stringtranslate.com

Evolución

La evolución es el cambio en las características hereditarias de las poblaciones biológicas a lo largo de generaciones sucesivas. [1] [2] La evolución ocurre cuando procesos evolutivos como la selección natural y la deriva genética actúan sobre la variación genética, lo que resulta en que ciertas características se vuelvan más o menos comunes dentro de una población a lo largo de generaciones sucesivas. [3] El proceso de evolución ha dado lugar a la biodiversidad en todos los niveles de la organización biológica . [4] [5]

La teoría de la evolución por selección natural fue concebida de forma independiente por Charles Darwin y Alfred Russel Wallace a mediados del siglo XIX como una explicación de por qué los organismos se adaptan a sus entornos físicos y biológicos. La teoría se expuso en detalle por primera vez en el libro de Darwin Sobre el origen de las especies . [6] La evolución por selección natural se establece mediante hechos observables sobre los organismos vivos: (1) a menudo se produce más descendencia de la que posiblemente pueda sobrevivir; (2) los rasgos varían entre los individuos con respecto a su morfología , fisiología y comportamiento; (3) diferentes rasgos confieren diferentes tasas de supervivencia y reproducción ( aptitud diferencial ); y (4) los rasgos pueden transmitirse de generación en generación ( heredabilidad de aptitud). [7] Por lo tanto, en generaciones sucesivas, los miembros de una población tienen más probabilidades de ser reemplazados por hijos de padres con características favorables para ese entorno.

A principios del siglo XX, se refutaron ideas contrapuestas sobre la evolución y la evolución se combinó con la herencia mendeliana y la genética de poblaciones para dar origen a la teoría evolutiva moderna. [8] En esta síntesis, la base de la herencia está en las moléculas de ADN que transmiten información de generación en generación. Los procesos que cambian el ADN en una población incluyen la selección natural, la deriva genética , la mutación y el flujo de genes . [3]

Toda la vida en la Tierra, incluida la humanidad , comparte un último ancestro común universal (LUCA), [9] [10] [11] que vivió hace aproximadamente 3,5 a 3,8 mil millones de años. [12] El registro fósil incluye una progresión desde el grafito biogénico temprano [13] hasta fósiles de esteras microbianas [14] [15] [16] y organismos multicelulares fosilizados . Los patrones existentes de biodiversidad han sido moldeados por formaciones repetidas de nuevas especies ( especiación ), cambios dentro de las especies ( anagénesis ) y pérdida de especies ( extinción ) a lo largo de la historia evolutiva de la vida en la Tierra. [17] Los rasgos morfológicos y bioquímicos tienden a ser más similares entre especies que comparten un ancestro común más reciente , que históricamente se utilizó para reconstruir árboles filogenéticos , aunque la comparación directa de secuencias genéticas es un método más común en la actualidad. [18] [19]

Los biólogos evolucionistas han seguido estudiando diversos aspectos de la evolución formulando y probando hipótesis , así como construyendo teorías basadas en pruebas de campo o de laboratorio y en datos generados por los métodos de la biología matemática y teórica . Sus descubrimientos han influido no sólo en el desarrollo de la biología sino también en otros campos como la agricultura , la medicina y la informática . [20]

Herencia

Estructura del ADN . Las bases están en el centro, rodeadas por cadenas de fosfato-azúcar en una doble hélice .

La evolución de los organismos se produce a través de cambios en las características hereditarias: las características heredadas de un organismo. En los seres humanos, por ejemplo, el color de los ojos es una característica heredada y un individuo puede heredar el "rasgo de ojos marrones" de uno de sus padres. [21] Los rasgos heredados están controlados por genes y el conjunto completo de genes dentro del genoma de un organismo (material genético) se denomina genotipo . [22]

El conjunto completo de rasgos observables que conforman la estructura y el comportamiento de un organismo se denomina fenotipo . Algunos de estos rasgos provienen de la interacción de su genotipo con el medio ambiente mientras que otros son neutrales. [23] Algunas características observables no se heredan. Por ejemplo, la piel bronceada surge de la interacción entre el genotipo de una persona y la luz solar; por lo tanto, los bronceados no se transmiten a los hijos. El fenotipo es la capacidad de la piel para broncearse cuando se expone a la luz solar. Sin embargo, algunas personas se broncean más fácilmente que otras debido a diferencias en la variación genotípica; un ejemplo sorprendente son las personas con el rasgo heredado del albinismo , que no se broncean en absoluto y son muy sensibles a las quemaduras solares . [24]

Las características hereditarias se transmiten de una generación a la siguiente a través del ADN , una molécula que codifica la información genética. [22] El ADN es un biopolímero largo compuesto por cuatro tipos de bases. La secuencia de bases a lo largo de una molécula de ADN particular especifica la información genética, de manera similar a una secuencia de letras que deletrean una oración. Antes de que una célula se divida, el ADN se copia, de modo que cada una de las dos células resultantes heredará la secuencia del ADN. Las porciones de una molécula de ADN que especifican una única unidad funcional se denominan genes; diferentes genes tienen diferentes secuencias de bases. Dentro de las células, cada hebra larga de ADN se llama cromosoma . La ubicación específica de una secuencia de ADN dentro de un cromosoma se conoce como locus . Si la secuencia de ADN en un locus varía entre individuos, las diferentes formas de esta secuencia se denominan alelos. Las secuencias de ADN pueden cambiar mediante mutaciones, produciendo nuevos alelos. Si se produce una mutación dentro de un gen, el nuevo alelo puede afectar el rasgo que controla el gen, alterando el fenotipo del organismo. [25] Sin embargo, si bien esta simple correspondencia entre un alelo y un rasgo funciona en algunos casos, la mayoría de los rasgos están influenciados por múltiples genes de manera cuantitativa o epistática . [26] [27]

Fuentes de variación

La evolución puede ocurrir si hay variación genética dentro de una población. La variación proviene de mutaciones en el genoma, reorganización de genes a través de la reproducción sexual y migración entre poblaciones ( flujo de genes ). A pesar de la constante introducción de nuevas variaciones a través de mutaciones y flujo de genes, la mayor parte del genoma de una especie es muy similar entre todos los individuos de esa especie. [28] Sin embargo, los descubrimientos en el campo de la biología evolutiva del desarrollo han demostrado que incluso diferencias relativamente pequeñas en el genotipo pueden conducir a diferencias dramáticas en el fenotipo tanto dentro como entre especies.

El fenotipo de un organismo individual resulta tanto de su genotipo como de la influencia del entorno en el que ha vivido. [27] La ​​síntesis evolutiva moderna define la evolución como el cambio a lo largo del tiempo en esta variación genética. La frecuencia de un alelo particular será más o menos prevalente en relación con otras formas de ese gen. La variación desaparece cuando un nuevo alelo alcanza el punto de fijación : cuando desaparece de la población o reemplaza por completo al alelo ancestral. [29]

Mutación

Duplicación de parte de un cromosoma .

Las mutaciones son cambios en la secuencia del ADN del genoma de una célula y son la fuente última de variación genética en todos los organismos. [30] Cuando se producen mutaciones, pueden alterar el producto de un gen , impedir que el gen funcione o no tener ningún efecto.

Aproximadamente la mitad de las mutaciones en las regiones codificantes de genes que codifican proteínas son perjudiciales; la otra mitad son neutras. Un pequeño porcentaje del total de mutaciones en esta región confiere un beneficio de aptitud física. [31] Algunas de las mutaciones en otras partes del genoma son perjudiciales, pero la gran mayoría son neutrales. Algunos son beneficiosos.

Las mutaciones pueden implicar que grandes secciones de un cromosoma se dupliquen (generalmente mediante recombinación genética ), lo que puede introducir copias adicionales de un gen en un genoma. [32] Las copias adicionales de genes son una fuente importante de materia prima necesaria para que evolucionen nuevos genes. [33] Esto es importante porque la mayoría de los genes nuevos evolucionan dentro de familias de genes a partir de genes preexistentes que comparten ancestros comunes. [34] Por ejemplo, el ojo humano utiliza cuatro genes para crear estructuras que detectan la luz: tres para la visión de los colores y uno para la visión nocturna ; los cuatro descienden de un único gen ancestral. [35]

Se pueden generar nuevos genes a partir de un gen ancestral cuando una copia duplicada muta y adquiere una nueva función. Este proceso es más fácil una vez que un gen se ha duplicado porque aumenta la redundancia del sistema; un gen del par puede adquirir una nueva función mientras la otra copia continúa realizando su función original. [36] [37] Otros tipos de mutaciones pueden incluso generar genes completamente nuevos a partir de ADN previamente no codificante, un fenómeno denominado nacimiento genético de novo . [38] [39]

La generación de nuevos genes también puede implicar la duplicación de pequeñas partes de varios genes, y estos fragmentos luego se recombinan para formar nuevas combinaciones con nuevas funciones ( exon shuffling ). [40] [41] Cuando se ensamblan nuevos genes a partir de partes preexistentes mezcladas, los dominios actúan como módulos con funciones independientes simples, que pueden mezclarse para producir nuevas combinaciones con funciones nuevas y complejas. [42] Por ejemplo, las policétido sintasas son enzimas grandes que producen antibióticos ; contienen hasta 100 dominios independientes y cada uno de ellos cataliza un paso en el proceso general, como un paso en una línea de montaje. [43]

Un ejemplo de mutación son los lechones de jabalí . Son de color camuflaje y muestran un patrón característico de franjas longitudinales oscuras y claras. Sin embargo, las mutaciones en el receptor de melanocortina 1 ( MC1R ) alteran el patrón. La mayoría de las razas de cerdos portan mutaciones MC1R que alteran el color natural y otras mutaciones que provocan una coloración negra dominante. [44]

Sexo y recombinación

En los organismos asexuales , los genes se heredan juntos o vinculados , ya que no pueden mezclarse con genes de otros organismos durante la reproducción. Por el contrario, la descendencia de organismos sexuales contiene mezclas aleatorias de los cromosomas de sus padres que se producen mediante una distribución independiente. En un proceso relacionado llamado recombinación homóloga , los organismos sexuales intercambian ADN entre dos cromosomas coincidentes. [45] La recombinación y el reordenamiento no alteran las frecuencias de los alelos, sino que cambian qué alelos están asociados entre sí, produciendo descendencia con nuevas combinaciones de alelos. [46] El sexo generalmente aumenta la variación genética y puede aumentar la tasa de evolución. [47] [48]

Este diagrama ilustra el doble costo del sexo . Si cada individuo contribuyera al mismo número de descendientes (dos), (a) la población sexual sigue siendo del mismo tamaño en cada generación, donde (b) la población de reproducción asexual duplica su tamaño en cada generación. [ se necesita referencia de imagen ]

El doble coste del sexo fue descrito por primera vez por John Maynard Smith . [49] El primer costo es que en las especies sexualmente dimórficas sólo uno de los dos sexos puede tener crías. Este costo no aplica para especies hermafroditas, como la mayoría de las plantas y muchos invertebrados . El segundo costo es que cualquier individuo que se reproduzca sexualmente sólo puede transmitir el 50% de sus genes a cualquier descendencia individual, y se transmite aún menos a medida que pasa cada nueva generación. [50] Sin embargo, la reproducción sexual es el medio de reproducción más común entre los eucariotas y los organismos multicelulares. La hipótesis de la Reina Roja se ha utilizado para explicar la importancia de la reproducción sexual como un medio para permitir la evolución y adaptación continua en respuesta a la coevolución con otras especies en un entorno en constante cambio. [50] [51] [52] [53] Otra hipótesis es que la reproducción sexual es principalmente una adaptación para promover la reparación recombinacional precisa del daño en el ADN de la línea germinal, y que una mayor diversidad es un subproducto de este proceso que a veces puede ser adaptativamente beneficioso. [54] [55]

Flujo de genes

El flujo de genes es el intercambio de genes entre poblaciones y entre especies. [56] Por lo tanto, puede ser una fuente de variación que sea nueva para una población o para una especie. El flujo de genes puede ser causado por el movimiento de individuos entre poblaciones separadas de organismos, como podría ser causado por el movimiento de ratones entre poblaciones del interior y costeras, o el movimiento de polen entre poblaciones de animales tolerantes y sensibles a los metales pesados. pastos.

La transferencia de genes entre especies incluye la formación de organismos híbridos y la transferencia horizontal de genes . La transferencia horizontal de genes es la transferencia de material genético de un organismo a otro organismo que no es su descendencia; esto es más común entre las bacterias . [57] En medicina, esto contribuye a la propagación de la resistencia a los antibióticos , ya que cuando una bacteria adquiere genes de resistencia puede transferirlos rápidamente a otras especies. [58] Se ha producido una transferencia horizontal de genes de bacterias a eucariotas como la levadura Saccharomyces cerevisiae y el gorgojo del frijol adzuki Callosobruchus chinensis . [59] [60] Un ejemplo de transferencias a mayor escala son los rotíferos bdelloideos eucariotas , que han recibido una variedad de genes de bacterias, hongos y plantas. [61] Los virus también pueden transportar ADN entre organismos, lo que permite la transferencia de genes incluso entre dominios biológicos . [62]

También se ha producido una transferencia genética a gran escala entre los ancestros de las células eucariotas y las bacterias, durante la adquisición de cloroplastos y mitocondrias . Es posible que los propios eucariotas se originaran a partir de transferencias horizontales de genes entre bacterias y arqueas . [63]

Epigenética

Algunos cambios hereditarios no pueden explicarse por cambios en la secuencia de nucleótidos del ADN. Estos fenómenos se clasifican como sistemas de herencia epigenética. [64] La metilación del ADN que marca la cromatina , los bucles metabólicos autosostenibles, el silenciamiento de genes mediante interferencia de ARN y la conformación tridimensional de proteínas (como los priones ) son áreas donde se han descubierto sistemas de herencia epigenética a nivel del organismo. [65] Los biólogos del desarrollo sugieren que las interacciones complejas en las redes genéticas y la comunicación entre células pueden conducir a variaciones hereditarias que pueden subyacer en algunos de los mecanismos de la plasticidad y canalización del desarrollo . [66] La heredabilidad también puede ocurrir a escalas aún mayores. Por ejemplo, la herencia ecológica a través del proceso de construcción de nichos se define por las actividades regulares y repetidas de los organismos en su entorno. Esto genera un legado de efectos que modifican y retroalimentan el régimen de selección de las generaciones posteriores. [67] Otros ejemplos de heredabilidad en la evolución que no están bajo el control directo de los genes incluyen la herencia de rasgos culturales y la simbiogénesis . [68] [69]

Fuerzas evolutivas

La mutación seguida de la selección natural da como resultado una población con una coloración más oscura. [ se necesita referencia de imagen ]

Desde una perspectiva neodarwiniana , la evolución ocurre cuando hay cambios en las frecuencias de los alelos dentro de una población de organismos entrecruzados, [70] por ejemplo, el alelo del color negro en una población de polillas se vuelve más común. Los mecanismos que pueden provocar cambios en las frecuencias de los alelos incluyen la selección natural, la deriva genética y el sesgo de mutación.

Seleccion natural

La evolución por selección natural es el proceso mediante el cual los rasgos que mejoran la supervivencia y la reproducción se vuelven más comunes en generaciones sucesivas de una población. Encarna tres principios: [7]

Se produce más descendencia de la que posiblemente pueda sobrevivir, y estas condiciones producen competencia entre organismos por la supervivencia y la reproducción. En consecuencia, los organismos con rasgos que les dan una ventaja sobre sus competidores tienen más probabilidades de transmitirlos a la siguiente generación que aquellos con rasgos que no les confieren una ventaja. [71] Esta teleonomía es la cualidad mediante la cual el proceso de selección natural crea y preserva rasgos que aparentemente son adecuados para los roles funcionales que desempeñan. [72] Las consecuencias de la selección incluyen el apareamiento no aleatorio [73] y el autostop genético .

El concepto central de la selección natural es la aptitud evolutiva de un organismo. [74] La aptitud se mide por la capacidad de un organismo para sobrevivir y reproducirse, lo que determina el tamaño de su contribución genética a la siguiente generación. [74] Sin embargo, la aptitud no es lo mismo que el número total de descendientes: en cambio, la aptitud está indicada por la proporción de generaciones posteriores que portan los genes de un organismo. [75] Por ejemplo, si un organismo pudiera sobrevivir bien y reproducirse rápidamente, pero su descendencia fuera demasiado pequeña y débil para sobrevivir, este organismo haría poca contribución genética a las generaciones futuras y, por lo tanto, tendría una baja aptitud. [74]

Si un alelo aumenta la aptitud más que los otros alelos de ese gen, entonces con cada generación este alelo tiene una mayor probabilidad de volverse común dentro de la población. Se dice que estos rasgos están "seleccionados para ". Ejemplos de rasgos que pueden aumentar la aptitud física son una mayor supervivencia y una mayor fecundidad . Por el contrario, la menor aptitud causada por tener un alelo menos beneficioso o perjudicial da como resultado que este alelo probablemente se vuelva más raro: son "seleccionados contra ". [76]

Es importante destacar que la idoneidad de un alelo no es una característica fija; Si el entorno cambia, rasgos que antes eran neutrales o dañinos pueden volverse beneficiosos y rasgos que antes eran beneficiosos se vuelven dañinos. [25] Sin embargo, incluso si la dirección de la selección se invierte de esta manera, los rasgos que se perdieron en el pasado pueden no volver a evolucionar de forma idéntica. [77] [78] Sin embargo, una reactivación de genes latentes, siempre y cuando no hayan sido eliminados del genoma y solo hayan sido suprimidos quizás durante cientos de generaciones, puede llevar a la reaparición de rasgos que se creían perdidos. como las patas traseras de los delfines , los dientes de las gallinas , las alas de los insectos palo sin alas , las colas y pezones adicionales de los humanos, etc. "Retrocesos" como estos se conocen como atavismos . [79]

Estos gráficos representan los diferentes tipos de selección genética. En cada gráfico, la variable del eje x es el tipo de rasgo fenotípico y la variable del eje y es el número de organismos. [ referencia de imagen necesaria ] El grupo A es la población original y el grupo B es la población después de la selección.
· El gráfico 1 muestra la selección direccional , en la que se favorece un único fenotipo extremo.
· El gráfico 2 muestra la selección estabilizadora , donde se favorece el fenotipo intermedio sobre los rasgos extremos.
· El gráfico 3 muestra la selección disruptiva , en la que se favorecen los fenotipos extremos sobre los intermedios.

La selección natural dentro de una población de un rasgo que puede variar en un rango de valores, como la altura, se puede clasificar en tres tipos diferentes. La primera es la selección direccional , que es un cambio en el valor promedio de un rasgo a lo largo del tiempo; por ejemplo, los organismos crecen lentamente. [80] En segundo lugar, la selección disruptiva es la selección de valores de rasgos extremos y a menudo da como resultado que dos valores diferentes se vuelvan más comunes, con la selección contra el valor promedio. Esto sería cuando los organismos bajos o altos tuvieran ventaja, pero no los de estatura media. Finalmente, en la selección estabilizadora hay selección contra valores de rasgos extremos en ambos extremos, lo que provoca una disminución en la varianza alrededor del valor promedio y una menor diversidad. [71] [81] Esto, por ejemplo, causaría que los organismos eventualmente tuvieran una altura similar.

La selección natural generalmente hace de la naturaleza la medida contra la cual los individuos y los rasgos individuales tienen más o menos probabilidades de sobrevivir. "Naturaleza" en este sentido se refiere a un ecosistema , es decir, un sistema en el que los organismos interactúan con todos los demás elementos, tanto físicos como biológicos , en su entorno local. Eugene Odum , uno de los fundadores de la ecología , definió un ecosistema como: "Cualquier unidad que incluye todos los organismos... en un área determinada que interactúa con el entorno físico de modo que un flujo de energía conduce a una estructura trófica claramente definida, diversidad biótica, y ciclos materiales (es decir, intercambio de materiales entre partes vivas y no vivas) dentro del sistema..." [82] Cada población dentro de un ecosistema ocupa un nicho o posición distinta, con distintas relaciones con otras partes del sistema. Estas relaciones involucran la historia de vida del organismo, su posición en la cadena alimentaria y su área de distribución geográfica. Esta amplia comprensión de la naturaleza permite a los científicos delinear fuerzas específicas que, en conjunto, componen la selección natural.

La selección natural puede actuar en diferentes niveles de organización , como genes, células, organismos individuales, grupos de organismos y especies. [83] [84] [85] La selección puede actuar en múltiples niveles simultáneamente. [86] Un ejemplo de selección que ocurre por debajo del nivel del organismo individual son los genes llamados transposones , que pueden replicarse y extenderse por todo un genoma. [87] La ​​selección en un nivel superior al individual, como la selección grupal , puede permitir la evolución de la cooperación. [88]

Deriva genética

Simulación de deriva genética de 20 alelos no vinculados en poblaciones de 10 (arriba) y 100 (abajo). La tendencia hacia la fijación es más rápida en la población más pequeña. [ se necesita referencia de imagen ]

La deriva genética es la fluctuación aleatoria de las frecuencias de los alelos dentro de una población de una generación a la siguiente. [89] Cuando las fuerzas selectivas están ausentes o son relativamente débiles, es igualmente probable que las frecuencias alélicas aumenten o disminuyan [ se necesita aclaración ] en cada generación sucesiva porque los alelos están sujetos a errores de muestreo . [90] Esta deriva se detiene cuando un alelo finalmente se fija, ya sea desapareciendo de la población o reemplazando los otros alelos por completo. Por lo tanto, la deriva genética puede eliminar algunos alelos de una población debido únicamente al azar. Incluso en ausencia de fuerzas selectivas, la deriva genética puede causar que dos poblaciones separadas que comienzan con la misma estructura genética se separen en dos poblaciones divergentes con diferentes conjuntos de alelos. [91]

Según la teoría neutral de la evolución molecular, la mayoría de los cambios evolutivos son el resultado de la fijación de mutaciones neutrales por deriva genética. [92] En este modelo, la mayoría de los cambios genéticos en una población son, por tanto, el resultado de una presión mutacional constante y de una deriva genética. [93] Esta forma de teoría neutral ha sido debatida ya que no parece ajustarse a alguna variación genética vista en la naturaleza. [94] [95] Una versión mejor respaldada de este modelo es la teoría casi neutral , según la cual una mutación que sería efectivamente neutral en una población pequeña no es necesariamente neutral en una población grande. [71] Otras teorías proponen que la deriva genética es eclipsada por otras fuerzas estocásticas en la evolución, como el autostop genético, también conocido como borrador genético. [90] [96] [97] Otro concepto es la evolución neutral constructiva (CNE), que explica que pueden surgir sistemas complejos y extenderse a una población a través de transiciones neutrales debido a los principios de exceso de capacidad, presupresión y trinquete, [98] [99] [100] y se ha aplicado en áreas que van desde los orígenes del espliceosoma hasta la compleja interdependencia de las comunidades microbianas . [101] [102] [103]

El tiempo que tarda un alelo neutro en fijarse por deriva genética depende del tamaño de la población; la fijación es más rápida en poblaciones más pequeñas. [104] El número de individuos en una población no es crítico, sino una medida conocida como tamaño efectivo de la población. [105] La población efectiva suele ser menor que la población total, ya que tiene en cuenta factores como el nivel de endogamia y la etapa del ciclo de vida en la que la población es más pequeña. [105] El tamaño efectivo de la población puede no ser el mismo para todos los genes de la misma población. [106]

Generalmente es difícil medir la importancia relativa de los procesos de selección y neutralidad, incluida la deriva. [107] La ​​importancia comparativa de las fuerzas adaptativas y no adaptativas para impulsar el cambio evolutivo es un área de investigación actual . [108]

Sesgo de mutación

El sesgo de mutación suele concebirse como una diferencia en las tasas esperadas para dos tipos diferentes de mutación, por ejemplo, sesgo de transición-transversión, sesgo de GC-AT, sesgo de eliminación-inserción. Esto está relacionado con la idea de sesgo de desarrollo . Haldane [109] y Fisher [110] argumentaron que, debido a que la mutación es una presión débil que se supera fácilmente mediante la selección, las tendencias de mutación serían ineficaces excepto en condiciones de evolución neutral o tasas de mutación extraordinariamente altas. Este argumento de presiones opuestas se utilizó durante mucho tiempo para descartar la posibilidad de tendencias internas en la evolución, [111] hasta que la era molecular suscitó un renovado interés en la evolución neutral.

Noboru Sueoka [112] y Ernst Freese [113] propusieron que los sesgos sistemáticos en la mutación podrían ser responsables de diferencias sistemáticas en la composición genómica de GC entre especies. La identificación de una cepa mutadora de E. coli sesgada por GC en 1967, [114] junto con la propuesta de la teoría neutral , estableció la plausibilidad de explicaciones mutacionales para los patrones moleculares, que ahora son comunes en la literatura sobre evolución molecular.

Por ejemplo, los sesgos de mutación se invocan con frecuencia en modelos de uso de codones. [115] Dichos modelos también incluyen efectos de selección, siguiendo el modelo mutación-selección-deriva, [116] que permite tanto sesgos de mutación como selección diferencial basada en efectos sobre la traducción. Las hipótesis de sesgo de mutación han desempeñado un papel importante en el desarrollo del pensamiento sobre la evolución de la composición del genoma, incluidas las isocoras. [117] Diferentes sesgos de inserción versus eliminación en diferentes taxones pueden conducir a la evolución de diferentes tamaños de genoma. [118] [119] La hipótesis de Lynch con respecto al tamaño del genoma se basa en sesgos mutacionales hacia el aumento o disminución del tamaño del genoma.

Sin embargo, las hipótesis mutacionales para la evolución de la composición sufrieron una reducción en su alcance cuando se descubrió que (1) la conversión genética sesgada por GC hace una contribución importante a la composición en organismos diploides como los mamíferos [120] y (2) los genomas bacterianos frecuentemente tienen Mutación sesgada por AT. [121]

El pensamiento contemporáneo sobre el papel de los sesgos de mutación refleja una teoría diferente a la de Haldane y Fisher. Un trabajo más reciente [111] demostró que la teoría original de las "presiones" supone que la evolución se basa en la variación permanente: cuando la evolución depende de eventos de mutación que introducen nuevos alelos, los sesgos mutacionales y de desarrollo en la introducción de la variación (sesgos de llegada) pueden imponerse. sesgos en la evolución sin requerir una evolución neutral o altas tasas de mutación. [111] [122] Varios estudios informan que las mutaciones implicadas en la adaptación reflejan sesgos de mutación comunes [123] [124] [125] aunque otros cuestionan esta interpretación. [126]

Autostop genético

La recombinación permite que los alelos de la misma cadena de ADN se separen. Sin embargo, la tasa de recombinación es baja (aproximadamente dos eventos por cromosoma por generación). Como resultado, es posible que los genes que están muy juntos en un cromosoma no siempre se separen entre sí y los genes que están muy juntos tienden a heredarse juntos, un fenómeno conocido como ligamiento . [127] Esta tendencia se mide encontrando la frecuencia con la que dos alelos ocurren juntos en un solo cromosoma en comparación con las expectativas , lo que se denomina desequilibrio de vinculación . Un conjunto de alelos que normalmente se hereda en un grupo se denomina haplotipo . Esto puede ser importante cuando un alelo en un haplotipo particular es muy beneficioso: la selección natural puede impulsar un barrido selectivo que también hará que los otros alelos en el haplotipo se vuelvan más comunes en la población; este efecto se llama autostop genético o draft genético. [128] El borrador genético causado por el hecho de que algunos genes neutros están genéticamente vinculados a otros que están bajo selección puede ser capturado parcialmente por un tamaño de población efectivo apropiado. [96]

selección sexual

Las ranas macho de páramo se vuelven azules durante el apogeo de la temporada de apareamiento. La reflectancia azul puede ser una forma de comunicación intersexual. Se plantea la hipótesis de que los machos con una coloración azul más brillante pueden indicar una mayor aptitud sexual y genética. [129]

Un caso especial de selección natural es la selección sexual, que es la selección de cualquier rasgo que aumente el éxito del apareamiento al aumentar el atractivo de un organismo para parejas potenciales. [130] Los rasgos que evolucionaron a través de la selección sexual son particularmente prominentes entre los machos de varias especies animales. Aunque sexualmente favorecidos, rasgos como las incómodas astas, las llamadas de apareamiento, el gran tamaño del cuerpo y los colores brillantes a menudo atraen a la depredación, lo que compromete la supervivencia de los machos individuales. [131] [132] Esta desventaja de supervivencia se equilibra con un mayor éxito reproductivo en los machos que muestran estos rasgos sexualmente seleccionados, difíciles de falsificar . [133]

Resultados naturales

Una demostración visual de la rápida evolución de la resistencia a los antibióticos por parte de E. coli que crece en una placa con concentraciones crecientes de trimetoprima [134]

La evolución influye en todos los aspectos de la forma y el comportamiento de los organismos. Las más destacadas son las adaptaciones físicas y de comportamiento específicas que son el resultado de la selección natural. Estas adaptaciones aumentan la aptitud al ayudar a actividades como encontrar comida, evitar depredadores o atraer parejas. Los organismos también pueden responder a la selección cooperando entre sí, generalmente ayudando a sus parientes o participando en una simbiosis mutuamente beneficiosa . A más largo plazo, la evolución produce nuevas especies al dividir poblaciones ancestrales de organismos en nuevos grupos que no pueden o no quieren cruzarse. Estos resultados de la evolución se distinguen según la escala de tiempo como macroevolución versus microevolución. La macroevolución se refiere a la evolución que ocurre en el nivel de especie o por encima de él, en particular la especiación y la extinción; mientras que la microevolución se refiere a cambios evolutivos más pequeños dentro de una especie o población, en particular cambios en la frecuencia de los alelos y la adaptación. [135] Macroevolución es el resultado de largos períodos de microevolución. [136] Por lo tanto, la distinción entre micro y macroevolución no es fundamental: la diferencia es simplemente el tiempo involucrado. [137] Sin embargo, en la macroevolución, los rasgos de toda la especie pueden ser importantes. Por ejemplo, una gran cantidad de variación entre individuos permite que una especie se adapte rápidamente a nuevos hábitats , lo que reduce las posibilidades de que se extinga, mientras que un rango geográfico amplio aumenta las posibilidades de especiación, al hacer que sea más probable que parte de la población se extinga. quedar aislado. En este sentido, la microevolución y la macroevolución podrían implicar selección en diferentes niveles: la microevolución actúa sobre genes y organismos, frente a procesos macroevolutivos como la selección de especies que actúan sobre especies enteras y afectan sus tasas de especiación y extinción. [138] [139] [140]

Un error común es que la evolución tiene metas, planes a largo plazo o una tendencia innata al "progreso", como se expresa en creencias como la ortogénesis y el evolucionismo; Sin embargo, siendo realistas, la evolución no tiene un objetivo a largo plazo y no necesariamente produce una mayor complejidad. [141] [142] [143] Aunque han evolucionado especies complejas , ocurren como un efecto secundario del aumento del número total de organismos y las formas de vida simples aún siguen siendo más comunes en la biosfera. [144] Por ejemplo, la inmensa mayoría de las especies son procariotas microscópicos, que forman aproximadamente la mitad de la biomasa del mundo a pesar de su pequeño tamaño, [145] y constituyen la gran mayoría de la biodiversidad de la Tierra. [146] Por lo tanto, los organismos simples han sido la forma de vida dominante en la Tierra a lo largo de su historia y continúan siendo la forma principal de vida hasta el día de hoy, mientras que la vida compleja solo parece más diversa porque es más notable . [147] De hecho, la evolución de los microorganismos es particularmente importante para la investigación evolutiva, ya que su rápida reproducción permite el estudio de la evolución experimental y la observación de la evolución y la adaptación en tiempo real. [148] [149]

Adaptación

Huesos homólogos en las extremidades de tetrápodos . Los huesos de estos animales tienen la misma estructura básica, pero han sido adaptados para usos específicos. [ se necesita referencia de imagen ]

La adaptación es el proceso que hace que los organismos se adapten mejor a su hábitat. [150] [151] Además, el término adaptación puede referirse a un rasgo que es importante para la supervivencia de un organismo. Por ejemplo, la adaptación de los dientes de los caballos a moler la hierba. Al utilizar el término adaptación para el proceso evolutivo y rasgo adaptativo para el producto (la parte o función corporal), se pueden distinguir los dos sentidos de la palabra. Las adaptaciones se producen por selección natural. [152] Las siguientes definiciones se deben a Theodosius Dobzhansky:

  1. La adaptación es el proceso evolutivo mediante el cual un organismo se vuelve más capaz de vivir en su hábitat o hábitats. [153]
  2. La adaptación es el estado de adaptación: el grado en que un organismo es capaz de vivir y reproducirse en un conjunto determinado de hábitats. [154]
  3. Un rasgo adaptativo es un aspecto del patrón de desarrollo del organismo que permite o mejora la probabilidad de que ese organismo sobreviva y se reproduzca. [155]

La adaptación puede causar la adquisición de una característica nueva o la pérdida de una característica ancestral. Un ejemplo que muestra ambos tipos de cambios es la adaptación bacteriana a la selección de antibióticos, con cambios genéticos que causan resistencia a los antibióticos modificando el objetivo del fármaco o aumentando la actividad de los transportadores que bombean el fármaco fuera de la célula. [156] Otros ejemplos sorprendentes son la bacteria Escherichia coli que desarrolló la capacidad de usar ácido cítrico como nutriente en un experimento de laboratorio a largo plazo , [157] Flavobacterium desarrolló una nueva enzima que permite que estas bacterias crezcan en los subproductos del nailon . fabricación, [158] [159] y la bacteria del suelo Sphingobium que desarrolla una vía metabólica completamente nueva que degrada el pesticida sintético pentaclorofenol . [160] [161] Una idea interesante pero aún controvertida es que algunas adaptaciones podrían aumentar la capacidad de los organismos para generar diversidad genética y adaptarse mediante selección natural (aumentando la capacidad de evolución de los organismos). [162] [163] [164] [165]

Un esqueleto de ballena barbada . Las letras a y b designan los huesos de las aletas , que fueron adaptados de los huesos de las patas delanteras , mientras que la c indica huesos vestigiales de las piernas, y ambas sugieren una adaptación de la tierra al mar. [166]

La adaptación se produce mediante la modificación gradual de las estructuras existentes. En consecuencia, estructuras con organización interna similar pueden tener funciones diferentes en organismos relacionados. Este es el resultado de que una única estructura ancestral se adapta para funcionar de diferentes maneras. Los huesos dentro de las alas de los murciélagos , por ejemplo, son muy similares a los de las patas de los ratones y las manos de los primates , debido a que todas estas estructuras descienden de un ancestro mamífero común. [167] Sin embargo, dado que todos los organismos vivos están relacionados hasta cierto punto, [168] incluso los órganos que parecen tener poca o ninguna similitud estructural, como los ojos de artrópodos , calamares y vertebrados , o las extremidades y alas de artrópodos y vertebrados, pueden dependen de un conjunto común de genes homólogos que controlan su ensamblaje y función; esto se llama homología profunda . [169] [170]

Durante la evolución, algunas estructuras pueden perder su función original y convertirse en estructuras vestigiales. [171] Tales estructuras pueden tener poca o ninguna función en una especie actual, pero tienen una función clara en especies ancestrales u otras especies estrechamente relacionadas. Los ejemplos incluyen pseudogenes , [172] los restos no funcionales de ojos en peces ciegos que viven en cavernas, [173] alas en aves no voladoras, [174] la presencia de huesos de cadera en ballenas y serpientes, [166] y rasgos sexuales en organismos. que se reproducen mediante reproducción asexual. [175] Ejemplos de estructuras vestigiales en humanos incluyen las muelas del juicio , [176] el cóccix , [171] el apéndice vermiforme , [171] y otros vestigios conductuales como la piel de gallina [177] [178] y reflejos primitivos . [179] [180] [181]

Sin embargo, muchos rasgos que parecen ser adaptaciones simples son en realidad exaptaciones : estructuras originalmente adaptadas para una función, pero que coincidentemente se volvieron algo útiles para alguna otra función en el proceso. [182] Un ejemplo es el lagarto africano Holaspis guentheri , que desarrolló una cabeza extremadamente plana para esconderse en grietas, como se puede ver al observar a sus parientes cercanos. Sin embargo, en esta especie, la cabeza se ha vuelto tan aplanada que ayuda a deslizarse de árbol en árbol: una exaptación. [182] Dentro de las células, las máquinas moleculares como los flagelos bacterianos [183] ​​y la maquinaria de clasificación de proteínas [184] evolucionaron mediante el reclutamiento de varias proteínas preexistentes que anteriormente tenían diferentes funciones. [135] Otro ejemplo es el reclutamiento de enzimas de la glucólisis y el metabolismo xenobiótico para que sirvan como proteínas estructurales llamadas cristalinas dentro de las lentes de los ojos de los organismos. [185] [186]

Un área de investigación actual en biología del desarrollo evolutivo es la base del desarrollo de adaptaciones y exaptaciones. [187] Esta investigación aborda el origen y la evolución del desarrollo embrionario y cómo las modificaciones del desarrollo y los procesos de desarrollo producen características novedosas. [188] Estos estudios han demostrado que la evolución puede alterar el desarrollo para producir nuevas estructuras, como estructuras óseas embrionarias que se desarrollan en la mandíbula en otros animales en lugar de formar parte del oído medio en los mamíferos . [189] También es posible que estructuras que se han perdido en la evolución reaparezcan debido a cambios en los genes del desarrollo, como una mutación en los pollos que hace que a los embriones les crezcan dientes similares a los de los cocodrilos . [190] Ahora está quedando claro que la mayoría de las alteraciones en la forma de los organismos se deben a cambios en un pequeño conjunto de genes conservados. [191]

Coevolución

La culebra común ha desarrollado resistencia a la sustancia defensiva tetrodotoxina en sus presas anfibias.

Las interacciones entre organismos pueden producir tanto conflicto como cooperación. Cuando la interacción es entre pares de especies, como un patógeno y un huésped , o un depredador y su presa, estas especies pueden desarrollar conjuntos de adaptaciones coincidentes. Aquí, la evolución de una especie provoca adaptaciones en una segunda especie. Estos cambios en la segunda especie, a su vez, provocan nuevas adaptaciones en la primera especie. Este ciclo de selección y respuesta se llama coevolución. [192] Un ejemplo es la producción de tetrodotoxina en el tritón de piel áspera y la evolución de la resistencia a la tetrodotoxina en su depredador, la culebra común . En esta pareja depredador-presa, una carrera armamentista evolutiva ha producido altos niveles de toxina en el tritón y, en consecuencia, altos niveles de resistencia a las toxinas en la serpiente. [193]

Cooperación

No todas las interacciones coevolucionadas entre especies implican conflicto. [194] Han evolucionado muchos casos de interacciones mutuamente beneficiosas. Por ejemplo, existe una cooperación extrema entre las plantas y los hongos micorrízicos que crecen en sus raíces y ayudan a la planta a absorber nutrientes del suelo. [195] Esta es una relación recíproca ya que las plantas proporcionan a los hongos azúcares de la fotosíntesis . Aquí, los hongos en realidad crecen dentro de las células vegetales, lo que les permite intercambiar nutrientes con sus huéspedes, al tiempo que envían señales que inhiben el sistema inmunológico de las plantas . [196]

También han evolucionado coaliciones entre organismos de la misma especie. Un caso extremo es la eusocialidad que se encuentra en los insectos sociales, como abejas , termitas y hormigas , donde los insectos estériles alimentan y protegen al pequeño número de organismos de una colonia que son capaces de reproducirse. En una escala aún menor, las células somáticas que forman el cuerpo de un animal limitan su reproducción para poder mantener un organismo estable, que luego sustenta una pequeña cantidad de células germinales del animal para producir descendencia. Aquí, las células somáticas responden a señales específicas que les indican si deben crecer, permanecer como están o morir. Si las células ignoran estas señales y se multiplican de manera inapropiada, su crecimiento descontrolado causa cáncer . [197]

Tal cooperación dentro de las especies puede haber evolucionado a través del proceso de selección de parentesco , que es donde un organismo actúa para ayudar a criar a la descendencia de un pariente. [198] Esta actividad se selecciona porque si el individuo que ayuda contiene alelos que promueven la actividad de ayuda, es probable que sus parientes también contengan estos alelos y, por lo tanto, esos alelos se transmitirán. [199] Otros procesos que pueden promover la cooperación incluyen la selección de grupos, donde la cooperación proporciona beneficios a un grupo de organismos. [200]

especiación

Los cuatro modos geográficos de especiación.

La especiación es el proceso por el cual una especie diverge en dos o más especies descendientes. [201]

Hay varias formas de definir el concepto de "especie". La elección de la definición depende de las particularidades de la especie de que se trate. [202] Por ejemplo, algunos conceptos de especie se aplican más fácilmente a organismos que se reproducen sexualmente, mientras que otros se prestan mejor a organismos asexuales. A pesar de la diversidad de diversos conceptos de especies, estos diversos conceptos pueden ubicarse en uno de tres amplios enfoques filosóficos: mestizaje, ecológico y filogenético. [203] El Concepto de Especie Biológica (BSC) es un ejemplo clásico del enfoque de mestizaje. Definido por el biólogo evolutivo Ernst Mayr en 1942, el BSC afirma que "las especies son grupos de poblaciones naturales real o potencialmente entrecruzadas, que están reproductivamente aisladas de otros grupos similares". [204] A pesar de su uso amplio y a largo plazo, el BSC, al igual que otros conceptos de especies, no está exento de controversia, por ejemplo, porque la recombinación genética entre procariotas no es un aspecto intrínseco de la reproducción; [205] esto se llama el problema de las especies . [202] Algunos investigadores han intentado una definición monista unificadora de especie, mientras que otros adoptan un enfoque pluralista y sugieren que puede haber diferentes formas de interpretar lógicamente la definición de una especie. [202] [203]

Se requieren barreras a la reproducción entre dos poblaciones sexuales divergentes para que las poblaciones se conviertan en nuevas especies. El flujo de genes puede ralentizar este proceso al propagar las nuevas variantes genéticas también a otras poblaciones. Dependiendo de hasta qué punto se hayan divergido dos especies desde su ancestro común más reciente , aún puede ser posible que produzcan descendencia, como ocurre con los caballos y los burros que se aparean para producir mulas . [206] Estos híbridos son generalmente infértiles . En este caso, las especies estrechamente relacionadas pueden cruzarse regularmente, pero se seleccionarán híbridos y las especies seguirán siendo distintas. Sin embargo, ocasionalmente se forman híbridos viables y estas nuevas especies pueden tener propiedades intermedias entre sus especies parentales o poseer un fenotipo totalmente nuevo. [207] La ​​importancia de la hibridación en la producción de nuevas especies de animales no está clara, aunque se han observado casos en muchos tipos de animales, [208] siendo la rana arbórea gris un ejemplo particularmente bien estudiado. [209]

La especiación se ha observado múltiples veces tanto en condiciones controladas de laboratorio como en la naturaleza. [210] En los organismos que se reproducen sexualmente, la especiación resulta del aislamiento reproductivo seguido de una divergencia genealógica. Hay cuatro modos geográficos principales de especiación. La más común en los animales es la especiación alopátrica , que se da en poblaciones inicialmente aisladas geográficamente, como por fragmentación del hábitat o migración. La selección en estas condiciones puede producir cambios muy rápidos en la apariencia y el comportamiento de los organismos. [211] [212] Como la selección y la deriva actúan de forma independiente en poblaciones aisladas del resto de sus especies, la separación puede eventualmente producir organismos que no pueden cruzarse. [213]

El segundo modo de especiación es la especiación peripátrica , que ocurre cuando pequeñas poblaciones de organismos quedan aisladas en un nuevo entorno. Esto se diferencia de la especiación alopátrica en que las poblaciones aisladas son numéricamente mucho más pequeñas que la población parental. Aquí, el efecto fundador provoca una rápida especiación después de que un aumento en la endogamia aumenta la selección en homocigotos, lo que lleva a un rápido cambio genético. [214]

El tercer modo es la especiación parapátrica . Esto es similar a la especiación peripátrica en que una pequeña población ingresa a un nuevo hábitat, pero se diferencia en que no hay separación física entre estas dos poblaciones. En cambio, la especiación resulta de la evolución de mecanismos que reducen el flujo de genes entre las dos poblaciones. [201] Generalmente esto ocurre cuando ha habido un cambio drástico en el medio ambiente dentro del hábitat de la especie parental. Un ejemplo es la hierba Anthoxanthum odoratum , que puede sufrir especiación parapátrica en respuesta a la contaminación localizada por metales de las minas. [215] Aquí, evolucionan plantas que tienen resistencia a altos niveles de metales en el suelo. La selección contra el cruzamiento con la población parental sensible a los metales produjo un cambio gradual en el tiempo de floración de las plantas resistentes a los metales, lo que finalmente produjo un aislamiento reproductivo completo. La selección contra híbridos entre las dos poblaciones puede causar refuerzo , que es la evolución de rasgos que promueven el apareamiento dentro de una especie, así como desplazamiento de caracteres , que es cuando dos especies se vuelven más distintas en apariencia. [216]

El aislamiento geográfico de los pinzones en las Islas Galápagos produjo más de una docena de nuevas especies.

Finalmente, en la especiación simpátrica las especies divergen sin aislamiento geográfico ni cambios de hábitat. Esta forma es rara ya que incluso una pequeña cantidad de flujo genético puede eliminar diferencias genéticas entre partes de una población. [217] Generalmente, la especiación simpátrica en animales requiere la evolución tanto de diferencias genéticas como de apareamientos no aleatorios, para permitir que evolucione el aislamiento reproductivo. [218]

Un tipo de especiación simpátrica implica el cruce de dos especies relacionadas para producir una nueva especie híbrida. Esto no es común en animales ya que los híbridos de animales suelen ser estériles. Esto se debe a que durante la meiosis los cromosomas homólogos de cada padre son de especies diferentes y no pueden emparejarse con éxito. Sin embargo, es más común en las plantas porque las plantas suelen duplicar su número de cromosomas, para formar poliploides . [219] Esto permite que los cromosomas de cada especie parental formen pares coincidentes durante la meiosis, ya que los cromosomas de cada padre ya están representados por un par. [220] Un ejemplo de tal evento de especiación es cuando las especies de plantas Arabidopsis thaliana y Arabidopsis arenosa se cruzaron para dar la nueva especie Arabidopsis suecica . [221] Esto ocurrió hace unos 20.000 años, [222] y el proceso de especiación se ha repetido en el laboratorio, lo que permite estudiar los mecanismos genéticos implicados en este proceso. [223] De hecho, la duplicación de cromosomas dentro de una especie puede ser una causa común de aislamiento reproductivo, ya que la mitad de los cromosomas duplicados no serán compatibles cuando se reproduzcan con organismos no duplicados. [224]

Los eventos de especiación son importantes en la teoría del equilibrio puntuado , que explica el patrón en el registro fósil de breves "ráfagas" de evolución intercaladas con períodos relativamente largos de estasis, donde las especies permanecen relativamente sin cambios. [225] En esta teoría, la especiación y la evolución rápida están vinculadas, y la selección natural y la deriva genética actúan con mayor fuerza sobre los organismos que experimentan especiación en hábitats nuevos o poblaciones pequeñas. Como resultado, los períodos de estasis en el registro fósil corresponden a la población parental y los organismos que experimentan especiación y evolución rápida se encuentran en poblaciones pequeñas o hábitats geográficamente restringidos y, por lo tanto, rara vez se conservan como fósiles. [139]

Extinción

Tirano-saurio Rex . Los dinosaurios no aviares se extinguieron en el evento de extinción Cretácico-Paleógeno al final del período Cretácico .

La extinción es la desaparición de una especie entera. La extinción no es un acontecimiento inusual, ya que las especies aparecen regularmente mediante especiación y desaparecen mediante extinción. [226] Casi todas las especies animales y vegetales que han vivido en la Tierra ahora están extintas, [227] y la extinción parece ser el destino final de todas las especies. [228] Estas extinciones han ocurrido continuamente a lo largo de la historia de la vida, aunque la tasa de extinción aumenta en eventos ocasionales de extinción masiva . [229] El evento de extinción del Cretácico-Paleógeno , durante el cual se extinguieron los dinosaurios no aviares, es el más conocido, pero el evento de extinción anterior del Pérmico-Triásico fue aún más grave, con aproximadamente el 96% de todas las especies marinas obligadas a morir. extinción. [229] El evento de extinción del Holoceno es una extinción masiva en curso asociada con la expansión de la humanidad en todo el mundo durante los últimos miles de años. Las tasas de extinción actuales son entre 100 y 1.000 veces mayores que la tasa anterior y hasta el 30% de las especies actuales podrían haberse extinguido a mediados del siglo XXI. [230] Las actividades humanas son ahora la causa principal del actual evento de extinción; [231] [232] el calentamiento global puede acelerarlo aún más en el futuro. [233] A pesar de la extinción estimada de más del 99% de todas las especies que alguna vez vivieron en la Tierra, [234] [235] se estima que actualmente hay alrededor de 1 billón de especies en la Tierra y solo una milésima parte del 1% está descrita. [236]

El papel de la extinción en la evolución no se comprende muy bien y puede depender del tipo de extinción que se considere. [229] Las causas de los continuos eventos de extinción de "bajo nivel", que constituyen la mayoría de las extinciones, pueden ser el resultado de la competencia entre especies por recursos limitados (el principio de exclusión competitiva ). [237] Si una especie puede superar a otra, esto podría producir una selección de especies, con las especies más aptas sobreviviendo y las otras especies siendo llevadas a la extinción. [84] Las extinciones masivas intermitentes también son importantes, pero en lugar de actuar como una fuerza selectiva, reducen drásticamente la diversidad de una manera no específica y promueven estallidos de rápida evolución y especiación en los supervivientes. [238]

Aplicaciones

Los conceptos y modelos utilizados en biología evolutiva, como la selección natural, tienen muchas aplicaciones. [239]

La selección artificial es la selección intencional de rasgos en una población de organismos. Se ha utilizado durante miles de años en la domesticación de plantas y animales. [240] Más recientemente, dicha selección se ha convertido en una parte vital de la ingeniería genética , con marcadores seleccionables , como genes de resistencia a antibióticos, que se utilizan para manipular el ADN. Las proteínas con propiedades valiosas han evolucionado mediante rondas repetidas de mutación y selección (por ejemplo, enzimas modificadas y nuevos anticuerpos ) en un proceso llamado evolución dirigida . [241]

Comprender los cambios que han ocurrido durante la evolución de un organismo puede revelar los genes necesarios para construir partes del cuerpo, genes que pueden estar involucrados en trastornos genéticos humanos . [242] Por ejemplo, el tetra mexicano es un pez de las cavernas albino que perdió la vista durante la evolución. La cría conjunta de diferentes poblaciones de este pez ciego produjo algunas crías con ojos funcionales, ya que se habían producido diferentes mutaciones en las poblaciones aisladas que habían evolucionado en diferentes cuevas. [243] Esto ayudó a identificar los genes necesarios para la visión y la pigmentación. [244]

La teoría evolutiva tiene muchas aplicaciones en medicina . Muchas enfermedades humanas no son fenómenos estáticos, sino susceptibles de evolución. Los virus, bacterias, hongos y cánceres evolucionan para ser resistentes a las defensas inmunitarias del huésped, así como a los fármacos . [245] [246] [247] Estos mismos problemas ocurren en la agricultura con resistencia a pesticidas [248] y herbicidas [249] . Es posible que estemos ante el final de la vida efectiva de la mayoría de los antibióticos disponibles [250] y predecir la evolución y capacidad de evolución [251] de nuestros patógenos e idear estrategias para frenarla o evitarla requiere un conocimiento más profundo de las complejas fuerzas que impulsan la enfermedad. evolución a nivel molecular. [252]

En informática , las simulaciones de la evolución utilizando algoritmos evolutivos y vida artificial comenzaron en la década de 1960 y se ampliaron con la simulación de selección artificial. [253] La evolución artificial se convirtió en un método de optimización ampliamente reconocido como resultado del trabajo de Ingo Rechenberg en la década de 1960. Usó estrategias de evolución para resolver problemas complejos de ingeniería. [254] Los algoritmos genéticos en particular se hicieron populares gracias a los escritos de John Henry Holland . [255] Las aplicaciones prácticas también incluyen la evolución automática de programas informáticos . [256] Los algoritmos evolutivos se utilizan ahora para resolver problemas multidimensionales de manera más eficiente que el software producido por diseñadores humanos y también para optimizar el diseño de sistemas. [257]

Historia evolutiva de la vida.

Origen de la vida

La Tierra tiene unos 4,54 mil millones de años . [258] [259] [260] La evidencia indiscutible más antigua de vida en la Tierra data de hace al menos 3.500 millones de años, [12] [261] durante la Era Eoarqueana , después de que una corteza geológica comenzó a solidificarse después del anterior Eón Hadeano fundido . Se han encontrado fósiles de estera microbiana en arenisca de 3.480 millones de años en Australia Occidental. [14] [15] [16] Otra evidencia física temprana de una sustancia biogénica es el grafito en rocas metasedimentarias de 3.700 millones de años descubiertas en el oeste de Groenlandia [13] así como "restos de vida biótica " encontrados en 4.100 millones de años. -rocas antiguas en Australia Occidental. [262] [263] Al comentar sobre los hallazgos australianos, Stephen Blair Hedges escribió: "Si la vida surgió relativamente rápido en la Tierra, entonces podría ser común en el universo". [262] [264] En julio de 2016, los científicos informaron que habían identificado un conjunto de 355 genes del último ancestro común universal (LUCA) de todos los organismos que viven en la Tierra. [265]

Se estima que más del 99% de todas las especies, que ascienden a más de cinco mil millones de especies [266] , que alguna vez vivieron en la Tierra están extintas. [234] [235] Las estimaciones sobre el número de especies actuales de la Tierra oscilan entre 10 y 14 millones, [267] [268] de las cuales se estima que alrededor de 1,9 millones han sido nombradas [269] y 1,6 millones documentadas en una base de datos central. hasta la fecha, [270] dejando al menos el 80% aún sin describir.

Se cree que la química altamente energética produjo una molécula autorreplicante hace unos 4 mil millones de años, y 500 millones de años después existió el último ancestro común de toda la vida. [10] El consenso científico actual es que la compleja bioquímica que constituye la vida provino de reacciones químicas más simples. [271] [272] El comienzo de la vida puede haber incluido moléculas autorreplicantes como el ARN [273] y el ensamblaje de células simples. [274]

Descendencia común

Todos los organismos de la Tierra descienden de un ancestro común o de un acervo genético ancestral . [168] [275] Las especies actuales son una etapa en el proceso de evolución, y su diversidad es producto de una larga serie de eventos de especiación y extinción. [276] La descendencia común de los organismos se dedujo por primera vez a partir de cuatro hechos simples sobre los organismos: primero, tienen distribuciones geográficas que no pueden explicarse mediante una adaptación local. En segundo lugar, la diversidad de la vida no es un conjunto de organismos completamente únicos, sino organismos que comparten similitudes morfológicas. En tercer lugar, los rasgos vestigiales sin un propósito claro se parecen a los rasgos ancestrales funcionales. Cuarto, los organismos pueden clasificarse utilizando estas similitudes en una jerarquía de grupos anidados, similar a un árbol genealógico. [277]

Los hominoides son descendientes de un ancestro común .

Debido a la transferencia horizontal de genes, este "árbol de la vida" puede ser más complicado que un simple árbol ramificado, ya que algunos genes se han extendido de forma independiente entre especies lejanamente relacionadas. [278] [279] Para resolver este problema y otros, algunos autores prefieren utilizar el " Coral de la vida " como metáfora o modelo matemático para ilustrar la evolución de la vida. Este punto de vista se remonta a una idea brevemente mencionada por Darwin pero luego abandonada. [280]

Las especies pasadas también han dejado registros de su historia evolutiva. Los fósiles, junto con la anatomía comparada de los organismos actuales, constituyen el registro morfológico o anatómico. [281] Al comparar las anatomías de especies modernas y extintas, los paleontólogos pueden inferir los linajes de esas especies. Sin embargo, este enfoque tiene más éxito en organismos que tenían partes duras del cuerpo, como caparazones, huesos o dientes. Además, como los procariotas como las bacterias y las arqueas comparten un conjunto limitado de morfologías comunes, sus fósiles no proporcionan información sobre su ascendencia.

Más recientemente, la evidencia de una descendencia común proviene del estudio de las similitudes bioquímicas entre organismos. Por ejemplo, todas las células vivas utilizan el mismo conjunto básico de nucleótidos y aminoácidos . [282] El desarrollo de la genética molecular ha revelado el registro de la evolución que queda en los genomas de los organismos: datación cuando las especies divergieron a través del reloj molecular producido por mutaciones. [283] Por ejemplo, estas comparaciones de secuencias de ADN han revelado que los humanos y los chimpancés comparten el 98% de sus genomas y el análisis de las pocas áreas en las que difieren ayuda a arrojar luz sobre cuándo existió el ancestro común de estas especies. [284]

Evolución de la vida

EuryarchaeotaNanoarchaeotaThermoproteotaProtozoaAlgaePlantSlime moldsAnimalFungusGram-positive bacteriaChlamydiotaChloroflexotaActinomycetotaPlanctomycetotaSpirochaetotaFusobacteriotaCyanobacteriaThermophilesAcidobacteriotaPseudomonadota
Árbol evolutivo que muestra la divergencia de las especies modernas con respecto a su ancestro común en el centro. [285] Los tres dominios están coloreados, con las bacterias en azul, las arqueas en verde y los eucariotas en rojo.

Los procariotas habitaron la Tierra hace aproximadamente 3 a 4 mil millones de años. [286] [287] No se produjeron cambios obvios en la morfología o la organización celular en estos organismos durante los siguientes miles de millones de años. [288] Las células eucariotas surgieron hace entre 1,6 y 2,7 ​​mil millones de años. El siguiente cambio importante en la estructura celular se produjo cuando las bacterias fueron fagocitadas por células eucariotas, en una asociación cooperativa llamada endosimbiosis . [289] [290] Las bacterias engullidas y la célula huésped luego experimentaron una coevolución, y las bacterias evolucionaron hacia mitocondrias o hidrogenosomas . [291] Otra absorción de organismos similares a las cianobacterias condujo a la formación de cloroplastos en algas y plantas. [292]

La historia de la vida fue la de los eucariotas unicelulares , procariotas y arqueas hasta hace unos 610 millones de años, cuando comenzaron a aparecer organismos multicelulares en los océanos en el período Ediacárico . [286] [293] La evolución de la multicelularidad se produjo en múltiples eventos independientes, en organismos tan diversos como esponjas , algas pardas , cianobacterias, mohos mucilaginosos y mixobacterias . [294] En enero de 2016, los científicos informaron que, hace unos 800 millones de años, un cambio genético menor en una sola molécula llamada GK-PID puede haber permitido a los organismos pasar de un organismo unicelular a una de muchas células. [295]

Poco después de la aparición de estos primeros organismos multicelulares, apareció una cantidad notable de diversidad biológica a lo largo de aproximadamente 10 millones de años, en un evento llamado explosión del Cámbrico . Aquí aparecieron en el registro fósil la mayoría de los tipos de animales modernos, así como linajes únicos que posteriormente se extinguieron. [296] Se han propuesto varios desencadenantes de la explosión del Cámbrico, incluida la acumulación de oxígeno en la atmósfera a partir de la fotosíntesis. [297]

Hace unos 500 millones de años, plantas y hongos colonizaron la tierra y pronto fueron seguidos por artrópodos y otros animales. [298] Los insectos tuvieron especial éxito y aún hoy constituyen la mayoría de las especies animales. [299] Los anfibios aparecieron por primera vez hace unos 364 millones de años, seguidos por los primeros amniotas y las aves hace unos 155 millones de años (ambos de linajes parecidos a los " reptiles "), los mamíferos hace unos 129 millones de años, los Homininae hace unos 10 millones de años y los humanos modernos. Hace unos 250.000 años. [300] [301] [302] Sin embargo, a pesar de la evolución de estos animales grandes, organismos más pequeños similares a los tipos que evolucionaron temprano en este proceso continúan teniendo mucho éxito y dominando la Tierra, con la mayoría de la biomasa y las especies siendo procariotas. [146]

Historia del pensamiento evolutivo

lucrecio
Alfred Russell Wallace
Thomas Robert Malthus
En 1842, Charles Darwin escribió su primer boceto de El origen de las especies . [303]

Antigüedad clásica

La propuesta de que un tipo de organismo podría descender de otro tipo se remonta a algunos de los primeros filósofos griegos presocráticos , como Anaximandro y Empédocles . [304] Tales propuestas sobrevivieron hasta la época romana. El poeta y filósofo Lucrecio siguió a Empédocles en su obra maestra De rerum natura ( literalmente, 'Sobre la naturaleza de las cosas'). [305] [306]

Edad media

En contraste con estas visiones materialistas , el aristotelismo había considerado todas las cosas naturales como actualizaciones de posibilidades naturales fijas, conocidas como formas . [307] [308] Esto se convirtió en parte de una comprensión teleológica medieval de la naturaleza en la que todas las cosas tienen un papel que desempeñar en un orden cósmico divino . Variaciones de esta idea se convirtieron en la comprensión estándar de la Edad Media y se integraron en el aprendizaje cristiano , pero Aristóteles no exigió que los tipos reales de organismos siempre correspondieran uno a uno con formas metafísicas exactas y específicamente dio ejemplos de cómo los nuevos tipos de vida las cosas podrían llegar a ser. [309]

Varios eruditos árabes musulmanes escribieron sobre la evolución, en particular Ibn Jaldún , quien escribió el libro Muqaddimah en 1377 d. C., en el que afirmaba que los humanos se desarrollaron a partir del "mundo de los monos", en un proceso por el cual "las especies se vuelven más numerosas". ". [310]

predarwiniano

La "Nueva Ciencia" del siglo XVII rechazó el enfoque aristotélico. Buscaba explicar los fenómenos naturales en términos de leyes físicas que eran las mismas para todas las cosas visibles y que no requerían la existencia de ninguna categoría natural fija ni de ningún orden cósmico divino. Sin embargo, este nuevo enfoque tardó en arraigar en las ciencias biológicas: el último bastión del concepto de tipos naturales fijos. John Ray aplicó uno de los términos anteriormente más generales para tipos naturales fijos, "especies", a tipos de plantas y animales, pero identificó estrictamente cada tipo de ser vivo como una especie y propuso que cada especie podría definirse por las características que perpetuaban ellos mismos generación tras generación. [311] La clasificación biológica introducida por Carl Linnaeus en 1735 reconocía explícitamente la naturaleza jerárquica de las relaciones entre especies, pero aún consideraba que las especies estaban fijadas de acuerdo con un plan divino. [312]

Otros naturalistas de esta época especularon sobre el cambio evolutivo de las especies a lo largo del tiempo según las leyes naturales. En 1751, Pierre Louis Maupertuis escribió sobre las modificaciones naturales que ocurren durante la reproducción y se acumulan a lo largo de muchas generaciones para producir nuevas especies. [313] Georges-Louis Leclerc, conde de Buffon , sugirió que las especies podrían degenerar en diferentes organismos, y Erasmus Darwin propuso que todos los animales de sangre caliente podrían haber descendido de un solo microorganismo (o "filamento"). [314] El primer esquema evolutivo completo fue la teoría de la "transmutación" de Jean-Baptiste Lamarck de 1809, [315] que preveía la generación espontánea produciendo continuamente formas de vida simples que desarrollaban una mayor complejidad en linajes paralelos con una tendencia progresiva inherente. y postuló que a nivel local, estos linajes se adaptaron al medio heredando cambios provocados por su uso o desuso en los padres. [316] (Este último proceso se llamó más tarde lamarckismo .) [316] [317] [318] Estas ideas fueron condenadas por naturalistas establecidos como especulaciones que carecían de apoyo empírico. En particular, Georges Cuvier insistió en que las especies no estaban relacionadas y eran fijas, y que sus similitudes reflejaban el diseño divino para necesidades funcionales. Mientras tanto, William Paley había desarrollado las ideas de Ray sobre el diseño benevolente en la Teología natural o evidencias de la existencia y atributos de la Deidad (1802), que proponía adaptaciones complejas como evidencia del diseño divino y que fue admirada por Charles Darwin. [319] [320]

revolución darwiniana

La ruptura crucial con el concepto de clases o tipos tipológicos constantes en biología se produjo con la teoría de la evolución a través de la selección natural, que fue formulada por Charles Darwin y Alfred Wallace en términos de poblaciones variables. Darwin utilizó la expresión " descendencia con modificación " en lugar de "evolución". [321] Parcialmente influenciado por Un ensayo sobre el principio de población (1798) de Thomas Robert Malthus , Darwin señaló que el crecimiento de la población conduciría a una "lucha por la existencia" en la que prevalecían variaciones favorables mientras otras perecían. En cada generación, muchos descendientes no logran sobrevivir hasta una edad de reproducción debido a recursos limitados. Esto podría explicar la diversidad de plantas y animales de un ancestro común mediante el funcionamiento de las leyes naturales de la misma manera para todos los tipos de organismos. [322] [323] [324] [325] Darwin desarrolló su teoría de la "selección natural" a partir de 1838 y estaba escribiendo su "gran libro" sobre el tema cuando Alfred Russel Wallace le envió una versión de prácticamente la misma teoría en 1858. Sus artículos separados se presentaron juntos en una reunión de 1858 de la Sociedad Linneana de Londres . [326] A finales de 1859, la publicación de Darwin de su "resumen" como Sobre el origen de las especies explicó la selección natural en detalle y de una manera que condujo a una aceptación cada vez más amplia de los conceptos de evolución de Darwin a expensas de teorías alternativas . Thomas Henry Huxley aplicó las ideas de Darwin a los humanos, utilizando la paleontología y la anatomía comparada para proporcionar pruebas sólidas de que los humanos y los simios compartían una ascendencia común. Algunos se sintieron perturbados por esto ya que implicaba que los humanos no tenían un lugar especial en el universo . [327]

Pangénesis y herencia.

Los mecanismos de heredabilidad reproductiva y el origen de nuevos rasgos seguían siendo un misterio. Con este fin, Darwin desarrolló su teoría provisional de la pangénesis . [328] En 1865, Gregor Mendel informó que los rasgos se heredaban de manera predecible a través de la variedad y segregación independiente de elementos (más tarde conocidos como genes). Las leyes de herencia de Mendel finalmente suplantaron a la mayor parte de la teoría de la pangénesis de Darwin. [329] August Weismann hizo una importante distinción entre las células germinales que dan origen a los gametos (como los espermatozoides y los óvulos ) y las células somáticas del cuerpo, demostrando que la herencia pasa únicamente a través de la línea germinal. Hugo de Vries conectó la teoría de la pangénesis de Darwin con la distinción entre células germinales y soma de Weismann y propuso que los pangenes de Darwin se concentraban en el núcleo celular y, cuando se expresaban, podían trasladarse al citoplasma para cambiar la estructura de la célula . De Vries también fue uno de los investigadores que dio a conocer el trabajo de Mendel, creyendo que los rasgos mendelianos correspondían a la transferencia de variaciones hereditarias a lo largo de la línea germinal. [330] Para explicar cómo se originan las nuevas variantes, De Vries desarrolló una teoría de la mutación que condujo a una brecha temporal entre quienes aceptaban la evolución darwiniana y los biometristas que se aliaron con De Vries. [331] [332] En la década de 1930, pioneros en el campo de la genética de poblaciones , como Ronald Fisher , Sewall Wright y JBS Haldane sentaron las bases de la evolución sobre una sólida filosofía estadística. Se reconcilió así la falsa contradicción entre la teoría de Darwin, las mutaciones genéticas y la herencia mendeliana . [333]

La 'síntesis moderna'

En las décadas de 1920 y 1930, la síntesis moderna conectó la selección natural y la genética de poblaciones, basada en la herencia mendeliana, en una teoría unificada que incluía la deriva genética aleatoria, la mutación y el flujo de genes. Esta nueva versión de la teoría evolutiva se centró en los cambios en las frecuencias alélicas en la población. Explicó los patrones observados entre especies en poblaciones, a través de transiciones fósiles en paleontología. [333]

Más síntesis

Desde entonces, otras síntesis han ampliado el poder explicativo de la evolución, a la luz de numerosos descubrimientos, para abarcar fenómenos biológicos en toda la jerarquía biológica , desde los genes hasta las poblaciones. [334]

La publicación de la estructura del ADN por James Watson y Francis Crick con la contribución de Rosalind Franklin en 1953 demostró un mecanismo físico de herencia. [335] La biología molecular mejoró la comprensión de la relación entre genotipo y fenotipo . También se lograron avances en sistemática filogenética , mapeando la transición de rasgos a un marco comparativo y comprobable mediante la publicación y el uso de árboles evolutivos . [336] En 1973, el biólogo evolutivo Theodosius Dobzhansky escribió que " nada en biología tiene sentido excepto a la luz de la evolución ", porque ha sacado a la luz las relaciones de lo que al principio parecían hechos inconexos en la historia natural en un cuerpo explicativo coherente de conocimiento. que describe y predice muchos hechos observables sobre la vida en este planeta. [337]

Una extensión, conocida como biología evolutiva del desarrollo e informalmente llamada "evo-devo", enfatiza cómo los cambios entre generaciones (evolución) actúan sobre los patrones de cambio dentro de los organismos individuales ( desarrollo ). [237] [338] Desde principios del siglo XXI, algunos biólogos han abogado por una síntesis evolutiva extendida , que explicaría los efectos de los modos de herencia no genéticos, como la epigenética , los efectos parentales , la herencia ecológica y la herencia cultural . y capacidad de evolución . [339] [340]

Respuestas sociales y culturales

A medida que la evolución fue ampliamente aceptada en la década de 1870, las caricaturas de Charles Darwin con un cuerpo de simio simbolizaban la evolución. [341]

En el siglo XIX, particularmente después de la publicación de El origen de las especies en 1859, la idea de que la vida había evolucionado fue una fuente activa de debate académico centrado en las implicaciones filosóficas, sociales y religiosas de la evolución. Hoy en día, la síntesis evolutiva moderna es aceptada por una gran mayoría de científicos. [237] Sin embargo, la evolución sigue siendo un concepto polémico para algunos teístas . [342]

Si bien varias religiones y denominaciones han reconciliado sus creencias con la evolución a través de conceptos como la evolución teísta , hay creacionistas que creen que la evolución se contradice con los mitos de la creación que se encuentran en sus religiones y que plantean diversas objeciones a la evolución . [135] [343] [344] Como lo demostraron las respuestas a la publicación de Vestigios de la Historia Natural de la Creación en 1844, el aspecto más controvertido de la biología evolutiva es la implicación de la evolución humana de que los humanos comparten una ascendencia común con los simios y que las facultades mentales y morales de la humanidad tienen los mismos tipos de causas naturales que otros rasgos heredados en los animales. [345] En algunos países, especialmente en los Estados Unidos, estas tensiones entre ciencia y religión han alimentado la actual controversia creación-evolución, un conflicto religioso centrado en la política y la educación pública . [346] Mientras que otros campos científicos como la cosmología [347] y las ciencias de la Tierra [348] también entran en conflicto con las interpretaciones literales de muchos textos religiosos , la biología evolutiva experimenta una oposición significativamente mayor por parte de los literalistas religiosos.

La enseñanza de la evolución en las clases de biología de las escuelas secundarias estadounidenses fue poco común durante la mayor parte de la primera mitad del siglo XX. La decisión del juicio Scopes de 1925 hizo que el tema se volviera muy raro en los libros de texto de biología secundaria estadounidenses durante una generación, pero se reintrodujo gradualmente más tarde y quedó protegido legalmente con la decisión Epperson v. Arkansas de 1968 . Desde entonces, la creencia religiosa opuesta del creacionismo fue legalmente prohibida en los planes de estudios de la escuela secundaria en varias decisiones en las décadas de 1970 y 1980, pero regresó en forma pseudocientífica como diseño inteligente (DI), para ser excluida una vez más en el caso Kitzmiller v. Dover de 2005. Caso del Distrito Escolar del Área . [349] El debate sobre las ideas de Darwin no generó controversia significativa en China. [350]

Ver también

Referencias

  1. ^ Hall y Hallgrímsson 2008, págs. 4-6
  2. ^ "Recursos de evolución". Washington, DC: Academias Nacionales de Ciencias, Ingeniería y Medicina . 2016. Archivado desde el original el 3 de junio de 2016.
  3. ^ ab Scott-Phillips, Thomas C.; Laland, Kevin N .; Shuker, David M.; et al. (mayo de 2014). "La perspectiva de la construcción de nicho: una evaluación crítica". Evolución . 68 (5): 1231-1243. doi :10.1111/evo.12332. ISSN  0014-3820. PMC 4261998 . PMID  24325256. Generalmente se piensa que los procesos evolutivos son procesos mediante los cuales ocurren estos cambios. Cuatro de estos procesos son ampliamente reconocidos: selección natural (en sentido amplio, para incluir la selección sexual), deriva genética, mutación y migración (Fisher 1930; Haldane 1932). Los dos últimos generan variación; los dos primeros lo clasifican. 
  4. ^ Hall y Hallgrímsson 2008, págs. 3-5
  5. ^ Voet, Voet & Pratt 2016, págs. 1-22, Capítulo 1: Introducción a la química de la vida
  6. ^ Darwin 1859
  7. ^ ab Lewontin, Richard C. (noviembre de 1970). «Las Unidades de Selección» (PDF) . Revista Anual de Ecología y Sistemática . 1 : 1–18. doi :10.1146/annurev.es.01.110170.000245. JSTOR  2096764. S2CID  84684420. Archivado (PDF) desde el original el 6 de febrero de 2015.
  8. ^ Futuyma y Kirkpatrick 2017, págs. 3-26, Capítulo 1: Biología evolutiva
  9. ^ Kampurakis 2014, págs. 127-129
  10. ^ ab Doolittle, W. Ford (febrero de 2000). "Desarraigando el árbol de la vida" (PDF) . Científico americano . 282 (2): 90–95. Código Bib : 2000SciAm.282b..90D. doi : 10.1038/scientificamerican0200-90. ISSN  0036-8733. PMID  10710791. Archivado desde el original (PDF) el 7 de septiembre de 2006 . Consultado el 5 de abril de 2015 .
  11. ^ Glansdorff, Nicolás; Ying Xu; Labedan, Bernard (9 de julio de 2008). "El último ancestro común universal: surgimiento, constitución y legado genético de un precursor esquivo". Biología Directa . 3 : 29. doi : 10.1186/1745-6150-3-29 . ISSN  1745-6150. PMC 2478661 . PMID  18613974. 
  12. ^ ab Schopf, J. William ; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (5 de octubre de 2007). "Evidencia de vida arcaica: estromatolitos y microfósiles". Investigación precámbrica . 158 (3–4): 141–155. Código Bib : 2007PreR..158..141S. doi :10.1016/j.precamres.2007.04.009. ISSN  0301-9268.
  13. ^ ab Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; et al. (Enero 2014). "Evidencia de grafito biogénico en rocas metasedimentarias arcaicas tempranas de Isua". Geociencia de la naturaleza . 7 (1): 25–28. Código Bib : 2014NatGe...7...25O. doi : 10.1038/ngeo2025. ISSN  1752-0894.
  14. ^ ab Borenstein, Seth (13 de noviembre de 2013). "El fósil más antiguo encontrado: conoce a tu madre microbiana". Emocionar . Yonkers, Nueva York: Mindspark Interactive Network . Associated Press . Archivado desde el original el 29 de junio de 2015 . Consultado el 31 de mayo de 2015 .
  15. ^ ab Pearlman, Jonathan (13 de noviembre de 2013). "Encontrados los signos de vida más antiguos en la Tierra". El Telégrafo diario . Londres. Archivado desde el original el 16 de diciembre de 2014 . Consultado el 15 de diciembre de 2014 .
  16. ^ ab Noffke, Nora ; Cristiano, Daniel; Wacey, David; Hazen, Robert M. (16 de noviembre de 2013). "Estructuras sedimentarias inducidas microbianamente que registran un ecosistema antiguo en la formación Dresser de aproximadamente 3,48 mil millones de años, Pilbara, Australia Occidental". Astrobiología . 13 (12): 1103-1124. Código Bib : 2013AsBio..13.1103N. doi :10.1089/ast.2013.1030. ISSN  1531-1074. PMC 3870916 . PMID  24205812. 
  17. ^ Futuyma 2004, pag. 33
  18. ^ Panno 2005, págs. xv-16
  19. ^ NAS 2008, pag. 17 Archivado el 30 de junio de 2015 en Wayback Machine.
  20. ^ Futuyma, Douglas J. , ed. (1999). "Evolución, ciencia y sociedad: biología evolutiva y la agenda nacional de investigación" (PDF) (Resumen ejecutivo). New Brunswick, Nueva Jersey: Oficina de Publicaciones Universitarias, Rutgers, Universidad Estatal de Nueva Jersey . OCLC  43422991. Archivado desde el original (PDF) el 31 de enero de 2012 . Consultado el 24 de noviembre de 2014 .
  21. ^ Sturm, Richard A.; Frudakis, Tony N. (agosto de 2004). "Color de ojos: portales hacia los genes de pigmentación y la ascendencia". Tendencias en Genética . 20 (8): 327–332. doi :10.1016/j.tig.2004.06.010. ISSN  0168-9525. PMID  15262401.
  22. ^ ab Pearson, Helen (25 de mayo de 2006). "Genética: ¿Qué es un gen?". Naturaleza . 441 (7092): 398–401. Código Bib :2006Natur.441..398P. doi : 10.1038/441398a . ISSN  0028-0836. PMID  16724031. S2CID  4420674.
  23. ^ Visscher, Peter M.; Colina, William G .; Wray, Naomi R. (abril de 2008). "Heredabilidad en la era de la genómica: conceptos y conceptos erróneos". Naturaleza Reseñas Genética . 9 (4): 255–266. doi :10.1038/nrg2322. ISSN  1471-0056. PMID  18319743. S2CID  690431.
  24. ^ Oetting, William S.; Brillante, Murray H.; King, Richard A. (agosto de 1996). "El espectro clínico del albinismo en humanos". Medicina molecular hoy . 2 (8): 330–335. doi :10.1016/1357-4310(96)81798-9. ISSN  1357-4310. PMID  8796918.
  25. ^ ab Futuyma 2005 [ página necesaria ]
  26. ^ Phillips, Patrick C. (noviembre de 2008). "Epistasis: el papel esencial de las interacciones genéticas en la estructura y evolución de los sistemas genéticos". Naturaleza Reseñas Genética . 9 (11): 855–867. doi :10.1038/nrg2452. ISSN  1471-0056. PMC 2689140 . PMID  18852697. 
  27. ^ ab Rongling Wu; Min Lin (marzo de 2006). "Mapeo funcional: cómo mapear y estudiar la arquitectura genética de rasgos complejos dinámicos". Naturaleza Reseñas Genética . 7 (3): 229–237. doi :10.1038/nrg1804. ISSN  1471-0056. PMID  16485021. S2CID  24301815.
  28. ^ Butlin, Roger K.; Tregenza, Tom (28 de febrero de 1998). "Niveles de polimorfismo genético: loci marcadores versus rasgos cuantitativos". Transacciones filosóficas de la Royal Society B. 353 (1366): 187–198. doi :10.1098/rstb.1998.0201. ISSN  0962-8436. PMC 1692210 . PMID  9533123. 
    • Butlin, Roger K.; Tregenza, Tom (29 de diciembre de 2000). "Corrección de Butlin y Tregenza, niveles de polimorfismo genético: loci marcadores versus rasgos cuantitativos". Transacciones filosóficas de la Royal Society B. 355 (1404): 1865. doi : 10.1098/rstb.2000.2000 . ISSN  0962-8436. Algunos de los valores de la tabla 1 de la p. 193 se dieron incorrectamente. Los errores no afectan las conclusiones extraídas del artículo. La tabla corregida se reproduce a continuación.
  29. ^ Amós, William; Harwood, John (28 de febrero de 1998). "Factores que afectan los niveles de diversidad genética en poblaciones naturales". Transacciones filosóficas de la Royal Society B. 353 (1366): 177–186. doi :10.1098/rstb.1998.0200. ISSN  0962-8436. PMC 1692205 . PMID  9533122. 
  30. ^ Futuyma y Kirkpatrick 2017, págs. 79-102, Capítulo 4: Mutación y variación
  31. ^ Keightley, PD (2012). "Tasas y consecuencias físicas de nuevas mutaciones en humanos". Genética . 190 (2): 295–304. doi :10.1534/genética.111.134668. PMC 3276617 . PMID  22345605. 
  32. ^ Hastings, PJ; Lupski, James R .; Rosenberg, Susan M.; Ira, Grzegorz (agosto de 2009). "Mecanismos de cambio en el número de copias de genes". Naturaleza Reseñas Genética . 10 (8): 551–564. doi :10.1038/nrg2593. ISSN  1471-0056. PMC 2864001 . PMID  19597530. 
  33. ^ Carroll, Grenier y Weatherbee 2005 [ página necesaria ]
  34. ^ Harrison, Paul M.; Gerstein, Mark (17 de mayo de 2002). "Estudio de genomas a través de eones: familias de proteínas, pseudogenes y evolución del proteoma". Revista de biología molecular . 318 (5): 1155-1174. doi :10.1016/S0022-2836(02)00109-2. ISSN  0022-2836. PMID  12083509.
  35. ^ Bowmaker, James K. (mayo de 1998). "Evolución de la visión del color en vertebrados". Ojo . 12 (3b): 541–547. doi : 10.1038/ojo.1998.143 . ISSN  0950-222X. PMID  9775215. S2CID  12851209.
  36. ^ Gregorio, T. Ryan ; Hebert, Paul DN (abril de 1999). "La modulación del contenido del ADN: causas próximas y consecuencias últimas". Investigación del genoma . 9 (4): 317–324. doi : 10.1101/gr.9.4.317 . ISSN  1088-9051. PMID  10207154. S2CID  16791399. Archivado desde el original el 23 de agosto de 2014 . Consultado el 11 de diciembre de 2014 .
  37. ^ Hurles, Matthew (13 de julio de 2004). "Duplicación de genes: el comercio genómico de repuestos". Más biología . 2 (7): e206. doi : 10.1371/journal.pbio.0020206 . ISSN  1545-7885. PMC 449868 . PMID  15252449. 
  38. ^ Liu, Na; Okamura, Katsutomo; Tyler, David M.; et al. (octubre de 2008). "La evolución y diversificación funcional de genes de microARN animales". Investigación celular . 18 (10): 985–996. doi :10.1038/cr.2008.278. ISSN  1001-0602. PMC 2712117 . PMID  18711447. 
  39. ^ Siepel, Adam (octubre de 2009). "Alquimia darwiniana: genes humanos a partir de ADN no codificante". Investigación del genoma . 19 (10): 1693–1695. doi :10.1101/gr.098376.109. ISSN  1088-9051. PMC 2765273 . PMID  19797681. 
  40. ^ Orengo, Christine A.; Thornton, Janet M. (julio de 2005). "Familias de proteínas y su evolución: una perspectiva estructural". Revista Anual de Bioquímica . Revisiones anuales . 74 : 867–900. doi : 10.1146/annurev.biochem.74.082803.133029. ISSN  0066-4154. PMID  15954844. S2CID  7483470.
  41. ^ Largo, Manyuan; Betrán, Esther; Thornton, Kevin; Wang, Wen (noviembre de 2003). "El origen de nuevos genes: destellos de jóvenes y mayores". Naturaleza Reseñas Genética . 4 (11): 865–875. doi :10.1038/nrg1204. ISSN  1471-0056. PMID  14634634. S2CID  33999892.
  42. ^ Wang, Minglei; Caetano-Anollés, Gustavo (14 de enero de 2009). "La mecánica evolutiva de la organización de dominios en proteomas y el aumento de la modularidad en el mundo de las proteínas". Estructura . 17 (1): 66–78. doi : 10.1016/j.str.2008.11.008 . ISSN  1357-4310. PMID  19141283.
  43. ^ Weissman, Kira J.; Müller, Rolf (14 de abril de 2008). "Interacciones proteína-proteína en megasintetasas multienzimáticas". ChemBioChem . 9 (6): 826–848. doi :10.1002/cbic.200700751. ISSN  1439-4227. PMID  18357594. S2CID  205552778.
  44. ^ Andersson, Leif (2020). "Mutaciones en animales domésticos que alteran o crean patrones de pigmentación". Fronteras en ecología y evolución . 8 . doi : 10.3389/fevo.2020.00116 . ISSN  2296-701X.
  45. ^ Radding, Charles M. (diciembre de 1982). "Emparejamiento homólogo e intercambio de hebras en recombinación genética". Revista Anual de Genética . 16 : 405–437. doi : 10.1146/annurev.ge.16.120182.002201. ISSN  0066-4197. PMID  6297377.
  46. ^ Agrawal, Aneil F. (5 de septiembre de 2006). "Evolución del sexo: ¿Por qué los organismos mezclan sus genotipos?". Biología actual . 16 (17): R696–R704. CiteSeerX 10.1.1.475.9645 . doi :10.1016/j.cub.2006.07.063. ISSN  0960-9822. PMID  16950096. S2CID  14739487. 
  47. ^ Peters, Andrew D.; Otto, Sarah P. (junio de 2003). "Liberar la variación genética a través del sexo". Bioensayos . 25 (6): 533–537. doi :10.1002/bies.10291. ISSN  0265-9247. PMID  12766942.
  48. ^ Goddard, Mateo R.; Godfray, H. Charles J .; Burt, Austin (31 de marzo de 2005). "El sexo aumenta la eficacia de la selección natural en poblaciones de levadura experimentales". Naturaleza . 434 (7033): 636–640. Código Bib :2005Natur.434..636G. doi : 10.1038/naturaleza03405. ISSN  0028-0836. PMID  15800622. S2CID  4397491.
  49. ^ Maynard Smith 1978 [ página necesaria ]
  50. ^ ab Ridley 2004, pág. 314
  51. ^ Van Valen, Leigh (1973). «Una Nueva Ley Evolutiva» (PDF) . Teoría Evolutiva . 1 : 1–30. ISSN  0093-4755. Archivado desde el original (PDF) el 22 de diciembre de 2014 . Consultado el 24 de diciembre de 2014 .
  52. ^ Hamilton, WD ; Axelrod, Robert ; Tanese, Reiko (1 de mayo de 1990). "La reproducción sexual como adaptación para resistir los parásitos (una revisión)". PNAS . 87 (9): 3566–3573. Código bibliográfico : 1990PNAS...87.3566H. doi : 10.1073/pnas.87.9.3566 . ISSN  0027-8424. PMC 53943 . PMID  2185476. 
  53. ^ Birdsell y Wills 2003, págs. 113-117
  54. ^ Bernstein H, Byerly HC, Hopf FA, Michod RE. Daño genético, mutación y evolución del sexo. Ciencia. 229(4719):1277–81. doi : 10.1126/ciencia.3898363. PMID 3898363
  55. ^ Bernstein H, Hopf FA, Michod RE. La base molecular de la evolución del sexo. Adv. Genet. 1987;24:323-70. doi :10.1016/s0065-2660(08)60012-7. PMID 3324702
  56. ^ Morjan, Carrie L.; Rieseberg, Loren H. (junio de 2004). "Cómo evolucionan colectivamente las especies: implicaciones del flujo de genes y la selección para la propagación de alelos ventajosos". Ecología Molecular . 13 (6): 1341-1356. doi :10.1111/j.1365-294X.2004.02164.x. ISSN  0962-1083. PMC 2600545 . PMID  15140081. 
  57. ^ Boucher, Yan; Douady, Christophe J.; Papke, R. Thane; et al. (Diciembre de 2003). "La transferencia lateral de genes y los orígenes de los grupos procarióticos". Revista Anual de Genética . 37 : 283–328. doi : 10.1146/annurev.genet.37.050503.084247. ISSN  0066-4197. PMID  14616063.
  58. ^ Walsh, Timothy R. (octubre de 2006). "Evolución genética combinatoria de multirresistencia". Opinión actual en microbiología . 9 (5): 476–482. doi :10.1016/j.mib.2006.08.009. ISSN  1369-5274. PMID  16942901.
  59. ^ Kondo, Natsuko; Nikoh, Naruo; Ijichi, Nobuyuki; et al. (29 de octubre de 2002). "Fragmento del genoma del endosimbionte de Wolbachia transferido al cromosoma X del insecto huésped". PNAS . 99 (22): 14280–14285. Código bibliográfico : 2002PNAS...9914280K. doi : 10.1073/pnas.222228199 . ISSN  0027-8424. PMC 137875 . PMID  12386340. 
  60. ^ Sprague, George F. Jr. (diciembre de 1991). "Intercambio genético entre reinos". Opinión actual en genética y desarrollo . 1 (4): 530–533. doi :10.1016/S0959-437X(05)80203-5. ISSN  0959-437X. PMID  1822285.
  61. ^ Gladyshev, Eugene A.; Meselson, Mateo ; Arkhipova, Irina R. (30 de mayo de 2008). "Transferencia masiva de genes horizontales en rotíferos bdelloides". Ciencia . 320 (5880): 1210–1213. Código Bib : 2008 Ciencia... 320.1210G. doi : 10.1126/ciencia.1156407. ISSN  0036-8075. PMID  18511688. S2CID  11862013. Archivado desde el original el 30 de julio de 2022 . Consultado el 30 de julio de 2022 .
  62. ^ Baldo, Ángela M.; McClure, Marcella A. (septiembre de 1999). "Evolución y transferencia horizontal de genes codificadores de dUTPasa en virus y sus huéspedes". Revista de Virología . 73 (9): 7710–7721. doi :10.1128/JVI.73.9.7710-7721.1999. ISSN  0022-538X. PMC 104298 . PMID  10438861. 
  63. ^ Rivera, María C.; Lake, James A. (9 de septiembre de 2004). "El anillo de la vida proporciona evidencia de un origen de fusión del genoma de los eucariotas". Naturaleza . 431 (7005): 152-155. Código Bib :2004Natur.431..152R. doi : 10.1038/naturaleza02848. ISSN  0028-0836. PMID  15356622. S2CID  4349149.
  64. ^ Jablonka, Eva; Raz, Gal (junio de 2009). "Herencia epigenética transgeneracional: prevalencia, mecanismos e implicaciones para el estudio de la herencia y la evolución" (PDF) . La revisión trimestral de biología . 84 (2): 131-176. CiteSeerX 10.1.1.617.6333 . doi :10.1086/598822. ISSN  0033-5770. PMID  19606595. S2CID  7233550. Archivado (PDF) desde el original el 15 de julio de 2011 . Consultado el 30 de julio de 2022 . 
  65. ^ Bossdorf, Oliver; Arcuri, Davide; Richards, Cristina L.; Pigliucci, Massimo (mayo de 2010). "La alteración experimental de la metilación del ADN afecta la plasticidad fenotípica de rasgos ecológicamente relevantes en Arabidopsis thaliana" (PDF) . Ecología Evolutiva . 24 (3): 541–553. doi :10.1007/s10682-010-9372-7. ISSN  0269-7653. S2CID  15763479. Archivado (PDF) desde el original el 5 de junio de 2022 . Consultado el 30 de julio de 2022 .
  66. ^ Jablonka, Eva; Cordero, Marion J. (diciembre de 2002). "El concepto cambiante de la epigenética". Anales de la Academia de Ciencias de Nueva York . 981 (1): 82–96. Código Bib : 2002NYASA.981...82J. doi :10.1111/j.1749-6632.2002.tb04913.x. ISSN  0077-8923. PMID  12547675. S2CID  12561900.
  67. ^ Laland, Kevin N.; Sterelny, Kim (septiembre de 2006). "Perspectiva: siete razones (no) para descuidar la construcción de nichos". Evolución . 60 (9): 1751-1762. doi : 10.1111/j.0014-3820.2006.tb00520.x . ISSN  0014-3820. PMID  17089961. S2CID  22997236.
  68. ^ Chapman, Michael J.; Margulis, Lynn (diciembre de 1998). "Morfogénesis por simbiogénesis" (PDF) . Microbiología Internacional . 1 (4): 319–326. ISSN  1139-6709. PMID  10943381. Archivado desde el original (PDF) el 23 de agosto de 2014 . Consultado el 9 de diciembre de 2014 .
  69. ^ Wilson, David Sloan ; Wilson, Edward O. (diciembre de 2007). «Repensar el fundamento teórico de la sociobiología» (PDF) . La revisión trimestral de biología . 82 (4): 327–348. doi :10.1086/522809. ISSN  0033-5770. PMID  18217526. S2CID  37774648. Archivado desde el original (PDF) el 11 de mayo de 2011.
  70. ^ Ewens 2004 [ página necesaria ]
  71. ^ abc Hurst, Laurence D. (febrero de 2009). "Conceptos fundamentales en genética: la genética y la comprensión de la selección". Naturaleza Reseñas Genética . 10 (2): 83–93. doi :10.1038/nrg2506. PMID  19119264. S2CID  1670587.
  72. ^ Darwin 1859, Capítulo XIV
  73. ^ Otto, Sarah P .; Servedio, María R .; Nuismer, Scott L. (agosto de 2008). "Selección dependiente de la frecuencia y evolución del apareamiento selectivo". Genética . 179 (4): 2091-2112. doi :10.1534/genética.107.084418. PMC 2516082 . PMID  18660541. 
  74. ^ abc Orr, H. Allen (agosto de 2009). "El fitness y su papel en la genética evolutiva". Naturaleza Reseñas Genética . 10 (8): 531–539. doi :10.1038/nrg2603. ISSN  1471-0056. PMC 2753274 . PMID  19546856. 
  75. ^ Haldane, JBS (14 de marzo de 1959). "La teoría de la selección natural actual". Naturaleza . 183 (4663): 710–713. Código Bib :1959Natur.183..710H. doi :10.1038/183710a0. PMID  13644170. S2CID  4185793.
  76. ^ Lande, Russell ; Arnold, Stevan J. (noviembre de 1983). "La medida de la selección de personajes correlacionados". Evolución . 37 (6): 1210-1226. doi :10.1111/j.1558-5646.1983.tb00236.x. ISSN  0014-3820. JSTOR  2408842. PMID  28556011. S2CID  36544045.
  77. ^ Goldberg, Emma E.; Igić, Boris (noviembre de 2008). "Sobre pruebas filogenéticas de evolución irreversible". Evolución . 62 (11): 2727–2741. doi :10.1111/j.1558-5646.2008.00505.x. ISSN  0014-3820. PMID  18764918. S2CID  30703407.
  78. ^ Collin, Raquel; Miglietta, María Pía (noviembre de 2008). "Opiniones inversas sobre la ley de Dollo". Tendencias en ecología y evolución . 23 (11): 602–609. doi :10.1016/j.tree.2008.06.013. PMID  18814933.
  79. ^ Tomić, Nenad; Meyer-Rochow, Víctor Benno (2011). "Atavismos: implicaciones médicas, genéticas y evolutivas". Perspectivas en Biología y Medicina . 54 (3): 332–353. doi :10.1353/pbm.2011.0034. PMID  21857125. S2CID  40851098.
  80. ^ Hoekstra, Hopi E.; Hoekstra, Jonathan M.; Berrigan, David; et al. (31 de julio de 2001). "Fuerza y ​​ritmo de la selección direccional en la naturaleza". PNAS . 98 (16): 9157–9160. Código bibliográfico : 2001PNAS...98.9157H. doi : 10.1073/pnas.161281098 . PMC 55389 . PMID  11470913. 
  81. ^ Felsenstein, Joseph (noviembre de 1979). "Excursiones a lo largo de la interfaz entre la selección disruptiva y estabilizadora". Genética . 93 (3): 773–795. doi :10.1093/genética/93.3.773. PMC 1214112 . PMID  17248980. 
  82. ^ Odum 1971, pag. 8
  83. ^ Okasha 2006
  84. ^ ab Gould, Stephen Jay (28 de febrero de 1998). "Los nuevos viajes de Gulliver: la necesidad y dificultad de una teoría jerárquica de la selección". Transacciones filosóficas de la Royal Society B. 353 (1366): 307–314. doi :10.1098/rstb.1998.0211. ISSN  0962-8436. PMC 1692213 . PMID  9533127. 
  85. ^ Mayr, Ernst (18 de marzo de 1997). "Los objetos de selección". PNAS . 94 (6): 2091–2094. Código bibliográfico : 1997PNAS...94.2091M. doi : 10.1073/pnas.94.6.2091 . ISSN  0027-8424. PMC 33654 . PMID  9122151. 
  86. ^ Maynard Smith 1998, págs. 203–211, discusión 211–217
  87. ^ Hickey, Donal A. (1992). "Dinámica evolutiva de elementos transponibles en procariotas y eucariotas". Genética . 86 (1–3): 269–274. doi :10.1007/BF00133725. ISSN  0016-6707. PMID  1334911. S2CID  6583945.
  88. ^ Gould, Stephen Jay; Lloyd, Elisabeth A. (12 de octubre de 1999). "Individualidad y adaptación a través de niveles de selección: ¿cómo nombraremos y generalizaremos la unidad del darwinismo?". PNAS . 96 (21): 11904-11909. Código bibliográfico : 1999PNAS...9611904G. doi : 10.1073/pnas.96.21.11904 . ISSN  0027-8424. PMC 18385 . PMID  10518549. 
  89. ^ Futuyma y Kirkpatrick 2017, págs. 55–66, Capítulo 3: Selección natural y adaptación
  90. ^ ab Masel, Joanna (25 de octubre de 2011). "Deriva genética". Biología actual . 21 (20): R837–R838. doi : 10.1016/j.cub.2011.08.007 . ISSN  0960-9822. PMID  22032182. S2CID  17619958.
  91. ^ Lande, Russell (1989). "Teorías de la especiación de Fisher y Wright". Genoma . 31 (1): 221–227. doi :10.1139/g89-037. ISSN  0831-2796. PMID  2687093.
  92. ^ Kimura, Motoo (1991). "La teoría neutral de la evolución molecular: una revisión de la evidencia reciente". Revista japonesa de genética humana . 66 (4): 367–386. doi : 10.1266/jjg.66.367 . PMID  1954033. Archivado desde el original el 5 de junio de 2022.
  93. ^ Kimura, Motoo (1989). "La teoría neutral de la evolución molecular y la visión del mundo de los neutralistas". Genoma . 31 (1): 24–31. doi :10.1139/g89-009. ISSN  0831-2796. PMID  2687096.
  94. ^ Kreitman, Martín (agosto de 1996). "La teoría neutral está muerta. Viva la teoría neutral". Bioensayos . 18 (8): 678–683, discusión 683. doi :10.1002/bies.950180812. ISSN  0265-9247. PMID  8760341.
  95. ^ Leigh, EG Jr. (noviembre de 2007). "Teoría neutral: una perspectiva histórica". Revista de biología evolutiva . 20 (6): 2075–2091. doi : 10.1111/j.1420-9101.2007.01410.x . ISSN  1010-061X. PMID  17956380. S2CID  2081042.
  96. ^ ab Gillespie, John H. (noviembre de 2001). "¿Es el tamaño de la población de una especie relevante para su evolución?". Evolución . 55 (11): 2161–2169. doi : 10.1111/j.0014-3820.2001.tb00732.x . ISSN  0014-3820. PMID  11794777. S2CID  221735887.
  97. ^ Neher, Richard A.; Shraiman, Boris I. (agosto de 2011). "Calzado genético y cuasi neutralidad en grandes poblaciones sexualmente facultativas". Genética . 188 (4): 975–996. arXiv : 1108.1635 . Código Bib : 2011arXiv1108.1635N. doi :10.1534/genética.111.128876. PMC 3176096 . PMID  21625002. 
  98. ^ Stoltzfus, Arlin (1999). "Sobre la posibilidad de una evolución neutral constructiva". Revista de evolución molecular . 49 (2): 169–181. Código Bib : 1999JMolE..49..169S. doi :10.1007/PL00006540. PMID  10441669. S2CID  1743092. Archivado desde el original el 30 de julio de 2022 . Consultado el 30 de julio de 2022 .
  99. ^ Stoltzfus, Arlin (13 de octubre de 2012). "Evolución neutral constructiva: explorando la curiosa desconexión de la teoría de la evolución". Biología Directa . 7 (1): 35. doi : 10.1186/1745-6150-7-35 . PMC 3534586 . PMID  23062217. 
  100. ^ Muñoz-Gómez, Sergio A.; Bilolikar, Gaurav; Wideman, Jeremy G.; et al. (1 de abril de 2021). "Evolución neutral constructiva 20 años después". Revista de evolución molecular . 89 (3): 172–182. Código Bib : 2021JMolE..89..172M. doi :10.1007/s00239-021-09996-y. PMC 7982386 . PMID  33604782. 
  101. ^ Lukeš, Julio; Archibald, John M.; Keeling, Patrick J.; et al. (2011). "Cómo un trinquete evolutivo neutral puede generar complejidad celular". Vida IUBMB . 63 (7): 528–537. doi :10.1002/iub.489. PMID  21698757. S2CID  7306575.
  102. ^ Vosseberg, Julián; Snel, Berend (1 de diciembre de 2017). "Domesticación de intrones que se autoempalman durante la eucariogénesis: el surgimiento de la compleja maquinaria espliceosómica". Biología Directa . 12 (1): 30. doi : 10.1186/s13062-017-0201-6 . PMC 5709842 . PMID  29191215. 
  103. ^ Brunet, TDP; Doolittle, W. Ford (19 de marzo de 2018). "La generalidad de la Evolución Neutral Constructiva". Biología y Filosofía . 33 (1): 2. doi :10.1007/s10539-018-9614-6. S2CID  90290787.
  104. ^ Otto, Sarah P.; Whitlock, Michael C. (junio de 1997). "La probabilidad de fijación en poblaciones de tamaño cambiante" (PDF) . Genética . 146 (2): 723–733. doi :10.1093/genética/146.2.723. PMC 1208011 . PMID  9178020. Archivado (PDF) desde el original el 19 de marzo de 2015 . Consultado el 18 de diciembre de 2014 . 
  105. ^ ab Charlesworth, Brian (marzo de 2009). "Conceptos fundamentales en genética: tamaño poblacional efectivo y patrones de evolución y variación molecular". Naturaleza Reseñas Genética . 10 (3): 195–205. doi :10.1038/nrg2526. PMID  19204717. S2CID  205484393.
  106. ^ Cortador, Asher D.; Choi, Jae Young (agosto de 2010). "La selección natural da forma al polimorfismo de nucleótidos en todo el genoma del nematodo Caenorhabditis briggsae". Investigación del genoma . 20 (8): 1103–1111. doi :10.1101/gr.104331.109. PMC 2909573 . PMID  20508143. 
  107. ^ Mitchell-Olds, Thomas; Willis, John H.; Goldstein, David B. (noviembre de 2007). "¿Qué procesos evolutivos influyen en la variación genética natural de los rasgos fenotípicos?". Naturaleza Reseñas Genética . 8 (11): 845–856. doi :10.1038/nrg2207. ISSN  1471-0056. PMID  17943192. S2CID  14914998.
  108. ^ Nei, Masatoshi (diciembre de 2005). "Selectionismo y neutralismo en la evolución molecular". Biología Molecular y Evolución . 22 (12): 2318–2342. doi : 10.1093/molbev/msi242. ISSN  0737-4038. PMC 1513187 . PMID  16120807. 
    • Nei, Masatoshi (mayo de 2006). "Selectionismo y neutralismo en la evolución molecular". Biología molecular y evolución (erratas). 23 (5): 2318–42. doi :10.1093/molbev/msk009. ISSN  0737-4038. PMC  1513187 . PMID  16120807.
  109. ^ Haldane, JBS (julio de 1927). "Una teoría matemática de la selección natural y artificial, parte V: selección y mutación". Actas de la Sociedad Filosófica de Cambridge . 26 (7): 838–844. Código Bib : 1927PCPS...23..838H. doi :10.1017/S0305004100015644. S2CID  86716613.
  110. ^ Pescador 1930
  111. ^ abc Yampolsky, Lev Y.; Stoltzfus, Arlin (20 de diciembre de 2001). "Sesgo en la introducción de la variación como factor orientador de la evolución". Evolución y desarrollo . 3 (2): 73–83. doi :10.1046/j.1525-142x.2001.003002073.x. PMID  11341676. S2CID  26956345.
  112. ^ Sueoka, Noboru (1 de abril de 1962). "Sobre la base genética de la variación y heterogeneidad de la composición de las bases del ADN". PNAS . 48 (4): 582–592. Código bibliográfico : 1962PNAS...48..582S. doi : 10.1073/pnas.48.4.582 . PMC 220819 . PMID  13918161. 
  113. ^ Freese, Ernst (julio de 1962). "Sobre la evolución de la composición básica del ADN". Revista de Biología Teórica . 3 (1): 82-101. Código Bib : 1962JThBi...3...82F. doi :10.1016/S0022-5193(62)80005-8.
  114. ^ Cox, Edward C.; Yanofsky, Charles (1 de noviembre de 1967). "Proporciones de bases alteradas en el ADN de una cepa mutadora de Escherichia coli". Proc. Nacional. Acad. Ciencia. EE.UU . 58 (5): 1895-1902. Código bibliográfico : 1967PNAS...58.1895C. doi : 10.1073/pnas.58.5.1895 . PMC 223881 . PMID  4866980. 
  115. ^ Shah, Premal; Gilchrist, Michael A. (21 de junio de 2011). "Explicar patrones complejos de uso de codones con selección de eficiencia traslacional, sesgo de mutación y deriva genética". PNAS . 108 (25): 10231–10236. Código Bib : 2011PNAS..10810231S. doi : 10.1073/pnas.1016719108 . PMC 3121864 . PMID  21646514. 
  116. ^ Bulmer, Michael G. (noviembre de 1991). "La teoría de la selección-mutación-deriva del uso de codones sinónimos". Genética . 129 (3): 897–907. doi :10.1093/genética/129.3.897. PMC 1204756 . PMID  1752426. 
  117. ^ Fryxell, Karl J.; Zuckerkandl, Emile (septiembre de 2000). "La desaminación de citosina juega un papel principal en la evolución de isocoros de mamíferos". Biología Molecular y Evolución . 17 (9): 1371-1383. doi : 10.1093/oxfordjournals.molbev.a026420 . PMID  10958853.
  118. ^ Petrov, Dmitri A.; Sangster, Todd A.; Johnston, J. Spencer; et al. (11 de febrero de 2000). "Evidencia de la pérdida de ADN como determinante del tamaño del genoma". Ciencia . 287 (5455): 1060–1062. Código Bib : 2000 Ciencia... 287.1060P. doi : 10.1126/ciencia.287.5455.1060. ISSN  0036-8075. PMID  10669421. S2CID  12021662.
  119. ^ Petrov, Dmitri A. (mayo de 2002). "Pérdida de ADN y evolución del tamaño del genoma en Drosophila". Genética . 115 (1): 81–91. doi :10.1023/A:1016076215168. ISSN  0016-6707. PMID  12188050. S2CID  5314242.
  120. ^ Duret, Laurent; Galtier, Nicolas (septiembre de 2009). "Conversión genética sesgada y evolución de paisajes genómicos de mamíferos". Revista Anual de Genómica y Genética Humana . Revisiones anuales. 10 : 285–311. doi :10.1146/annurev-genom-082908-150001. PMID  19630562. S2CID  9126286.
  121. ^ Hershberg, Rut; Petrov, Dmitri A. (9 de septiembre de 2010). "Evidencia de que la mutación está universalmente sesgada hacia la AT en bacterias". PLOS Genética . 6 (9): e1001115. doi : 10.1371/journal.pgen.1001115 . PMC 2936535 . PMID  20838599. 
  122. ^ A. Stoltzfus (2019). "Comprender el sesgo en la introducción de la variación como causa evolutiva". En Uller, T.; Laland, KN (eds.). Causalidad evolutiva: reflexiones biológicas y filosóficas . Cambridge, MA: MIT Press.
  123. ^ Stoltzfus, Arlin; McCandlish, David M. (septiembre de 2017). "Los sesgos mutacionales influyen en la adaptación paralela". Biología Molecular y Evolución . 34 (9): 2163–2172. doi :10.1093/molbev/msx180. PMC 5850294 . PMID  28645195. 
  124. ^ Payne, Josué L.; Menardo, Fabricio; Trauner, Andrej; et al. (13 de mayo de 2019). "El sesgo de transición influye en la evolución de la resistencia a los antibióticos en Mycobacterium tuberculosis". Más biología . 17 (5): e3000265. doi : 10.1371/journal.pbio.3000265 . PMC 6532934 . PMID  31083647. 
  125. ^ Storz, Jay F.; Natarajan, Chandrasekhar; Signore, Antonio V.; et al. (22 de julio de 2019). "El papel del sesgo de mutación en la evolución molecular adaptativa: conocimientos de cambios convergentes en la función de las proteínas". Transacciones filosóficas de la Royal Society B. 374 (1777): 20180238. doi :10.1098/rstb.2018.0238. PMC 6560279 . PMID  31154983. 
  126. ^ Svensson, Erik I.; Berger, David (1 de mayo de 2019). "El papel del sesgo de mutación en la evolución adaptativa". Tendencias en ecología y evolución . 34 (5): 422–434. doi : 10.1016/j.tree.2019.01.015. PMID  31003616. S2CID  125066709.
  127. ^ Gravamen, Sigbjørn; Szyda, Joanna; Schechinger, Birgit; et al. (Febrero de 2000). "Evidencia de heterogeneidad en la recombinación en la región pseudoautosómica humana: análisis de alta resolución mediante tipificación de espermatozoides y mapeo híbrido de radiación". Revista Estadounidense de Genética Humana . 66 (2): 557–566. doi :10.1086/302754. ISSN  0002-9297. PMC 1288109 . PMID  10677316. 
  128. ^ Barton, Nicholas H. (29 de noviembre de 2000). "Hacer autostop genético". Transacciones filosóficas de la Royal Society B. 355 (1403): 1553-1562. doi :10.1098/rstb.2000.0716. ISSN  0962-8436. PMC 1692896 . PMID  11127900. 
  129. ^ Ries, C; Spaethe, J; Sztatecsny, M; Strödl, C; Hödl, W (20 de octubre de 2008). "Volviéndose azul y ultravioleta: cambio de color específico del sexo durante la temporada de apareamiento en la rana del páramo de los Balcanes". Revista de Zoología . 276 (3): 229–236. doi :10.1111/j.1469-7998.2008.00456.x – vía Google Scholar.
  130. ^ Andersson, Malta; Simmons, Leigh W. (junio de 2006). «Selección sexual y elección de pareja» (PDF) . Tendencias en ecología y evolución . 21 (6): 296–302. CiteSeerX 10.1.1.595.4050 . doi :10.1016/j.tree.2006.03.015. ISSN  0169-5347. PMID  16769428. Archivado (PDF) desde el original el 9 de marzo de 2013. 
  131. ^ Kokko, Hanna ; Brooks, Robert; McNamara, John M.; Houston, Alasdair I. (7 de julio de 2002). "El continuo de selección sexual". Actas de la Royal Society B. 269 ​​(1498): 1331-1340. doi :10.1098/rspb.2002.2020. ISSN  0962-8452. PMC 1691039 . PMID  12079655. 
  132. ^ Quinn, Thomas P.; Hendry, Andrés P.; Dólar, Gregory B. (2001). "Equilibrio de la selección natural y sexual en el salmón rojo: interacciones entre el tamaño del cuerpo, las oportunidades reproductivas y la vulnerabilidad a la depredación de los osos" (PDF) . Investigación en ecología evolutiva . 3 : 917–937. ISSN  1522-0613. Archivado (PDF) desde el original el 5 de marzo de 2016 . Consultado el 15 de diciembre de 2014 .
  133. ^ Caza, John; Brooks, Robert; Jennions, Michael D.; et al. (23 de diciembre de 2004). "Los grillos de campo machos de alta calidad invierten mucho en exhibición sexual pero mueren jóvenes". Naturaleza . 432 (7020): 1024–1027. Código Bib :2004Natur.432.1024H. doi : 10.1038/naturaleza03084. ISSN  0028-0836. PMID  15616562. S2CID  4417867.
  134. ^ Baym, Michael; Liberman, Tami D.; Kelsic, Eric D.; et al. (9 de septiembre de 2016). "Evolución microbiana espaciotemporal en paisajes antibióticos". Ciencia . 353 (6304): 1147–1151. Código Bib : 2016 Ciencia... 353.1147B. doi : 10.1126/ciencia.aag0822. ISSN  0036-8075. PMC 5534434 . PMID  27609891. 
  135. ^ a b C Scott, Eugenie C .; Matzke, Nicholas J. (15 de mayo de 2007). "Diseño biológico en las aulas de ciencias". PNAS . 104 (Suplemento 1): 8669–8676. Código Bib : 2007PNAS..104.8669S. doi : 10.1073/pnas.0701505104 . PMC 1876445 . PMID  17494747. 
  136. ^ Hendry, Andrés Paul; Kinnison, Michael T. (noviembre de 2001). "Una introducción a la microevolución: ritmo, patrón, proceso". Genética . 112–113 (1): 1–8. doi :10.1023/A:1013368628607. ISSN  0016-6707. PMID  11838760. S2CID  24485535.
  137. ^ Leroi, Armand M. (marzo-abril de 2000). "La independencia de escala de la evolución". Evolución y desarrollo . 2 (2): 67–77. CiteSeerX 10.1.1.120.1020 . doi :10.1046/j.1525-142x.2000.00044.x. ISSN  1520-541X. PMID  11258392. S2CID  17289010. 
  138. ^ Gould 2002, págs. 657–658.
  139. ^ ab Gould, Stephen Jay (19 de julio de 1994). "Tempo y modo en la reconstrucción macroevolutiva del darwinismo". PNAS . 91 (15): 6764–6771. Código bibliográfico : 1994PNAS...91.6764G. doi : 10.1073/pnas.91.15.6764 . PMC 44281 . PMID  8041695. 
  140. ^ Jablonski, David (2000). "Micro y macroevolución: escala y jerarquía en biología evolutiva y paleobiología". Paleobiología . 26 (sp4): 15–52. doi :10.1666/0094-8373(2000)26[15:MAMSAH]2.0.CO;2. S2CID  53451360.
  141. ^ Dougherty, Michael J. (20 de julio de 1998). "¿La raza humana está evolucionando o involucionando?". Científico americano . ISSN  0036-8733. Archivado desde el original el 6 de mayo de 2014 . Consultado el 11 de septiembre de 2015 .
  142. ^ Isaac, Mark, ed. (22 de julio de 2003). "Reclamo CB932: Evolución de formas degeneradas". Archivo TalkOrigins . Houston, Texas: Fundación TalkOrigins. Archivado desde el original el 23 de agosto de 2014 . Consultado el 19 de diciembre de 2014 .
  143. ^ Carril 1996, pag. 61
  144. ^ Carroll, Sean B. (22 de febrero de 2001). "Azar y necesidad: la evolución de la complejidad y diversidad morfológica". Naturaleza . 409 (6823): 1102–1109. Código Bib : 2001Natur.409.1102C. doi :10.1038/35059227. PMID  11234024. S2CID  4319886.
  145. ^ Whitman, William B.; Coleman, David C.; Wiebe, William J. (9 de junio de 1998). "Procariotas: la mayoría invisible". PNAS . 95 (12): 6578–6583. Código bibliográfico : 1998PNAS...95.6578W. doi : 10.1073/pnas.95.12.6578 . ISSN  0027-8424. PMC 33863 . PMID  9618454. 
  146. ^ ab Schloss, Patrick D.; Handelsman, Jo (diciembre de 2004). "Estado del Censo Microbiano". Reseñas de Microbiología y Biología Molecular . 68 (4): 686–691. doi :10.1128/MMBR.68.4.686-691.2004. PMC 539005 . PMID  15590780. 
  147. ^ Nealson, Kenneth H. (enero de 1999). "Microbiología post-vikinga: nuevos enfoques, nuevos datos, nuevos conocimientos". Orígenes de la vida y evolución de las biosferas . 29 (1): 73–93. Código Bib : 1999OLEB...29...73N. doi :10.1023/A:1006515817767. ISSN  0169-6149. PMID  11536899. S2CID  12289639.
  148. ^ Pandeo, Angus; MacLean, R. Craig; Brockhurst, Michael A.; Colegrave, Nick (12 de febrero de 2009). "El Beagle en una botella". Naturaleza . 457 (7231): 824–829. Código Bib :2009Natur.457..824B. doi : 10.1038/naturaleza07892. ISSN  0028-0836. PMID  19212400. S2CID  205216404.
  149. ^ Elena, Santiago F.; Lenski, Richard E. (junio de 2003). "Experimentos de evolución con microorganismos: la dinámica y bases genéticas de la adaptación". Naturaleza Reseñas Genética . 4 (6): 457–469. doi :10.1038/nrg1088. ISSN  1471-0056. PMID  12776215. S2CID  209727.
  150. ^ Mayr 1982, pág. 483: "La adaptación... ya no podía considerarse una condición estática, un producto de un pasado creativo, sino que se convirtió en un proceso dinámico continuo".
  151. ^ La sexta edición del Diccionario de Ciencias de Oxford (2010) define la adaptación como "Cualquier cambio en la estructura o funcionamiento de generaciones sucesivas de una población que la adapte mejor a su entorno".
  152. ^ Orr, H. Allen (febrero de 2005). "La teoría genética de la adaptación: una breve historia". Naturaleza Reseñas Genética . 6 (2): 119-127. doi :10.1038/nrg1523. ISSN  1471-0056. PMID  15716908. S2CID  17772950.
  153. ^ Dobzhansky 1968, págs. 1-34
  154. ^ Dobzhansky 1970, págs. 4–6, 79–82, 84–87
  155. ^ Dobzhansky, Theodosius (marzo de 1956). "Genética de poblaciones naturales. XXV. Cambios genéticos en poblaciones de Drosophila pseudoobscura y Drosophila persimilis en algunas localidades de California". Evolución . 10 (1): 82–92. doi :10.2307/2406099. ISSN  0014-3820. JSTOR  2406099.
  156. ^ Nakajima, Akira; Sugimoto, Yohko; Yoneyama, Hiroshi; et al. (junio de 2002). "Resistencia de alto nivel a fluoroquinolonas en Pseudomonas aeruginosa debido a la interacción de la bomba de eflujo MexAB-OprM y la mutación de la ADN girasa". Microbiología e Inmunología . 46 (6): 391–395. doi : 10.1111/j.1348-0421.2002.tb02711.x . ISSN  1348-0421. PMID  12153116. S2CID  22593331.
  157. ^ Blount, Zachary D.; Borland, Cristina Z.; Lenski, Richard E. (10 de junio de 2008). "Artículo inaugural: Contingencia histórica y evolución de una innovación clave en una población experimental de Escherichia coli". PNAS . 105 (23): 7899–7906. Código Bib : 2008PNAS..105.7899B. doi : 10.1073/pnas.0803151105 . ISSN  0027-8424. PMC 2430337 . PMID  18524956. 
  158. ^ Okada, Hirosuke; Negoro, Seiji; Kimura, Hiroyuki; et al. (10 de noviembre de 1983). "Adaptación evolutiva de enzimas codificadas por plásmidos para degradar oligómeros de nailon". Naturaleza . 306 (5939): 203–206. Código Bib :1983Natur.306..203O. doi :10.1038/306203a0. ISSN  0028-0836. PMID  6646204. S2CID  4364682.
  159. ^ Ohno, Susumu (abril de 1984). "Nacimiento de una enzima única a partir de un marco de lectura alternativo de la secuencia codificante internamente repetitiva preexistente". PNAS . 81 (8): 2421–2425. Código bibliográfico : 1984PNAS...81.2421O. doi : 10.1073/pnas.81.8.2421 . ISSN  0027-8424. PMC 345072 . PMID  6585807. 
  160. ^ Copley, Shelley D. (junio de 2000). "Evolución de una vía metabólica para la degradación de un xenobiótico tóxico: el enfoque mosaico". Tendencias en Ciencias Bioquímicas . 25 (6): 261–265. doi :10.1016/S0968-0004(00)01562-0. ISSN  0968-0004. PMID  10838562.
  161. ^ Crawford, Ronald L.; Jung, Carina M.; Correa, Janice L. (octubre de 2007). "La reciente evolución de la pentaclorofenol (PCP) -4-monooxigenasa (PcpB) y las vías asociadas para la degradación bacteriana de PCP". Biodegradación . 18 (5): 525–539. doi :10.1007/s10532-006-9090-6. ISSN  0923-9820. PMID  17123025. S2CID  8174462.
  162. ^ Altenberg 1995, págs. 205-259
  163. ^ Masel, Joanna ; Bergman, Aviv (julio de 2003). "La evolución de las propiedades de evolución del prión de levadura [PSI +]". Evolución . 57 (7): 1498-1512. doi :10.1111/j.0014-3820.2003.tb00358.x. PMID  12940355. S2CID  30954684.
  164. ^ Lancaster, Alex K.; Bardill, J. Patrick; Es cierto, Heather L.; Masel, Joanna (febrero de 2010). "La tasa de aparición espontánea del prión de levadura [PSI+] y sus implicaciones para la evolución de las propiedades de evolucionabilidad del sistema [PSI+]". Genética . 184 (2): 393–400. doi :10.1534/genética.109.110213. ISSN  0016-6731. PMC 2828720 . PMID  19917766. 
  165. ^ Draghi, Jeremy; Wagner, Günter P. (febrero de 2008). "Evolución de la evolucionabilidad en un modelo de desarrollo". Evolución . 62 (2): 301–315. doi :10.1111/j.1558-5646.2007.00303.x. PMID  18031304. S2CID  11560256.
  166. ^ ab Bejder, Lars; Hall, Brian K. (noviembre de 2002). "Extremidades en ballenas y falta de extremidades en otros vertebrados: mecanismos de transformación y pérdida evolutiva y de desarrollo". Evolución y desarrollo . 4 (6): 445–458. doi :10.1046/j.1525-142X.2002.02033.x. PMID  12492145. S2CID  8448387.
  167. ^ Joven, Nathan M.; HallgrÍmsson, Benedikt (diciembre de 2005). "Homología en serie y evolución de la estructura de covariación de las extremidades de los mamíferos". Evolución . 59 (12): 2691–2704. doi :10.1554/05-233.1. ISSN  0014-3820. PMID  16526515. S2CID  198156135.
  168. ^ ab Penny, David; Poole, Anthony (diciembre de 1999). "La naturaleza del último ancestro común universal". Opinión actual en genética y desarrollo . 9 (6): 672–677. doi :10.1016/S0959-437X(99)00020-9. PMID  10607605.
  169. ^ Hall, Brian K. (agosto de 2003). "Descendencia con modificación: la unidad subyacente a la homología y la homoplasia vista a través de un análisis del desarrollo y la evolución". Reseñas biológicas . 78 (3): 409–433. doi :10.1017/S1464793102006097. ISSN  1464-7931. PMID  14558591. S2CID  22142786.
  170. ^ Shubin, Neil ; Tabin, Clifford J .; Carroll, Sean B. (12 de febrero de 2009). "Profunda homología y los orígenes de la novedad evolutiva". Naturaleza . 457 (7231): 818–823. Código Bib :2009Natur.457..818S. doi : 10.1038/naturaleza07891. PMID  19212399. S2CID  205216390.
  171. ^ abc Fong, Daniel F.; Kane, Thomas C.; Culver, David C. (noviembre de 1995). "Vestigialización y pérdida de personajes no funcionales". Revista Anual de Ecología y Sistemática . 26 : 249–268. doi :10.1146/annurev.es.26.110195.001341.
  172. ^ ZhaoLei Zhang; Gerstein, Mark (agosto de 2004). "Análisis a gran escala de pseudogenes en el genoma humano". Opinión actual en genética y desarrollo . 14 (4): 328–335. doi :10.1016/j.gde.2004.06.003. ISSN  0959-437X. PMID  15261647.
  173. ^ Jeffery, William R. (mayo-junio de 2005). "Evolución adaptativa de la degeneración ocular en el pez de las cavernas ciego mexicano". Revista de herencia . 96 (3): 185-196. CiteSeerX 10.1.1.572.6605 . doi :10.1093/jhered/esi028. PMID  15653557. 
  174. ^ Maxwell, Erin E.; Larsson, Hans CE (mayo de 2007). "Osteología y miología del ala del Emú ( Dromaius novaehollandiae ) y su influencia en la evolución de estructuras vestigiales". Revista de Morfología . 268 (5): 423–441. doi :10.1002/jmor.10527. ISSN  0362-2525. PMID  17390336. S2CID  12494187.
  175. ^ van der Kooi, Casper J.; Schwander, Tanja (noviembre de 2014). "Sobre el destino de los rasgos sexuales bajo la asexualidad" (PDF) . Reseñas biológicas . 89 (4): 805–819. doi :10.1111/brv.12078. ISSN  1464-7931. PMID  24443922. S2CID  33644494. Archivado (PDF) desde el original el 23 de julio de 2015 . Consultado el 5 de agosto de 2015 .
  176. ^ Silvestri, Anthony R. Jr.; Singh, Iqbal (abril de 2003). "El problema no resuelto del tercer molar: ¿la gente estaría mejor sin él?". Revista de la Asociación Dental Estadounidense . 134 (4): 450–455. doi : 10.14219/jada.archive.2003.0194. PMID  12733778. Archivado desde el original el 23 de agosto de 2014.
  177. ^ Coyne 2009, pag. 62
  178. ^ Darwin 1872, págs.101, 103
  179. ^ Gris 2007, pag. 66
  180. ^ Coyne 2009, págs. 85–86
  181. ^ Stevens 1982, pág. 87
  182. ^ ab Gould 2002, págs. 1235-1236.
  183. ^ Pallen, Mark J.; Matzke, Nicholas J. (octubre de 2006). «Del Origen de las Especies al origen de los flagelos bacterianos» (PDF) . Microbiología de revisiones de la naturaleza (PDF). 4 (10): 784–790. doi :10.1038/nrmicro1493. ISSN  1740-1526. PMID  16953248. S2CID  24057949. Archivado desde el original (PDF) el 26 de diciembre de 2014 . Consultado el 25 de diciembre de 2014 .
  184. ^ Clementes, Abigail; Bursac, Dejan; Gatsos, Xenia; et al. (15 de septiembre de 2009). "La complejidad reducible de una máquina molecular mitocondrial". PNAS . 106 (37): 15791–15795. Código bibliográfico : 2009PNAS..10615791C. doi : 10.1073/pnas.0908264106 . PMC 2747197 . PMID  19717453. 
  185. ^ Piatigorsky y col. 1994, págs. 241-250
  186. ^ Wistow, Graeme (agosto de 1993). "Cristalinas del cristalino: reclutamiento de genes y dinamismo evolutivo". Tendencias en Ciencias Bioquímicas . 18 (8): 301–306. doi :10.1016/0968-0004(93)90041-K. ISSN  0968-0004. PMID  8236445.
  187. ^ Johnson, normando A.; Porter, Adam H. (noviembre de 2001). "Hacia una nueva síntesis: genética de poblaciones y biología evolutiva del desarrollo". Genética . 112–113 (1): 45–58. doi :10.1023/A:1013371201773. ISSN  0016-6707. PMID  11838782. S2CID  1651351.
  188. ^ Baguñà, Jaume; García-Fernàndez, Jordi (2003). "Evo-Devo: el camino largo y sinuoso". La Revista Internacional de Biología del Desarrollo . 47 (7–8): 705–713. ISSN  0214-6282. PMID  14756346. Archivado desde el original el 28 de noviembre de 2014.
    • Con cariño, Alan C. (marzo de 2003). "Morfología evolutiva, innovación y síntesis de la biología evolutiva y del desarrollo". Biología y Filosofía . 18 (2): 309–345. doi :10.1023/A:1023940220348. S2CID  82307503.
  189. ^ Allin, Edgar F. (diciembre de 1975). "Evolución del oído medio de los mamíferos". Revista de Morfología . 147 (4): 403–437. doi :10.1002/jmor.1051470404. ISSN  0362-2525. PMID  1202224. S2CID  25886311.
  190. ^ Harris, Mateo P.; Hasso, Sean M.; Ferguson, Mark WJ; Fallon, John F. (21 de febrero de 2006). "El desarrollo de dientes de primera generación de arcosaurio en un pollo mutante". Biología actual . 16 (4): 371–377. doi : 10.1016/j.cub.2005.12.047 . PMID  16488870. S2CID  15733491.
  191. ^ Carroll, Sean B. (11 de julio de 2008). "Evo-Devo y una síntesis evolutiva en expansión: una teoría genética de la evolución morfológica". Celúla . 134 (1): 25–36. doi : 10.1016/j.cell.2008.06.030 . PMID  18614008. S2CID  2513041.
  192. ^ Wade, Michael J. (marzo de 2007). "La genética coevolutiva de las comunidades ecológicas". Naturaleza Reseñas Genética . 8 (3): 185-195. doi :10.1038/nrg2031. PMID  17279094. S2CID  36705246.
  193. ^ Geffeney, Shana; Brodie, Edmund D. Jr.; Rubén, Peter C.; Brodie, Edmund D. III (23 de agosto de 2002). "Mecanismos de adaptación en una carrera armamentista depredador-presa: canales de sodio resistentes a TTX". Ciencia . 297 (5585): 1336-1339. Código bibliográfico : 2002 Ciencia... 297.1336G. doi : 10.1126/ciencia.1074310. PMID  12193784. S2CID  8816337.
    • Brodie, Edmund D. Jr.; Ridenhour, Benjamín J.; Brodie, Edmund D. III (octubre de 2002). "La respuesta evolutiva de los depredadores a presas peligrosas: puntos críticos y puntos fríos en el mosaico geográfico de coevolución entre culebras y tritones". Evolución . 56 (10): 2067–2082. doi :10.1554/0014-3820(2002)056[2067:teropt]2.0.co;2. PMID  12449493. S2CID  8251443.
    • Carroll, Sean B. (21 de diciembre de 2009). "Todo lo que no mata a algunos animales puede volverlos mortales". Los New York Times . Nueva York. Archivado desde el original el 23 de abril de 2015 . Consultado el 26 de diciembre de 2014 .
  194. ^ Sachs, Joel L. (septiembre de 2006). "Cooperación dentro y entre especies". Revista de biología evolutiva . 19 (5): 1415–1418, discusión 1426–1436. doi :10.1111/j.1420-9101.2006.01152.x. PMID  16910971. S2CID  4828678.
    • Nowak, Martin A. (8 de diciembre de 2006). "Cinco reglas para la evolución de la cooperación". Ciencia . 314 (5805): 1560-1563. Código bibliográfico : 2006 Ciencia... 314.1560N. doi : 10.1126/ciencia.1133755. PMC  3279745 . PMID  17158317.
  195. ^ Paszkowski, Uta (agosto de 2006). "Mutualismo y parasitismo: el yin y el yang de las simbiosis vegetales". Opinión actual en biología vegetal . 9 (4): 364–370. doi :10.1016/j.pbi.2006.05.008. ISSN  1369-5266. PMID  16713732.
  196. ^ Casa, Bettina; Fester, Thomas (mayo de 2005). "Biología molecular y celular de la simbiosis de micorrizas arbusculares". Planta . 221 (2): 184-196. doi :10.1007/s00425-004-1436-x. PMID  15871030. S2CID  20082902.
  197. ^ Bertram, John S. (diciembre de 2000). "La biología molecular del cáncer". Aspectos moleculares de la medicina . 21 (6): 167–223. doi :10.1016/S0098-2997(00)00007-8. PMID  11173079. S2CID  24155688.
  198. ^ Reeve, H. Kern; Hölldobler, Bert (5 de junio de 2007). "El surgimiento de un superorganismo mediante la competencia intergrupal". PNAS . 104 (23): 9736–9740. Código Bib : 2007PNAS..104.9736R. doi : 10.1073/pnas.0703466104 . ISSN  0027-8424. PMC 1887545 . PMID  17517608. 
  199. ^ Axelrod, Robert; Hamilton, WD (27 de marzo de 1981). "La evolución de la cooperación". Ciencia . 211 (4489): 1390-1396. Código bibliográfico : 1981 Ciencia... 211.1390A. doi : 10.1126/ciencia.7466396. PMID  7466396.
  200. ^ Wilson, Edward O.; Hölldobler, Bert (20 de septiembre de 2005). "Eusocialidad: origen y consecuencias". PNAS . 102 (38): 13367–1371. Código bibliográfico : 2005PNAS..10213367W. doi : 10.1073/pnas.0505858102 . PMC 1224642 . PMID  16157878. 
  201. ^ ab Gavrilets, Sergey (octubre de 2003). "Perspectiva: modelos de especiación: ¿qué hemos aprendido en 40 años?". Evolución . 57 (10): 2197–2215. doi :10.1554/02-727. PMID  14628909. S2CID  198158082.
  202. ^ abc de Queiroz, Kevin (3 de mayo de 2005). "Ernst Mayr y el concepto moderno de especie". PNAS . 102 (Suplemento 1): 6600–6607. Código Bib : 2005PNAS..102.6600D. doi : 10.1073/pnas.0502030102 . PMC 1131873 . PMID  15851674. 
  203. ^ ab Ereshefsky, Marc (diciembre de 1992). "Pluralismo eliminativo". Filosofía de la Ciencia . 59 (4): 671–690. doi :10.1086/289701. JSTOR  188136. S2CID  224829314.
  204. ^ Mayr 1942, pag. 120
  205. ^ Fraser, Christophe; Alm, Eric J.; Polz, Martín F.; et al. (6 de febrero de 2009). "El desafío de las especies bacterianas: dar sentido a la diversidad genética y ecológica". Ciencia . 323 (5915): 741–746. Código Bib : 2009 Ciencia... 323..741F. doi : 10.1126/ciencia.1159388. PMID  19197054. S2CID  15763831.
  206. ^ Breve, Roger Valentine (octubre de 1975). "El aporte de la mula al pensamiento científico". Revista de Reproducción y Fertilidad. Suplemento (23): 359–364. OCLC  1639439. PMID  1107543.
  207. ^ Bruto, Briana L.; Rieseberg, Loren H. (mayo-junio de 2005). "La genética ecológica de la especiación híbrida homoploide". Revista de herencia . 96 (3): 241–252. doi :10.1093/jhered/esi026. ISSN  0022-1503. PMC 2517139 . PMID  15618301. 
  208. ^ Burke, John M.; Arnold, Michael L. (diciembre de 2001). "Genética y aptitud de los híbridos". Revista Anual de Genética . 35 : 31–52. doi :10.1146/annurev.genet.35.102401.085719. ISSN  0066-4197. PMID  11700276. S2CID  26683922.
  209. ^ Vrijenhoek, Robert C. (4 de abril de 2006). "Híbridos poliploides: múltiples orígenes de una especie de rana arborícola". Biología actual . 16 (7): R245–R247. doi : 10.1016/j.cub.2006.03.005 . ISSN  0960-9822. PMID  16581499. S2CID  11657663.
  210. ^ Arroz, William R.; Hostert, Ellen E. (diciembre de 1993). "Experimentos de laboratorio sobre especiación: ¿qué hemos aprendido en 40 años?". Evolución . 47 (6): 1637–1653. doi :10.1111/j.1558-5646.1993.tb01257.x. ISSN  0014-3820. JSTOR  2410209. PMID  28568007. S2CID  42100751.
    • Jiggins, Chris D.; Bridle, Jon R. (marzo de 2004). "Especiación en la mosca del gusano de la manzana: ¿una mezcla de añadas?". Tendencias en ecología y evolución . 19 (3): 111-114. doi :10.1016/j.tree.2003.12.008. ISSN  0169-5347. PMID  16701238.
    • Boxhorn, Joseph (1 de septiembre de 1995). "Casos observados de especiación". Archivo TalkOrigins . Houston, Texas: The TalkOrigins Foundation, Inc. Archivado desde el original el 22 de enero de 2009 . Consultado el 26 de diciembre de 2008 .
    • Weinberg, James R.; Starczak, Victoria R.; Jörg, Daniele (agosto de 1992). "Evidencia de especiación rápida después de un evento fundador en el laboratorio". Evolución . 46 (4): 1214-1220. doi :10.2307/2409766. ISSN  0014-3820. JSTOR  2409766. PMID  28564398.
  211. ^ Herrel, Antonio; Huyghe, Katleen; Vanhooydonck, Bieke; et al. (25 de marzo de 2008). "Rápida divergencia evolutiva a gran escala en morfología y rendimiento asociada con la explotación de un recurso dietético diferente". PNAS . 105 (12): 4792–4795. Código Bib : 2008PNAS..105.4792H. doi : 10.1073/pnas.0711998105 . ISSN  0027-8424. PMC 2290806 . PMID  18344323. 
  212. ^ Losos, Jonathan B.; Warhelt, Kenneth I.; Schoener, Thomas W. (1 de mayo de 1997). "Diferenciación adaptativa tras la colonización experimental de islas en lagartos Anolis". Naturaleza . 387 (6628): 70–73. Código Bib :1997Natur.387...70L. doi :10.1038/387070a0. ISSN  0028-0836. S2CID  4242248.
  213. ^ Hoskin, Conrad J.; Higgle, Megan; McDonald, Keith R.; Moritz, Craig (27 de octubre de 2005). "El refuerzo impulsa una rápida especiación alopátrica". Naturaleza . 437 (7063): 1353–1356. Código Bib : 2005Natur.437.1353H. doi : 10.1038/naturaleza04004. PMID  16251964. S2CID  4417281.
  214. ^ Templeton, Alan R. (abril de 1980). "La teoría de la especiación a través del principio fundador". Genética . 94 (4): 1011–1038. doi :10.1093/genética/94.4.1011. PMC 1214177 . PMID  6777243. Archivado desde el original el 23 de agosto de 2014 . Consultado el 29 de diciembre de 2014 . 
  215. ^ Antonovics, Janis (julio de 2006). "Evolución en poblaciones de plantas X muy adyacentes: persistencia a largo plazo del aislamiento prereproductivo en el límite de una mina". Herencia . 97 (1): 33–37. doi :10.1038/sj.hdy.6800835. ISSN  0018-067X. PMID  16639420. S2CID  12291411.
  216. ^ Nosil, Patrik; Crespi, Bernard J.; Gries, Regina; Gries, Gerhard (marzo de 2007). "Selección natural y divergencia en la preferencia de pareja durante la especiación". Genética . 129 (3): 309–327. doi :10.1007/s10709-006-0013-6. ISSN  0016-6707. PMID  16900317. S2CID  10808041.
  217. ^ Savolainen, Vicente ; Anstett, Marie-Charlotte; Lexer, cristiano; et al. (11 de mayo de 2006). "Especiación simpátrica en palmeras de una isla oceánica". Naturaleza . 441 (7090): 210–213. Código Bib :2006Natur.441..210S. doi : 10.1038/naturaleza04566. ISSN  0028-0836. PMID  16467788. S2CID  867216.
    • Barluenga, Marta; Stölting, Kai N.; Salzburger, Walter; et al. (9 de febrero de 2006). "Especiación simpátrica en peces cíclidos del lago del cráter de Nicaragua". Naturaleza . 439 (7077): 719–23. Código Bib : 2006Natur.439..719B. doi : 10.1038/naturaleza04325. ISSN  0028-0836. PMID  16467837. S2CID  3165729. Archivado desde el original el 30 de julio de 2022 . Consultado el 30 de julio de 2022 .
  218. ^ Gavrilets, Sergey (21 de marzo de 2006). "El modelo de especiación simpátrica de Maynard Smith". Revista de Biología Teórica . 239 (2): 172–182. Código Bib : 2006JThBi.239..172G. doi :10.1016/j.jtbi.2005.08.041. ISSN  0022-5193. PMID  16242727.
  219. ^ Madera, Troy E.; Takebayashi, Naoki; Barker, Michael S.; et al. (18 de agosto de 2009). "La frecuencia de especiación poliploide en plantas vasculares". PNAS . 106 (33): 13875–13879. Código Bib : 2009PNAS..10613875W. doi : 10.1073/pnas.0811575106 . ISSN  0027-8424. PMC 2728988 . PMID  19667210. 
  220. ^ Hegarty, Matthew J.; Hiscock, Simon J. (20 de mayo de 2008). "Pistas genómicas sobre el éxito evolutivo de las plantas poliploides". Biología actual . 18 (10): R435–R444. doi : 10.1016/j.cub.2008.03.043 . ISSN  0960-9822. PMID  18492478. S2CID  1584282.
  221. ^ Jakobsson, Mattías; Hagenblad, Jenny; Tavaré, Simón ; et al. (junio de 2006). "Un origen reciente único de la especie alotetraploide Arabidopsis suecica: evidencia de marcadores de ADN nuclear". Biología Molecular y Evolución . 23 (6): 1217-1231. doi : 10.1093/molbev/msk006 . PMID  16549398. Archivado desde el original el 15 de febrero de 2022 . Consultado el 30 de julio de 2022 .
  222. ^ Säll, Torbjörn; Jakobsson, Mattias; Lind-Halldén, Christina; Halldén, Christer (septiembre de 2003). "El ADN del cloroplasto indica un origen único del alotetraploide Arabidopsis suecica". Revista de biología evolutiva . 16 (5): 1019-1029. doi : 10.1046/j.1420-9101.2003.00554.x . PMID  14635917. S2CID  29281998.
  223. ^ Bombas, Kirsten ; Weigel, Detlef (diciembre de 2007). " Arabidopsis : un género modelo de especiación". Opinión actual en genética y desarrollo . 17 (6): 500–504. doi :10.1016/j.gde.2007.09.006. PMID  18006296.
  224. ^ Sémon, Marie; Wolfe, Kenneth H. (diciembre de 2007). "Consecuencias de la duplicación del genoma". Opinión actual en genética y desarrollo . 17 (6): 505–512. doi :10.1016/j.gde.2007.09.007. PMID  18006297.
  225. ^ Eldredge y Gould 1972, págs. 82-115
  226. ^ Benton, Michael J. (7 de abril de 1995). "Diversificación y extinción en la historia de la vida". Ciencia . 268 (5207): 52–58. Código Bib : 1995 Ciencia... 268... 52B. doi : 10.1126/ciencia.7701342. ISSN  0036-8075. PMID  7701342.
  227. ^ Raup, David M. (28 de marzo de 1986). "Extinción biológica en la historia de la Tierra". Ciencia . 231 (4745): 1528-1533. Código Bib : 1986 Ciencia... 231.1528R. doi : 10.1126/ciencia.11542058. PMID  11542058. S2CID  23012011.
  228. ^ Avise, John C.; Hubbell, Stephen P .; Ayala, Francisco J. (12 de agosto de 2008). "A la luz de la evolución II: Biodiversidad y extinción". PNAS . 105 (Suplemento 1): 11453–11457. Código Bib : 2008PNAS..10511453A. doi : 10.1073/pnas.0802504105 . PMC 2556414 . PMID  18695213. 
  229. ^ abc Raup, David M. (19 de julio de 1994). "El papel de la extinción en la evolución". PNAS . 91 (15): 6758–6763. Código bibliográfico : 1994PNAS...91.6758R. doi : 10.1073/pnas.91.15.6758 . PMC 44280 . PMID  8041694. 
  230. ^ Novaček, Michael J.; Cleland, Elsa E. (8 de mayo de 2001). "El actual evento de extinción de la biodiversidad: escenarios de mitigación y recuperación". PNAS . 98 (10): 5466–5470. Código bibliográfico : 2001PNAS...98.5466N. doi : 10.1073/pnas.091093698 . ISSN  0027-8424. PMC 33235 . PMID  11344295. 
  231. ^ Pimm, Estuardo ; Cuervo, Pedro ; Peterson, Alan; et al. (18 de julio de 2006). "Impactos humanos en las tasas de extinciones de aves recientes, presentes y futuras". PNAS . 103 (29): 10941–10946. Código bibliográfico : 2006PNAS..10310941P. doi : 10.1073/pnas.0604181103 . ISSN  0027-8424. PMC 1544153 . PMID  16829570. 
  232. ^ Barnosky, Anthony D .; Koch, Paul L.; Feranec, Robert S.; et al. (1 de octubre de 2004). "Evaluación de las causas de las extinciones del Pleistoceno tardío en los continentes". Ciencia . 306 (5693): 70–75. Código Bib : 2004 Ciencia... 306... 70B. CiteSeerX 10.1.1.574.332 . doi : 10.1126/ciencia.1101476. ISSN  0036-8075. PMID  15459379. S2CID  36156087. 
  233. ^ Lewis, Owen T. (29 de enero de 2006). "Cambio climático, curvas especie-área y crisis de extinción". Transacciones filosóficas de la Royal Society B. 361 (1465): 163-171. doi :10.1098/rstb.2005.1712. ISSN  0962-8436. PMC 1831839 . PMID  16553315. 
  234. ^ ab Stearns y Stearns 1999, pág. X
  235. ^ ab Novacek, Michael J. (8 de noviembre de 2014). "El brillante futuro de la prehistoria". Los New York Times . Nueva York. ISSN  0362-4331. Archivado desde el original el 29 de diciembre de 2014 . Consultado el 25 de diciembre de 2014 .
  236. ^ "Los investigadores descubren que la Tierra puede albergar 1 billón de especies". Fundación Nacional de Ciencia . Condado de Arlington, Virginia. 2 de mayo de 2016. Archivado desde el original el 4 de mayo de 2016 . Consultado el 6 de mayo de 2016 .
  237. ^ abc Kutschera, Ulrich ; Niklas, Karl J. (junio de 2004). "La teoría moderna de la evolución biológica: una síntesis ampliada". Naturwissenschaften . 91 (6): 255–276. Código Bib : 2004NW.....91..255K. doi :10.1007/s00114-004-0515-y. ISSN  1432-1904. PMID  15241603. S2CID  10731711.
  238. ^ Jablonski, David (8 de mayo de 2001). "Lecciones del pasado: impactos evolutivos de las extinciones masivas". PNAS . 98 (10): 5393–5398. Código bibliográfico : 2001PNAS...98.5393J. doi : 10.1073/pnas.101092598 . PMC 33224 . PMID  11344284. 
  239. ^ Toro, James J .; Wichman, Holly A. (noviembre de 2001). "Evolución aplicada". Revista Anual de Ecología y Sistemática . 32 : 183–217. doi : 10.1146/annurev.ecolsys.32.081501.114020. ISSN  1545-2069.
  240. ^ Doebley, John F.; Gaut, Brandon S.; Smith, Bruce D. (29 de diciembre de 2006). "La genética molecular de la domesticación de cultivos". Celúla . 127 (7): 1309-1321. doi : 10.1016/j.cell.2006.12.006 . ISSN  0092-8674. PMID  17190597. S2CID  278993.
  241. ^ Jäckel, cristiano; Kast, Peter; Hilvert, Donald (junio de 2008). "Diseño de proteínas por evolución dirigida". Revista Anual de Biofísica . 37 : 153-173. doi : 10.1146/annurev.biophys.37.032807.125832. ISSN  1936-122X. PMID  18573077.
  242. ^ Maher, Brendan (8 de abril de 2009). "Evolución: ¿el próximo modelo superior de la biología?". Naturaleza . 458 (7239): 695–698. doi : 10.1038/458695a . ISSN  0028-0836. PMID  19360058. S2CID  41648315.
  243. ^ Borowsky, Richard (8 de enero de 2008). "Restaurar la vista en peces de las cavernas ciegos". Biología actual . 18 (1): R23–R24. doi : 10.1016/j.cub.2007.11.023 . ISSN  0960-9822. PMID  18177707. S2CID  16967690.
  244. ^ Bruto, Joshua B.; Borowsky, Richard; Tabin, Clifford J. (2 de enero de 2009). Barsh, Gregory S. (ed.). "Un papel novedoso de Mc1r en la evolución paralela de la despigmentación en poblaciones independientes del pez de las cavernas Astyanax mexicanus". PLOS Genética . 5 (1): e1000326. doi : 10.1371/journal.pgen.1000326 . ISSN  1553-7390. PMC 2603666 . PMID  19119422. 
  245. ^ Merlo, Lauren MF; Pimienta, John W.; Reid, Brian J.; Maley, Carlo C. (diciembre de 2006). "El cáncer como proceso evolutivo y ecológico". La naturaleza revisa el cáncer . 6 (12): 924–935. doi :10.1038/nrc2013. ISSN  1474-175X. PMID  17109012. S2CID  8040576.
  246. ^ Pan, Dabo; Wei Wei Xue; Wenqi Zhang; et al. (Octubre 2012). "Comprensión del mecanismo de resistencia a los medicamentos del virus de la hepatitis C NS3/4A a ITMN-191 debido a mutaciones R155K, A156V, D168A/E: un estudio computacional". Biochimica et Biophysica Acta (BBA) - Temas generales . 1820 (10): 1526-1534. doi :10.1016/j.bbagen.2012.06.001. ISSN  0304-4165. PMID  22698669.
  247. ^ Woodford, Neil; Ellington, Matthew J. (enero de 2007). "La aparición de resistencia a los antibióticos por mutación". Microbiología clínica e infección . 13 (1): 5–18. doi : 10.1111/j.1469-0691.2006.01492.x . ISSN  1198-743X. PMID  17184282.
  248. ^ Labbé, Pierrick; Berticat, Claire; Berthomieu, Arnaud; et al. (16 de noviembre de 2007). "Cuarenta años de evolución errática de la resistencia a los insecticidas en el mosquito Culex pipiens". PLOS Genética . 3 (11): e205. doi : 10.1371/journal.pgen.0030205 . ISSN  1553-7390. PMC 2077897 . PMID  18020711. 
  249. ^ Neve, Paul (octubre de 2007). "Desafíos para la evolución y el manejo de la resistencia a herbicidas: 50 años después de Harper". Investigación de malezas . 47 (5): 365–369. doi :10.1111/j.1365-3180.2007.00581.x. ISSN  0043-1737.
  250. ^ Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Coce, Alejandro; Blázquez, Jesús (agosto 2013). "Antibióticos y resistencia a los antibióticos: una amarga lucha contra la evolución". Revista Internacional de Microbiología Médica . 303 (6–7): 293–297. doi :10.1016/j.ijmm.2013.02.004. ISSN  1438-4221. PMID  23517688.
  251. ^ Schenk, Martijn F.; Szendro, Iván G.; Krug, Joaquín; de Visser, J. Arjan GM (28 de junio de 2012). "Cuantificación del potencial adaptativo de una enzima de resistencia a los antibióticos". PLOS Genética . 8 (6): e1002783. doi : 10.1371/journal.pgen.1002783 . ISSN  1553-7390. PMC 3386231 . PMID  22761587. 
  252. ^ Leer, Andrew F.; Lynch, Penélope A.; Thomas, Matthew B. (7 de abril de 2009). "Cómo fabricar insecticidas a prueba de evolución para el control de la malaria". Más biología . 7 (4): e1000058. doi : 10.1371/journal.pbio.1000058 . PMC 3279047 . PMID  19355786. 
  253. ^ Fraser, Alex S. (18 de enero de 1958). "Análisis de Montecarlo de modelos genéticos". Naturaleza . 181 (4603): 208–209. Código Bib :1958Natur.181..208F. doi :10.1038/181208a0. ISSN  0028-0836. PMID  13504138. S2CID  4211563.
  254. ^ Rechenberg 1973
  255. ^ Holanda 1975
  256. ^ Koza 1992
  257. ^ Jamshidi, Mo (15 de agosto de 2003). "Herramientas para el control inteligente: controladores difusos, redes neuronales y algoritmos genéticos". Transacciones filosóficas de la Royal Society A. 361 (1809): 1781–1808. Código Bib : 2003RSPTA.361.1781J. doi :10.1098/rsta.2003.1225. PMID  12952685. S2CID  34259612.
  258. ^ "Edad de la Tierra". Encuesta geológica de los Estados Unidos . 9 de julio de 2007. Archivado desde el original el 23 de diciembre de 2005 . Consultado el 31 de mayo de 2015 .
  259. ^ Dalrymple 2001, págs. 205-221
  260. ^ Manhesa, Gerard; Allègre, Claude J .; Dupréa, Bernard; Hamelín, Bruno (mayo de 1980). "Estudio de isótopos de plomo de complejos estratificados básico-ultrabásico: especulaciones sobre la edad de la tierra y las características del manto primitivo". Cartas sobre ciencias planetarias y de la Tierra . 47 (3): 370–382. Código Bib : 1980E y PSL..47..370M. doi :10.1016/0012-821X(80)90024-2. ISSN  0012-821X.
  261. ^ Cuervo y Johnson 2002, pág. 68
  262. ^ ab Borenstein, Seth (19 de octubre de 2015). "Indicios de vida en lo que se pensaba que era la desolada Tierra primitiva". Emocionar . Yonkers, Nueva York: Red interactiva Mindspark . Associated Press . Archivado desde el original el 23 de octubre de 2015 . Consultado el 8 de octubre de 2018 .
  263. ^ Campana, Elizabeth A.; Boehnike, Patricio; Harrison, T. Mark; Mao, Wendy L. (24 de noviembre de 2015). "Carbón potencialmente biogénico conservado en un circón de 4.100 millones de años" (PDF) . PNAS . 112 (47): 14518–14521. Código Bib : 2015PNAS..11214518B. doi : 10.1073/pnas.1517557112 . ISSN  0027-8424. PMC 4664351 . PMID  26483481. Archivado (PDF) desde el original el 6 de noviembre de 2015 . Consultado el 30 de diciembre de 2015 . 
  264. ^ Schouten, Lucy (20 de octubre de 2015). "¿Cuándo surgió la vida por primera vez en la Tierra? Quizás mucho antes de lo que pensábamos". El Monitor de la Ciencia Cristiana . Boston, Massachusetts: Sociedad Editorial de la Ciencia Cristiana . ISSN  0882-7729. Archivado desde el original el 22 de marzo de 2016 . Consultado el 11 de julio de 2018 .
  265. ^ Wade, Nicholas (25 de julio de 2016). "Conoce a Luca, el antepasado de todos los seres vivos". Los New York Times . Nueva York. ISSN  0362-4331. Archivado desde el original el 28 de julio de 2016 . Consultado el 25 de julio de 2016 .
  266. ^ McKinney 1997, pág. 110
  267. ^ Mora, Camilo; Tittensor, Derek P.; Adl, Sina; et al. (23 de agosto de 2011). "¿Cuántas especies hay en la Tierra y en el océano?". Más biología . 9 (8): e1001127. doi : 10.1371/journal.pbio.1001127 . ISSN  1545-7885. PMC 3160336 . PMID  21886479. 
  268. ^ Miller y Spoolman 2012, pág. 62
  269. ^ Chapman 2009
  270. ^ Roskov, Y.; Abucay, L.; Orrell, T.; Nicolson, D.; et al., eds. (2016). "Catálogo de vida de especies 2000 y ITIS, lista de verificación anual de 2016". Especie 2000 . Leiden, Países Bajos: Centro de Biodiversidad Naturalis . ISSN  2405-884X. Archivado desde el original el 12 de noviembre de 2016 . Consultado el 6 de noviembre de 2016 .
  271. Peretó, Juli (marzo de 2005). «Controversias sobre el origen de la vida» (PDF) . Microbiología Internacional . 8 (1): 23–31. ISSN  1139-6709. PMID  15906258. Archivado desde el original (PDF) el 24 de agosto de 2015.
  272. ^ Marshall, Michael (11 de noviembre de 2020). "La intuición de Charles Darwin sobre la vida temprana probablemente era correcta. En unas cuantas notas garabateadas a un amigo, el biólogo Charles Darwin teorizó cómo comenzó la vida. No sólo era probablemente correcta, sino que su teoría estaba un siglo adelantada a su tiempo". Noticias de la BBC . Archivado desde el original el 11 de noviembre de 2020 . Consultado el 11 de noviembre de 2020 .
  273. ^ Joyce, Gerald F. (11 de julio de 2002). "La antigüedad de la evolución basada en ARN". Naturaleza . 418 (6894): 214–221. Código Bib :2002Natur.418..214J. doi :10.1038/418214a. PMID  12110897. S2CID  4331004.
  274. ^ Trevors, Jack T.; Psenner, Roland (diciembre de 2001). "Del autoensamblaje de la vida a las bacterias actuales: un posible papel de las nanocélulas". Reseñas de microbiología FEMS . 25 (5): 573–582. doi : 10.1111/j.1574-6976.2001.tb00592.x . ISSN  1574-6976. PMID  11742692.
  275. ^ Theobald, Douglas L. (13 de mayo de 2010). "Una prueba formal de la teoría de la ascendencia común universal". Naturaleza . 465 (7295): 219–222. Código Bib :2010Natur.465..219T. doi : 10.1038/naturaleza09014. ISSN  0028-0836. PMID  20463738. S2CID  4422345.
  276. ^ Bautista, Eric; Walsh, David A. (junio de 2005). "¿Suena cierto el 'Anillo de la Vida'?". Tendencias en Microbiología . 13 (6): 256–261. doi :10.1016/j.tim.2005.03.012. ISSN  0966-842X. PMID  15936656.
  277. ^ Darwin 1859, pag. 1
  278. ^ Doolittle, W. Ford; Baptiste, Eric (13 de febrero de 2007). "El pluralismo de patrones y la hipótesis del árbol de la vida". PNAS . 104 (7): 2043-2049. Código Bib : 2007PNAS..104.2043D. doi : 10.1073/pnas.0610699104 . ISSN  0027-8424. PMC 1892968 . PMID  17261804. 
  279. ^ Kunin, Víctor; Goldovsky, León; Darzentas, Nikos; Ouzounis, Christos A. (julio de 2005). "La red de la vida: Reconstrucción de la red filogenética microbiana". Investigación del genoma . 15 (7): 954–959. doi :10.1101/gr.3666505. ISSN  1088-9051. PMC 1172039 . PMID  15965028. 
  280. ^ Darwin 1837, pag. 25
  281. ^ Jablonski, David (25 de junio de 1999). "El futuro del registro fósil". Ciencia . 284 (5423): 2114–2116. doi : 10.1126/ciencia.284.5423.2114. ISSN  0036-8075. PMID  10381868. S2CID  43388925.
  282. ^ Mason, Stephen F. (6 de septiembre de 1984). "Orígenes de la destreza biomolecular". Naturaleza . 311 (5981): 19–23. Código Bib :1984Natur.311...19M. doi :10.1038/311019a0. ISSN  0028-0836. PMID  6472461. S2CID  103653.
  283. ^ Lobo, Yuri I.; Rogozin, Igor B.; Grishin, Nick V.; Koonin, Eugene V. (1 de septiembre de 2002). "Los árboles del genoma y el árbol de la vida". Tendencias en Genética . 18 (9): 472–479. doi :10.1016/S0168-9525(02)02744-0. ISSN  0168-9525. PMID  12175808.
  284. ^ Varki, Ajit ; Altheide, Tasha K. (diciembre de 2005). "Comparación de los genomas humano y de chimpancé: buscando agujas en un pajar". Investigación del genoma . 15 (12): 1746-1758. CiteSeerX 10.1.1.673.9212 . doi :10.1101/gr.3737405. ISSN  1088-9051. PMID  16339373. 
  285. ^ Ciccarelli, Francesca D.; Doerks, Tobías; von Mering, cristiano; et al. (3 de marzo de 2006). "Hacia la reconstrucción automática de un árbol de la vida altamente resuelto" (PDF) . Ciencia . 311 (5765): 1283–1287. Código bibliográfico : 2006 Ciencia... 311.1283C. CiteSeerX 10.1.1.381.9514 . doi : 10.1126/ciencia.1123061. ISSN  0036-8075. PMID  16513982. S2CID  1615592. Archivado (PDF) desde el original el 4 de marzo de 2016. 
  286. ^ ab Cavalier-Smith, Thomas (29 de junio de 2006). "Evolución celular e historia de la Tierra: estasis y revolución". Transacciones filosóficas de la Royal Society B. 361 (1470): 969–1006. doi :10.1098/rstb.2006.1842. ISSN  0962-8436. PMC 1578732 . PMID  16754610. 
  287. ^ Schopf, J. William (29 de junio de 2006). "Evidencia fósil de vida arcaica". Transacciones filosóficas de la Royal Society B. 361 (1470): 869–885. doi :10.1098/rstb.2006.1834. PMC 1578735 . PMID  16754604. 
    • Altermann, Wladyslaw; Kazmierczak, Józef (noviembre de 2003). "Microfósiles arcaicos: una reevaluación de la vida temprana en la Tierra". Investigación en Microbiología . 154 (9): 611–617. doi : 10.1016/j.resmic.2003.08.006 . PMID  14596897.
  288. ^ Schopf, J. William (19 de julio de 1994). "Tasas dispares, destinos diferentes: el ritmo y el modo de evolución cambiaron del Precámbrico al Fanerozoico". PNAS . 91 (15): 6735–6742. Código bibliográfico : 1994PNAS...91.6735S. doi : 10.1073/pnas.91.15.6735 . PMC 44277 . PMID  8041691. 
  289. ^ Poole, Anthony M.; Penny, David (enero de 2007). "Evaluación de hipótesis sobre el origen de los eucariotas". Bioensayos . 29 (1): 74–84. doi :10.1002/bies.20516. ISSN  0265-9247. PMID  17187354.
  290. ^ Dyall, Sabrina D.; Marrón, Mark T.; Johnson, Patricia J. (9 de abril de 2004). "Invasiones antiguas: de endosimbiontes a orgánulos". Ciencia . 304 (5668): 253–257. Código Bib : 2004 Ciencia... 304.. 253D. doi : 10.1126/ciencia.1094884. PMID  15073369. S2CID  19424594.
  291. ^ Martín, William (octubre de 2005). "El eslabón perdido entre hidrogenosomas y mitocondrias". Tendencias en Microbiología . 13 (10): 457–459. doi :10.1016/j.tim.2005.08.005. PMID  16109488.
  292. ^ Lang, B. Franz; Gris, Michael W.; Burger, Gertraud (diciembre de 1999). "Evolución del genoma mitocondrial y origen de los eucariotas". Revista Anual de Genética . 33 : 351–397. doi :10.1146/annurev.genet.33.1.351. ISSN  0066-4197. PMID  10690412.
    • McFadden, Geoffrey Ian (1 de diciembre de 1999). "Endosimbiosis y evolución de la célula vegetal". Opinión actual en biología vegetal . 2 (6): 513–519. doi :10.1016/S1369-5266(99)00025-4. PMID  10607659.
  293. ^ DeLong, Edward F .; Pace, Norman R. (1 de agosto de 2001). "Diversidad ambiental de bacterias y arqueas". Biología Sistemática . 50 (4): 470–478. CiteSeerX 10.1.1.321.8828 . doi :10.1080/106351501750435040. ISSN  1063-5157. PMID  12116647. 
  294. ^ Kaiser, Dale (diciembre de 2001). "Construyendo un organismo multicelular". Revista Anual de Genética . 35 : 103–123. doi :10.1146/annurev.genet.35.102401.090145. ISSN  0066-4197. PMID  11700279. S2CID  18276422.
  295. ^ Zimmer, Carl (7 de enero de 2016). "El cambio genético ayudó a los organismos a pasar de una célula a muchas". Los New York Times . Nueva York. ISSN  0362-4331. Archivado desde el original el 7 de enero de 2016 . Consultado el 7 de enero de 2016 .
  296. ^ Valentín, James W .; Jablonski, David; Erwin, Douglas H. (1 de marzo de 1999). "Fósiles, moléculas y embriones: nuevas perspectivas sobre la explosión del Cámbrico". Desarrollo . 126 (5): 851–859. doi :10.1242/dev.126.5.851. ISSN  0950-1991. PMID  9927587. Archivado desde el original el 1 de marzo de 2015 . Consultado el 30 de diciembre de 2014 .
  297. ^ Ohno, Susumu (enero de 1997). "La razón y la consecuencia de la explosión del Cámbrico en la evolución animal". Revista de evolución molecular . 44 (Suplemento 1): S23 – S27. Código Bib : 1997JMolE..44S..23O. doi :10.1007/PL00000055. ISSN  0022-2844. PMID  9071008. S2CID  21879320.
    • Valentín, James W.; Jablonski, David (2003). "Macroevolución morfológica y del desarrollo: una perspectiva paleontológica". La Revista Internacional de Biología del Desarrollo . 47 (7–8): 517–522. ISSN  0214-6282. PMID  14756327. Archivado desde el original el 24 de octubre de 2014 . Consultado el 30 de diciembre de 2014 .
  298. ^ Waters, Elizabeth R. (diciembre de 2003). "Adaptación molecular y origen de las plantas terrestres". Filogenética molecular y evolución . 29 (3): 456–463. doi :10.1016/j.ympev.2003.07.018. ISSN  1055-7903. PMID  14615186.
  299. ^ Mayhew, Peter J. (agosto de 2007). "¿Por qué hay tantas especies de insectos? Perspectivas desde fósiles y filogenias". Reseñas biológicas . 82 (3): 425–454. doi :10.1111/j.1469-185X.2007.00018.x. ISSN  1464-7931. PMID  17624962. S2CID  9356614.
  300. ^ Carroll, Robert L. (mayo de 2007). "La ascendencia paleozoica de salamandras, ranas y cecilias". Revista zoológica de la Sociedad Linneana . 150 (Suplemento s1): 1–140. doi : 10.1111/j.1096-3642.2007.00246.x . ISSN  1096-3642.
  301. ^ Wible, John R.; Rougier, Guillermo W.; Novaček, Michael J.; Asher, Robert J. (21 de junio de 2007). "Euterios del Cretácico y origen laurasiático de los mamíferos placentarios cerca del límite K / T". Naturaleza . 447 (7147): 1003–1006. Código Bib : 2007Natur.447.1003W. doi : 10.1038/naturaleza05854. ISSN  0028-0836. PMID  17581585. S2CID  4334424.
  302. ^ Witmer, Lawrence M. (28 de julio de 2011). "Paleontología: un icono derribado de su lugar". Naturaleza . 475 (7357): 458–459. doi :10.1038/475458a. ISSN  0028-0836. PMID  21796198. S2CID  205066360.
  303. ^ Darwin 1909, pag. 53
  304. ^ Kirk, Raven y Schofield 1983, págs. 100–142, 280–321
  305. ^ Lucrecio
  306. ^ Sedley, David (2003). «Lucrecio y el nuevo Empédocles» (PDF) . Estudios clásicos internacionales de Leeds . 2 (4). ISSN  1477-3643. Archivado desde el original (PDF) el 23 de agosto de 2014 . Consultado el 25 de noviembre de 2014 .
  307. ^ Torrey, Harry Beal; Felin, Frances (marzo de 1937). "¿Fue Aristóteles un evolucionista?". La revisión trimestral de biología . 12 (1): 1–18. doi :10.1086/394520. ISSN  0033-5770. JSTOR  2808399. S2CID  170831302.
  308. ^ Hull, David L. (diciembre de 1967). "La metafísica de la evolución". La Revista Británica de Historia de la Ciencia . Cambridge : Cambridge University Press en nombre de la Sociedad Británica de Historia de la Ciencia . 3 (4): 309–337. doi :10.1017/S0007087400002892. JSTOR  4024958. S2CID  170328394.
  309. ^ Mason 1962, págs. 43–44
  310. ^ Kiros, Teodros. Exploraciones en el pensamiento político africano . 2001, página 55
  311. ^ Mayr 1982, págs. 256-257
    • Rayo 1686
  312. ^ Waggoner, Ben (7 de julio de 2000). "Carl Linneo (1707-1778)". Evolución (Exposición online). Berkeley, California: Museo de Paleontología de la Universidad de California . Archivado desde el original el 30 de abril de 2011 . Consultado el 11 de febrero de 2012 .
  313. ^ Jugador de bolos 2003, págs. 73–75
  314. ^ "Erasmo Darwin (1731-1802)". Evolución (Exposición online). Berkeley, California: Museo de Paleontología de la Universidad de California. 4 de octubre de 1995. Archivado desde el original el 19 de enero de 2012 . Consultado el 11 de febrero de 2012 .
  315. ^ Lamarck 1809
  316. ^ ab Nardon y Grenier 1991, pág. 162
  317. ^ Ghiselin, Michael T. (septiembre-octubre de 1994). "El Lamarck imaginario: una mirada a la 'historia' falsa en los libros escolares". La carta del libro de texto . OCLC  23228649. Archivado desde el original el 12 de febrero de 2008 . Consultado el 23 de enero de 2008 .
  318. ^ Jablonka, Eva ; Cordero, Marion J. (agosto de 2007). "Resumen de la evolución en cuatro dimensiones". Ciencias del comportamiento y del cerebro . 30 (4): 353–365. doi :10.1017/S0140525X07002221. ISSN  0140-525X. PMID  18081952. S2CID  15879804.
  319. ^ Burkhardt y Smith 1991
  320. ^ Sulloway, Frank J. (junio de 2009). "Por qué Darwin rechazó el diseño inteligente". Revista de Biociencias . 34 (2): 173–183. doi :10.1007/s12038-009-0020-8. ISSN  0250-5991. PMID  19550032. S2CID  12289290.
  321. ^ "Resultados de la búsqueda de" descendencia con modificación "- La obra completa de Charles Darwin en línea". Archivado desde el original el 5 de junio de 2022 . Consultado el 30 de julio de 2022 .
  322. ^ Sobrio, Elliott (16 de junio de 2009). "¿Darwin escribió el Origen al revés?". PNAS . 106 (Suplemento 1): 10048–10055. Código Bib : 2009PNAS..10610048S. doi : 10.1073/pnas.0901109106 . ISSN  0027-8424. PMC 2702806 . PMID  19528655. 
  323. ^ Mayr 2002, pag. 165
  324. ^ Jugador de bolos 2003, págs. 145-146
  325. ^ Sokal, Robert R .; Crovello, Theodore J. (marzo-abril de 1970). "El concepto de especie biológica: una evaluación crítica". El naturalista americano . 104 (936): 127-153. doi :10.1086/282646. ISSN  0003-0147. JSTOR  2459191. S2CID  83528114.
  326. ^ Darwin, Carlos ; Wallace, Alfred (20 de agosto de 1858). "Sobre la tendencia de las especies a formar variedades; y sobre la perpetuación de variedades y especies por medios naturales de selección". Revista de actas de la Linnean Society de Londres. Zoología . 3 (9): 45–62. doi : 10.1111/j.1096-3642.1858.tb02500.x . ISSN  1096-3642. Archivado desde el original el 14 de julio de 2007 . Consultado el 13 de mayo de 2007 .
  327. ^ Desmond, Adrian J. (17 de julio de 2014). "Thomas Henry Huxley". Encyclopædia Britannica en línea . Chicago, Illinois: Encyclopædia Britannica, Inc. Archivado desde el original el 19 de enero de 2015 . Consultado el 2 de diciembre de 2014 .
  328. ^ Y.-S. Liu; XM Zhou; MX Zhi; XJ Li; QL Wang (septiembre de 2009). "Las contribuciones de Darwin a la genética". Revista de genética aplicada . 50 (3): 177–184. doi :10.1007/BF03195671. ISSN  1234-1983. PMID  19638672. S2CID  19919317.
  329. ^ Weiling, Franz (julio de 1991). "Estudio histórico: Johann Gregor Mendel 1822-1884". Revista Estadounidense de Genética Médica . 40 (1): 1–25, discusión 26. doi :10.1002/ajmg.1320400103. PMID  1887835.
  330. ^ Wright 1984, pág. 480
  331. ^ Provincia 1971
  332. ^ Stamhuis, Ida H.; Meijer, Onno G.; Zevenhuizen, Erik JA (junio de 1999). "Hugo de Vries sobre la herencia, 1889-1903: estadísticas, leyes mendelianas, pangenes, mutaciones". Isis . 90 (2): 238–267. doi :10.1086/384323. JSTOR  237050. PMID  10439561. S2CID  20200394.
  333. ^ ab Bowler 1989, págs. 307–318.
  334. ^ Levinson 2019.
  335. ^ Watson, JD ; Crick, FHC (25 de abril de 1953). "Estructura molecular de los ácidos nucleicos: una estructura para el ácido nucleico desoxirribosa" (PDF) . Naturaleza . 171 (4356): 737–738. Código Bib :1953Natur.171..737W. doi :10.1038/171737a0. ISSN  0028-0836. PMID  13054692. S2CID  4253007. Archivado (PDF) desde el original el 23 de agosto de 2014 . Consultado el 4 de diciembre de 2014 . No se nos ha escapado que el emparejamiento específico que hemos postulado sugiere inmediatamente un posible mecanismo de copia del material genético.
  336. ^ Hennig 1999, pág. 280
  337. ^ Dobzhansky, Theodosius (marzo de 1973). "Nada en biología tiene sentido excepto a la luz de la evolución" (PDF) . El profesor de biología estadounidense . 35 (3): 125-129. CiteSeerX 10.1.1.324.2891 . doi :10.2307/4444260. JSTOR  4444260. S2CID  207358177. Archivado desde el original (PDF) el 23 de octubre de 2015. 
  338. ^ Avise, John C .; Ayala, Francisco J. (11 de mayo de 2010). «A la luz de la evolución IV: La condición humana» (PDF) . PNAS . 107 (Suplemento 2): 8897–8901. doi : 10.1073/pnas.1003214107 . ISSN  0027-8424. PMC 3024015 . PMID  20460311. Archivado (PDF) desde el original el 23 de agosto de 2014 . Consultado el 29 de diciembre de 2014 . 
  339. ^ Danchin, Étienne; Charmantier, Ana; Champán, Frances A .; Mesoudi, Alex; Pujol, Benoit; Blanchet, Simon (junio de 2011). "Más allá del ADN: integración de la herencia inclusiva en una teoría ampliada de la evolución". Naturaleza Reseñas Genética . 12 (7): 475–486. doi :10.1038/nrg3028. ISSN  1471-0056. PMID  21681209. S2CID  8837202.
  340. ^ Pigliucci y Muller 2010
  341. ^ Browne 2003, págs. 376–379
  342. ^ Para obtener una descripción general de las controversias filosóficas, religiosas y cosmológicas, consulte:
    • Dennett 1995
    Para conocer la recepción científica y social de la evolución en el siglo XIX y principios del XX, consulte:
    • Johnston, Ian C. (1999). "Sección tres: Los orígenes de la teoría de la evolución". ... Y aún evolucionamos: un manual para la historia temprana de la ciencia moderna (3ª edición revisada). Nanaimo, BC: Departamento de Estudios Liberales, Universidad-Colegio de Malaspina . Archivado desde el original el 16 de abril de 2016 . Consultado el 1 de enero de 2015 .
    • Jugador de bolos 2003
    • Zuckerkandl, Emile (30 de diciembre de 2006). "Diseño inteligente y complejidad biológica". Gen. _ 385 : 2–18. doi :10.1016/j.gene.2006.03.025. ISSN  0378-1119. PMID  17011142.
  343. ^ Ross, Marcus R. (mayo de 2005). "¿Quién cree qué? Aclarando la confusión sobre el diseño inteligente y el creacionismo de la Tierra joven" (PDF) . Revista de Educación en Geociencias . 53 (3): 319–323. Código Bib : 2005JGeEd..53..319R. CiteSeerX 10.1.1.404.1340 . doi :10.5408/1089-9995-53.3.319. ISSN  1089-9995. S2CID  14208021. Archivado (PDF) desde el original el 11 de mayo de 2008 . Consultado el 28 de abril de 2008 . 
  344. ^ Hameed, Salman (12 de diciembre de 2008). "Preparándose para el creacionismo islámico" (PDF) . Ciencia . 322 (5908): 1637–1638. doi : 10.1126/ciencia.1163672. ISSN  0036-8075. PMID  19074331. S2CID  206515329. Archivado desde el original (PDF) el 10 de noviembre de 2014.
  345. ^ Jugador de bolos 2003
  346. ^ Molinero, Jon D.; Scott, Eugenia C.; Okamoto, Shinji (11 de agosto de 2006). "Aceptación pública de la evolución". Ciencia . 313 (5788): 765–766. doi : 10.1126/ciencia.1126746. ISSN  0036-8075. PMID  16902112. S2CID  152990938.
  347. ^ Spergel, David Nathaniel ; Verde, Licia; Peiris, Hiranya V.; et al. (2003). "Observaciones de primer año de la sonda de anisotropía de microondas Wilkinson (WMAP): determinación de parámetros cosmológicos". Serie de suplementos de revistas astrofísicas . 148 (1): 175-194. arXiv : astro-ph/0302209 . Código Bib : 2003ApJS..148..175S. doi :10.1086/377226. S2CID  10794058.
  348. ^ Wilde, Simón A.; Valle, John W.; Peck, William H.; Graham, Colin M. (11 de enero de 2001). "Evidencia de circones detríticos de la existencia de corteza continental y océanos en la Tierra hace 4,4 Gyr". Naturaleza . 409 (6817): 175–178. Código Bib :2001Natur.409..175W. doi :10.1038/35051550. ISSN  0028-0836. PMID  11196637. S2CID  4319774.
  349. ^ Branch, Glenn (marzo de 2007). "Comprensión del creacionismo después de Kitzmiller". Biociencia . 57 (3): 278–284. doi : 10.1641/B570313 . ISSN  0006-3568. S2CID  86665329.
  350. ^ Xiaoxing Jin (marzo de 2019). "Traducción y transmutación: el origen de las especies en China". La Revista Británica de Historia de la Ciencia . Cambridge: Cambridge University Press en nombre de la Sociedad Británica de Historia de la Ciencia. 52 (1): 117-141. doi :10.1017/S0007087418000808. PMID  30587253. S2CID  58605626.

Bibliografía

Otras lecturas

Lectura introductoria
Lectura avanzada

enlaces externos

Escuche este artículo ( 34 minutos )
Icono de Wikipedia hablado
Este archivo de audio se creó a partir de una revisión de este artículo con fecha del 18 de abril de 2005 y no refleja ediciones posteriores. (2005-04-18)
información general
experimentos
conferencias en línea