar la caldera acuotubular . Aunque probó el concepto en la LNER Clase W1 , las dificultades durante el desarrollo superaron la voluntad de aumentar la eficiencia por esa vía.

El vapor generado en la caldera no sólo mueve la locomotora, sino que también se utiliza para hacer funcionar otros dispositivos como el silbato, el compresor de aire para los frenos, la bomba para reponer el agua en la caldera y el sistema de calefacción del vagón de pasajeros. La demanda constante de vapor requiere una reposición periódica del agua en la caldera. El agua se guarda en un tanque en el ténder de la locomotora o envuelve la caldera en el caso de una locomotora con tanque . Se requieren paradas periódicas para rellenar los tanques; una alternativa era una pala instalada debajo del ténder que recogía agua a medida que el tren pasaba sobre una bandeja de vía ubicada entre los rieles.

Mientras la locomotora produce vapor, la cantidad de agua en la caldera se controla constantemente observando el nivel del agua en un tubo transparente o visor. El funcionamiento eficiente y seguro de la caldera requiere mantener el nivel entre las líneas marcadas en el visor. Si el nivel del agua es demasiado alto, la producción de vapor disminuye, se pierde eficiencia y el agua se lleva con el vapor a los cilindros, lo que puede causar daños mecánicos. Más grave aún, si el nivel del agua baja demasiado, la lámina superior de la cámara de combustión queda expuesta. Sin agua sobre la lámina para transferir el calor de la combustión , se ablanda y falla, lo que permite que el vapor a alta presión ingrese a la cámara de combustión y a la cabina. El desarrollo del tapón fusible , un dispositivo sensible a la temperatura, aseguró una ventilación controlada del vapor en la cámara de combustión para advertir al bombero que agregara agua.

La acumulación de sarro en la caldera impide una transferencia adecuada de calor y la corrosión acaba degradando los materiales de la caldera hasta el punto de que es necesario reconstruirla o sustituirla. El arranque de un motor grande puede requerir horas de calentamiento preliminar del agua de la caldera antes de que haya suficiente vapor disponible.

Aunque la caldera normalmente se coloca horizontalmente, para locomotoras diseñadas para trabajar en lugares con pendientes pronunciadas puede ser más apropiado considerar una caldera vertical o una montada de tal manera que la caldera permanezca horizontal pero las ruedas estén inclinadas para adaptarse a la pendiente de los rieles.

Circuito de vapor

Imagen térmica de una locomotora de vapor en funcionamiento

El vapor generado en la caldera llena el espacio que hay por encima del agua en la caldera parcialmente llena. Su presión máxima de trabajo está limitada por válvulas de seguridad accionadas por resorte. Luego se recoge en un tubo perforado colocado por encima del nivel del agua o en una cúpula que a menudo alberga la válvula reguladora, o estrangulador, cuyo propósito es controlar la cantidad de vapor que sale de la caldera. Luego, el vapor viaja directamente a lo largo y por una tubería de vapor hasta la unidad del motor o puede pasar primero al cabezal húmedo de un sobrecalentador , cuya función es mejorar la eficiencia térmica y eliminar las gotas de agua suspendidas en el "vapor saturado", el estado en el que sale de la caldera. Al salir del sobrecalentador, el vapor sale del cabezal seco del sobrecalentador y pasa por una tubería de vapor, ingresando a los cofres de vapor adyacentes a los cilindros de un motor alternativo. Dentro de cada cofre de vapor hay una válvula deslizante que distribuye el vapor a través de puertos que conectan el cofre de vapor con los extremos del espacio del cilindro. La función de las válvulas es doble: la admisión de cada dosis nueva de vapor y la evacuación del vapor usado una vez que ha realizado su trabajo.

Los cilindros son de doble efecto, con vapor admitido a cada lado del pistón por turno. En una locomotora de dos cilindros, un cilindro está ubicado a cada lado del vehículo. Las manivelas están desfasadas 90°. Durante una rotación completa de la rueda motriz, el vapor proporciona cuatro golpes de potencia; cada cilindro recibe dos inyecciones de vapor por revolución. El primer golpe es hacia la parte delantera del pistón y el segundo golpe hacia la parte trasera del pistón; por lo tanto, dos golpes de trabajo. En consecuencia, dos entregas de vapor a cada cara del pistón en los dos cilindros generan una revolución completa de la rueda motriz. Cada pistón está unido al eje motriz en cada lado por una biela, y las ruedas motrices están conectadas entre sí por bielas de acoplamiento para transmitir potencia desde el impulsor principal a las otras ruedas. Tenga en cuenta que en los dos " puntos muertos ", cuando la biela está en el mismo eje que el muñón de la manivela en la rueda motriz, la biela no aplica par a la rueda. Por lo tanto, si ambos platos y bielas pudieran estar en el "punto muerto" al mismo tiempo y las ruedas se detuvieran en esta posición, la locomotora no podría empezar a moverse. Por lo tanto, los muñones de cigüeñal están unidos a las ruedas en un ángulo de 90° entre sí, de modo que solo un lado puede estar en el punto muerto a la vez.

Cada pistón transmite potencia a través de una cruceta , biela ( Main rod en EE. UU.) y un muñón de cigüeñal en la rueda motriz ( Main driver en EE. UU.) o a una manivela en un eje motriz. El movimiento de las válvulas en la caja de vapor se controla a través de un conjunto de varillas y varillajes llamados engranaje de válvulas , accionados desde el eje motriz o desde el muñón de cigüeñal; el engranaje de válvulas incluye dispositivos que permiten invertir el motor, ajustar el recorrido de la válvula y la sincronización de los eventos de admisión y escape. El punto de corte determina el momento en que la válvula bloquea un puerto de vapor, "cortando" el vapor de admisión y determinando así la proporción de la carrera durante la cual se admite vapor en el cilindro; por ejemplo, un corte del 50% admite vapor durante la mitad de la carrera del pistón. El resto de la carrera es impulsado por la fuerza expansiva del vapor. El uso cuidadoso del corte proporciona un uso económico del vapor y, a su vez, reduce el consumo de combustible y agua. La palanca de inversión ( barra Johnson en los EE. UU.), o inversor de tornillo (si está equipado), que controla el corte, por lo tanto, realiza una función similar a una palanca de cambios en un automóvil: el corte máximo, que proporciona el máximo esfuerzo de tracción a expensas de la eficiencia, se utiliza para arrancar desde parado, mientras que un corte tan bajo como el 10% se utiliza cuando se conduce a velocidad crucero, lo que proporciona un esfuerzo de tracción reducido y, por lo tanto, un menor consumo de combustible y agua. [35]

El vapor de escape se dirige hacia arriba fuera de la locomotora a través de la chimenea, mediante una boquilla llamada tubo de escape , creando el familiar sonido de "resoplado" de la locomotora de vapor. El tubo de escape está colocado en un punto estratégico dentro de la caja de humos que al mismo tiempo es atravesado por los gases de combustión aspirados a través de la caldera y la parrilla por la acción del chorro de vapor. La combinación de las dos corrientes, vapor y gases de escape, es crucial para la eficiencia de cualquier locomotora de vapor, y los perfiles internos de la chimenea (o, estrictamente hablando, el eyector ) requieren un diseño y ajuste cuidadosos. Esto ha sido objeto de estudios intensivos por parte de varios ingenieros (y a menudo ignorado por otros, a veces con consecuencias catastróficas). El hecho de que el tiro dependa de la presión de escape significa que el suministro de energía y la generación de energía se ajustan automáticamente. Entre otras cosas, se debe lograr un equilibrio entre obtener suficiente tiro para la combustión y dar a los gases de escape y las partículas el tiempo suficiente para ser consumidos. En el pasado, una fuerte corriente de aire podía levantar el fuego de la parrilla o provocar la expulsión de partículas no quemadas de combustible, suciedad y contaminación por las que las locomotoras de vapor tenían una reputación poco envidiable. Además, la acción de bombeo del escape tiene el efecto contrario de ejercer contrapresión en el lado del pistón que recibe vapor, reduciendo así ligeramente la potencia del cilindro. El diseño del eyector de escape se convirtió en una ciencia específica, con ingenieros como Chapelon , Giesl y Porta que realizaron grandes mejoras en la eficiencia térmica y una reducción significativa en el tiempo de mantenimiento [36] y la contaminación. [37] Algunos de los primeros fabricantes de tractores de gasolina/queroseno ( Advance-Rumely / Hart-Parr ) utilizaron un sistema similar : el volumen de gases de escape se ventilaba a través de una torre de enfriamiento, lo que permitía que el escape de vapor atrajera más aire más allá del radiador.

Tren de rodaje

Animación del tren de rodaje
Locomotora de vapor 2-8-2 en la estación de tren
Limpieza con vapor del tren de rodaje de una locomotora de clase "H", Chicago and North Western Railway , 1943
Tren de rodaje de una locomotora de vapor

El tren de rodaje incluye el mecanismo de freno, los juegos de ruedas , las cajas de grasa , los resortes y el movimiento que incluye las bielas y el mecanismo de válvulas. La transmisión de la potencia de los pistones a los rieles y el comportamiento de la locomotora como vehículo, siendo capaz de negociar curvas, puntos e irregularidades en la vía, es de suma importancia. Debido a que la potencia recíproca tiene que aplicarse directamente al riel desde 0 rpm en adelante, esto crea el problema de la adherencia de las ruedas motrices a la superficie lisa del riel. El peso adhesivo es la parte del peso de la locomotora que se apoya sobre las ruedas motrices. Esto se hace más efectivo si un par de ruedas motrices puede aprovechar al máximo su carga por eje, es decir, su parte individual del peso adhesivo. Las vigas de igualación que conectan los extremos de las ballestas a menudo se han considerado una complicación en Gran Bretaña, sin embargo, las locomotoras equipadas con las vigas generalmente han sido menos propensas a la pérdida de tracción debido al deslizamiento de las ruedas. La suspensión mediante palancas de igualación entre los ejes motrices y entre los ejes motrices y los bogies era una práctica estándar en las locomotoras de América del Norte para mantener cargas uniformes en las ruedas cuando operaban en vías irregulares.

Las locomotoras con adherencia total, donde todas las ruedas están acopladas entre sí, generalmente carecen de estabilidad a alta velocidad. Para contrarrestar esto, las locomotoras a menudo equipan ruedas de soporte sin motor montadas en bogies de dos ruedas o de cuatro ruedas centrados por resortes/balancines invertidos/rodillos dentados que ayudan a guiar la locomotora a través de las curvas. Estos suelen soportar peso (de los cilindros en la parte delantera o de la caja de fuego en la parte trasera) cuando el ancho excede el de los bastidores principales. Las locomotoras con múltiples ruedas acopladas en un chasis rígido tendrían fuerzas de pestaña inaceptables en curvas cerradas que darían lugar a un desgaste excesivo de la pestaña y del riel, a la separación de la vía y a descarrilamientos por ascenso de las ruedas. Una solución era eliminar o adelgazar las pestañas de un eje. Más común era dar juego final a los ejes y utilizar un control de movimiento lateral con resortes o dispositivos de gravedad de plano inclinado.

Los ferrocarriles generalmente preferían locomotoras con menos ejes, para reducir los costos de mantenimiento. La cantidad de ejes necesarios estaba determinada por la carga máxima por eje del ferrocarril en cuestión. Un constructor normalmente añadía ejes hasta que el peso máximo en cualquier eje fuera aceptable para la carga máxima por eje del ferrocarril. Una locomotora con una disposición de ruedas de dos ejes de guía, dos ejes motrices y un eje de arrastre era una máquina de alta velocidad. Se necesitaban dos ejes de guía para tener un buen seguimiento a altas velocidades. Dos ejes motrices tenían una masa recíproca menor que tres, cuatro, cinco o seis ejes acoplados. Por lo tanto, podían girar a velocidades muy altas debido a la menor masa recíproca. Un eje de arrastre podía soportar una enorme caja de fuego, por lo que la mayoría de las locomotoras con la disposición de ruedas de 4-4-2 (American Type Atlantic) se llamaban locomotoras de vapor libre y podían mantener la presión de vapor independientemente del ajuste del acelerador.

Chasis

El chasis, o bastidor de la locomotora , es la estructura principal sobre la que se monta la caldera y que incorpora los distintos elementos del tren de rodaje. La caldera está montada rígidamente sobre una "montura" debajo de la caja de humos y delante del cuerpo de la caldera, pero la caja de fuego de la parte trasera puede deslizarse hacia delante y hacia atrás para permitir la expansión cuando está caliente.

Las locomotoras europeas suelen utilizar "bastidores de placas", en los que dos placas planas verticales forman el chasis principal, con una variedad de espaciadores y una viga amortiguadora en cada extremo para formar una estructura rígida. Cuando se montan cilindros interiores entre los bastidores, los bastidores de placas son una única pieza fundida de gran tamaño que forma un elemento de soporte principal. Las cajas de grasa se deslizan hacia arriba y hacia abajo para proporcionar cierta suspensión elástica, contra unas nervaduras engrosadas unidas al bastidor, llamadas "bloques de bocina". [38]

Durante muchos años, la práctica estadounidense fue utilizar bastidores de barras armadas, con la estructura de cilindros/sillín de la caja de humos y la viga de arrastre integrada en ellos. En la década de 1920, con la introducción de la "superpotencia", la bancada de locomotora de acero fundido se convirtió en la norma, incorporando bastidores, suspensiones de resorte, soportes de movimiento, asiento de la caja de humos y bloques de cilindros en una única pieza de fundición compleja, resistente pero pesada. Un estudio de diseño de la SNCF que utilizó bastidores tubulares soldados dio como resultado un bastidor rígido con una reducción de peso del 30%. [39]

Combustible y agua

Nivel de agua. Aquí el agua en la caldera se encuentra en la "tuerca superior", por encima del nivel máximo de funcionamiento normal.

Generalmente, las locomotoras más grandes están acopladas permanentemente a un ténder que transporta el agua y el combustible. A menudo, las locomotoras que recorren distancias más cortas no tienen ténder y transportan el combustible en un búnker, mientras que el agua se transporta en tanques colocados junto a la caldera. Los tanques pueden tener varias configuraciones, incluidos dos tanques a lo largo ( tanques laterales o tanques de pannier ), uno en la parte superior ( tanque de silla de montar ) o uno entre los bastidores ( tanque de pozo ).

El combustible utilizado dependía de lo que estuviera económicamente disponible para el ferrocarril. En el Reino Unido y otras partes de Europa, los abundantes suministros de carbón hicieron que esta fuera la opción obvia desde los primeros días de la máquina de vapor. Hasta 1870, [40] la mayoría de las locomotoras en los Estados Unidos quemaban madera, pero a medida que se talaron los bosques del este, el carbón se fue utilizando gradualmente más ampliamente hasta convertirse en el combustible dominante en todo el mundo en las locomotoras de vapor. Los ferrocarriles que servían a las operaciones de cultivo de caña de azúcar quemaban bagazo , un subproducto de la refinación del azúcar. En los EE. UU., la fácil disponibilidad y el bajo precio del petróleo lo convirtieron en un combustible popular para locomotoras de vapor después de 1900 para los ferrocarriles del suroeste, particularmente el Southern Pacific. En el estado australiano de Victoria, muchas locomotoras de vapor se convirtieron a combustible de petróleo pesado después de la Segunda Guerra Mundial. Los ferrocarriles alemanes, rusos, australianos y británicos experimentaron con el uso de polvo de carbón para encender locomotoras.

Durante la Segunda Guerra Mundial, varias locomotoras de maniobras de vapor suizas fueron modificadas para utilizar calderas calentadas eléctricamente, que consumían alrededor de 480 kW de energía recolectada de una línea aérea con un pantógrafo . Estas locomotoras eran significativamente menos eficientes que las eléctricas ; se utilizaron porque Suiza sufría una escasez de carbón debido a la guerra, pero tenía acceso a abundante energía hidroeléctrica . [41]

Varias líneas turísticas y locomotoras históricas de Suiza, Argentina y Australia han utilizado aceite diésel ligero. [42]

El agua se suministraba en los lugares de parada y en los depósitos de locomotoras desde una torre de agua dedicada conectada a grúas hidráulicas o pórticos. En el Reino Unido, los EE. UU. y Francia, se instalaron canales de agua ( bandejas de vía en los EE. UU.) en algunas líneas principales para permitir que las locomotoras reabastezcan su suministro de agua sin detenerse, a partir del agua de lluvia o del deshielo que llenaba el canal debido a las inclemencias del tiempo. Esto se logró utilizando una "pala de agua" desplegable instalada debajo del ténder o del tanque de agua trasero en el caso de una locomotora de tanque grande; el fogonero bajaba remotamente la pala dentro del canal, la velocidad de la locomotora hacía subir el agua al tanque y la pala se elevaba nuevamente una vez que estaba llena.

Una locomotora carga agua utilizando una grúa hidráulica.

El agua es esencial para el funcionamiento de una locomotora de vapor. Como afirmaba Swengel:

Tiene el calor específico más alto de todas las sustancias comunes; es decir, se almacena más energía térmica al calentar agua a una temperatura determinada que la que se almacenaría al calentar una masa igual de acero o cobre a la misma temperatura. Además, la propiedad de vaporizarse (formar vapor) almacena energía adicional sin aumentar la temperatura… el agua es un medio muy satisfactorio para convertir la energía térmica del combustible en energía mecánica. [43]

Swengel continuó señalando que "a baja temperatura y con rendimientos de caldera relativamente bajos", el agua de buena calidad y el lavado regular de la caldera eran una práctica aceptable, aunque dicho mantenimiento fuera alto. Sin embargo, a medida que aumentaban las presiones de vapor, se desarrollaba un problema de "formación de espuma" o "cebado" en la caldera, en el que los sólidos disueltos en el agua formaban "burbujas de piel dura" dentro de la caldera, que a su vez eran transportadas a las tuberías de vapor y podían volar las culatas. Para superar el problema, se desperdiciaba deliberadamente (se purgaba) agua caliente concentrada en minerales de la caldera periódicamente. Las presiones de vapor más altas requerían una mayor purga de agua fuera de la caldera. El oxígeno generado por el agua hirviendo ataca la caldera y, con el aumento de la presión de vapor, aumenta la tasa de óxido (óxido de hierro) generado dentro de la caldera. Una forma de ayudar a superar el problema era el tratamiento del agua. Swengel sugirió que estos problemas contribuyeron al interés en la electrificación de los ferrocarriles. [43]

En la década de 1970, LD Porta desarrolló un sofisticado sistema de tratamiento químico de agua de alta resistencia (Porta Treatment) que no solo mantiene limpio el interior de la caldera y evita la corrosión, sino que modifica la espuma de tal manera que forma una "manta" compacta sobre la superficie del agua que filtra el vapor a medida que se produce, manteniéndolo puro y evitando el arrastre a los cilindros de agua y materia abrasiva suspendida. [44] [45]

Algunas locomotoras de vapor han funcionado con combustibles alternativos , como aceite de cocina usado , como Grand Canyon Railway 4960 , Grand Canyon Railway 29 , US Sugar 148 y las locomotoras de Disneyland Railroad . [46] [47] [48] [49] [50] [51] [52]

Multitud

Una tripulación de locomotoras en Francia

Una locomotora de vapor normalmente se controla desde la parte trasera de la caldera , y la tripulación suele estar protegida de los elementos por una cabina. Normalmente se requiere una tripulación de al menos dos personas para operar una locomotora de vapor. Una, el conductor del tren o ingeniero (América del Norte) , es responsable de controlar el arranque, la parada y la velocidad de la locomotora, y el fogonero es responsable de mantener el fuego, regular la presión del vapor y monitorear los niveles de agua de la caldera y del ténder. Debido a la pérdida histórica de infraestructura operativa y personal, las locomotoras de vapor preservadas que operan en la línea principal a menudo tendrán una tripulación de apoyo que viajará con el tren.

Herrajes y electrodomésticos

Todas las locomotoras están equipadas con una variedad de dispositivos. Algunos de ellos están relacionados directamente con el funcionamiento de la máquina de vapor; otros son para señalización, control del tren u otros fines. En los Estados Unidos, la Administración Federal de Ferrocarriles ordenó el uso de ciertos dispositivos a lo largo de los años como respuesta a preocupaciones de seguridad. Los dispositivos más típicos son los siguientes:

Bombas de vapor e inyectores

El agua ( agua de alimentación ) debe ser suministrada a la caldera para reemplazar la que se agota como vapor después de entregar una carrera de trabajo a los pistones. Como la caldera está bajo presión durante el funcionamiento, el agua de alimentación debe ser forzada a entrar en la caldera a una presión que es mayor que la presión del vapor, lo que requiere el uso de algún tipo de bomba. Las bombas operadas manualmente fueron suficientes para las primeras locomotoras. Los motores posteriores utilizaron bombas impulsadas por el movimiento de los pistones (bombas de eje), que eran fáciles de operar, confiables y podían manejar grandes cantidades de agua, pero solo funcionaban cuando la locomotora estaba en movimiento y podían sobrecargar el mecanismo de válvulas y las varillas de pistón a altas velocidades. Los inyectores de vapor luego reemplazaron a la bomba, mientras que algunos motores hicieron la transición a turbobombas . La práctica estándar evolucionó para usar dos sistemas independientes para alimentar agua a la caldera; ya sea dos inyectores de vapor o, en diseños más conservadores, bombas de eje cuando funciona a velocidad de servicio y un inyector de vapor para llenar la caldera cuando está estacionaria o a bajas velocidades. En el siglo XX, prácticamente todas las locomotoras de nueva construcción utilizaban únicamente inyectores de vapor: a menudo, uno de los inyectores se alimentaba con vapor "vivo" directamente de la propia caldera y el otro utilizaba el vapor de escape de los cilindros de la locomotora, que era más eficiente (ya que aprovechaba el vapor que de otro modo se desperdiciaría), pero que solo se podía utilizar cuando la locomotora estaba en movimiento y el regulador estaba abierto. Los inyectores dejaban de ser fiables si el agua de alimentación estaba a alta temperatura, por lo que las locomotoras con calentadores de agua de alimentación, las locomotoras con tanques en contacto con la caldera y las locomotoras de condensación a veces utilizaban bombas de vapor alternativas o turbobombas.

Los tubos de vidrio verticales, conocidos como medidores de agua o vasos de agua, muestran el nivel de agua en la caldera y se controlan cuidadosamente en todo momento mientras la caldera está en funcionamiento. Antes de la década de 1870, era más común tener una serie de grifos de prueba instalados en la caldera al alcance de la tripulación; cada grifo de prueba (al menos dos y, por lo general, tres) estaba montado a un nivel diferente. Al abrir cada grifo de prueba y ver si salía vapor o agua a través de él, se podía estimar el nivel de agua en la caldera con una precisión limitada. A medida que aumentaban las presiones de la caldera, el uso de grifos de prueba se volvió cada vez más peligroso y las válvulas eran propensas a bloquearse con sarro o sedimentos, lo que daba lecturas falsas. Esto llevó a su reemplazo por el visor. Al igual que con los inyectores, generalmente se instalaban dos vidrios con accesorios separados para proporcionar lecturas independientes.

Aislamiento de calderas

El término para el aislamiento de tuberías y calderas es "aislamiento térmico" [53] , que deriva del término del tonelero para una duela de barril de madera . [54] Dos de las primeras locomotoras de vapor usaban revestimiento térmico de madera para aislar sus calderas: la Salamanca , la primera locomotora de vapor comercialmente exitosa, construida en 1812, [4] y la Locomotion No. 1 , la primera locomotora de vapor que transportó pasajeros en una línea ferroviaria pública. Se desperdician grandes cantidades de calor si una caldera no está aislada. Las primeras locomotoras usaban revestimientos térmicos, duelas de madera moldeadas, colocadas longitudinalmente a lo largo del barril de la caldera y sujetadas en su lugar mediante aros, bandas de metal, los términos y métodos son de la tonelería .

Los métodos de aislamiento mejorados incluían la aplicación de una pasta espesa que contenía un mineral poroso como el kieselgur , o la fijación de bloques moldeados de compuesto aislante como bloques de magnesia . [55] En los últimos días del vapor, se fijaban a la caldera "colchones" de tela de amianto cosida y rellena de fibra de amianto, sobre separadores para que no tocaran la caldera. Sin embargo, actualmente el amianto está prohibido en la mayoría de los países por razones de salud. El material moderno más común es la lana de vidrio o los envoltorios de papel de aluminio. [ cita requerida ]

El revestimiento está protegido por una carcasa de chapa metálica ajustada herméticamente [56], conocida como revestimiento de caldera o revestimiento.

Un aislamiento térmico eficaz es especialmente importante para las locomotoras sin llama ; sin embargo, en los últimos tiempos, bajo la influencia de LD Porta, se ha aplicado un aislamiento "exagerado" para todo tipo de locomotoras en todas las superficies propensas a disipar calor, como los extremos de los cilindros y los revestimientos entre los cilindros y los bastidores principales. Esto reduce considerablemente el tiempo de calentamiento del motor con un marcado aumento de la eficiencia general.

Válvulas de seguridad

Las válvulas de seguridad de la caldera se levantan en el Tornado 60163 , creando una estela de humo falsa

Las primeras locomotoras estaban equipadas con una válvula controlada por un peso suspendido del extremo de una palanca, y la salida de vapor se interrumpía mediante una válvula cónica. Como no había nada que impidiera que la palanca con peso rebotara cuando la locomotora pasaba por irregularidades en la vía, desperdiciando así vapor, el peso fue reemplazado más tarde por una columna accionada por resorte más estable, a menudo suministrada por Salter, un conocido fabricante de básculas de resorte . El peligro de estos dispositivos era que la tripulación de conducción podía verse tentada a añadir peso al brazo para aumentar la presión. La mayoría de las primeras calderas estaban equipadas con una válvula de bola de carga directa con "bloqueo" a prueba de manipulaciones protegida por una cubierta. A finales de la década de 1850, John Ramsbottom introdujo una válvula de seguridad que se hizo popular en Gran Bretaña durante la última parte del siglo XIX. Esta válvula no solo era a prueba de manipulaciones, sino que la manipulación por parte del conductor solo podía tener el efecto de aliviar la presión. La válvula de seguridad de George Richardson fue una invención estadounidense introducida en 1875, [57] y fue diseñada para liberar el vapor solo en el momento en que la presión alcanzaba el máximo permitido. Este tipo de válvula se usa casi universalmente en la actualidad. La Great Western Railway de Gran Bretaña fue una notable excepción a esta regla, ya que mantuvo el tipo de carga directa hasta el final de su existencia independiente, porque se consideró que una válvula de este tipo perdía menos presión entre la apertura y el cierre.

Manómetro

Manómetros en Blackmore Vale . El de la derecha muestra la presión de la caldera y el de la izquierda la presión del depósito de vapor.

Las primeras locomotoras no mostraban la presión del vapor en la caldera, pero era posible estimarla por la posición del brazo de la válvula de seguridad que a menudo se extendía sobre la placa posterior de la caja de fuego; las gradaciones marcadas en la columna del resorte daban una indicación aproximada de la presión real. Los promotores de las pruebas de Rainhill insistieron en que cada contendiente tuviera un mecanismo adecuado para leer la presión de la caldera, y Stephenson ideó un tubo vertical de mercurio de nueve pies con una mirilla en la parte superior, montado junto a la chimenea, para su Rocket . El manómetro de tubo Bourdon , en el que la presión endereza un tubo enrollado de sección ovalada de latón o bronce conectado a un puntero, se introdujo en 1849 y rápidamente ganó aceptación, y todavía se usa hoy. [58] Algunas locomotoras tienen un manómetro adicional en la caja de vapor. Esto ayuda al conductor a evitar el deslizamiento de las ruedas al arrancar, al advertir si la apertura del regulador es demasiado grande.

Parachispas y cajas de humo

Parachispas y caja de humo autolimpiante

Diseño típico de caja de humo autolimpiante

Las estufas de leña emiten grandes cantidades de chispas que requieren un dispositivo de supresión de chispas eficaz, generalmente alojado en la chimenea. Se instalaron muchos tipos diferentes, [59] siendo el tipo más común en sus inicios la chimenea Bonnet, que incorporaba un deflector en forma de cono colocado delante de la boca del tubo de la chimenea y una rejilla de alambre que cubría la amplia salida de la chimenea. Un diseño más eficiente fue la chimenea centrífuga de Radley y Hunter patentada en 1850 (comúnmente conocida como chimenea de diamante), que incorporaba deflectores orientados de manera que inducían un efecto de remolino en la cámara que alentaba a las brasas a quemarse y caer al fondo en forma de ceniza. En la caja de humo autolimpiable se logró el efecto opuesto: al permitir que los gases de combustión golpearan una serie de placas deflectoras, inclinadas de tal manera que no se afectara la explosión, las partículas más grandes se rompían en pedazos pequeños que serían expulsados ​​con la explosión, en lugar de depositarse en el fondo de la caja de humo para ser retirados a mano al final del recorrido. Al igual que con el pararrayos, se incorporó una pantalla para retener las brasas de gran tamaño. [60]

Las locomotoras de las clases estándar de los Ferrocarriles Británicos equipadas con cajas de humos autolimpiables se identificaban mediante una pequeña placa ovalada de fundición con la inscripción "SC", colocada en la parte inferior de la puerta de la caja de humos. Estas locomotoras requerían procedimientos de eliminación diferentes y la placa destacaba esta necesidad para el personal del depósito.

fogoneros

Un factor que limita el rendimiento de las locomotoras es la velocidad a la que se introduce el combustible en el fuego. A principios del siglo XX, algunas locomotoras llegaron a ser tan grandes que el fogonero no podía palear el carbón con la suficiente rapidez. [56] En los Estados Unidos, varios alimentadores mecánicos a vapor se convirtieron en equipos estándar y se adoptaron y utilizaron en otros lugares, incluidos Australia y Sudáfrica.

Calentamiento de agua de alimentación

La introducción de agua fría en una caldera reduce la potencia y, a partir de la década de 1920, se incorporaron diversos tipos de calentadores . El tipo más común para las locomotoras era el calentador de agua de alimentación de vapor de escape, que enviaba parte del escape a través de pequeños tanques montados en la parte superior de la caldera o la caja de humos o al tanque del ténder; el agua caliente tenía que ser suministrada a la caldera mediante una pequeña bomba de vapor auxiliar. El tipo economizador, poco común, se diferenciaba en que extraía el calor residual de los gases de escape. Un ejemplo de esto es el tambor o tambores de precalentamiento que se encuentran en la caldera Franco-Crosti .

El uso de inyectores de vapor vivo y de vapor de escape también ayuda en el precalentamiento del agua de alimentación de la caldera en un pequeño grado, aunque no hay ninguna ventaja de eficiencia para los inyectores de vapor vivo. Este precalentamiento también reduce el choque térmico que una caldera puede experimentar cuando se introduce agua fría directamente. Esto se ve ayudado aún más por la alimentación superior, donde el agua se introduce en la parte más alta de la caldera y se hace que gotee sobre una serie de bandejas. George Jackson Churchward instaló este dispositivo en el extremo superior de sus calderas cónicas sin cúpula. Otras líneas británicas, como la London, Brighton & South Coast Railway, instalaron algunas locomotoras con la alimentación superior dentro de una cúpula separada delante de la principal.

Condensadores y reabastecimiento de agua

Riego de una locomotora de vapor
Locomotora condensadora sudafricana clase 25

Las locomotoras de vapor consumen grandes cantidades de agua porque funcionan en un ciclo abierto, expulsando su vapor inmediatamente después de un solo uso en lugar de reciclarlo en un circuito cerrado como lo hacen las máquinas de vapor estacionarias y marinas . El agua era un problema logístico constante, y las máquinas de condensación se idearon para su uso en áreas desérticas. Estas máquinas tenían enormes radiadores en sus ténderes y, en lugar de expulsar el vapor del embudo, lo capturaban, lo devolvían al ténder y lo condensaban. El aceite lubricante de los cilindros se eliminaba del vapor extraído para evitar un fenómeno conocido como cebado, una condición causada por la formación de espuma en la caldera que permitiría que el agua se transportara a los cilindros y causara daños debido a su incompresibilidad. Las máquinas más notables que empleaban condensadores (Clase 25, las "bombas que nunca exhalan" [61] ) funcionaron en el desierto Karoo de Sudáfrica desde la década de 1950 hasta la de 1980.

Algunas locomotoras británicas y estadounidenses estaban equipadas con palas que recogían agua de los "canales de agua" ( bandejas de vía en los EE. UU.) mientras estaban en movimiento, evitando así las paradas para beber agua. En los EE. UU., las comunidades pequeñas a menudo no tenían instalaciones para rellenar. Durante los primeros días del ferrocarril, la tripulación simplemente se detenía junto a un arroyo y llenaba el ténder con baldes de cuero. Esto se conocía como "jerking water" y dio lugar al término "jerkwater towns" (que significa "pueblo pequeño", un término que hoy se considera despectivo). [62] En Australia y Sudáfrica, las locomotoras en regiones más secas operaban con ténderes de gran tamaño y algunas incluso tenían un vagón de agua adicional, a veces llamado "cantina" o en Australia (particularmente en Nueva Gales del Sur) "desmotadora de agua".

Las locomotoras de vapor que circulaban en los ferrocarriles subterráneos (como el Metropolitan Railway de Londres ) estaban equipadas con un aparato condensador para evitar que el vapor se escapara hacia los túneles ferroviarios. Estos aparatos siguieron utilizándose entre King's Cross y Moorgate hasta principios de los años 1960.

Frenado

Las locomotoras de vapor suelen tener su propio sistema de frenado, independiente del resto del tren. Los frenos de las locomotoras emplean zapatas de gran tamaño que presionan contra las bandas de rodadura de las ruedas motrices. Pueden ser frenos neumáticos o frenos de vapor . Además, casi siempre tienen un freno de mano para mantener la locomotora parada cuando no hay presión de vapor para alimentar los otros sistemas de frenado.

Debido a la limitada fuerza de frenado que proporcionaban los frenos exclusivos de las locomotoras, muchas locomotoras de vapor estaban equipadas con un freno de tren. Estos venían en dos variedades principales: frenos de aire y frenos de vacío . Estos permitían al conductor controlar los frenos de todos los vagones del tren.

Los frenos de aire, inventados por George Westinghouse , utilizan un compresor de aire impulsado por vapor montado en el costado de la caldera para crear el aire comprimido necesario para alimentar el sistema de frenos. [63] Los frenos de aire fueron la forma predominante de frenado de trenes en la mayoría de los países durante la era del vapor.

El principal competidor del freno de aire fue el freno de vacío , en el que se monta un eyector accionado por vapor en el motor en lugar de la bomba de aire, para crear el vacío necesario para accionar el sistema de frenos. Se utiliza un eyector secundario o una bomba de vacío de cruceta para mantener el vacío en el sistema contra las pequeñas fugas en las conexiones de las tuberías entre los vagones y los vagones. Los frenos de vacío fueron la forma predominante de frenado de trenes en el Reino Unido y los países que adoptaron sus prácticas, como la India y Sudáfrica , durante la era del vapor.

Las locomotoras de vapor están equipadas con areneros desde los que se puede depositar arena sobre el raíl para mejorar la tracción y el frenado en condiciones meteorológicas húmedas o heladas. En las locomotoras estadounidenses, los areneros, o domos de arena, suelen estar montados sobre la caldera. En Gran Bretaña, el gálibo de carga limitado lo impide, por lo que los areneros se montan justo encima o debajo de la placa de rodadura.

Lubricación

Lubricador de desplazamiento marca "Wakefield" montado sobre la placa posterior de la caldera de una locomotora. A través de la mirilla derecha se puede ver una gota de aceite (que sube a través del agua).

Los pistones y las válvulas de las primeras locomotoras se lubricaban cuando los maquinistas dejaban caer un trozo de sebo por el tubo de escape . Pronto se desarrollaron métodos más sofisticados para suministrar la sustancia. El sebo se adhiere bien a las paredes de los cilindros y es más eficaz que el aceite mineral para resistir la acción del agua. Sigue siendo un componente de la formulación moderna de aceite para cilindros de vapor. [64] [65] [66]

A medida que aumentaron las velocidades y las distancias, se desarrollaron mecanismos que inyectaban aceite mineral espeso en el suministro de vapor. El primero, un lubricador de desplazamiento , montado en la cabina, utiliza una corriente controlada de vapor que se condensa en un recipiente sellado de aceite. El agua del vapor condensado desplaza el aceite hacia las tuberías. El aparato suele estar equipado con mirillas para confirmar la velocidad de suministro. Un método posterior utiliza una bomba mecánica que funciona desde una de las crucetas . En ambos casos, el suministro de aceite es proporcional a la velocidad de la locomotora.

Cojinete de biela (con biela y biela de acoplamiento ) de un Blackmoor Vale que muestra tapones de corcho perforados en depósitos de petróleo

La lubricación de los componentes del bastidor (cojinetes de los ejes, bloques de bocina y pivotes de bogies) depende de la acción capilar : los recortes de hilo peinado se arrastran desde los depósitos de aceite hacia las tuberías que conducen al componente respectivo. [67] La ​​tasa de aceite suministrado está controlada por el tamaño del haz de hilo y no por la velocidad de la locomotora, por lo que es necesario quitar los recortes (que están montados en un cable) cuando está parada. Sin embargo, en paradas regulares (como el andén de una estación terminal), el aceite que llega a la vía todavía puede ser un problema.

Los cojinetes de la biela y de la cruceta llevan pequeños depósitos en forma de copa para el aceite. Estos tienen tuberías de alimentación hacia la superficie del cojinete que comienzan por encima del nivel de llenado normal, o se mantienen cerrados mediante un pasador de ajuste flojo, de modo que solo cuando la locomotora está en movimiento entra el aceite. En la práctica del Reino Unido, las copas se cierran con corchos simples, pero estos tienen un trozo de caña porosa empujado a través de ellos para admitir el aire. Es habitual incorporar una pequeña cápsula de aceite picante (anís o ajo) en el metal del cojinete para advertir si falla la lubricación y se produce un calentamiento excesivo o desgaste. [68]

Soplador

Cuando la locomotora está funcionando a motor, el vapor de escape que sube por la chimenea a través del tubo de descarga crea una corriente de aire sobre el fuego. Sin corriente de aire, el fuego se apagará rápidamente y la presión del vapor disminuirá. Cuando la locomotora está parada o en marcha por inercia con el regulador cerrado, no hay vapor de escape que genere una corriente de aire, por lo que la corriente de aire se mantiene mediante un ventilador. Se trata de un anillo colocado alrededor de la base de la chimenea o alrededor del orificio del tubo de descarga, que contiene varias boquillas de vapor pequeñas que suben por la chimenea. Estas boquillas se alimentan con vapor directamente de la caldera, controlado por la válvula del ventilador. Cuando el regulador está abierto, la válvula del ventilador está cerrada; cuando el conductor tiene la intención de cerrar el regulador, primero abrirá la válvula del ventilador. Es importante abrir el ventilador antes de cerrar el regulador, ya que sin corriente de aire en el fuego, puede producirse una corriente de aire invertida , en la que el aire atmosférico sopla por la chimenea, provocando que el flujo de gases calientes a través de los tubos de la caldera se invierta, y el fuego mismo sea expulsado a través del orificio de combustión hacia la plataforma de apoyo, con graves consecuencias para la tripulación. El riesgo de corriente de aire invertida es mayor cuando la locomotora entra en un túnel debido al choque de presión. El ventilador también se utiliza para crear corriente de aire cuando se aumenta el vapor al comienzo del servicio de la locomotora, en cualquier momento en que el conductor necesita aumentar la corriente de aire en el fuego y para despejar el humo de su campo de visión. [69]

Los retrocesos eran bastante comunes. En un informe de 1955 sobre un accidente cerca de Dunstable , el inspector escribió: "En 1953 se informaron veintitrés casos, que no fueron causados ​​por un defecto del motor, y resultaron en 26 maquinistas heridos. En 1954, el número de incidencias y de heridos fue el mismo y también hubo una víctima mortal". [70] Siguen siendo un problema, como lo demuestra el incidente de 2012 con el BR Standard Class 7 70013 Oliver Cromwell .

Buffers

En la práctica británica y europea (excepto en los países de la ex Unión Soviética), las locomotoras suelen tener topes en cada extremo para absorber las cargas de compresión ("topes" [71] ). La carga de tracción del tren (fuerza de tiro) es soportada por el sistema de acoplamiento . Juntos, estos controlan la holgura entre la locomotora y el tren, absorben impactos menores y proporcionan un punto de apoyo para los movimientos de empuje.

En la práctica canadiense y estadounidense, todas las fuerzas entre la locomotora y los vagones se manejan a través del acoplador, en particular el acoplador Janney , estándar desde hace mucho tiempo en el material rodante ferroviario estadounidense, y su mecanismo de tiro asociado , que permite un movimiento de holgura limitado. Pequeños hoyuelos llamados "bolsillos para postes" en las esquinas delanteras y traseras de la locomotora permitían empujar los vagones hacia una vía adyacente utilizando un poste apuntalado entre la locomotora y los vagones. [72] En Gran Bretaña y Europa, los acopladores "buckeye" de estilo norteamericano y otros que manejan fuerzas entre elementos del material rodante se han vuelto cada vez más populares.

Pilotos

Por lo general, se fijaba un piloto en la parte delantera de las locomotoras, aunque en Europa y en algunos otros sistemas ferroviarios, incluido Nueva Gales del Sur , se consideraban innecesarios. Tenían forma de arado, a veces llamados "atrapadores de vacas", eran bastante grandes y estaban diseñados para eliminar obstáculos de la vía, como ganado, bisontes, otros animales o ramas de árboles. Aunque no podían "atrapar" ganado extraviado, estos elementos distintivos permanecieron en las locomotoras hasta el final de la era del vapor. Las locomotoras de maniobras generalmente reemplazaban el piloto por pequeños escalones, conocidos como estribos . Muchos sistemas usaban el piloto y otras características de diseño para producir una apariencia distintiva.

Faros delanteros

Locomotora 7802 Bradley Manor del Great Western Railway conservada , con dos lámparas de aceite que simbolizan un servicio expreso de pasajeros y una lámpara eléctrica de alta intensidad añadida por normas de seguridad.

Cuando comenzaron las operaciones nocturnas, las compañías ferroviarias de algunos países equiparon sus locomotoras con luces para que el conductor pudiera ver lo que había delante del tren o para que otros pudieran ver la locomotora. Los faros delanteros eran originalmente lámparas de aceite o acetileno, pero cuando las lámparas de arco eléctrico estuvieron disponibles a fines de la década de 1880, rápidamente reemplazaron a los tipos más antiguos.

Gran Bretaña no adoptó los faros brillantes, ya que afectarían la visión nocturna y podrían enmascarar las lámparas de aceite de baja intensidad utilizadas en las señales de los semáforos y en cada extremo de los trenes, lo que aumentaba el peligro de perder señales, especialmente en vías con mucho tráfico. Las distancias de frenado de las locomotoras también eran normalmente mucho mayores que el alcance de los faros, y los ferrocarriles estaban bien señalizados y completamente vallados para evitar que el ganado y las personas se desviaran hacia ellos, lo que anuló en gran medida la necesidad de lámparas brillantes. Por lo tanto, se siguieron utilizando lámparas de aceite de baja intensidad, colocadas en la parte delantera de las locomotoras para indicar la clase de cada tren. Se proporcionaron cuatro "lámparas de hierro" (soportes en los que colocar las lámparas): una debajo de la chimenea y tres espaciadas uniformemente en la parte superior de la viga del parachoques. La excepción a esto fue el Ferrocarril del Sur y sus componentes, que agregaron una lámpara de hierro adicional a cada lado de la caja de humos, y la disposición de las lámparas (o, a la luz del día, placas circulares blancas) indicaba al personal ferroviario el origen y el destino del tren. En todos los vehículos, también se proporcionaron lámparas de hierro equivalentes en la parte trasera de la locomotora o del ténder para cuando la locomotora funcionaba con el ténder o el búnker primero.

En algunos países, la red nacional sigue funcionando con trenes de vapor tradicionales. Algunas autoridades ferroviarias han ordenado que se enciendan faros potentes en todo momento, incluso durante el día. Esto se hizo para informar al público o a los trabajadores de las vías sobre la presencia de trenes en funcionamiento.

Campanas y silbatos

Las locomotoras usaban campanas y silbatos de vapor desde los primeros días de la locomoción a vapor. En Estados Unidos, India y Canadá, las campanas advertían de un tren en movimiento. En Gran Bretaña, donde todas las líneas están valladas por ley, [73] las campanas solo eran un requisito en los ferrocarriles que circulaban por una carretera (es decir, no vallados), por ejemplo, un tranvía a lo largo del costado de la carretera o en un astillero. En consecuencia, solo una minoría de las locomotoras en el Reino Unido llevaban campanas. Los silbatos se utilizan para hacer señales al personal y dar advertencias. Dependiendo del terreno en el que se usara la locomotora, el silbato podría estar diseñado para advertir a larga distancia de la llegada inminente, o para un uso más localizado.

Las primeras campanas y silbatos se hacían sonar mediante cuerdas y palancas. Los timbres automáticos se empezaron a utilizar ampliamente en los EE. UU. después de 1910. [74]

Control automático

Un indicador típico de AWS en forma de " girasol ". El indicador muestra un disco negro o un disco "explosivo" amarillo y negro.

A principios del siglo XX, las compañías operadoras de países como Alemania y Gran Bretaña comenzaron a equipar sus locomotoras con un sistema de señalización en cabina con sistema de advertencia automático (AWS), que aplicaba automáticamente los frenos cuando se pasaba una señal de "precaución". En Gran Bretaña, estos dispositivos se volvieron obligatorios en 1956. En los Estados Unidos, la Pennsylvania Railroad también equipó sus locomotoras con estos dispositivos. [ cita requerida ]

Motores de refuerzo

El motor de refuerzo era una máquina de vapor auxiliar que proporcionaba un esfuerzo de tracción adicional para el arranque. Era un dispositivo de baja velocidad, normalmente montado en el bogie trasero. Se desacoplaba mediante un engranaje loco a baja velocidad, p. ej. 30 km/h. Los propulsores se utilizaron ampliamente en los EE. UU. y se probaron experimentalmente en Gran Bretaña y Francia. En el sistema ferroviario de vía estrecha de Nueva Zelanda, seis locomotoras Kb 4-8-4 estaban equipadas con propulsores, las únicas locomotoras de ancho de vía de 3 pies 6 pulgadas ( 1067 mm ) en el mundo que tenían dicho equipo.

En los EE. UU., también se instalaron motores de refuerzo en los vagones de ténder y se los conocía como locomotoras auxiliares. Se conectaron dos o incluso tres ejes de vagón entre sí mediante barras laterales, lo que los limitaba al servicio a baja velocidad. [75]

Puerta cortafuegos

La compuerta cortafuegos se utiliza para cubrir el orificio de combustión cuando no se añade carbón. Tiene dos propósitos: primero, evita que el aire pase por encima del fuego, sino que lo obliga a pasar a través de él. El segundo propósito es proteger a la tripulación del tren contra los contragolpes. Sin embargo, tiene un medio para permitir que pase algo de aire por encima del fuego (lo que se denomina "aire secundario") para completar la combustión de los gases producidos por el fuego.

Las puertas cortafuegos vienen en múltiples diseños, el más básico de los cuales es una sola pieza que tiene bisagras en un lado y puede abrirse hacia la placa base. Este diseño tiene dos problemas. Primero, ocupa mucho espacio en la placa base y segundo, la corriente de aire tiende a cerrarla por completo, cortando así el aire secundario. Para compensar esto, algunas locomotoras están equipadas con un pestillo que evita que la puerta cortafuegos se cierre por completo, mientras que otras tienen un pequeño respiradero en la puerta que se puede abrir para permitir que fluya el aire secundario. Aunque se consideró diseñar una puerta cortafuegos que se abra hacia adentro en la caja de fuego, evitando así la molestia causada en la placa base, dicha puerta estaría expuesta a todo el calor del fuego y probablemente se deformaría, volviéndose así inútil.

Un tipo más popular de puerta cortafuego consiste en una puerta corrediza de dos piezas operada por una sola palanca. Hay rieles por encima y por debajo de la puerta cortafuego por los que corre la puerta. Estos rieles son propensos a atascarse con escombros y las puertas requieren más esfuerzo para abrirse que la puerta batiente antes mencionada. Para solucionar esto, algunas puertas cortafuego utilizan un funcionamiento motorizado que utiliza un cilindro de vapor o aire para abrir la puerta. Entre estas se encuentran las puertas de mariposa que giran en la esquina superior; la acción de pivote ofrece poca resistencia al cilindro que abre la puerta. [76]

Variaciones

Se produjeron numerosas variaciones de la locomotora básica a medida que los ferrocarriles intentaban mejorar la eficiencia y el rendimiento.

Cilindros

Las primeras locomotoras de vapor tenían dos cilindros, uno a cada lado, y esta práctica persistió como la disposición más simple. Los cilindros podían montarse entre los bastidores principales (conocidos como cilindros "internos"), o montarse fuera de los bastidores y las ruedas motrices (cilindros "externos"). Los cilindros internos impulsan manivelas integradas en el eje motriz; los cilindros externos impulsan manivelas en extensiones de los ejes motrices.

Los diseños posteriores emplearon tres o cuatro cilindros, montados tanto dentro como fuera de los bastidores, para lograr un ciclo de potencia más uniforme y una mayor potencia de salida. [77] Esto se hizo a expensas de un mecanismo de válvulas más complicado y mayores requisitos de mantenimiento. En algunos casos, el tercer cilindro se agregó en el interior simplemente para permitir cilindros externos de diámetro más pequeño y, por lo tanto, reducir el ancho de la locomotora para su uso en líneas con un gálibo de carga restringido, por ejemplo, las clases SR K1 y U1 .

La mayoría de las locomotoras de pasajeros exprés británicas construidas entre 1930 y 1950 eran del tipo 4-6-0 o 4-6-2 con tres o cuatro cilindros (por ejemplo, la clase GWR 6000 , la clase LMS Coronation , la clase SR Merchant Navy y la clase LNER Gresley A3 ). A partir de 1951, todas menos una de las 999 nuevas locomotoras de vapor de clase estándar de British Rail en todos los tipos utilizaron configuraciones de 2 cilindros para facilitar el mantenimiento.

Mecanismo de válvulas

Las primeras locomotoras utilizaban un mecanismo de válvulas simple que proporcionaba potencia total tanto en avance como en retroceso. [58] Pronto, el mecanismo de válvulas Stephenson permitió al conductor controlar el corte; esto fue reemplazado en gran medida por el mecanismo de válvulas Walschaerts y patrones similares. Los primeros diseños de locomotoras que utilizaban válvulas de corredera y admisión externa eran relativamente fáciles de construir, pero ineficientes y propensos al desgaste. [58] Finalmente, las válvulas de corredera fueron reemplazadas por válvulas de pistón de admisión interna , aunque hubo intentos de aplicar válvulas de asiento (comúnmente utilizadas en motores estacionarios) en el siglo XX. El mecanismo de válvulas Stephenson generalmente se colocaba dentro del marco y era difícil acceder a él para su mantenimiento; los patrones posteriores aplicados fuera del marco eran más fácilmente visibles y se mantenían.

Composición

La locomotora de combustión interna de aceite De Glehn U-127, de 4-6-0, que tiraba del tren fúnebre de Lenin, se encuentra en el Museo del Ferrocarril de Moscú en la terminal ferroviaria Paveletsky

Las locomotoras de vapor compuesto se utilizaron a partir de 1876, expandiendo el vapor al doble o más a través de cilindros separados, lo que reducía las pérdidas térmicas causadas por el enfriamiento de los cilindros. Las locomotoras de vapor compuesto eran especialmente útiles en trenes donde se necesitaban largos períodos de esfuerzo continuo. La combinación contribuyó al espectacular aumento de potencia logrado por las reconstrucciones de André Chapelon a partir de 1929. Una aplicación común fue en locomotoras articuladas, siendo la más común la diseñada por Anatole Mallet , en la que la etapa de alta presión estaba unida directamente al bastidor de la caldera; frente a esta se pivotaba un motor de baja presión en su propio bastidor, que tomaba el escape del motor trasero. [78]

Locomotoras articuladas

Una locomotora Garratt clase 400 de South Australian Railways , construida en 1952 según un diseño de Beyer, Peacock & Company por la Société Franco-Belge . La articulación se realiza mediante pivotes en los extremos del bastidor central de la locomotora.
David Lloyd George sale de la estación Tan-y-Bwlch , Gwynedd - una locomotora Fairlie en el ferrocarril Festiniog , Gales

Very powerful locomotives tend to be longer than those with lower power output, but long rigid-framed designs are impracticable for the tight curves frequently found on narrow-gauge railways. Various designs for articulated locomotives were developed to overcome this problem. The Mallet and the Garratt were the two most popular. They had a single boiler and two engine units (sets of cylinders and driving wheels): both of the Garratt's engine units were on swivelling frames, whereas one of the Mallet's was on a swivelling frame and the other was fixed under the boiler unit. A few triplex locomotives were also designed, with a third engine unit under the tender. Other less common variations included the Fairlie locomotive, which had two boilers back-to-back on a common frame, with two separate engine units.

Duplex types

Duplex locomotives, containing two engines in one rigid frame, were also tried, but were not notably successful. For example, the 4-4-4-4 Pennsylvania Railroad class T1, designed for very fast running, suffered recurring and ultimately unfixable slippage problems throughout their careers.[79]

Geared locomotives

For locomotives where a high starting torque and low speed were required, the conventional direct drive approach was inadequate. "Geared" steam locomotives, such as the Shay, the Climax and the Heisler, were developed to meet this need on industrial, logging, mine and quarry railways. The common feature of these three types was the provision of reduction gearing and a drive shaft between the crankshaft and the driving axles. This arrangement allowed the engine to run at a much higher speed than the driving wheels compared to the conventional design, where the ratio is 1:1.

Cab forward

In the United States on the Southern Pacific Railroad, a series of cab forward locomotives were produced with the cab and the firebox at the front of the locomotive and the tender behind the smokebox, so that the engine appeared to run backwards. This was only possible by using oil-firing. Southern Pacific selected this design to provide air free of smoke for the engine driver to breathe as the locomotive passed through mountain tunnels and snow sheds. Another variation was the Camelback locomotive, with the cab situated halfway along the boiler. In England, Oliver Bulleid developed the SR Leader class locomotive during the nationalisation process in the late 1940s. The locomotive was heavily tested but several design faults (such as coal firing and sleeve valves) meant that this locomotive and the other part-built locomotives were scrapped. The cab-forward design was taken by Bulleid to Ireland, where he moved after nationalisation, where he developed the "turfburner". This locomotive was more successful, but was scrapped due to the dieselisation of the Irish railways.

The only preserved cab forward locomotive is Southern Pacific 4294 in Sacramento, California.

In France, the three Heilmann locomotives were built with a cab forward design.

Steam turbines

Ljungström steam turbine locomotive with air preheater, c. 1925

Steam turbines were created as an attempt to improve the operation and efficiency of steam locomotives. Experiments with steam turbines using direct-drive and electrical transmissions in various countries proved mostly unsuccessful.[56] The London, Midland & Scottish Railway built the Turbomotive, a largely successful attempt to prove the efficiency of steam turbines.[56] Had it not been for the outbreak of World War II, more may have been built. The Turbomotive ran from 1935 to 1949, when it was rebuilt into a conventional locomotive because many parts required replacement, an uneconomical proposition for a "one-off" locomotive. In the United States, Union Pacific, Chesapeake & Ohio and Norfolk & Western (N&W) railways all built turbine-electric locomotives. The Pennsylvania Railroad (PRR) also built turbine locomotives, but with a direct-drive gearbox. However, all designs failed due to dust, vibration, design flaws or inefficiency at lower speeds. The final one remaining in service was the N&W's, retired in January 1958. The only truly successful design was the TGOJ MT3, used for hauling iron ore from Grängesberg in Sweden to the ports of Oxelösund. Despite functioning correctly, only three were built. Two of them are preserved in working order in museums in Sweden.

Fireless locomotive

Fireless locomotive

In a fireless locomotive the boiler is replaced by a steam accumulator, which is charged with steam (actually water at a temperature well above boiling point, (100 °C (212 °F)) from a stationary boiler. Fireless locomotives were used where there was a high fire risk (e.g. oil refineries), where cleanliness was important (e.g. food-production plants) or where steam is readily available (e.g. paper mills and power stations where steam is either a by-product or is cheaply available). The water vessel ("boiler") is heavily insulated, the same as with a fired locomotive. Until all the water has boiled away, the steam pressure does not drop except as the temperature drops.[citation needed]

Another class of fireless locomotive is a compressed-air locomotive.[citation needed]

Mixed power

Steam diesel hybrid locomotive

Mixed power locomotives, utilising both steam and diesel propulsion, have been produced in Russia, Britain and Italy.

Electric-steam locomotive

Under unusual conditions (lack of coal, abundant hydroelectricity) some locomotives in Switzerland were modified to use electricity to heat the boiler, making them electric-steam locomotives.[80]

Steam-electric locomotive

Heilmann locomotive No. 8001, Chemins de Fer de l'Ouest

A steam-electric locomotive uses electric transmission, like diesel-electric locomotives, except that a steam engine instead of a diesel engine is used to drive a generator. Three such locomotives were built by the French engineer Jean Jacques Heilmann [fr] in the 1890s.

Categorisation

The Gov. Stanford, a 4-4-0 (using Whyte notation) locomotive typical of 19th-century American practice

Steam locomotives are categorised by their wheel arrangement. The two dominant systems for this are the Whyte notation and UIC classification.

The Whyte notation, used in most English-speaking and Commonwealth countries, represents each set of wheels with a number. These numbers typically represented the number of unpowered leading wheels, followed by the number of driving wheels (sometimes in several groups), followed by the number of un-powered trailing wheels. For example, a yard engine with only 4 driven wheels, without any leading or trailing wheels, would be categorised as a 0-4-0 wheel arrangement. A locomotive with a 4-wheel leading truck, followed by 6 drive wheels, and a 2-wheel trailing truck, would be classed as a 4-6-2. Different arrangements were given names which usually reflect the first usage of the arrangement; for instance, the "Santa Fe" type (2-10-2) is so called because the first examples were built for the Atchison, Topeka and Santa Fe Railway. These names were informally given and varied according to region and even politics.

The UIC classification is used mostly in European countries apart from the United Kingdom. It designates consecutive pairs of wheels (informally "axles") with a number for non-driving wheels and a capital letter for driving wheels (A=1, B=2, etc.) So a Whyte 4-6-2 designation would be an equivalent to a 2-C-1 UIC designation.

On many railroads, locomotives were organised into classes. These broadly represented locomotives which could be substituted for each other in service, but most commonly a class represented a single design. As a rule classes were assigned some sort of code, generally based on the wheel arrangement. Classes also commonly acquired nicknames, such as Pug (a small shunting locomotive), representing notable (and sometimes uncomplimentary) features of the locomotives.[81][82]

Performance

Measurement

In the steam locomotive era, two measures of locomotive performance were generally applied. At first, locomotives were rated by tractive effort, defined as the average force developed during one revolution of the driving wheels at the railhead.[43] This can be roughly calculated by multiplying the total piston area by 85% of the boiler pressure (a rule of thumb reflecting the slightly lower pressure in the steam chest above the cylinder) and dividing by the ratio of the driver diameter over the piston stroke. However, the precise formula is

where d is the bore of the cylinder (diameter) in inches,s is the cylinder stroke, in inches,P is boiler pressure in pounds per square inch,D is the diameter of the driving wheel in inches, and c is a factor that depends on the effective cut-off.[83] In the US, c is usually set at 0.85, but lower on engines that have maximum cutoff limited to 50–75%.

The tractive effort is only the "average" force, as not all effort is constant during the one revolution of the drivers. At some points of the cycle, only one piston is exerting turning moment and at other points, both pistons are working. Not all boilers deliver full power at starting, and the tractive effort also decreases as the rotating speed increases.[43]

Tractive effort is a measure of the heaviest load a locomotive can start or haul at very low speed over the ruling grade in a given territory.[43] However, as the pressure grew to run faster goods and heavier passenger trains, tractive effort was seen to be an inadequate measure of performance because it did not take into account speed. Therefore, in the 20th century, locomotives began to be rated by power output. A variety of calculations and formulas were applied, but in general railways used dynamometer cars to measure tractive force at speed in actual road testing.

British railway companies have been reluctant to disclose figures for drawbar horsepower and have usually relied on continuous tractive effort instead.

Relation to wheel arrangement

Classification is indirectly connected to locomotive performance. Given adequate proportions of the rest of the locomotive, power output is determined by the size of the fire, and for a bituminous coal-fuelled locomotive, this is determined by the grate area. Modern non-compound locomotives are typically able to produce about 40 drawbar horsepower per square foot of grate. Tractive force, as noted earlier, is largely determined by the boiler pressure, the cylinder proportions and the size of the driving wheels. However, it is also limited by the weight on the driving wheels (termed "adhesive weight"), which needs to be at least four times the tractive effort.[56]

The weight of the locomotive is roughly proportional to the power output; the number of axles required is determined by this weight divided by the axleload limit for the trackage where the locomotive is to be used. The number of driving wheels is derived from the adhesive weight in the same manner, leaving the remaining axles to be accounted for by the leading and trailing bogies.[56] Passenger locomotives conventionally had two-axle leading bogies for better guidance at speed; on the other hand, the vast increase in the size of the grate and firebox in the 20th century meant that a trailing bogie was called upon to provide support. In Europe, some use was made of several variants of the Bissel bogie in which the swivelling movement of a single axle truck controls the lateral displacement of the front driving axle (and in one case the second axle too). This was mostly applied to 8-coupled express and mixed traffic locomotives, and considerably improved their ability to negotiate curves whilst restricting overall locomotive wheelbase and maximising adhesion weight.

As a rule, shunting engines (US: switching engines) omitted leading and trailing bogies, both to maximise tractive effort available and to reduce wheelbase. Speed was unimportant; making the smallest engine (and therefore smallest fuel consumption) for the tractive effort was paramount. Driving wheels were small and usually supported the firebox as well as the main section of the boiler. Banking engines (US: helper engines) tended to follow the principles of shunting engines, except that the wheelbase limitation did not apply, so banking engines tended to have more driving wheels. In the US, this process eventually resulted in the Mallet type engine with its many driven wheels, and these tended to acquire leading and then trailing bogies as guidance of the engine became more of an issue.

As locomotive types began to diverge in the late 19th century, freight engine designs at first emphasised tractive effort, whereas those for passenger engines emphasised speed. Over time, freight locomotive size increased, and the overall number of axles increased accordingly; the leading bogie was usually a single axle, but a trailing truck was added to larger locomotives to support a larger firebox that could no longer fit between or above the driving wheels. Passenger locomotives had leading bogies with two axles, fewer driving axles, and very large driving wheels in order to limit the speed at which the reciprocating parts had to move.

In the 1920s, the focus in the United States turned to horsepower, epitomised by the "super power" concept promoted by the Lima Locomotive Works, although tractive effort was still the prime consideration after World War I to the end of steam. Goods trains were designed to run faster, while passenger locomotives needed to pull heavier loads at speed. This was achieved by increasing the size of grate and firebox without changes to the rest of the locomotive, requiring the addition of a second axle to the trailing truck. Freight 2-8-2s became 2-8-4s while 2-10-2s became 2-10-4s. Similarly, passenger 4-6-2s became 4-6-4s. In the United States this led to a convergence on the dual-purpose 4-8-4 and the 4-6-6-4 articulated configuration, which was used for both freight and passenger service.[84] Mallet locomotives went through a similar transformation, evolving from bank engines into huge mainline locomotives with much larger fireboxes; their driving wheels were also increased in size in order to allow faster running.

Manufacture

Most-manufactured classes

Esh 4444 0-10-0 at Varshavsky Rail Terminal, St. Petersburg

The most-manufactured single class of steam locomotive in the world is the 0-10-0 Russian locomotive class E steam locomotive with around 11,000 produced both in Russia and other countries such as Czechoslovakia, Germany, Sweden, Hungary and Poland. The Russian locomotive class O numbered 9,129 locomotives, built between 1890 and 1928. Around 7,000 units were produced of the German DRB Class 52 2-10-0 Kriegslok.

In Britain, 863 of the GWR 5700 Class were built, and 943 of the DX class of the London and North Western Railway – including 86 engines built for the Lancashire and Yorkshire Railway.[85]

United Kingdom

Great Western Railway No. 6833 Calcot Grange, a 4-6-0 Grange class steam locomotive at Bristol Temple Meads station. Note the Belpaire (square-topped) firebox.
60163 Tornado on the East Coast Main Line in 2016

Before the 1923 Grouping Act, production in the UK was mixed. The larger railway companies built locomotives in their own workshops, with the smaller ones and industrial concerns ordering them from outside builders. A large market for outside builders existed due to the home-build policy exercised by the main railway companies. An example of a pre-grouping works was the one at Melton Constable, which maintained and built some of the locomotives for the Midland and Great Northern Joint Railway. Other works included one at Boston (an early GNR building) and Horwich Works.

Between 1923 and 1947, the Big Four railway companies (the Great Western Railway, the London, Midland & Scottish Railway, the London & North Eastern Railway and the Southern Railway) all built most of their own locomotives, only buying locomotives from outside builders when their own works were fully occupied (or as a result of government-mandated standardisation during wartime).[86]

From 1948, British Railways (BR) allowed the former Big Four companies (now designated as "Regions") to continue to produce their own designs, but also created a range of standard locomotives which supposedly combined the best features from each region. Although a policy of dieselisation was adopted in 1955, BR continued to build new steam locomotives until 1960, with the final engine being named Evening Star.[87]

Some independent manufacturers produced steam locomotives for a few more years, with the last British-built industrial steam locomotive being constructed by Hunslet in 1971. Since then, a few specialised manufacturers have continued to produce small locomotives for narrow gauge and miniature railways, but as the prime market for these is the tourist and heritage railway sector, the demand for such locomotives is limited. In November 2008, a new build main line steam locomotive, 60163 Tornado, was tested on UK mainlines for eventual charter and tour use.

Sweden

In the 19th and early 20th centuries, most Swedish steam locomotives were manufactured in Britain. Later, however, most steam locomotives were built by local factories including NOHAB in Trollhättan and ASJ in Falun. One of the most successful types was the class "B" (4-6-0), inspired by the Prussian class P8. Many of the Swedish steam locomotives were preserved during the Cold War in case of war. During the 1990s, these steam locomotives were sold to non-profit associations or abroad, which is why the Swedish class B, class S (2-6-4) and class E2 (2-8-0) locomotives can now be seen in Britain, the Netherlands, Germany and Canada.

United States

California Western Railroad No. 45 (builder No. 58045), built by Baldwin in 1924, is a 2-8-2 Mikado locomotive. It is still in use today on the Skunk Train.

Locomotives for American railroads were nearly always built in the United States with very few imports, except in the earliest days of steam engines. This was due to the basic differences of markets in the United States which initially had many small markets located large distances apart, in contrast to Europe's higher density of markets. Locomotives that were cheap and rugged and could go large distances over cheaply built and maintained tracks were required. Once the manufacture of engines was established on a wide scale there was very little advantage to buying an engine from overseas that would have to be customised to fit the local requirements and track conditions. Improvements in engine design of both European and US origin were incorporated by manufacturers when they could be justified in a generally very conservative and slow-changing market. With the notable exception of the USRA standard locomotives built during World War I, in the United States, steam locomotive manufacture was always semi-customised. Railroads ordered locomotives tailored to their specific requirements, though some basic design features were always present. Railroads developed some specific characteristics; for example, the Pennsylvania Railroad and the Great Northern Railway had a preference for the Belpaire firebox.[88] In the United States, large-scale manufacturers constructed locomotives for nearly all rail companies, although nearly all major railroads had shops capable of heavy repairs and some railroads (for example, the Norfolk and Western Railway and the Pennsylvania Railroad, which had two erecting shops) constructed locomotives entirely in their own shops.[89][90] Companies manufacturing locomotives in the US included Baldwin Locomotive Works, American Locomotive Company (ALCO), and Lima Locomotive Works. Altogether, between 1830 and 1950, over 160,000 steam locomotives were built in the United States, with Baldwin accounting for the largest share, nearly 70,000.[91]

Steam locomotives required regular and, compared to a diesel-electric engine, frequent service and overhaul (often at government-regulated intervals in Europe and the US). Alterations and upgrades regularly occurred during overhauls. New appliances were added, unsatisfactory features removed, cylinders improved or replaced. Almost any part of the locomotive, including boilers, was replaced or upgraded. When service or upgrades got too expensive the locomotive was traded off or retired.[citation needed] On the Baltimore and Ohio Railroad two 2-10-2 locomotives were dismantled; the boilers were placed onto two new Class T 4-8-2 locomotives and the residual wheel machinery made into a pair of Class U 0-10-0 switchers with new boilers. Union Pacific's fleet of 3-cylinder 4-10-2 engines were converted into two-cylinder engines in 1942, because of high maintenance problems.

Australia

The 200th steam locomotive built by Clyde Engineering (TF 1164) from the Powerhouse Museum collection

In Sydney, Clyde Engineering and the Eveleigh Railway Workshops both built steam locomotives for the New South Wales Government Railways. These include the C38 class 4-6-2; the first five were built at Clyde with streamlining, the other 25 locomotives were built at Eveleigh (13) and Cardiff Workshops (12) near Newcastle. In Queensland, steam locomotives were locally constructed by Walkers. Similarly, the South Australian Railways also manufactured steam locomotives locally at Islington Railway Workshops in Adelaide. Victorian Railways constructed most of their locomotives at its Newport Workshops and in Bendigo, while in the early days locomotives were built at the Phoenix Foundry in Ballarat. Locomotives constructed at the Newport shops ranged from the nA class 2-6-2T built for the narrow gauge, up to the H class 4-8-4 – the largest conventional locomotive ever to operate in Australia, weighing 260 tons. However, the title of largest locomotive ever used in Australia goes to the 263-ton New South Wales AD60 class locomotive 4-8-4+4-8-4 Garratt,[92] built by Beyer, Peacock & Company in England. Most steam locomotives used in Western Australia were built in the United Kingdom, though some examples were designed and built locally at the Western Australian Government Railways' Midland Railway Workshops. The 10 WAGR S class locomotives (introduced in 1943) were the only class of steam locomotive to be wholly conceived, designed and built in Western Australia,[93] while the Midland workshops notably participated in the Australia-wide construction program of Australian Standard Garratts – these wartime locomotives were built at Midland in Western Australia, Clyde Engineering in New South Wales, Newport in Victoria and Islington in South Australia and saw varying degrees of service in all Australian states.[93]

The end of steam in general use

The introduction of electric locomotives around the turn of the 20th century and later diesel-electric locomotives spelled the beginning of a decline in the use of steam locomotives, although it was some time before they were phased out of general use.[94] As diesel power (especially with electric transmission) became more reliable in the 1930s, it gained a foothold in North America.[95] The full transition away from steam power in North America took place during the 1950s. In continental Europe, large-scale electrification had replaced steam power by the 1970s. Steam was a familiar technology, adapted well to local facilities, and also consumed a wide variety of fuels; this led to its continued use in many countries until the end of the 20th century.

Steam engines have considerably less thermal efficiency than modern diesels, requiring constant maintenance and labour to keep them operational.[96] Water is required at many points throughout a rail network, making it a major problem in desert areas, as are found in some regions of the United States, Australia and South Africa. In places where water is available, it may be hard, which can cause "scale" to form, composed mainly of calcium carbonate, magnesium hydroxide and calcium sulfate. Calcium and magnesium carbonates tend to be deposited as off-white solids on the inside the surfaces of pipes and heat exchangers. This precipitation is principally caused by thermal decomposition of bicarbonate ions but also happens in cases where the carbonate ion is at saturation concentration.[97] The resulting build-up of scale restricts the flow of water in pipes. In boilers, the deposits impair the flow of heat into the water, reducing the heating efficiency and allowing the metal boiler components to overheat.

The reciprocating mechanism on the driving wheels of a two-cylinder single expansion steam locomotive tended to pound the rails (see hammer blow), thus requiring more maintenance. Raising steam from coal took a matter of hours, and created serious pollution problems. Coal-burning locomotives required fire cleaning and ash removal between turns of duty.[98] Diesel or electric locomotives, by comparison, drew benefit from new custom-built servicing facilities. The smoke from steam locomotives was also deemed objectionable; the first electric and diesel locomotives were developed in response to smoke abatement requirements,[99] although this did not take into account the high level of less-visible pollution in diesel exhaust smoke, especially when idling. In some countries, however, power for electric locomotives is derived from steam generated in power stations, which are often run by coal.

Revival

60163 Tornado, a new express locomotive built for the British main line, completed in 2008
Reading Blue Mountain and Northern Railroad 425 being readied in Pennsylvania, US, for the daily tourist train in 1993
Er 774 38 0-10-0 on Steam Special Train in Moscow 11 July 2010
2-6-0 type "N3" steam locomotive built by Beyer, Peacock & Company in 1910 and restored 2005–2007 by the Uruguayan Railfan Association (AUAR). The photo shows the locomotive with a passenger tourist train in March 2013 at a Montevideo railway station museum.
South African Class 26, the Red Devil

Dramatic increases in the cost of diesel fuel prompted several initiatives to revive steam power.[100][101] However, none of these has progressed to the point of production and, as of the early 21st century, steam locomotives operate only in a few isolated regions of the world and in tourist operations.

As early as 1975, railway enthusiasts in the United Kingdom began building new steam locomotives. That year, Trevor Barber completed his 2 ft (610 mm) gauge locomotive Trixie which ran on the Meirion Mill Railway.[102] From the 1990s onwards, the number of new builds being completed rose dramatically with new locos completed by the narrow-gauge Ffestiniog and Corris railways in Wales. The Hunslet Engine Company was revived in 2005, and began building steam locomotives on a commercial basis.[103] A standard-gauge LNER Peppercorn Pacific "Tornado" was completed at Hopetown Works, Darlington, and made its first run on 1 August 2008.[104][105] It entered main line service later in 2008.[106] As of 2009 over half-a-dozen projects to build working replicas of extinct steam engines are going ahead, in many cases using existing parts from other types to build them. Examples include BR 72010 Hengist,[107] BR Class 3MT No. 82045, BR Class 2MT No. 84030,[108] Brighton Atlantic Beachy Head,[109] the LMS 5551 The Unknown Warrior project, GWR "47xx 4709, 2999 Lady of Legend, 1014 County of Glamorgan and 6880 Betton Grange projects. These United Kingdom based new build projects are further complemented by the new build Pennsylvania Railroad 5550[110] project in the United States. One of the group's goals is to surpass the steam locomotive speed record held by the 4468 Mallard when the 5550 is completed and for the 5550 to fill in a huge gap in steam locomotive preservation.

In 1980, American financier Ross Rowland established American Coal Enterprises to develop a modernised coal-fired steam locomotive. His ACE 3000 concept attracted considerable attention, but was never built.[111][112]

In 1998, in his book The Red Devil and Other Tales from the Age of Steam,[113] David Wardale put forward the concept of a high-speed high-efficiency "Super Class 5 4-6-0" locomotive for future steam haulage of tour trains on British main lines. The idea was formalised in 2001 by the formation of 5AT Project dedicated to developing and building the 5AT Advanced Technology Steam Locomotive, but it never received any major railway backing.

Locations where new builds are taking place include:[citation needed]

In 2012, the Coalition for Sustainable Rail[114] project was started in the US with the goal of creating a modern higher-speed steam locomotive, incorporating the improvements proposed by Livio Dante Porta and others, and using torrefied biomass as solid fuel. The fuel has been recently developed by the University of Minnesota in a collaboration between the university's Institute on the Environment (IonE) and Sustainable Rail International (SRI), an organisation set up to explore the use of steam traction in a modern railway setup. The group have received the last surviving (but non-running) ATSF 3460 class steam locomotive (No. 3463) via donation from its previous owner in Kansas, the Great Overland Station Museum. They hope to use it as a platform for developing "the world's cleanest, most powerful passenger locomotive", capable of speeds up to 130 mph (210 km/h). Named "Project 130", it aims to break the world steam-train speed record set by LNER Class A4 4468 Mallard in the UK at 126 mph (203 km/h). However, any demonstration of the project's claims is yet to be seen.

In Germany, a small number of fireless steam locomotives are still working in industrial service, e.g. at power stations, where an on-site supply of steam is readily available.

The small town of Wolsztyn, Poland, approximately 60 kilometres (37 mi) from the historic city of Poznań, is the last place in the world where one can ride a regularly scheduled passenger train pulled by steam power. The locomotive shed at Wolsztyn is the last of its kind in the world. There are several working locomotives that haul daily commuter service between Wolsztyn, Poznan, Leszo and other neighboring cities. One can partake in footplate courses via The Wolsztyn Experience. There is no place left in the world that still operates daily, non-tourist steam powered commuter/passenger service other than here at Wolsztyn. There are several Polish-built OL49-class 2-6-2 general purpose locomotives and one PT47 class 2-8-2 in regular service. Each May, Wolsztyn is the site of a steam locomotive festival which brings visiting locomotives - often well over a dozen each year all operating. These operations are not done for tourism or museum/historical purposes; this is the last non-diesel rail line on the PKP (Polish State Network) that has been converted to diesel power.

The Swiss company Dampflokomotiv- und Maschinenfabrik DLM AG delivered eight steam locomotives to rack railways in Switzerland and Austria between 1992 and 1996. Four of them are now the main traction on the Brienz Rothorn Bahn; the four others were built for the Schafbergbahn in Austria, where they run 90% of the trains.

The same company also rebuilt a German DR Class 52.80 2-10-0 locomotive to new standards with modifications such as roller bearings, light oil firing and boiler insulation.[115]

Climate change

The future use of steam locomotives in the United Kingdom is in doubt because of government policy on climate change. The Heritage Railway Association is working with the All-Party Parliamentary Group on Heritage Rail in an effort to continue running steam locomotives on coal.[116]

Many tourist railroads use oil-fired steam locomotives (or have converted their locomotives to run on oil) to reduce their environmental footprint, and because fuel oil can be easier to obtain than coal of the proper type and sizing for locomotives. For example, the Grand Canyon Railway runs its steam locomotives on used vegetable oil.

An organization called the Coalition for Sustainable Rail (CSR) is developing an environmentally friendly coal substitute made from torrefied biomass.[117] In early 2019, they performed a series of tests using Everett Railroad to evaluate the performance of the biofuel, with positive results. The biofuel was found to burn slightly faster and hotter than coal.[118] The goal of the project is primarily to find a sustainable fuel for historic steam locomotives on tourist railroads, but CSR has also suggested that, in the future, steam locomotives powered by torrefied biomass could be an environmentally and economically superior alternative to diesel locomotives.[117] Also, a large vat containing salt may be used without needing to replenishing the medium. Large heating elements would be one method of recharging the system, however, it is possible to pump molten salt as well, removing the cooled salt and replenishing from facilities which contain a much larger vat.[citation needed]

Steam locomotives in popular culture

Steam locomotives have been present in popular culture since the 19th century. Folk songs from that period including "I've Been Working on the Railroad" and the "Ballad of John Henry" are a mainstay of American music and culture.

Many steam locomotive toys have been made, and railway modelling is a popular hobby.

Steam locomotives are often portrayed in fictional works, notably The Railway Series by the Rev W. V. Awdry, The Little Engine That Could by Watty Piper, The Polar Express by Chris Van Allsburg, and the Hogwarts Express from J.K. Rowling's Harry Potter series. They have also been featured in many children's television shows, such as Thomas & Friends, based on characters from the books by Awdry, and Ivor the Engine created by Oliver Postgate.

The Hogwarts Express also appears in the Harry Potter series of films, portrayed by GWR 4900 Class 5972 Olton Hall in a special Hogwarts livery. The Polar Express appears in the animated movie of the same name.

An elaborate, themed funicular Hogwarts Express ride is featured in the Universal Orlando Resort in Florida, connecting the Harry Potter section of Universal Studios with the Islands of Adventure theme park.

The Polar Express is recreated on many heritage railroads in the United States, including the North Pole Express pulled by the Pere Marquette 1225 locomotive, which is operated by the Steam Railroading Institute in Owosso, Michigan. According to author Van Allsburg, this locomotive was the inspiration for the story and it was used in the production of the movie.

A number of computer and video games feature steam locomotives. Railroad Tycoon, produced in 1990, was named "one of the best computer games of the year".[citation needed]

There are two notable examples of steam locomotives used as charges on heraldic coats of arms. One is that of Darlington, which displays Locomotion No. 1. The other is the original coat of arms of Swindon, not currently in use, which displays a basic steam locomotive.[119][120]

Steam locomotives are a popular topic for coin collectors.[citation needed] The 1950 Silver 5 Peso coin of Mexico has a steam locomotive on its reverse as the prominent feature.

The 20 euro Biedermeier Period coin, minted 11 June 2003, shows on the obverse an early model steam locomotive (the Ajax) on Austria's first railway line, the Kaiser Ferdinands-Nordbahn. The Ajax can still be seen today in the Technisches Museum Wien. As part of the 50 State Quarters program, the quarter representing the US state of Utah depicts the ceremony where the two halves of the First transcontinental railroad met at Promontory Summit in 1869. The coin recreates a popular image from the ceremony with steam locomotives from each company facing each other while the golden spike is being driven.

The novel "Night on the Galactic Railroad"[121] by Kenji Miyazawa is centered on the idea of a steam train traveling among the stars. Miyazawa's novel later inspired Leiji Matsumoto's successful "Galaxy Express 999" series.

Another Japanese televisual franchise, Super Sentai, features monsters based on steam locomotives.

Charge Man, a Robot Master from the fifth installment of the Mega Man series is based on a steam locomotive.

See also

General

Types of steam locomotives

Notes

  1. ^ Comparable figures for the last-built British Railways freight locomotive, the Class 9F, were 139 long tons (141 t; 156 short tons) and 39,667 lbf (176,450 N).

References

  1. ^ Fowler, George Little (1906). Locomotive dictionary; an illustrated vocabulary of terms which designate American Railroad locomotives, their parts, attachments and details of construction, with definitions and illustrations of typical British locomotive practice; five thousand one hundred and forty-eight illustrations. New York: Railroad Gazette. ISBN 978-0-912318-20-2.
  2. ^ "Railways". British History Online.
  3. ^ Anthony Burton (2000). Richard Trevithick; Giant of Steam. Aurum Press. pp. 85–94. ISBN 1-85410-878-6.
  4. ^ a b Hamilton Ellis (1968). The Pictorial Encyclopedia of Railways. Hamlyn Publishing Group. p. 20.
  5. ^ Ellis, Hamilton (1968). The Pictorial Encyclopedia of Railways. pp. 24–30. Hamlyn Publishing Group.
  6. ^ "Magnificent Mallard: World's fastest steam locomotive". 17 February 2018.
  7. ^ Reed, Brian (1972). Loco Profile 24: Pennsylvania Duplexii. Profile Publications Ltd.
  8. ^ Pennypacker, Bert (1962). Pennsy Power: Steam and Electric Locomotives of the Pennsylvania Railroad, 1900-1957. Alvin Staufer.
  9. ^ "High-Capacity Locomotive for Fast Service" Railway Age Vol. 106, No. 25. Simmons-Boardman Publishing Corporation. 24 June 1939.
  10. ^ M. Grant, Roderick (December 1941). "Riding the Gargantua of the Rails". Popular Mechanics.
  11. ^ Kratville, William (1972). Big Boy. Kratville Publications.
  12. ^ "Blenkinsop, John". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/2637. (Subscription or UK public library membership required.)
  13. ^ Payton, Philip (2004). Oxford Dictionary of National Biography. Oxford University Press.
  14. ^ "Engineering and railway works". British History Online.
  15. ^ Gordon, W.J. (1910). Our Home Railways, volume one. London: Frederick Warne & Co. pp. 7–9.
  16. ^ The Railway Magazine, Volume 150, IPC Business Press, 2004, p. 11. Google Books.
  17. ^ Tzanakakis, Konstantinos (2013). The Railway Track and Its Long Term Behaviour: A Handbook for a Railway Track of High Quality. Springer Science+Business Media. ISBN 978-3-642-36051-0 – via Google Books.
  18. ^ National Park Service. "American Steam Locomotives". Retrieved 14 September 2021.
  19. ^ "The Legacy of John Fitch". www.craven-hall.org. Archived from the original on 31 October 2020. Retrieved 24 February 2016.
  20. ^ Yetman, David S. (2010). Without a Prop. Dog Ear Publishing. ISBN 978-1-60844-475-5 – via Google Books.
  21. ^ Francis Trevithick (1872). Life of Richard Trevithick: With an Account of His Inventions, Volume 1. E.&F.N.Spon.
  22. ^ "Richard Trevithick's steam locomotive | Rhagor". Museumwales.ac.uk. Archived from the original on 15 April 2011. Retrieved 3 November 2009.
  23. ^ "Steam train anniversary begins". BBC. 21 February 2004. Retrieved 13 June 2009. A south Wales town has begun months of celebrations to mark the 200th anniversary of the invention of the steam locomotive. Merthyr Tydfil was the location where, on 21 February 1804, Richard Trevithick took the world into the railway age when he set one of his high-pressure steam engines on a local iron master's tram rails
  24. ^ Payton, Philip (2004). Oxford Dictionary of National Biography. Oxford University Press.
  25. ^ Garnett, A.F. (2005). Steel Wheels. Cannwood Press. pp. 18–19.
  26. ^ Young, Robert (2000) [1923]. Timothy Hackworth and the Locomotive (reprint ed.). Lewes, UK: The Book Guild.
  27. ^ a b Hamilton Ellis (1968). The Pictorial Encyclopedia of Railways. The Hamlyn Publishing Group. pp. 24–30.
  28. ^ "John Stevens American Inventor".
  29. ^ Stover, John F. (1987). History of the Baltimore and Ohio Railroad. West Lafayette, IN: Purdue University Press. pp. 35–36. ISBN 0-911198-81-4.
  30. ^ ""DeWitt Clinton" Locomotive". American Rails. 2020. Retrieved 2 March 2020.
  31. ^ "John Bull Locomotive". National Museum of American History. Smithsonian Institution. 2021. Retrieved 30 March 2021.
  32. ^ "John Bull". Railroad Museum of Pennsylvania. 2021. Archived from the original on 29 April 2021. Retrieved 30 March 2021.
  33. ^ "Overland Locomotive:Feed Water Problems". The Argus. 21 March 1927. Retrieved 11 March 2014.
  34. ^ Hilton, John (1986). "Steam Locomotive Boilers". Back Track. No. (Special Introductory Issue). Atlantic Transport Publishers. pp. xl–xli. ISSN 0955-5382. OCLC 226007088.
  35. ^ Ahrons. The British Steam Railway Locomotive from 1825 to 1925. Vol. 1.
  36. ^ See section of the LNER Class A1/A3 article on the sharp increase in availability brought about in this respect by the application of the Kylchap exhaust to Gresley Pacifics in the early 1960s
  37. ^ J.J.G. Koopmans: The fire burns much better ... NL-Venray 2006, ISBN 90-6464-013-0
  38. ^ How Steam Locomotives Really Work, P.W.B. Semmens and A.J. Goldfinch, Oxford University Press 2000, ISBN 0-19-856536-4, p. 172
  39. ^ "La Locomotive a Vapeur", Andre Chapelon, English Translation by George W. Carpenter, Camden Miniature Steam Services 2000, ISBN 0-9536523-0-0, Fig. 37
  40. ^ White, John H. Jr. (1997). American Locomotives, an Engineering History 1830–1880, Revised and Expanded Edition. Baltimore, MD: Johns Hopkins University Press. p. 85. ISBN 0-8018-5714-7.
  41. ^ "The Swiss Electric-Steam Locomotives". 7 January 2010. Archived from the original on 18 October 2010. Retrieved 12 November 2015.
  42. ^ "West Coast and R711". Newsgroup: aus.rail.
  43. ^ a b c d e Swengel, Frank M. (1967). The American Steam Locomotive, Vol. 1, The Evolution of the Steam Locomotive. Davenport, Iowa: MidWest Rail Publications.
  44. ^ "Porta Treatment". www.portatreatment.com. Archived from the original on 7 January 2014.
  45. ^ "Coalition for Sustainable Rail ". Archived from the original on 5 April 2013.
  46. ^ "NPS.gov Homepage (U.S. National Park Service)". www.nps.gov. Retrieved 17 November 2020.
  47. ^ Robinson, Jalyn. "The Steam Engine Is Set to Return to Grand Canyon Railways". TripSavvy. Retrieved 14 July 2022.
  48. ^ "Grand Canyon excursion honors late Trains editor". Trains. 26 April 2022. Retrieved 14 July 2022.
  49. ^ "History - Sugar Express". 25 October 2020. Archived from the original on 25 October 2020. Retrieved 19 September 2022.
  50. ^ "Take a Veggie Oil-Fueled Trip to the Grand Canyon". Men's Journal. 2 April 2021. Retrieved 14 July 2022.
  51. ^ Cochran, Jason (2 February 2009). "Disneyland's Trains Save Money by Switching to Used French Fry Oil". AOL. Archived from the original on 18 January 2017. Retrieved 18 January 2017.
  52. ^ "Grand Canyon Railway receives culture and preservation award". 15 August 2017.
  53. ^ "Lagging – definition". Oxford English Dictionaries Online, Oxford University Press, March 2018, www.oed.com/view/Entry/105090. Archived from the original on 29 May 2018. Retrieved 29 May 2018.
  54. ^ "lag, n.2". OED Online. March 2018. Oxford University Press. http://www.oed.com/view/Entry/105062. Accessed May 22, 2018.
  55. ^ Scott, Ron; GN Large Atlantics (Profile Publications Berks UK – no date), p. 129
  56. ^ a b c d e f Bell, A Morton (1950). Locomotives (seventh ed.). London: Virtue & Co Ltd.
  57. ^ White, John H. Jr. (1968). A history of the American locomotive, its development: 1830–1880 ((Reprint: Dover Publications, New York 1979) ed.). Baltimore, MD: Johns Hopkins Press. pp. 146–149.
  58. ^ a b c Snell, John B (1971). Mechanical Engineering: Railways. London: Longman.
  59. ^ White 1968, pp. 114–124
  60. ^ BTC Handbook 1957, p. 40
  61. ^ Hollingsworth, Brian; Cook, Arthur (1987). The Great Book of Trains. London: Salamander Books. p. 192.
  62. ^ "Cass City Chronicle" (PDF). Cass City Chronicle: 3. 29 July 1938. Archived from the original (PDF) on 26 September 2007. Retrieved 26 September 2007.
  63. ^ Cyclopedia of Engineering, Volume III, Editor Louis Derr, American Technical Society Chicago 1919, p. 224
  64. ^ Rolt, L. T. C. (1976). Red for danger: a history of railway accidents and railway safety (3rd ed.). Newton Abbot: David & Charles. p. 33. ISBN 978-0-7153-7292-0.
  65. ^ Niño, Emanuel (1997). Industrial Lubrication. Manila, Philippines: Rex. p. 46. ISBN 978-971-23-2178-8.
  66. ^ Rigg, Arthur (1878). A practical treatise on the steam engine. London: Spon. OCLC 1251342932.
  67. ^ Handbook for Railway Steam Locomotive Enginemen. London: British Transport Commission. 1957. pp. 126–127. OCLC 4431123.
  68. ^ "January–December 1953; First Edition". The Railway Magazine. 99. London: International Printing Company: 287. 1953. ASIN B00UO1JLYG.
  69. ^ BTC Handbook 1957, p. 53
  70. ^ "1955 Dunstable accident report" (PDF).
  71. ^ Oxford English Dictionary: Buff 1
  72. ^ "Glossary of Terms and Definitions", accessed 21 Feb. 2012
  73. ^ "Railway Regulation Act 1842". UK Statute Law Database. 30 July 1842. Retrieved 5 March 2012.
  74. ^ White, John H. Jr. (1997). American Locomotives, an Engineering History 1830–1880, Revised and Expanded Edition. Baltimore, MD: Johns Hopkins Press. pp. 213–214. ISBN 0-8018-5714-7.
  75. ^ "The Steam Locomotive In America, Its Development in the Twentieth Century", Alfred W. Bruce, First Edition, W.W. Norton & Company, Inc 1952, p. 262
  76. ^ Dominic Wells (2015). How a Steam Locomotive Works: a New Guide (Hardcover ed.).
  77. ^ "Steam Still Rules the Rails" Popular Science, December 1937, drawing pp. 32–33 on multi-cylinders arrangement
  78. ^ Van Riemsdijk, John T. (1994). Compound locomotives, an international survey. Penryn, England: Atlantic Transport Publishers. ISBN 0-906899-61-3.
  79. ^ David Ross, The Steam Locomotive: a History, Tempus Publishing, Gloucestershire, 2006, ISBN 0-7524-3916-2
  80. ^ "Electric-steam locomotives of Switzerland". Archived from the original on 18 October 2010. Retrieved 14 September 2010.
  81. ^ LNWR Society. "LNWR Locomotive classes". Lnwrs.org.uk. Archived from the original on 2 December 2008. Retrieved 3 November 2009.
  82. ^ "Scots Dictionary". Dsl.ac.uk. Archived from the original on 20 February 2008. Retrieved 3 November 2009.
  83. ^ Adams, Henry (1908). Cassell's Engineer's Handbook. London: Cassell and Company. p. 389.
  84. ^ Allen, Cecil J (1949). Locomotive Practice and Performance in the Twentieth Century. Cambridge, England: W Heffer and Sons Ltd.
  85. ^ Ahrons, E. L. (1987) [1927]. The British Steam Railway Locomotive 1825–1925. London: Bracken Books. p. 123. ISBN 1-85170-103-6.
  86. ^ "Study In Steel - London Midland & Scottish Railway" on YouTube
  87. ^ British Railways' Last Steam Locomotive Railway Gazette 23 March 1960 p. 355
  88. ^ "Pennsylvania Railroad locomotive classification @ Everything2.com". Everything2.com. 2 February 2003. Retrieved 3 November 2009.
  89. ^ Perfecting The American Steam Locomotive, J. Parker Lamb, Indiana University Press, 2003, ISBN 0-253-34219-8, p. 135
  90. ^ article about the PRR Altoona shops "Where 14,000 Labored" by Mark Smith, Michelle Giroux and Jay Williams, Locomotive & Railway Preservation magazine, July–August 1987, ISSN 0891-7647
  91. ^ Broggie 2014, pp. 25–26.
  92. ^ Oberg, Leon (1975). Locomotives of Australia. A.H. and A.W. Reed. ISBN 978-0-589-07173-8.
  93. ^ a b Gunzburg, Adrian (1984). A History of W.A.G.R. Steam Locomotives. Australian Railway Historical Society (Western Australian Division), Perth. ISBN 978-0-589-07173-8.
  94. ^ Meiklejohn, Bernard (January 1906). "New Motors on Railroads: Electric and Gasoline Cars Replacing the Steam Locomotive". The World's Work: A History of Our Time. XIII: 8437–8454. Retrieved 10 July 2009.
  95. ^ "The Construction of and Performance Obtained from the Oil Engine".
  96. ^ "Overhaul of a locomotive" on YouTube
  97. ^ "Wisconisin DNR – Carbonate chemistry" (PDF). Archived from the original (PDF) on 12 July 2017. Retrieved 4 November 2015.
  98. ^ "Cleaning and inspecting a locomotive" on YouTube
  99. ^ Diesel Traction Manual for Enginemen. British Transport Commission. 1962. pp. 15–16.
  100. ^ "The 5AT project to develop a modern steam locomotive for British railways". Archived from the original on 15 August 2012. Retrieved 6 November 2006.
  101. ^ "Railway Extension Across the Andes: reactivation and modernisation of existing fleet of 75 cm gauge 2-10-2 steam locomotives". Archived from the original on 28 September 2007.
  102. ^ Quine, Dan (November 2016). "Trixie and the Meirion Mill Railway". Narrow Gauge World.
  103. ^ Staff. "About Hunslet Steam Co". Hunslet Hunslet Engine Company. Retrieved 4 August 2008.
  104. ^ Roberts, David (3 August 2008). "Newly-built steam loco takes to the tracks". Darlington & Stockton Times. Retrieved 4 August 2008.[permanent dead link]
  105. ^ Staff (22 September 2008). "60163 Tornado is on the go". BBC Tees. Retrieved 1 October 2008.
  106. ^ Glancy, Jonathan (2 August 2008). "New steam locomotive unveiled". The Guardian. London. Retrieved 4 August 2008.
  107. ^ "Hengist official website". 72010-hengist.org. Retrieved 3 November 2009.
  108. ^ "84030 page on the Bluebell Railway website". Bluebell-railway.co.uk. 14 April 2008. Retrieved 3 November 2009.
  109. ^ "Beachy Head section on the Bluebell Railway website". Bluebell Railway. Retrieved 3 November 2009.
  110. ^ a b "FAQ Section – The T1 Trust". The Pennsylvania Railroad T1 Steam Locomotive Trust. 2016. Archived from the original on 24 August 2019. Retrieved 23 April 2017.
  111. ^ "The Ultimate Steam Page". Trainweb.org. Retrieved 3 November 2009.
  112. ^ "American Coal Enterprises – ACE3000 et al". Martynbane.co.uk. Retrieved 3 November 2009.
  113. ^ Wardale, David (1998). The Red Devil and Other Tales from the Age of Steam. Published by the author. ISBN 0-9529998-0-3. Archived from the original on 6 February 2010.
  114. ^ "Home". Coalition for Sustainable Rail.
  115. ^ "Reference work of DLM AG 2-10-0 locomotive 52 8055". Archived from the original on 18 March 2009. Retrieved 8 June 2009.
  116. ^ "Steam lines face double threat in crackdown on coal-burning". 9 August 2019.
  117. ^ a b "Torrefied Biomass".
  118. ^ "Everett Railroad Testing".
  119. ^ "Darlington Coat of Arms". Heraldry of the World. Retrieved 10 June 2018.
  120. ^ "Swindon Coat of Arms". Heraldry of the World. Retrieved 10 June 2018.
  121. ^ "One Hundred Japanese Books for Children (1946–1979)". International Institute for Children's Literature, Osaka. Retrieved 7 February 2007.

Bibliography

Further reading

External links