stringtranslate.com

Transformada de Fourier

Un ejemplo de aplicación de la transformada de Fourier es la determinación de los tonos constituyentes en una forma de onda musical . Esta imagen es el resultado de aplicar una transformada de Q constante (una transformada relacionada con Fourier ) a la forma de onda de un acorde de piano en do mayor . Los primeros tres picos de la izquierda corresponden a las frecuencias de la frecuencia fundamental del acorde (do, mi, sol). Los picos más pequeños restantes son armónicos de frecuencia más alta de los tonos fundamentales. Un algoritmo de detección de tonos podría utilizar la intensidad relativa de estos picos para inferir qué notas presionó el pianista.

En física , ingeniería y matemáticas , la transformada de Fourier ( FT ) es una transformada integral que toma una función como entrada y genera otra función que describe el grado en el que varias frecuencias están presentes en la función original. La salida de la transformada es una función de frecuencia de valor complejo . El término transformada de Fourier se refiere tanto a esta función de valor complejo como a la operación matemática . Cuando es necesario hacer una distinción, la salida de la operación a veces se denomina representación del dominio de frecuencia de la función original. La transformada de Fourier es análoga a descomponer el sonido de un acorde musical en las intensidades de sus tonos constituyentes .

La transformada de Fourier relaciona el dominio del tiempo, en rojo, con una función en el dominio de la frecuencia, en azul. Las frecuencias componentes, extendidas a todo el espectro de frecuencias, se muestran como picos en el dominio de la frecuencia.
La sinusoide roja se puede describir por la amplitud de pico (1), la relación pico a pico (2), el valor eficaz (3) y la longitud de onda (4). Las sinusoides roja y azul tienen una diferencia de fase de θ .

Las funciones que se localizan en el dominio del tiempo tienen transformadas de Fourier que se extienden a lo largo del dominio de la frecuencia y viceversa, un fenómeno conocido como el principio de incertidumbre. El caso crítico de este principio es la función gaussiana , de importancia sustancial en la teoría de la probabilidad y la estadística , así como en el estudio de los fenómenos físicos que exhiben una distribución normal (por ejemplo, la difusión ). La transformada de Fourier de una función gaussiana es otra función gaussiana. Joseph Fourier introdujo las transformadas de seno y coseno (que corresponden a los componentes imaginarios y reales de la transformada de Fourier moderna) en su estudio de la transferencia de calor , donde las funciones gaussianas aparecen como soluciones de la ecuación del calor .

La transformada de Fourier se puede definir formalmente como una integral de Riemann impropia , lo que la convierte en una transformada integral, aunque esta definición no es adecuada para muchas aplicaciones que requieren una teoría de integración más sofisticada. [nota 1] Por ejemplo, muchas aplicaciones relativamente simples utilizan la función delta de Dirac , que se puede tratar formalmente como si fuera una función, pero la justificación requiere un punto de vista matemáticamente más sofisticado. [nota 2]

La transformada de Fourier también se puede generalizar a funciones de varias variables en el espacio euclidiano , enviando una función del 'espacio de posición' tridimensional a una función del momento tridimensional (o una función del espacio y el tiempo a una función del momento cuatridimensional ). Esta idea hace que la transformada de Fourier espacial sea muy natural en el estudio de las ondas, así como en la mecánica cuántica , donde es importante poder representar soluciones de ondas como funciones de la posición o del momento y, a veces, de ambos. En general, las funciones a las que se aplican los métodos de Fourier son de valor complejo y, posiblemente, de valor vectorial . [nota 3] Es posible una generalización aún mayor a funciones sobre grupos , que, además de la transformada de Fourier original sobre R o R n , incluye notablemente la transformada de Fourier de tiempo discreto (DTFT, grupo = Z ), la transformada de Fourier discreta (DFT, grupo = Z mod N ) y la serie de Fourier o transformada de Fourier circular (grupo = S 1 , el círculo unitario ≈ intervalo finito cerrado con puntos finales identificados). Este último se emplea rutinariamente para manejar funciones periódicas . La transformada rápida de Fourier (FFT) es un algoritmo para calcular la DFT.

Definición

La transformada de Fourier es un proceso de análisis que descompone una función de valor complejo en sus frecuencias constituyentes y sus amplitudes. El proceso inverso es la síntesis , que recrea a partir de su transformada.

Podemos empezar con una analogía, la serie de Fourier , que analiza en un intervalo acotado para algún número real positivo Las frecuencias constituyentes son un conjunto discreto de armónicos en frecuencias cuya amplitud y fase están dadas por la fórmula de análisis: La serie de Fourier real es la fórmula de síntesis: En un intervalo ilimitado, las frecuencias constituyentes son un continuo : [1] [2] [3] y se reemplaza por una función : [4]

Transformada de Fourier

Evaluando la ecuación 1 para todos los valores de se obtiene la función en el dominio de la frecuencia . La integral puede divergir en algunas frecuencias. (ver § Transformada de Fourier para funciones periódicas) Pero converge para todas las frecuencias cuando decae con todas las derivadas como : . (Ver función de Schwartz ). Por el lema de Riemann-Lebesgue , la función transformada también decae con todas las derivadas.

El número complejo , en coordenadas polares, transmite tanto la amplitud como la fase de la frecuencia. La interpretación intuitiva de la ecuación 1 es que el efecto de multiplicar por es restar de cada componente de frecuencia de la función [nota 4]. Solo el componente que estaba en frecuencia puede producir un valor distinto de cero de la integral infinita, porque (al menos formalmente) todos los demás componentes desplazados son oscilatorios y se integran a cero. (ver § Ejemplo)

La fórmula de síntesis correspondiente es:

Transformada inversa

La ecuación 2 es una representación de una suma ponderada de funciones exponenciales complejas.

Esto también se conoce como el teorema de inversión de Fourier y se introdujo por primera vez en la teoría analítica del calor de Fourier . [5] [6] [7] [8]

Las funciones y se denominan pares de transformadas de Fourier . [9]   Una notación común para designar pares de transformadas es : [10]   por ejemplo  

Definición de funciones integrables de Lebesgue

Hasta ahora, hemos estado tratando con funciones de Schwartz, que decaen rápidamente en el infinito, con todas las derivadas. Esto excluye muchas funciones de importancia práctica de la definición, como la función rect . Una función medible se llama (Lebesgue) integrable si la integral de Lebesgue de su valor absoluto es finita: Dos funciones mesurables son equivalentes si son iguales excepto en un conjunto de medida cero. El conjunto de todas las clases de equivalencia de funciones integrables se denota . Entonces: [11]

Definición  :  La transformada de Fourier de una función integrable de Lebesgue se define mediante la fórmula Eq.1 .

La ecuación integral 1 está bien definida para todos debido al supuesto . (Se puede demostrar que la función está acotada y es uniformemente continua en el dominio de la frecuencia y, además, por el lema de Riemann-Lebesgue , es cero en el infinito).

Sin embargo, la clase de funciones integrables de Lebesgue no es ideal desde el punto de vista de la transformada de Fourier porque no existe una caracterización fácil de la imagen y, por lo tanto, no existe una caracterización fácil de la transformada inversa.

Unitaridad y definición de funciones integrables al cuadrado

Si bien la ecuación 1 define la transformada de Fourier para funciones (de valores complejos) en , es fácil ver que no está bien definida para otras clases de integrabilidad, la más importante es . Para las funciones en , y con las convenciones de la ecuación 1 , la transformada de Fourier es un operador unitario con respecto al producto interno de Hilbert en , restringido al subespacio denso de funciones integrables. Por lo tanto, admite una extensión continua única a un operador unitario en , también llamado transformada de Fourier. Esta extensión es importante en parte porque la transformada de Fourier preserva el espacio de modo que, a diferencia del caso de , la transformada de Fourier y la transformada inversa están en el mismo pie de igualdad, siendo transformaciones del mismo espacio de funciones para sí mismo.

Es importante destacar que, para las funciones en , la transformada de Fourier ya no está dada por la Ec.1 (interpretada como una integral de Lebesgue). Por ejemplo, la función está en pero no en , por lo que la integral Ec.1 diverge. En tales casos, la transformada de Fourier se puede obtener explícitamente regularizando la integral y luego pasándola a un límite. En la práctica, la integral a menudo se considera como una integral impropia en lugar de una integral de Lebesgue propia, pero a veces para la convergencia uno necesita usar un límite débil o un valor principal en lugar de los límites (puntuales) implícitos en una integral impropia. Titchmarsh (1986) y Dym & McKean (1985) dan cada uno tres formas rigurosas de extender la transformada de Fourier a funciones integrables al cuadrado usando este procedimiento.

Las convenciones elegidas en este artículo son las del análisis armónico , y se caracterizan como las únicas convenciones tales que la transformada de Fourier es a la vez unitaria en L 2 y un homomorfismo algebraico de L 1 a L , sin renormalizar la medida de Lebesgue. [12]

Frecuencia angular (ω)

Cuando la variable independiente ( ) representa el tiempo (que suele denotarse con ), la variable de transformada ( ) representa la frecuencia (que suele denotarse con ). Por ejemplo, si el tiempo se mide en segundos , la frecuencia se mide en hercios . La transformada de Fourier también se puede escribir en términos de frecuencia angular , cuyas unidades son radianes por segundo.

La sustitución en la ecuación 1 produce esta convención, donde la función se vuelve a etiquetar A diferencia de la definición de la ecuación 1 , la transformada de Fourier ya no es una transformación unitaria y hay menos simetría entre las fórmulas para la transformada y su inversa. Esas propiedades se restauran dividiendo el factor de manera uniforme entre la transformada y su inversa, lo que conduce a otra convención: Se pueden crear variaciones de las tres convenciones conjugando el núcleo exponencial complejo de la transformada directa y la inversa. Los signos deben ser opuestos.

Ampliación de la definición

Para , la transformada de Fourier se puede definir mediante la interpolación de Marcinkiewicz .

La transformada de Fourier se puede definir en dominios distintos de la línea real. La transformada de Fourier en el espacio euclidiano y la transformada de Fourier en grupos abelianos locales se analizan más adelante en este artículo.

La transformada de Fourier también se puede definir para distribuciones templadas , duales del espacio de funciones de decrecimiento rápido ( funciones de Schwartz ). Una función de Schwartz es una función suave que decae en el infinito, junto con todas sus derivadas. El espacio de funciones de Schwartz se denota por , y su dual es el espacio de distribuciones templadas. Es fácil ver, al derivar bajo la integral y aplicar el lema de Riemann-Lebesgue, que la transformada de Fourier de una función de Schwartz (definida por la fórmula Eq.1 ) es nuevamente una función de Schwartz. La transformada de Fourier de una distribución templada se define por dualidad:

Existen muchas otras caracterizaciones de la transformada de Fourier. Por ejemplo, se utiliza el teorema de Stone-von Neumann : la transformada de Fourier es el único entrelazador unitario para las representaciones simpléctica y euclidiana de Schrödinger del grupo de Heisenberg .

Fondo

Historia

En 1822, Fourier afirmó (véase Joseph Fourier § La teoría analítica del calor ) que cualquier función, ya sea continua o discontinua, puede expandirse en una serie de senos. [13] Ese importante trabajo fue corregido y ampliado por otros para proporcionar la base para las diversas formas de la transformada de Fourier utilizadas desde entonces.

Fig.1 Cuando la función se representa en el plano complejo, el vector formado por sus partes imaginaria y real gira alrededor del origen. Su parte real es una onda coseno.

Sinusoides complejos

En general, los coeficientes son números complejos, que tienen dos formas equivalentes (ver fórmula de Euler ):

El producto con ( Eq.2 ) tiene estas formas:

Es de destacar la facilidad con la que se simplificó el producto utilizando la forma polar, y la facilidad con la que se dedujo la forma rectangular mediante una aplicación de la fórmula de Euler.

Frecuencia negativa

La fórmula de Euler introduce la posibilidad de negativa   Y la ecuación 1 está definida . Solo ciertas transformadas de valor complejo tienen transformadas (ver Señal analítica . Un ejemplo simple es ) Pero la frecuencia negativa es necesaria para caracterizar todas las demás transformadas de valor complejo que se encuentran en el procesamiento de señales , ecuaciones diferenciales parciales , radar , óptica no lineal , mecánica cuántica y otras.

Para una ecuación de valor real, la ecuación 1 tiene la propiedad de simetría (ver § Conjugación a continuación). Esta redundancia permite que la ecuación 2 se distinga de   Pero, por supuesto, no puede decirnos el signo real de porque y son indistinguibles solo en la línea de números reales.

Transformada de Fourier para funciones periódicas

La transformada de Fourier de una función periódica no se puede definir utilizando directamente la fórmula integral. Para que la integral en la ecuación 1 se defina, la función debe ser absolutamente integrable . En su lugar, es común utilizar series de Fourier . Es posible ampliar la definición para incluir funciones periódicas al considerarlas como distribuciones templadas .

Esto permite ver una conexión entre la serie de Fourier y la transformada de Fourier para funciones periódicas que tienen una serie de Fourier convergente . Si es una función periódica , con período , que tiene una serie de Fourier convergente, entonces: donde son los coeficientes de la serie de Fourier de , y es la función delta de Dirac . En otras palabras, la transformada de Fourier es una función de peine de Dirac cuyos dientes se multiplican por los coeficientes de la serie de Fourier.

Muestreo de la transformada de Fourier

La transformada de Fourier de una función integrable se puede muestrear a intervalos regulares de longitud arbitraria. Estas muestras se pueden deducir de un ciclo de una función periódica que tiene coeficientes de serie de Fourier proporcionales a esas muestras mediante la fórmula de suma de Poisson :

La integrabilidad de garantiza la convergencia de la suma periódica. Por lo tanto, las muestras se pueden determinar mediante el análisis de series de Fourier:

Cuando tiene un soporte compacto , tiene un número finito de términos dentro del intervalo de integración. Cuando no tiene un soporte compacto, la evaluación numérica de requiere una aproximación, como reducir o truncar el número de términos.

Ejemplo

Las siguientes figuras proporcionan una ilustración visual de cómo la integral de la transformada de Fourier mide si una frecuencia está presente en una función particular. La primera imagen representa la función que es una onda coseno de 3  Hz (el primer término) formada por una función envolvente gaussiana (el segundo término) que enciende y apaga suavemente la onda. Las siguientes 2 imágenes muestran el producto que debe integrarse para calcular la transformada de Fourier a +3 Hz. La parte real del integrando tiene un valor promedio no negativo, porque los signos alternos de y oscilan a la misma velocidad y en fase, mientras que y oscilan a la misma velocidad pero con fase ortogonal. El valor absoluto de la transformada de Fourier a +3 Hz es 0,5, que es relativamente grande. Cuando se suma a la transformada de Fourier a -3 Hz (que es idéntica porque comenzamos con una señal real), encontramos que la amplitud del componente de frecuencia de 3 Hz es 1.

Función original, que tiene un fuerte componente de 3 Hz. Partes real e imaginaria del integrando de su transformada de Fourier a +3 Hz.

Sin embargo, cuando se intenta medir una frecuencia que no está presente, tanto el componente real como el imaginario de la integral varían rápidamente entre valores positivos y negativos. Por ejemplo, la curva roja busca 5 Hz. El valor absoluto de su integral es casi cero, lo que indica que casi no había ningún componente de 5 Hz en la señal. La situación general suele ser más complicada que esto, pero heurísticamente así es como la transformada de Fourier mide qué cantidad de una frecuencia individual está presente en una función.

Para reforzar un punto anterior, la razón de la respuesta en   Hz es que     y     son indistinguibles. La transformada de     tendría solo una respuesta, cuya amplitud es la integral de la envolvente suave:   mientras   que es  

Propiedades de la transformada de Fourier

Sean y representen funciones integrables Lebesgue-medibles en la recta real que satisfacen: Denotamos las transformadas de Fourier de estas funciones como y respectivamente.

Propiedades básicas

La transformada de Fourier tiene las siguientes propiedades básicas: [14]

Linealidad

Cambio de hora

Cambio de frecuencia

Escala de tiempo

El caso conduce a la propiedad de inversión temporal :

Simetría

Cuando las partes reales e imaginarias de una función compleja se descomponen en sus partes pares e impares , hay cuatro componentes, denotados a continuación por los subíndices RE, RO, IE e IO. Y hay una correspondencia uno a uno entre los cuatro componentes de una función de tiempo compleja y los cuatro componentes de su transformada de frecuencia compleja:

De esto se desprenden diversas relaciones, por ejemplo :

Conjugación

(Nota: el ∗ denota conjugación compleja ).

En particular, si es real , entonces es incluso simétrica (también conocida como función hermítica ):

Y si es puramente imaginario, entonces es impar simétrico :

Parte real e imaginaria del tiempo

Componente de frecuencia cero

Sustituyendo en la definición, obtenemos:

La integral de sobre su dominio se conoce como valor promedio o polarización continua de la función.

Invertibilidad y periodicidad

En condiciones adecuadas en la función , se puede recuperar a partir de su transformada de Fourier . De hecho, denotando el operador de transformada de Fourier por , por lo que , entonces para funciones adecuadas, aplicar la transformada de Fourier dos veces simplemente invierte la función: , que puede interpretarse como "tiempo invertido". Dado que el tiempo invertido es biperiódico, aplicar esto dos veces produce , por lo que el operador de transformada de Fourier es cuatroperiódico, y de manera similar, la transformada de Fourier inversa se puede obtener aplicando la transformada de Fourier tres veces: . En particular, la transformada de Fourier es invertible (en condiciones adecuadas).

Más precisamente, definiendo el operador de paridad tal que , tenemos: Estas igualdades de operadores requieren una definición cuidadosa del espacio de funciones en cuestión, definiendo la igualdad de funciones (¿igualdad en cada punto? ¿igualdad casi en todas partes ?) y definiendo la igualdad de operadores – es decir, definiendo la topología en el espacio de funciones y el espacio de operadores en cuestión. Estas no son verdaderas para todas las funciones, pero son verdaderas bajo varias condiciones, que son el contenido de las varias formas del teorema de inversión de Fourier .

Esta periodicidad cuádruple de la transformada de Fourier es similar a una rotación del plano de 90°, particularmente porque la iteración doble produce una inversión, y de hecho esta analogía se puede hacer precisa. Mientras que la transformada de Fourier se puede interpretar simplemente como cambiar el dominio del tiempo y el dominio de la frecuencia, con la transformada de Fourier inversa cambiándolos de nuevo, más geométricamente se puede interpretar como una rotación de 90° en el dominio del tiempo-frecuencia (considerando el tiempo como el eje x y la frecuencia como el eje y ), y la transformada de Fourier se puede generalizar a la transformada de Fourier fraccionaria , que implica rotaciones de otros ángulos. Esto se puede generalizar aún más a las transformaciones canónicas lineales , que se pueden visualizar como la acción del grupo lineal especial SL 2 ( R ) en el plano de tiempo-frecuencia, con la forma simpléctica preservada correspondiente al principio de incertidumbre, a continuación. Este enfoque se estudia particularmente en el procesamiento de señales , en el análisis de tiempo-frecuencia .

Unidades

La variable de frecuencia debe tener unidades inversas a las unidades del dominio de la función original (normalmente denominadas t o x ). Por ejemplo, si t se mide en segundos, ξ debería estar en ciclos por segundo o hercios . Si la escala de tiempo está en unidades de 2 π segundos, normalmente se utiliza otra letra griega ω para representar la frecuencia angular (donde ω = 2π ξ ) en unidades de radianes por segundo. Si se utiliza x para unidades de longitud, entonces ξ debe estar en longitud inversa, por ejemplo, números de onda . Es decir, hay dos versiones de la línea real: una que es el rango de t y se mide en unidades de t , y la otra que es el rango de ξ y se mide en unidades inversas a las unidades de t . Estas dos versiones distintas de la línea real no se pueden equiparar entre sí. Por tanto, la transformada de Fourier va de un espacio de funciones a un espacio de funciones diferente: funciones que tienen un dominio de definición diferente.

En general, ξ debe tomarse siempre como una forma lineal en el espacio de su dominio, es decir, que la segunda línea real es el espacio dual de la primera línea real. Véase el artículo sobre álgebra lineal para una explicación más formal y para más detalles. Este punto de vista se vuelve esencial en las generalizaciones de la transformada de Fourier a grupos de simetría generales , incluido el caso de las series de Fourier.

El hecho de que no exista una única forma preferida (a menudo se dice "ninguna forma canónica") de comparar las dos versiones de la línea real que intervienen en la transformada de Fourier (fijar las unidades en una línea no fuerza la escala de las unidades en la otra) es la razón de la plétora de convenciones rivales sobre la definición de la transformada de Fourier. Las diversas definiciones resultantes de las distintas opciones de unidades difieren en varias constantes.

En otras convenciones, la transformada de Fourier tiene i en el exponente en lugar de i , y viceversa para la fórmula de inversión. Esta convención es común en la física moderna [15] y es la predeterminada para Wolfram Alpha, y no significa que la frecuencia se haya vuelto negativa, ya que no existe una definición canónica de positividad para la frecuencia de una onda compleja. Simplemente significa que es la amplitud de la onda     en lugar de la onda   (la primera, con su signo menos, se ve a menudo en la dependencia del tiempo para soluciones de ondas planas sinusoidales de la ecuación de onda electromagnética , o en la dependencia del tiempo para funciones de onda cuántica ). Muchas de las identidades que involucran la transformada de Fourier siguen siendo válidas en esas convenciones, siempre que todos los términos que involucran explícitamente i lo tengan reemplazado por i . En ingeniería eléctrica, la letra j se usa típicamente para la unidad imaginaria en lugar de i porque i se usa para corriente.

Al utilizar unidades adimensionales , los factores constantes podrían ni siquiera estar escritos en la definición de la transformada. Por ejemplo, en teoría de la probabilidad , la función característica Φ de la función de densidad de probabilidad f de una variable aleatoria X de tipo continuo se define sin un signo negativo en la exponencial, y como las unidades de x se ignoran, tampoco hay 2 π :

(En teoría de probabilidad y en estadística matemática, se prefiere el uso de la transformada de Fourier-Stieltjes, porque muchas variables aleatorias no son de tipo continuo y no poseen una función de densidad, y uno debe tratar no funciones sino distribuciones , es decir, medidas que poseen "átomos".)

Desde el punto de vista más elevado de los caracteres de grupo , que es mucho más abstracto, todas estas elecciones arbitrarias desaparecen, como se explicará en la sección posterior de este artículo, que trata la noción de transformada de Fourier de una función en un grupo abeliano localmente compacto .

Continuidad uniforme y el lema de Riemann-Lebesgue

La función rectangular es integrable según Lebesgue .
La función sinc , que es la transformada de Fourier de la función rectangular, es acotada y continua, pero no integrable según el método de Lebesgue.

La transformada de Fourier puede definirse en algunos casos para funciones no integrables, pero las transformadas de Fourier de funciones integrables tienen varias propiedades importantes.

La transformada de Fourier de cualquier función integrable f es uniformemente continua y [16]

Por el lema de Riemann-Lebesgue , [11]

Sin embargo, no es necesario que sean integrables. Por ejemplo, la transformada de Fourier de la función rectangular , que es integrable, es la función sinc , que no es integrable según el método de Lebesgue , porque sus integrales impropias se comportan de manera análoga a las series armónicas alternas , al converger a una suma sin ser absolutamente convergentes .

En general, no es posible escribir la transformada inversa como una integral de Lebesgue . Sin embargo, cuando tanto f como son integrables, la igualdad inversa se cumple para casi todo x . Como resultado, la transformada de Fourier es inyectiva en L 1 ( R ) .

Teorema de Plancherel y teorema de Parseval

Página principal: Teorema de Plancherel

Sean f ( x ) y g ( x ) integrables, y sean ( ξ ) y ĝ ( ξ ) sus transformadas de Fourier. Si f ( x ) y g ( x ) también son integrables al cuadrado , entonces la fórmula de Parseval es la siguiente: [17]

donde la barra denota conjugación compleja .

El teorema de Plancherel , que se desprende de lo anterior, establece que [18]

El teorema de Plancherel permite extender la transformada de Fourier, mediante un argumento de continuidad, a un operador unitario en L 2 ( R ) . En L 1 ( R ) ∩ L 2 ( R ) , esta extensión concuerda con la transformada de Fourier original definida en L 1 ( R ) , ampliando así el dominio de la transformada de Fourier a L 1 ( R ) + L 2 ( R ) (y en consecuencia a L p ( R ) para 1 ≤ p ≤ 2 ). El teorema de Plancherel tiene la interpretación en las ciencias de que la transformada de Fourier preserva la energía de la cantidad original. La terminología de estas fórmulas no está del todo estandarizada. El teorema de Parseval se demostró solo para series de Fourier, y fue demostrado por primera vez por Lyapunov. Pero la fórmula de Parseval también tiene sentido para la transformada de Fourier, y aunque en el contexto de la transformada de Fourier fue demostrada por Plancherel, todavía se suele hacer referencia a ella como la fórmula de Parseval, o la relación de Parseval, o incluso el teorema de Parseval.

Véase la dualidad de Pontryagin para una formulación general de este concepto en el contexto de grupos abelianos localmente compactos.

Fórmula de suma de Poisson

La fórmula de suma de Poisson (PSF) es una ecuación que relaciona los coeficientes de la serie de Fourier de la suma periódica de una función con los valores de la transformada de Fourier continua de la función. La fórmula de suma de Poisson dice que para funciones suficientemente regulares f ,

Tiene una variedad de formas útiles que se derivan de la básica mediante la aplicación de las propiedades de escala y desplazamiento temporal de la transformada de Fourier. La fórmula tiene aplicaciones en ingeniería, física y teoría de números . El dual en el dominio de la frecuencia de la fórmula de suma de Poisson estándar también se denomina transformada de Fourier de tiempo discreto .

La suma de Poisson se asocia generalmente con la física de los medios periódicos, como la conducción de calor en un círculo. La solución fundamental de la ecuación del calor en un círculo se llama función theta . Se utiliza en la teoría de números para demostrar las propiedades de transformación de las funciones theta, que resultan ser un tipo de forma modular , y está conectada de manera más general con la teoría de las formas automórficas donde aparece en un lado de la fórmula de traza de Selberg .

Diferenciación

Supóngase que f ( x ) es una función diferenciable absolutamente continua, y tanto f como su derivada f′ son integrables. Entonces la transformada de Fourier de la derivada está dada por De manera más general, la transformada de Fourier de la n ésima derivada f ( n ) está dada por

Análogamente, , por lo que

Aplicando la transformada de Fourier y utilizando estas fórmulas, algunas ecuaciones diferenciales ordinarias pueden transformarse en ecuaciones algebraicas, que son mucho más fáciles de resolver. Estas fórmulas también dan lugar a la regla general " f ( x ) es suave si y solo si ( ξ ) cae rápidamente a 0 para | ξ | → ∞ ." Utilizando las reglas análogas para la transformada de Fourier inversa, también se puede decir " f ( x ) cae rápidamente a 0 para | x | → ∞ si y solo si ( ξ ) es suave."

Teorema de convolución

La transformada de Fourier se traduce entre convolución y multiplicación de funciones. Si f ( x ) y g ( x ) son funciones integrables con transformadas de Fourier ( ξ ) y ĝ ( ξ ) respectivamente, entonces la transformada de Fourier de la convolución viene dada por el producto de las transformadas de Fourier ( ξ ) y ĝ ( ξ ) (bajo otras convenciones para la definición de la transformada de Fourier puede aparecer un factor constante).

Esto significa que si: donde denota la operación de convolución, entonces:

En la teoría de sistemas lineales invariantes en el tiempo (LTI) , es común interpretar g ( x ) como la respuesta al impulso de un sistema LTI con entrada f ( x ) y salida h ( x ) , ya que al sustituir el impulso unitario por f ( x ) se obtiene h ( x ) = g ( x ) . En este caso, ĝ ( ξ ) representa la respuesta en frecuencia del sistema.

Por el contrario, si f ( x ) puede descomponerse como el producto de dos funciones integrables al cuadrado p ( x ) y q ( x ) , entonces la transformada de Fourier de f ( x ) está dada por la convolución de las respectivas transformadas de Fourier ( ξ ) y ( ξ ) .

Teorema de correlación cruzada

De manera análoga, se puede demostrar que si h ( x ) es la correlación cruzada de f ( x ) y g ( x ) : entonces la transformada de Fourier de h ( x ) es:

Como caso especial, la autocorrelación de la función f ( x ) es: para lo cual

Funciones propias

La transformada de Fourier es una transformada lineal que tiene funciones propias que obedecen a

Un conjunto de funciones propias se encuentra al notar que la ecuación diferencial homogénea conduce a funciones propias de la transformada de Fourier siempre que la forma de la ecuación permanezca invariable bajo la transformada de Fourier. [nota 5] En otras palabras, cada solución y su transformada de Fourier obedecen a la misma ecuación. Suponiendo unicidad de las soluciones, cada solución debe ser, por lo tanto, una función propia de la transformada de Fourier. La forma de la ecuación permanece invariable bajo la transformada de Fourier si se puede expandir en una serie de potencias en la que para todos los términos el mismo factor de cualquiera de los dos surge de los factores introducidos por las reglas de diferenciación al transformar la ecuación diferencial homogénea de Fourier porque este factor puede entonces cancelarse. La opción más simple permitida conduce a la distribución normal estándar . [19]

De manera más general, también se encuentra un conjunto de funciones propias observando que las reglas de diferenciación implican que la ecuación diferencial ordinaria con constantes y siendo una función par no constante permanece invariante en forma al aplicar la transformada de Fourier a ambos lados de la ecuación. El ejemplo más simple lo proporciona que es equivalente a considerar la ecuación de Schrödinger para el oscilador armónico cuántico . [20] Las soluciones correspondientes proporcionan una elección importante de una base ortonormal para L 2 ( R ) y están dadas por las funciones de Hermite del "físico" . De manera equivalente, se puede utilizar donde He n ( x ) son los polinomios de Hermite del "probabilista" , definidos como

Bajo esta convención para la transformada de Fourier, tenemos que

En otras palabras, las funciones de Hermite forman un sistema ortonormal completo de funciones propias para la transformada de Fourier en L 2 ( R ) . [14] [21] Sin embargo, esta elección de funciones propias no es única. Debido a que solo hay cuatro valores propios diferentes de la transformada de Fourier (las raíces cuartas de la unidad ±1 y ± i ) y cualquier combinación lineal de funciones propias con el mismo valor propio da otra función propia. [22] Como consecuencia de esto, es posible descomponer L 2 ( R ) como una suma directa de cuatro espacios H 0 , H 1 , H 2 y H 3 donde la transformada de Fourier actúa sobre He k simplemente por multiplicación por i k .

Dado que el conjunto completo de funciones de Hermite ψ n proporciona una resolución de la identidad, diagonalizan el operador de Fourier, es decir, la transformada de Fourier se puede representar mediante una suma de términos ponderada por los valores propios anteriores, y estas sumas se pueden sumar explícitamente:

Este enfoque para definir la transformada de Fourier fue propuesto por primera vez por Norbert Wiener . [23] Entre otras propiedades, las funciones de Hermite decrecen exponencialmente rápido tanto en el dominio de la frecuencia como en el del tiempo, y por lo tanto se utilizan para definir una generalización de la transformada de Fourier, a saber, la transformada de Fourier fraccionaria utilizada en el análisis de tiempo-frecuencia. [24] En física , esta transformada fue introducida por Edward Condon . [25] Este cambio de funciones de base se hace posible porque la transformada de Fourier es una transformada unitaria cuando se utilizan las convenciones correctas. En consecuencia, bajo las condiciones adecuadas se puede esperar que resulte de un generador autoadjunto a través de [26]

El operador es el operador numérico del oscilador armónico cuántico escrito como [27] [28]

Puede interpretarse como el generador de transformadas de Fourier fraccionarias para valores arbitrarios de t , y de la transformada de Fourier continua convencional para el valor particular con el núcleo de Mehler implementando la transformada activa correspondiente . Las funciones propias de son las funciones de Hermite que, por lo tanto, también son funciones propias de

Al extender la transformada de Fourier a las distribuciones, el peine de Dirac también es una función propia de la transformada de Fourier.

Conexión con el grupo de Heisenberg

El grupo de Heisenberg es un grupo determinado de operadores unitarios en el espacio de Hilbert L 2 ( R ) de funciones complejas integrables al cuadrado f en la recta real, generadas por las traslaciones ( T y f )( x ) = f ( x + y ) y la multiplicación por e iξx , ( M ξ f )( x ) = e iξx f ( x ) . Estos operadores no conmutan, ya que su conmutador (de grupo) es que es la multiplicación por la constante (independiente de x ) e iξyU (1) (el grupo circular de números complejos de módulo unitario). Como grupo abstracto, el grupo de Heisenberg es el grupo de Lie tridimensional de ternas ( x , ξ , z ) ∈ R 2 × U (1) , con la ley de grupo

Denotemos el grupo de Heisenberg por H 1 . El procedimiento anterior describe no solo la estructura del grupo, sino también una representación unitaria estándar de H 1 en un espacio de Hilbert, que denotamos por ρ  : H 1B ( L 2 ( R )) . Definamos el automorfismo lineal de R 2 por de modo que J 2 = − I . Esta J se puede extender a un automorfismo único de H 1 :

Según el teorema de Stone-von Neumann , las representaciones unitarias ρ y ρj son unitariamente equivalentes, por lo que existe un entrelazador único WU ( L 2 ( R )) tal que Este operador W es la transformada de Fourier.

Muchas de las propiedades estándar de la transformada de Fourier son consecuencias inmediatas de este marco más general. [29] Por ejemplo, el cuadrado de la transformada de Fourier, W 2 , es un entrelazador asociado con J 2 = − I , y por lo tanto tenemos que ( W 2 f )( x ) = f (− x ) es el reflejo de la función original f .

Dominio complejo

La integral de la transformada de Fourier se puede estudiar para valores complejos de su argumento ξ . Dependiendo de las propiedades de f , es posible que no converja fuera del eje real en absoluto, o que converja a una función analítica compleja para todos los valores de ξ = σ + , o algo intermedio. [30]

El teorema de Paley-Wiener dice que f es suave (es decir, n veces diferenciable para todos los enteros positivos n ) y con soporte compacto si y solo si ( σ + ) es una función holomorfa para la que existe una constante a > 0 tal que para cualquier entero n ≥ 0 , para alguna constante C . (En este caso, f se soporta en [− a , a ] .) Esto se puede expresar diciendo que es una función entera que es rápidamente decreciente en σ (para τ fijo ) y de crecimiento exponencial en τ (uniformemente en σ ). [31]

(Si f no es suave, sino solo L 2 , la afirmación sigue siendo válida siempre que n = 0 . [32] ) El espacio de tales funciones de una variable compleja se denomina espacio de Paley-Wiener. Este teorema se ha generalizado a grupos de Lie semisimples . [33]

Si f se apoya en la semirrecta t ≥ 0 , entonces se dice que f es "causal" porque la función de respuesta al impulso de un filtro físicamente realizable debe tener esta propiedad, ya que ningún efecto puede preceder a su causa. Paley y Wiener demostraron que entonces se extiende a una función holomorfa en el semiplano inferior complejo τ < 0 que tiende a cero cuando τ tiende a infinito. [34] La inversa es falsa y no se sabe cómo caracterizar la transformada de Fourier de una función causal. [35]

Transformada de Laplace

La transformada de Fourier ( ξ ) está relacionada con la transformada de Laplace F ( s ) , que también se utiliza para la solución de ecuaciones diferenciales y el análisis de filtros .

Puede suceder que una función f para la cual la integral de Fourier no converge en absoluto al eje real, tenga sin embargo una transformada de Fourier compleja definida en alguna región del plano complejo .

Por ejemplo, si f ( t ) es de crecimiento exponencial, es decir, para algunas constantes C , a ≥ 0 , entonces [36] convergente para todo τ < − a , es la transformada de Laplace de dos lados de f .

La versión más habitual ("unilateral") de la transformada de Laplace es

Si f también es causal y analítica, entonces: Por lo tanto, extender la transformada de Fourier al dominio complejo significa que incluye la transformada de Laplace como un caso especial en el caso de funciones causales, pero con el cambio de variable s = iξ .

Desde otro punto de vista, quizás más clásico, la transformada de Laplace, por su forma, implica un término regulador exponencial adicional que le permite converger fuera de la línea imaginaria donde se define la transformada de Fourier. Como tal, puede converger para series e integrales exponencialmente divergentes como máximo, mientras que la descomposición de Fourier original no puede, lo que permite el análisis de sistemas con elementos divergentes o críticos. Dos ejemplos particulares del procesamiento de señales lineales son la construcción de redes de filtros pasatodo a partir de peines críticos y filtros de mitigación mediante la cancelación exacta de polos y ceros en el círculo unitario. Estos diseños son comunes en el procesamiento de audio, donde se busca una respuesta de fase altamente no lineal, como en la reverberación.

Además, cuando se buscan respuestas de impulsos extendidas de tipo pulso para el trabajo de procesamiento de señales, la forma más fácil de producirlas es tener un circuito que produzca una respuesta temporal divergente y luego cancelar su divergencia mediante una respuesta compensatoria opuesta y retardada. En este caso, solo el circuito de retardo intermedio admite una descripción clásica de Fourier, que es fundamental. Ambos circuitos laterales son inestables y no admiten una descomposición convergente de Fourier. Sin embargo, sí admiten una descripción del dominio de Laplace, con semiplanos de convergencia idénticos en el plano complejo (o en el caso discreto, el plano Z), en el que sus efectos se cancelan.

En las matemáticas modernas, la transformada de Laplace se engloba tradicionalmente en los métodos de Fourier, y ambos se engloban en la idea mucho más general y abstracta del análisis armónico .

Inversión

Aún con , si es analítica compleja para aτb , entonces

por el teorema integral de Cauchy . Por lo tanto, la fórmula de inversión de Fourier puede utilizar la integración a lo largo de diferentes líneas, paralelas al eje real. [37]

Teorema: Si f ( t ) = 0 para t < 0 , y | f ( t ) | < Ce a | t | para algunas constantes C , a > 0 , entonces para cualquier τ < − a/ .

Este teorema implica la fórmula de inversión de Mellin para la transformación de Laplace, [36] para cualquier b > a , donde F ( s ) es la transformada de Laplace de f ( t ) .

Las hipótesis pueden debilitarse, como en los resultados de Carleson y Hunt, a f ( t ) e at siendo L 1 , siempre que f tenga una variación acotada en un entorno cerrado de t (cf. prueba de Dini ), que el valor de f en t se tome como la media aritmética de los límites izquierdo y derecho, y que las integrales se tomen en el sentido de los valores principales de Cauchy. [38]

También están disponibles versiones L 2 de estas fórmulas de inversión. [39]

Transformada de Fourier en el espacio euclidiano

La transformada de Fourier se puede definir en cualquier número arbitrario de dimensiones n . Al igual que en el caso unidimensional, existen muchas convenciones. Para una función integrable f ( x ) , este artículo toma la definición: donde x y ξ son vectores n -dimensionales , y x · ξ es el producto escalar de los vectores. Alternativamente, ξ se puede considerar como perteneciente al espacio vectorial dual , en cuyo caso el producto escalar se convierte en la contracción de x y ξ , generalmente escrita como x , ξ .

Todas las propiedades básicas mencionadas anteriormente son válidas para la transformada de Fourier n -dimensional, al igual que el teorema de Plancherel y el de Parseval. Cuando la función es integrable, la transformada de Fourier sigue siendo uniformemente continua y se cumple el lema de Riemann-Lebesgue . [11]

Principio de incertidumbre

En términos generales, cuanto más concentrada esté f ( x ) , más dispersa debe estar su transformada de Fourier ( ξ ) . En particular, la propiedad de escala de la transformada de Fourier puede verse como si dijera: si comprimimos una función en x , su transformada de Fourier se extiende en ξ . No es posible concentrar arbitrariamente tanto una función como su transformada de Fourier.

El equilibrio entre la compactación de una función y su transformada de Fourier se puede formalizar en forma de un principio de incertidumbre al considerar una función y su transformada de Fourier como variables conjugadas con respecto a la forma simpléctica en el dominio de tiempo-frecuencia : desde el punto de vista de la transformación canónica lineal , la transformada de Fourier es una rotación de 90° en el dominio de tiempo-frecuencia y preserva la forma simpléctica .

Supongamos que f ( x ) es una función integrable e integrable al cuadrado . Sin pérdida de generalidad, supongamos que f ( x ) está normalizada:

Del teorema de Plancherel se deduce que ( ξ ) también está normalizado.

La dispersión alrededor de x = 0 se puede medir por la dispersión alrededor de cero [40] definida por

En términos de probabilidad, este es el segundo momento de | f ( x ) | 2 alrededor de cero.

El principio de incertidumbre establece que, si f ( x ) es absolutamente continua y las funciones x · f ( x ) y f ( x ) son integrables al cuadrado, entonces [14]

La igualdad se alcanza sólo en el caso en que σ > 0 es arbitrario y C 1 = 42/√σ de modo que f está L 2 -normalizada. [14] En otras palabras, donde f es una función gaussiana (normalizada)con varianza σ 2 /2 π , centrada en cero, y su transformada de Fourier es una función gaussiana con varianza σ −2 /2 π .

De hecho, esta desigualdad implica que: para cualquier x 0 , ξ 0R . [41]

En mecánica cuántica , las funciones de onda de momento y posición son pares de transformadas de Fourier, hasta un factor de la constante de Planck . Si se tiene en cuenta esta constante, la desigualdad anterior se convierte en el enunciado del principio de incertidumbre de Heisenberg . [42]

Un principio de incertidumbre más fuerte es el principio de incertidumbre de Hirschman , que se expresa como: donde H ( p ) es la entropía diferencial de la función de densidad de probabilidad p ( x ) : donde los logaritmos pueden estar en cualquier base que sea consistente. La igualdad se alcanza para una gaussiana, como en el caso anterior.

Transformadas de seno y coseno

La formulación original de Fourier de la transformada no utilizaba números complejos, sino senos y cosenos. Los estadísticos y otros aún utilizan esta forma. Una función absolutamente integrable f para la que se cumple la inversión de Fourier se puede desarrollar en términos de frecuencias genuinas (evitando las frecuencias negativas, que a veces se consideran difíciles de interpretar físicamente [43] ) λ por

Esto se denomina expansión como integral trigonométrica o expansión integral de Fourier. Las funciones de coeficientes a y b se pueden encontrar utilizando variantes de la transformada de Fourier del coseno y de la transformada de Fourier del seno (las normalizaciones, nuevamente, no están estandarizadas): y

La literatura más antigua se refiere a las dos funciones de transformación, la transformada del coseno de Fourier, a , y la transformada del seno de Fourier, b .

La función f se puede recuperar a partir de la transformada del seno y del coseno utilizando identidades trigonométricas. Esto se conoce como fórmula integral de Fourier. [36] [44] [45] [46]

Armónicos esféricos

Sea el conjunto de polinomios armónicos homogéneos de grado k en R n denotado por A k . El conjunto A k consiste en los armónicos esféricos sólidos de grado k . Los armónicos esféricos sólidos juegan un papel similar en dimensiones superiores a los polinomios de Hermite en dimensión uno. Específicamente, si f ( x ) = e −π| x | 2 P ( x ) para algún P ( x ) en A k , entonces ( ξ ) = i k f ( ξ ) . Sea el conjunto H k la clausura en L 2 ( R n ) de combinaciones lineales de funciones de la forma f (| x |) P ( x ) donde P ( x ) está en A k . El espacio L 2 ( R n ) es entonces una suma directa de los espacios H k y la transformada de Fourier mapea cada espacio H k a sí mismo y es posible caracterizar la acción de la transformada de Fourier en cada espacio H k . [11]

Sea f ( x ) = f 0 (| x |) P ( x ) (con P ( x ) en A k ), entonces donde

Aquí J ( n + 2 k − 2)/2 denota la función de Bessel de primer tipo con orden n + 2k −2/2 . Cuando k = 0 esto da una fórmula útil para la transformada de Fourier de una función radial. [47] Esta es esencialmente la transformada de Hankel . Además, hay una recursión simple que relaciona los casos n + 2 y n [48] que permite calcular, por ejemplo, la transformada de Fourier tridimensional de una función radial a partir de la unidimensional.

Problemas de restricción

En dimensiones superiores resulta interesante estudiar problemas de restricción para la transformada de Fourier. La transformada de Fourier de una función integrable es continua y la restricción de esta función a cualquier conjunto está definida. Pero para una función integrable al cuadrado la transformada de Fourier podría ser una clase general de funciones integrables al cuadrado. Como tal, la restricción de la transformada de Fourier de una función L 2 ( R n ) no puede definirse en conjuntos de medida 0. Sigue siendo un área de estudio activa la comprensión de los problemas de restricción en L p para 1 < p < 2 . En algunos casos es posible definir la restricción de una transformada de Fourier a un conjunto S , siempre que S tenga una curvatura distinta de cero. El caso en el que S es la esfera unitaria en R n es de particular interés. En este caso, el teorema de restricción de Tomas- Stein establece que la restricción de la transformada de Fourier a la esfera unitaria en R n es un operador acotado en L p siempre que 1 ≤ p2n + 2/n +3 .

Una diferencia notable entre la transformada de Fourier en una dimensión y en dimensiones superiores se refiere al operador de suma parcial. Consideremos una colección creciente de conjuntos medibles E R indexados por R ∈ (0,∞) : como bolas de radio R centradas en el origen, o cubos de lado 2 R . Para una función integrable dada f , consideremos la función f R definida por:

Supongamos además que fL p ( R n ) . Para n = 1 y 1 < p < ∞ , si uno toma E R = (− R , R ) , entonces f R converge a f en L p cuando R tiende a infinito, por la acotación de la transformada de Hilbert . Ingenuamente, uno puede esperar que lo mismo sea cierto para n > 1 . En el caso de que E R se tome como un cubo con una longitud de lado R , entonces la convergencia todavía se mantiene. Otro candidato natural es la bola euclidiana E R = { ξ  : | ξ | < R } . Para que este operador de suma parcial converja, es necesario que el multiplicador para la bola unitaria esté acotado en L p ( R n ) . Para n ≥ 2 es un célebre teorema de Charles Fefferman que el multiplicador para la bola unitaria nunca está acotado a menos que p = 2 . [23] De hecho, cuando p ≠ 2 , esto demuestra que no sólo f R puede no converger a f en L p , sino que para algunas funciones fL p ( R n ) , f R ni siquiera es un elemento de L p .

Transformada de Fourier en espacios funcionales

Enyopagespacios

Enyo1

La definición de la transformada de Fourier por la fórmula integral es válida para funciones integrables de Lebesgue f ; es decir, fL 1 ( R n ) .

La transformada de Fourier F  : L 1 ( R n ) → L ( R n ) es un operador acotado . Esto se desprende de la observación que muestra que su norma de operador está acotada por 1. De hecho, es igual a 1, lo que se puede ver, por ejemplo, a partir de la transformada de la función rect. La imagen de L 1 es un subconjunto del espacio C 0 ( R n ) de funciones continuas que tienden a cero en el infinito (el lema de Riemann-Lebesgue ), aunque no es el espacio entero. De hecho, no existe una caracterización simple de la imagen.

Enyo2

Dado que las funciones suaves con soporte compacto son integrables y densas en L 2 ( R n ) , el teorema de Plancherel permite extender la definición de la transformada de Fourier a funciones generales en L 2 ( R n ) mediante argumentos de continuidad. La transformada de Fourier en L 2 ( R n ) ya no está dada por una integral de Lebesgue ordinaria, aunque puede calcularse mediante una integral impropia , es decir, para una función L 2 f , donde el límite se toma en el sentido de L 2 . [49] [50] )

Muchas de las propiedades de la transformada de Fourier en L 1 se trasladan a L 2 , mediante un argumento limitante adecuado.

Además, F  : L 2 ( R n ) → L 2 ( R n ) es un operador unitario . [51] Para que un operador sea unitario es suficiente demostrar que es biyectivo y preserva el producto interno, por lo que en este caso estos se siguen del teorema de inversión de Fourier combinado con el hecho de que para cualquier f , gL 2 ( R n ) tenemos

En particular, la imagen de L 2 ( R n ) está bajo la transformada de Fourier.

En otrosyopag

La definición de la transformada de Fourier se puede extender a funciones en L p ( R n ) para 1 ≤ p ≤ 2 descomponiendo dichas funciones en una parte de cola gruesa en L 2 más una parte de cuerpo grueso en L 1 . En cada uno de estos espacios, la transformada de Fourier de una función en L p ( R n ) está en L q ( R n ) , donde q = pag/pág - 1 es el conjugado de Hölder de p (por la desigualdad de Hausdorff–Young ). Sin embargo, excepto para p = 2 , la imagen no se caracteriza fácilmente. Las extensiones posteriores se vuelven más técnicas. La transformada de Fourier de funciones en L p para el rango 2 < p < ∞ requiere el estudio de distribuciones. [16] De hecho, se puede demostrar que hay funciones en L p con p > 2 de modo que la transformada de Fourier no está definida como una función. [11]

Distribuciones templadas

Se podría considerar ampliar el dominio de la transformada de Fourier de L 1 + L 2 al considerar funciones generalizadas o distribuciones. Una distribución en R n es una funcional lineal continua en el espacio C c ( R n ) de funciones suaves con soporte compacto, equipada con una topología adecuada. La estrategia es entonces considerar la acción de la transformada de Fourier en C c ( R n ) y pasar a distribuciones por dualidad. El obstáculo para hacer esto es que la transformada de Fourier no asigna C c ( R n ) a C c ( R n ) . De hecho, la transformada de Fourier de un elemento en C c ( R n ) no puede desaparecer en un conjunto abierto; vea la discusión anterior sobre el principio de incertidumbre. El espacio correcto aquí es el espacio ligeramente más grande de funciones de Schwartz . La transformada de Fourier es un automorfismo en el espacio de Schwartz, como un espacio vectorial topológico, y por lo tanto induce un automorfismo en su dual, el espacio de distribuciones templadas. [11] Las distribuciones templadas incluyen todas las funciones integrables mencionadas anteriormente, así como funciones de buen comportamiento de crecimiento polinomial y distribuciones de soporte compacto.

Para la definición de la transformada de Fourier de una distribución temperada, sean f y g funciones integrables, y sean y ĝ sus transformadas de Fourier respectivamente. Entonces la transformada de Fourier obedece a la siguiente fórmula de multiplicación, [11]

Toda función integrable f define (induce) una distribución T f por la relación para todas las funciones de Schwartz φ . Por lo tanto, tiene sentido definir la transformada de Fourier f de T f por para todas las funciones de Schwartz φ . Extendiendo esto a todas las distribuciones templadas T se obtiene la definición general de la transformada de Fourier.

Las distribuciones se pueden diferenciar y la compatibilidad mencionada anteriormente de la transformada de Fourier con la diferenciación y la convolución sigue siendo válida para las distribuciones templadas.

Generalizaciones

Transformada de Fourier-Stieltjes

La transformada de Fourier de una medida de Borel finita μ en R n está dada por: [52]

Esta transformada continúa disfrutando de muchas de las propiedades de la transformada de Fourier de funciones integrables. Una diferencia notable es que el lema de Riemann-Lebesgue falla para las medidas. [16] En el caso de que = f ( x ) dx , entonces la fórmula anterior se reduce a la definición habitual para la transformada de Fourier de f . En el caso de que μ sea la distribución de probabilidad asociada a una variable aleatoria X , la transformada de Fourier-Stieltjes está estrechamente relacionada con la función característica , pero las convenciones típicas en la teoría de la probabilidad toman e iξx en lugar de e iξx . [14] En el caso en que la distribución tenga una función de densidad de probabilidad, esta definición se reduce a la transformada de Fourier aplicada a la función de densidad de probabilidad, nuevamente con una elección diferente de constantes.

La transformada de Fourier puede utilizarse para caracterizar las medidas. El teorema de Bochner caracteriza qué funciones pueden surgir como transformada de Fourier-Stieltjes de una medida positiva en el círculo. [16]

Además, la función delta de Dirac , aunque no es una función, es una medida de Borel finita. Su transformada de Fourier es una función constante (cuyo valor específico depende de la forma de la transformada de Fourier utilizada).

Grupos abelianos localmente compactos

La transformada de Fourier puede generalizarse a cualquier grupo abeliano localmente compacto. Un grupo abeliano localmente compacto es un grupo abeliano que es al mismo tiempo un espacio topológico de Hausdorff localmente compacto de modo que la operación de grupo es continua. Si G es un grupo abeliano localmente compacto, tiene una medida invariante de traslación μ , llamada medida de Haar . Para un grupo abeliano localmente compacto G , el conjunto de representaciones unitarias irreducibles, es decir, unidimensionales, se denominan sus caracteres . Con su estructura de grupo natural y la topología de convergencia uniforme en conjuntos compactos (es decir, la topología inducida por la topología compacta-abierta en el espacio de todas las funciones continuas desde hasta el grupo del círculo ), el conjunto de caracteres Ĝ es en sí mismo un grupo abeliano localmente compacto, llamado dual de Pontryagin de G . Para una función f en L 1 ( G ) , su transformada de Fourier se define por [16]

El lema de Riemann-Lebesgue se cumple en este caso: ( ξ ) es una función que se desvanece en el infinito en Ĝ .

La transformada de Fourier en T = R/Z es un ejemplo; aquí T es un grupo abeliano localmente compacto, y la medida de Haar μ en T puede considerarse como la medida de Lebesgue en [0,1). Considere la representación de T en el plano complejo C que es un espacio vectorial complejo unidimensional. Hay un grupo de representaciones (que son irreducibles ya que C es 1-dim) donde para .

El carácter de tal representación, que es la traza de para cada y , es él mismo. En el caso de la representación del grupo finito, la tabla de caracteres del grupo G son filas de vectores tales que cada fila es el carácter de una representación irreducible de G , y estos vectores forman una base ortonormal del espacio de funciones de clase que se asignan de G a C por el lema de Schur. Ahora el grupo T ya no es finito sino todavía compacto, y conserva la ortonormalidad de la tabla de caracteres. Cada fila de la tabla es la función de y el producto interno entre dos funciones de clase (todas las funciones son funciones de clase ya que T es abeliano) se define como con el factor normalizador . La secuencia es una base ortonormal del espacio de funciones de clase .

Para cualquier representación V de un grupo finito G , se puede expresar como el intervalo ( son los irreps de G ), tal que . De manera similar para y , . El dual de Pontriagin es y para , es su transformada de Fourier para .

Transformada de Gelfand

La transformada de Fourier también es un caso especial de la transformada de Gelfand . En este contexto particular, está estrechamente relacionada con el mapa de dualidad de Pontryagin definido anteriormente.

Dado un grupo topológico de Hausdorff localmente compacto abeliano G , como antes consideramos el espacio L 1 ( G ) , definido usando una medida de Haar. Con la convolución como multiplicación, L 1 ( G ) es un álgebra de Banach abeliana . También tiene una involución * dada por

Tomando la completitud con respecto a la mayor norma C * posible se obtiene su álgebra C * envolvente , llamada álgebra C * ( G ) de G . (Cualquier norma C * en L 1 ( G ) está limitada por la norma L 1 , por lo tanto, existe su supremo.)

Dada cualquier C * -álgebra abeliana A , la transformada de Gelfand da un isomorfismo entre A y C 0 ( A ^) , donde A ^ son los funcionales lineales multiplicativos, es decir, representaciones unidimensionales, en A con la topología débil-*. La función está dada simplemente por Resulta que los funcionales lineales multiplicativos de C *( G ) , después de una identificación adecuada, son exactamente los caracteres de G , y la transformada de Gelfand, cuando se restringe al subconjunto denso L 1 ( G ) es la transformada de Fourier-Pontryagin.

Grupos compactos no abelianos

La transformada de Fourier también se puede definir para funciones en un grupo no abeliano, siempre que el grupo sea compacto . Si se elimina el supuesto de que el grupo subyacente es abeliano, las representaciones unitarias irreducibles no siempre necesitan ser unidimensionales. Esto significa que la transformada de Fourier en un grupo no abeliano toma valores como operadores del espacio de Hilbert. [53] La transformada de Fourier en grupos compactos es una herramienta importante en la teoría de la representación [54] y el análisis armónico no conmutativo .

Sea G un grupo topológico compacto de Hausdorff . Sea Σ la colección de todas las clases de isomorfismo de representaciones unitarias irreducibles de dimensión finita , junto con una elección definida de representación U ( σ ) en el espacio de Hilbert H σ de dimensión finita d σ para cada σ ∈ Σ . Si μ es una medida de Borel finita en G , entonces la transformada de Fourier-Stieltjes de μ es el operador en H σ definido por donde U ( σ ) es la representación compleja-conjugada de U ( σ ) que actúa sobre H σ . Si μ es absolutamente continuo con respecto a la medida de probabilidad invariante por la izquierda λ en G , representada como para algún fL 1 ( λ ) , uno identifica la transformada de Fourier de f con la transformada de Fourier-Stieltjes de μ .

La aplicación define un isomorfismo entre el espacio de Banach M ( G ) de medidas finitas de Borel (ver espacio rca ) y un subespacio cerrado del espacio de Banach C (Σ) que consiste en todas las secuencias E = ( E σ ) indexadas por Σ de operadores lineales (acotados) E σ  : H σH σ para los cuales la norma es finita. El " teorema de convolución " afirma que, además, este isomorfismo de los espacios de Banach es de hecho un isomorfismo isométrico de C*-álgebras en un subespacio de C (Σ) . La multiplicación en M ( G ) se da por convolución de medidas y la involución * definida por y C (Σ) tiene una estructura natural de C * -álgebra como operadores del espacio de Hilbert.

Se cumple el teorema de Peter-Weyl y se deduce una versión de la fórmula de inversión de Fourier ( teorema de Plancherel ): si fL 2 ( G ) , entonces donde la suma se entiende como convergente en el sentido de L 2 .

La generalización de la transformada de Fourier a la situación no conmutativa también ha contribuido en parte al desarrollo de la geometría no conmutativa . [ cita requerida ] En este contexto, una generalización categórica de la transformada de Fourier a grupos no conmutativos es la dualidad de Tannaka-Krein , que reemplaza el grupo de caracteres por la categoría de representaciones. Sin embargo, esto pierde la conexión con las funciones armónicas.

Alternativas

En términos de procesamiento de señales , una función (de tiempo) es una representación de una señal con resolución temporal perfecta , pero sin información de frecuencia, mientras que la transformada de Fourier tiene una resolución de frecuencia perfecta , pero no información de tiempo: la magnitud de la transformada de Fourier en un punto es cuánto contenido de frecuencia hay, pero la ubicación solo está dada por la fase (argumento de la transformada de Fourier en un punto), y las ondas estacionarias no están localizadas en el tiempo: una onda sinusoidal continúa hasta el infinito, sin decaer. Esto limita la utilidad de la transformada de Fourier para analizar señales que están localizadas en el tiempo, en particular transitorios , o cualquier señal de extensión finita.

Como alternativas a la transformada de Fourier, en el análisis de tiempo-frecuencia , se utilizan transformadas de tiempo-frecuencia o distribuciones de tiempo-frecuencia para representar señales en una forma que tiene alguna información de tiempo y alguna información de frecuencia – por el principio de incertidumbre, existe un equilibrio entre estos. Estos pueden ser generalizaciones de la transformada de Fourier, tales como la transformada de Fourier de tiempo corto , la transformada de Fourier fraccionaria , la transformada de Fourier de Synchrosqueezing, [55] u otras funciones para representar señales, como en las transformadas wavelet y las transformadas chirplet , siendo el análogo wavelet de la transformada de Fourier (continua) la transformada wavelet continua . [24]

Aplicaciones

Algunos problemas, como ciertas ecuaciones diferenciales, resultan más fáciles de resolver cuando se aplica la transformada de Fourier. En ese caso, la solución del problema original se recupera utilizando la transformada de Fourier inversa.

Las operaciones lineales que se realizan en un dominio (tiempo o frecuencia) tienen operaciones correspondientes en el otro dominio, que a veces son más fáciles de realizar. La operación de diferenciación en el dominio del tiempo corresponde a la multiplicación por la frecuencia, [nota 6] por lo que algunas ecuaciones diferenciales son más fáciles de analizar en el dominio de la frecuencia. Además, la convolución en el dominio del tiempo corresponde a la multiplicación ordinaria en el dominio de la frecuencia (véase Teorema de convolución ). Después de realizar las operaciones deseadas, se puede volver a realizar la transformación del resultado al dominio del tiempo. El análisis armónico es el estudio sistemático de la relación entre los dominios de la frecuencia y el tiempo, incluidos los tipos de funciones u operaciones que son "más simples" en uno u otro, y tiene profundas conexiones con muchas áreas de las matemáticas modernas.

Análisis de ecuaciones diferenciales

Quizás el uso más importante de la transformada de Fourier es resolver ecuaciones diferenciales parciales . Muchas de las ecuaciones de la física matemática del siglo XIX pueden ser tratadas de esta manera. Fourier estudió la ecuación del calor, que en una dimensión y en unidades adimensionales es El ejemplo que daremos, un poco más difícil, es la ecuación de onda en una dimensión,

Como siempre, el problema no es encontrar una solución: hay infinitas. El problema es el llamado "problema de frontera": encontrar una solución que satisfaga las "condiciones de frontera".

Aquí, f y g son funciones dadas. Para la ecuación del calor, solo se puede requerir una condición de contorno (normalmente la primera). Pero para la ecuación de onda, todavía hay infinitas soluciones y que satisfacen la primera condición de contorno. Pero cuando se imponen ambas condiciones, solo hay una solución posible.

Es más fácil encontrar la transformada de Fourier ŷ de la solución que encontrar la solución directamente. Esto se debe a que la transformada de Fourier convierte la diferenciación en multiplicación por la variable dual de Fourier, y por lo tanto una ecuación diferencial parcial aplicada a la función original se transforma en multiplicación por funciones polinómicas de las variables duales aplicadas a la función transformada. Una vez que se determina ŷ , podemos aplicar la transformada de Fourier inversa para encontrar y .

El método de Fourier es el siguiente. En primer lugar, hay que tener en cuenta que cualquier función de las formas satisface la ecuación de onda. Estas se denominan soluciones elementales.

En segundo lugar, tenga en cuenta que, por lo tanto, cualquier integral satisface la ecuación de onda para a + , a , b + , b arbitrarios . Esta integral puede interpretarse como una combinación lineal continua de soluciones para la ecuación lineal.

Ahora bien, esto se parece a la fórmula para la síntesis de Fourier de una función. De hecho, se trata de la transformada de Fourier inversa real de a ± y b ± en la variable x .

El tercer paso es examinar cómo encontrar las funciones de coeficientes desconocidas específicas a ± y b ± que harán que y satisfaga las condiciones de contorno. Nos interesan los valores de estas soluciones en t = 0 . Por lo tanto, fijaremos t = 0 . Suponiendo que se satisfacen las condiciones necesarias para la inversión de Fourier, podemos encontrar las transformadas de seno y coseno de Fourier (en la variable x ) de ambos lados y obtener y

De manera similar, tomando la derivada de y con respecto a t y luego aplicando las transformaciones de Fourier de seno y coseno se obtiene y

Éstas son cuatro ecuaciones lineales para las cuatro incógnitas a ± y b ± , en términos de las transformadas de Fourier del seno y del coseno de las condiciones de contorno, que se resuelven fácilmente mediante álgebra elemental, siempre que se puedan encontrar dichas transformadas.

En resumen, elegimos un conjunto de soluciones elementales, parametrizadas por ξ , de las cuales la solución general sería una combinación lineal (continua) en forma de integral sobre el parámetro ξ . Pero esta integral estaba en forma de integral de Fourier. El siguiente paso fue expresar las condiciones de contorno en términos de estas integrales, e igualarlas a las funciones dadas f y g . Pero estas expresiones también tomaron la forma de integral de Fourier debido a las propiedades de la transformada de Fourier de una derivada. El último paso fue explotar la inversión de Fourier aplicando la transformada de Fourier a ambos lados, obteniendo así expresiones para las funciones coeficiente a ± y b ± en términos de las condiciones de contorno dadas f y g .

Desde un punto de vista más elevado, el procedimiento de Fourier se puede reformular de forma más conceptual. Puesto que hay dos variables, utilizaremos la transformación de Fourier tanto en x como en t en lugar de operar como lo hizo Fourier, que sólo transformó en las variables espaciales. Nótese que ŷ debe considerarse en el sentido de una distribución puesto que y ( x , t ) no va a ser L 1 : como onda, persistirá a través del tiempo y por tanto no es un fenómeno transitorio. Pero estará acotado y por tanto su transformada de Fourier se puede definir como una distribución. Las propiedades operacionales de la transformada de Fourier que son relevantes para esta ecuación son que lleva la diferenciación en x a la multiplicación por iξ y la diferenciación con respecto a t a la multiplicación por if donde f es la frecuencia. Entonces la ecuación de onda se convierte en una ecuación algebraica en ŷ : Esto es equivalente a requerir ŷ ( ξ , f ) = 0 a menos que ξ = ± f . De inmediato, esto explica por qué la elección de soluciones elementales que hicimos anteriormente funcionó tan bien: obviamente = δ ( ξ ± f ) serán soluciones. Aplicando la inversión de Fourier a estas funciones delta, obtenemos las soluciones elementales que elegimos anteriormente. Pero desde el punto de vista superior, uno no elige soluciones elementales, sino que considera el espacio de todas las distribuciones que se apoyan en la cónica (degenerada) ξ 2f 2 = 0 .

También podemos considerar las distribuciones soportadas en la cónica que están dadas por distribuciones de una variable en la línea ξ = f más distribuciones en la línea ξ = − f como sigue: si Φ es cualquier función de prueba, donde s + , y s , son distribuciones de una variable.

Entonces la inversión de Fourier da, para las condiciones de contorno, algo muy similar a lo que teníamos más concretamente arriba (pongamos Φ ( ξ , f ) = e i 2π( + tf ) , que es claramente de crecimiento polinomial): y

Now, as before, applying the one-variable Fourier transformation in the variable x to these functions of x yields two equations in the two unknown distributions s± (which can be taken to be ordinary functions if the boundary conditions are L1 or L2).

From a calculational point of view, the drawback of course is that one must first calculate the Fourier transforms of the boundary conditions, then assemble the solution from these, and then calculate an inverse Fourier transform. Closed form formulas are rare, except when there is some geometric symmetry that can be exploited, and the numerical calculations are difficult because of the oscillatory nature of the integrals, which makes convergence slow and hard to estimate. For practical calculations, other methods are often used.

The twentieth century has seen the extension of these methods to all linear partial differential equations with polynomial coefficients, and by extending the notion of Fourier transformation to include Fourier integral operators, some non-linear equations as well.

Fourier-transform spectroscopy

The Fourier transform is also used in nuclear magnetic resonance (NMR) and in other kinds of spectroscopy, e.g. infrared (FTIR). In NMR an exponentially shaped free induction decay (FID) signal is acquired in the time domain and Fourier-transformed to a Lorentzian line-shape in the frequency domain. The Fourier transform is also used in magnetic resonance imaging (MRI) and mass spectrometry.

Quantum mechanics

The Fourier transform is useful in quantum mechanics in at least two different ways. To begin with, the basic conceptual structure of quantum mechanics postulates the existence of pairs of complementary variables, connected by the Heisenberg uncertainty principle. For example, in one dimension, the spatial variable q of, say, a particle, can only be measured by the quantum mechanical "position operator" at the cost of losing information about the momentum p of the particle. Therefore, the physical state of the particle can either be described by a function, called "the wave function", of q or by a function of p but not by a function of both variables. The variable p is called the conjugate variable to q. In classical mechanics, the physical state of a particle (existing in one dimension, for simplicity of exposition) would be given by assigning definite values to both p and q simultaneously. Thus, the set of all possible physical states is the two-dimensional real vector space with a p-axis and a q-axis called the phase space.

In contrast, quantum mechanics chooses a polarisation of this space in the sense that it picks a subspace of one-half the dimension, for example, the q-axis alone, but instead of considering only points, takes the set of all complex-valued "wave functions" on this axis. Nevertheless, choosing the p-axis is an equally valid polarisation, yielding a different representation of the set of possible physical states of the particle. Both representations of the wavefunction are related by a Fourier transform, such that or, equivalently,

Physically realisable states are L2, and so by the Plancherel theorem, their Fourier transforms are also L2. (Note that since q is in units of distance and p is in units of momentum, the presence of the Planck constant in the exponent makes the exponent dimensionless, as it should be.)

Therefore, the Fourier transform can be used to pass from one way of representing the state of the particle, by a wave function of position, to another way of representing the state of the particle: by a wave function of momentum. Infinitely many different polarisations are possible, and all are equally valid. Being able to transform states from one representation to another by the Fourier transform is not only convenient but also the underlying reason of the Heisenberg uncertainty principle.

The other use of the Fourier transform in both quantum mechanics and quantum field theory is to solve the applicable wave equation. In non-relativistic quantum mechanics, Schrödinger's equation for a time-varying wave function in one-dimension, not subject to external forces, is

This is the same as the heat equation except for the presence of the imaginary unit i. Fourier methods can be used to solve this equation.

In the presence of a potential, given by the potential energy function V(x), the equation becomes

The "elementary solutions", as we referred to them above, are the so-called "stationary states" of the particle, and Fourier's algorithm, as described above, can still be used to solve the boundary value problem of the future evolution of ψ given its values for t = 0. Neither of these approaches is of much practical use in quantum mechanics. Boundary value problems and the time-evolution of the wave function is not of much practical interest: it is the stationary states that are most important.

In relativistic quantum mechanics, Schrödinger's equation becomes a wave equation as was usual in classical physics, except that complex-valued waves are considered. A simple example, in the absence of interactions with other particles or fields, is the free one-dimensional Klein–Gordon–Schrödinger–Fock equation, this time in dimensionless units,

This is, from the mathematical point of view, the same as the wave equation of classical physics solved above (but with a complex-valued wave, which makes no difference in the methods). This is of great use in quantum field theory: each separate Fourier component of a wave can be treated as a separate harmonic oscillator and then quantized, a procedure known as "second quantization". Fourier methods have been adapted to also deal with non-trivial interactions.

Finally, the number operator of the quantum harmonic oscillator can be interpreted, for example via the Mehler kernel, as the generator of the Fourier transform .[27]

Signal processing

The Fourier transform is used for the spectral analysis of time-series. The subject of statistical signal processing does not, however, usually apply the Fourier transformation to the signal itself. Even if a real signal is indeed transient, it has been found in practice advisable to model a signal by a function (or, alternatively, a stochastic process) which is stationary in the sense that its characteristic properties are constant over all time. The Fourier transform of such a function does not exist in the usual sense, and it has been found more useful for the analysis of signals to instead take the Fourier transform of its autocorrelation function.

The autocorrelation function R of a function f is defined by

This function is a function of the time-lag τ elapsing between the values of f to be correlated.

For most functions f that occur in practice, R is a bounded even function of the time-lag τ and for typical noisy signals it turns out to be uniformly continuous with a maximum at τ = 0.

The autocorrelation function, more properly called the autocovariance function unless it is normalized in some appropriate fashion, measures the strength of the correlation between the values of f separated by a time lag. This is a way of searching for the correlation of f with its own past. It is useful even for other statistical tasks besides the analysis of signals. For example, if f(t) represents the temperature at time t, one expects a strong correlation with the temperature at a time lag of 24 hours.

It possesses a Fourier transform,

This Fourier transform is called the power spectral density function of f. (Unless all periodic components are first filtered out from f, this integral will diverge, but it is easy to filter out such periodicities.)

The power spectrum, as indicated by this density function P, measures the amount of variance contributed to the data by the frequency ξ. In electrical signals, the variance is proportional to the average power (energy per unit time), and so the power spectrum describes how much the different frequencies contribute to the average power of the signal. This process is called the spectral analysis of time-series and is analogous to the usual analysis of variance of data that is not a time-series (ANOVA).

Knowledge of which frequencies are "important" in this sense is crucial for the proper design of filters and for the proper evaluation of measuring apparatuses. It can also be useful for the scientific analysis of the phenomena responsible for producing the data.

The power spectrum of a signal can also be approximately measured directly by measuring the average power that remains in a signal after all the frequencies outside a narrow band have been filtered out.

Spectral analysis is carried out for visual signals as well. The power spectrum ignores all phase relations, which is good enough for many purposes, but for video signals other types of spectral analysis must also be employed, still using the Fourier transform as a tool.

Other notations

Other common notations for include:

In the sciences and engineering it is also common to make substitutions like these:

So the transform pair can become

A disadvantage of the capital letter notation is when expressing a transform such as or which become the more awkward and

In some contexts such as particle physics, the same symbol may be used for both for a function as well as it Fourier transform, with the two only distinguished by their argument I.e. would refer to the Fourier transform because of the momentum argument, while would refer to the original function because of the positional argument. Although tildes may be used as in to indicate Fourier transforms, tildes may also be used to indicate a modification of a quantity with a more Lorentz invariant form, such as , so care must be taken. Similarly, often denotes the Hilbert transform of .

The interpretation of the complex function (ξ) may be aided by expressing it in polar coordinate formin terms of the two real functions A(ξ) and φ(ξ) where:is the amplitude andis the phase (see arg function).

Then the inverse transform can be written:which is a recombination of all the frequency components of f(x). Each component is a complex sinusoid of the form eixξ whose amplitude is A(ξ) and whose initial phase angle (at x = 0) is φ(ξ).

The Fourier transform may be thought of as a mapping on function spaces. This mapping is here denoted F and F(f) is used to denote the Fourier transform of the function f. This mapping is linear, which means that F can also be seen as a linear transformation on the function space and implies that the standard notation in linear algebra of applying a linear transformation to a vector (here the function f) can be used to write F f instead of F(f). Since the result of applying the Fourier transform is again a function, we can be interested in the value of this function evaluated at the value ξ for its variable, and this is denoted either as F f(ξ) or as (F f)(ξ). Notice that in the former case, it is implicitly understood that F is applied first to f and then the resulting function is evaluated at ξ, not the other way around.

In mathematics and various applied sciences, it is often necessary to distinguish between a function f and the value of f when its variable equals x, denoted f(x). This means that a notation like F(f(x)) formally can be interpreted as the Fourier transform of the values of f at x. Despite this flaw, the previous notation appears frequently, often when a particular function or a function of a particular variable is to be transformed. For example,is sometimes used to express that the Fourier transform of a rectangular function is a sinc function, oris used to express the shift property of the Fourier transform.

Notice, that the last example is only correct under the assumption that the transformed function is a function of x, not of x0.

As discussed above, the characteristic function of a random variable is the same as the Fourier–Stieltjes transform of its distribution measure, but in this context it is typical to take a different convention for the constants. Typically characteristic function is defined

As in the case of the "non-unitary angular frequency" convention above, the factor of 2π appears in neither the normalizing constant nor the exponent. Unlike any of the conventions appearing above, this convention takes the opposite sign in the exponent.

Computation methods

The appropriate computation method largely depends how the original mathematical function is represented and the desired form of the output function. In this section we consider both functions of a continuous variable, and functions of a discrete variable (i.e. ordered pairs of and values). For discrete-valued the transform integral becomes a summation of sinusoids, which is still a continuous function of frequency ( or ). When the sinusoids are harmonically-related (i.e. when the -values are spaced at integer multiples of an interval), the transform is called discrete-time Fourier transform (DTFT).

Discrete Fourier transforms and fast Fourier transforms

Sampling the DTFT at equally-spaced values of frequency is the most common modern method of computation. Efficient procedures, depending on the frequency resolution needed, are described at Discrete-time Fourier transform § Sampling the DTFT. The discrete Fourier transform (DFT), used there, is usually computed by a fast Fourier transform (FFT) algorithm.

Analytic integration of closed-form functions

Tables of closed-form Fourier transforms, such as § Square-integrable functions, one-dimensional and § Table of discrete-time Fourier transforms, are created by mathematically evaluating the Fourier analysis integral (or summation) into another closed-form function of frequency ( or ).[56] When mathematically possible, this provides a transform for a continuum of frequency values.

Many computer algebra systems such as Matlab and Mathematica that are capable of symbolic integration are capable of computing Fourier transforms analytically. For example, to compute the Fourier transform of cos(6πt) e−πt2 one might enter the command integrate cos(6*pi*t) exp(−pi*t^2) exp(-i*2*pi*f*t) from -inf to inf into Wolfram Alpha.[note 7]

Numerical integration of closed-form continuous functions

Discrete sampling of the Fourier transform can also be done by numerical integration of the definition at each value of frequency for which transform is desired.[57][58][59] The numerical integration approach works on a much broader class of functions than the analytic approach.

Numerical integration of a series of ordered pairs

If the input function is a series of ordered pairs, numerical integration reduces to just a summation over the set of data pairs.[60] The DTFT is a common subcase of this more general situation.

Tables of important Fourier transforms

The following tables record some closed-form Fourier transforms. For functions f(x) and g(x) denote their Fourier transforms by and ĝ. Only the three most common conventions are included. It may be useful to notice that entry 105 gives a relationship between the Fourier transform of a function and the original function, which can be seen as relating the Fourier transform and its inverse.

Functional relationships, one-dimensional

The Fourier transforms in this table may be found in Erdélyi (1954) or Kammler (2000, appendix).

Square-integrable functions, one-dimensional

The Fourier transforms in this table may be found in Campbell & Foster (1948), Erdélyi (1954), or Kammler (2000, appendix).

Distributions, one-dimensional

The Fourier transforms in this table may be found in Erdélyi (1954) or Kammler (2000, appendix).

Two-dimensional functions

Formulas for general n-dimensional functions

See also

Notes

  1. ^ Depending on the application a Lebesgue integral, distributional, or other approach may be most appropriate.
  2. ^ Vretblad (2000) provides solid justification for these formal procedures without going too deeply into functional analysis or the theory of distributions.
  3. ^ In relativistic quantum mechanics one encounters vector-valued Fourier transforms of multi-component wave functions. In quantum field theory, operator-valued Fourier transforms of operator-valued functions of spacetime are in frequent use, see for example Greiner & Reinhardt (1996).
  4. ^ A possible source of confusion is the frequency-shifting property; i.e. the transform of function is   The value of this function at    is meaning that a frequency has been shifted to zero (also see Negative frequency).
  5. ^ The operator is defined by replacing by in the Taylor expansion of
  6. ^ Up to an imaginary constant factor whose magnitude depends on what Fourier transform convention is used.
  7. ^ The direct command fourier transform of cos(6*pi*t) exp(−pi*t^2) would also work for Wolfram Alpha, although the options for the convention (see Fourier transform § Other conventions) must be changed away from the default option, which is actually equivalent to integrate cos(6*pi*t) exp(−pi*t^2) exp(i*omega*t) /sqrt(2*pi) from -inf to inf.
  8. ^ In Gelfand & Shilov 1964, p. 363, with the non-unitary conventions of this table, the transform of is given to be

    from which this follows, with .

Citations

  1. ^ Khare, Butola & Rajora 2023, pp. 13–14
  2. ^ Kaiser 1994, p. 29
  3. ^ Rahman 2011, p. 11
  4. ^ Dym & McKean 1985
  5. ^ Fourier 1822, p. 525
  6. ^ Fourier 1878, p. 408
  7. ^ Jordan (1883) proves on pp. 216–226 the Fourier integral theorem before studying Fourier series.
  8. ^ Titchmarsh 1986, p. 1
  9. ^ Rahman 2011, p. 10.
  10. ^ Oppenheim, Schafer & Buck 1999, p. 58
  11. ^ a b c d e f g Stein & Weiss 1971
  12. ^ Folland 1989
  13. ^ Fourier 1822
  14. ^ a b c d e Pinsky 2002
  15. ^ Arfken 1985
  16. ^ a b c d e Katznelson 1976
  17. ^ Rudin 1987, p. 187
  18. ^ Rudin 1987, p. 186
  19. ^ Folland 1992, p. 216
  20. ^ Wolf 1979, p. 307ff
  21. ^ Folland 1989, p. 53
  22. ^ Celeghini, Gadella & del Olmo 2021
  23. ^ a b Duoandikoetxea 2001
  24. ^ a b Boashash 2003
  25. ^ Condon 1937
  26. ^ Wolf 1979, p. 320
  27. ^ a b Wolf 1979, p. 312
  28. ^ Folland 1989, p. 52
  29. ^ Howe 1980
  30. ^ Paley & Wiener 1934
  31. ^ Gelfand & Vilenkin 1964
  32. ^ Kirillov & Gvishiani 1982
  33. ^ Clozel & Delorme 1985, pp. 331–333
  34. ^ de Groot & Mazur 1984, p. 146
  35. ^ Champeney 1987, p. 80
  36. ^ a b c Kolmogorov & Fomin 1999
  37. ^ Wiener 1949
  38. ^ Champeney 1987, p. 63
  39. ^ Widder & Wiener 1938, p. 537
  40. ^ Pinsky 2002, p. 131
  41. ^ Stein & Shakarchi 2003
  42. ^ Stein & Shakarchi 2003, p. 158
  43. ^ Chatfield 2004, p. 113
  44. ^ Fourier 1822, p. 441
  45. ^ Poincaré 1895, p. 102
  46. ^ Whittaker & Watson 1927, p. 188
  47. ^ Grafakos 2004
  48. ^ Grafakos & Teschl 2013
  49. ^ More generally, one can take a sequence of functions that are in the intersection of L1 and L2 and that converges to f in the L2-norm, and define the Fourier transform of f as the L2 -limit of the Fourier transforms of these functions.
  50. ^ "Applied Fourier Analysis and Elements of Modern Signal Processing Lecture 3" (PDF). January 12, 2016. Retrieved 2019-10-11.
  51. ^ Stein & Weiss 1971, Thm. 2.3
  52. ^ Pinsky 2002, p. 256
  53. ^ Hewitt & Ross 1970, Chapter 8
  54. ^ Knapp 2001
  55. ^ Correia, L. B.; Justo, J. F.; Angélico, B. A. (2024). "Polynomial Adaptive Synchrosqueezing Fourier Transform: A method to optimize multiresolution". Digital Signal Processing. 150: 104526. doi:10.1016/j.dsp.2024.104526.
  56. ^ Gradshteyn et al. 2015
  57. ^ Press et al. 1992
  58. ^ Bailey & Swarztrauber 1994
  59. ^ Lado 1971
  60. ^ Simonen & Olkkonen 1985
  61. ^ "The Integration Property of the Fourier Transform". The Fourier Transform .com. 2015 [2010]. Archived from the original on 2022-01-26. Retrieved 2023-08-20.
  62. ^ Stein & Weiss 1971, Thm. IV.3.3
  63. ^ Easton 2010
  64. ^ Stein & Weiss 1971, Thm. 4.15
  65. ^ Stein & Weiss 1971, p. 6

References

Enlaces externos