stringtranslate.com

jurásico

El Jurásico ( / ʊ ˈ r æ s ɪ k / juurr- ASS -ik [2] ) es un período geológico y sistema estratigráfico que se extendió desde el final del Período Triásico hace 201,4 millones de años (Mya) hasta el comienzo del Período Cretácico , aproximadamente 145 Mya. El Jurásico constituye el período medio de la Era Mesozoica y debe su nombre a las montañas del Jura , donde se identificaron por primera vez los estratos de piedra caliza del período.

El inicio del Jurásico estuvo marcado por el gran evento de extinción Triásico-Jurásico , asociado con la erupción de la Provincia Magmática del Atlántico Central (CAMP). El comienzo de la Etapa Toarciense comenzó hace alrededor de 183 millones de años y está marcado por el Evento Anóxico Oceánico Toarciense , un episodio global de anoxia oceánica , acidificación de los océanos y temperaturas globales elevadas asociadas con extinciones, probablemente causadas por la erupción de las grandes provincias ígneas Karoo-Ferrar . El final del Jurásico, sin embargo, no tiene un límite claro y definitivo con el Cretácico y es el único límite entre períodos geológicos que permanece formalmente indefinido.

A principios del Jurásico, el supercontinente Pangea había comenzado a dividirse en dos masas continentales: Laurasia al norte y Gondwana al sur. El clima del Jurásico era más cálido que el actual y no había capas de hielo . Los bosques crecían cerca de los polos, con grandes extensiones áridas en las latitudes más bajas.

En tierra, la fauna pasó de la fauna del Triásico, dominada conjuntamente por los archosaurios dinosauromorfos y pseudosuquios , a una dominada únicamente por los dinosaurios . Las primeras aves aparecieron durante el Jurásico, evolucionando a partir de una rama de los dinosaurios terópodos . Otros eventos importantes incluyen la aparición de los primeros cangrejos y lagartos modernos , y la diversificación de los primeros mamíferos . Los crocodilomorfos hicieron la transición de una vida terrestre a una acuática. Los océanos estaban habitados por reptiles marinos como los ictiosaurios y los plesiosaurios , mientras que los pterosaurios eran los vertebrados voladores dominantes . Los tiburones y las rayas modernas aparecieron por primera vez y se diversificaron durante el período. La flora estaba dominada por helechos y gimnospermas , incluidas las coníferas , de las cuales muchos grupos modernos hicieron su primera aparición durante el período, así como otros grupos como los extintos Bennettitales .

Etimología e historia

alt=Un retrato realista en blanco y negro de Brongniart, que está bien afeitado y tiene una abundante cabellera. Está vestido con una chaqueta formal.
Retrato de Alexandre Brongniart , quien acuñó el término "Jurásico"

El término cronoestratigráfico "Jurásico" está vinculado a la cordillera del Jura , una cadena montañosa boscosa que sigue principalmente la frontera entre Francia y Suiza . El nombre "Jura" se deriva de la raíz celta * jor, a través del galo *iuris "montaña boscosa", que se tomó prestada del latín como nombre de un lugar y evolucionó a Juria y finalmente a Jura .

Durante un viaje a la región en 1795, el naturalista alemán Alexander von Humboldt reconoció los depósitos de carbonato dentro de las montañas del Jura como geológicamente distintos del Muschelkalk del Triásico del sur de Alemania , pero concluyó erróneamente que eran más antiguos. Luego los denominó Jura-Kalkstein ('caliza del Jura') en 1799. [3]

En 1829, el naturalista francés Alexandre Brongniart publicó un libro titulado Descripción de los terrenos que constituyen la corteza terrestre o Ensayo sobre la estructura de las tierras conocidas de la Tierra. En este libro, Brongniart utilizó la frase terrains jurassiques al correlacionar el "Jura-Kalkstein" de Humboldt con calizas oolíticas de edad similar en Gran Bretaña, acuñando y publicando así el término "Jurásico". [4] [3]

El geólogo alemán Leopold von Buch estableció en 1839 la triple división del Jurásico, originalmente nombrada del más antiguo al más joven: Jurásico Negro , Jurásico Marrón y Jurásico Blanco . [5] El término " Lias " había sido utilizado previamente para estratos de edad equivalente al Jurásico Negro en Inglaterra por William Conybeare y William Phillips en 1822. William Phillips, el geólogo, trabajó con William Conybeare para averiguar más sobre el Jurásico Negro en Inglaterra.


El paleontólogo francés Alcide d'Orbigny, en sus artículos de 1842 a 1852, dividió el Jurásico en diez etapas basándose en los conjuntos de amonitas y otros fósiles de Inglaterra y Francia, de las cuales siete se siguen utilizando, pero ninguna ha conservado su definición original. El geólogo y paleontólogo alemán Friedrich August von Quenstedt dividió en 1858 las tres series de von Buch en el Jura de Suabia en seis subdivisiones definidas por amonitas y otros fósiles.

El paleontólogo alemán Albert Oppel, en sus estudios realizados entre 1856 y 1858, modificó el esquema original de d'Orbigny y subdividió los estadios en zonas bioestratigráficas , basándose principalmente en ammonites. La mayoría de los estadios modernos del Jurásico se formalizaron en el Colloque du Jurassique à Luxembourg en 1962. [3]

Geología

El período Jurásico se divide en tres épocas : Temprano, Medio y Tardío. De manera similar, en estratigrafía , el Jurásico se divide en las series Jurásico Inferior , Jurásico Medio y Jurásico Superior . Los geólogos dividen las rocas del Jurásico en un conjunto estratigráfico de unidades llamadas etapas , cada una formada durante intervalos de tiempo correspondientes llamados edades.

Las etapas pueden definirse global o regionalmente. Para la correlación estratigráfica global, la Comisión Internacional de Estratigrafía (ICS) ratifica las etapas globales basándose en una Sección y Punto de Estratotipo de Límite Global (GSSP) de una única formación (un estratotipo ) que identifica el límite inferior de la etapa. [3] Las edades del Jurásico desde el más reciente al más antiguo son las siguientes: [6]

Estratigrafía

Capas de caliza plegadas del Jurásico Inferior de la napa de Doldenhorn en Gasteretal , Suiza
Estratos del Jurásico Medio en la provincia de Neuquén , Argentina
Miembro Tidwell de la Formación Morrison (Jurásico Superior), Colorado

La estratigrafía jurásica se basa principalmente en el uso de ammonites como fósiles índice . El dato de primera aparición de taxones de ammonites específicos se utiliza para marcar el comienzo de las etapas, así como los períodos de tiempo más pequeños dentro de las etapas, denominados "zonas de ammonites"; estas, a su vez, a veces también se subdividen en subzonas. La estratigrafía global se basa en zonas de ammonites europeas estándar, y otras regiones se calibran según las sucesiones europeas. [3]

Base Aalenian GSSP en Fuentelsaz

Jurásico temprano

La parte más antigua del Período Jurásico ha sido históricamente denominada Lias o Liásico, aproximadamente equivalente en extensión al Jurásico Temprano, pero que también incluye parte del Rético precedente. El paleontólogo suizo Eugène Renevier nombró al Hettangiense en 1864 en honor a Hettange-Grande en el noreste de Francia. [3] El GSSP para la base del Hettangiense se encuentra en el Paso de Kuhjoch, Montañas Karwendel , Alpes Calcáreos del Norte , Austria; fue ratificado en 2010. El comienzo del Hettangiense, y por lo tanto del Jurásico en su conjunto, está marcado por la primera aparición del amonites Psiloceras spelae tirolicum en la Formación Kendlbach expuesta en Kuhjoch. [7] La ​​base del Jurásico fue definida previamente como la primera aparición de Psiloceras planorbis por Albert Oppel en 1856-58, pero esto se modificó porque la aparición fue vista como un evento demasiado localizado para un límite internacional. [3]

El Sinemuriense fue definido por primera vez e introducido en la literatura científica por Alcide d'Orbigny en 1842. Toma su nombre de la ciudad francesa de Semur-en-Auxois , cerca de Dijon . La definición original del Sinemuriense incluía lo que ahora es el Hettangiano. El GSSP del Sinemuriense está ubicado en un acantilado al norte de la aldea de East Quantoxhead , a 6 kilómetros al este de Watchet , Somerset , Inglaterra , dentro del Lias Azul , y fue ratificado en 2000. El comienzo del Sinemuriense está definido por la primera aparición de la amonita Vermiceras quantoxense . [3] [8]

En 1858, Albert Oppel denominó al Pliensbachiano en honor a la aldea de Pliensbach en la comunidad de Zell unter Aichelberg en el Jura de Suabia , cerca de Stuttgart , Alemania. El GSSP para la base del Pliensbachiano se encuentra en la localidad de Wine Haven en Robin Hood's Bay , Yorkshire , Inglaterra, en la Formación de lutitas Redcar , y fue ratificado en 2005. El comienzo del Pliensbachiano está definido por la primera aparición de la amonita Bifericeras donovani . [9]

El pueblo de Thouars (en latín: Toarcium ), justo al sur de Saumur en el valle del Loira en Francia , presta su nombre al estadio Toarciense. El Toarciense fue nombrado por Alcide d'Orbigny en 1842, siendo la localidad original la cantera de Vrines a unos 2 km al noroeste de Thouars. El GSSP para la base del Toarciense se encuentra en Peniche, Portugal , y fue ratificado en 2014. El límite está definido por la primera aparición de amonitas pertenecientes al subgénero Dactylioceras ( Eodactylites ) . [10]

Jurásico medio

El Aaleniano recibe su nombre de la ciudad de Aalen en Alemania. El Aaleniano fue definido por el geólogo suizo Karl Mayer-Eymar en 1864. El límite inferior estaba originalmente entre las arcillas oscuras del Jurásico Negro y la arenisca arcillosa suprayacente y la oolita ferruginosa de las secuencias del Jurásico Marrón del suroeste de Alemania. [3] El GSSP para la base del Aaleniano se encuentra en Fuentelsaz en la cordillera ibérica cerca de Guadalajara, España , y fue ratificado en 2000. La base del Aaleniano está definida por la primera aparición de la amonita Leioceras opalinum . [11]

En 1842, Alcide d'Orbigny denominó la Etapa Bajociense en honor a la ciudad de Bayeux (en latín: Bajoce ) en Normandía, Francia. El GSSP para la base del Bajociense se encuentra en la sección Murtinheira en Cabo Mondego , Portugal; fue ratificado en 1997. La base del Bajociense está definida por la primera aparición de la amonita Hyperlioceras mundum . [12]

El Bathoniano recibe su nombre de la ciudad de Bath , Inglaterra, introducido por el geólogo belga d'Omalius d'Halloy en 1843, a raíz de una sección incompleta de calizas oolíticas en varias canteras de la región. El GSSP para la base del Bathoniano es Ravin du Bès, área de Bas-Auran, Alpes de Haute Provence , Francia; fue ratificado en 2009. La base del Bathoniano está definida por la primera aparición de la amonita Gonolkites convergens , en la base de la zona de amonita en zigzag Zigzagiceras . [13]

El Calloviano se deriva del nombre latinizado de la aldea de Kellaways en Wiltshire , Inglaterra, y fue nombrado por Alcide d'Orbigny en 1852, originalmente la base en el contacto entre la Formación Forest Marble y la Formación Cornbrash . Sin embargo, más tarde se descubrió que este límite estaba dentro de la parte superior del Bathoniano. [3] La base del Calloviano aún no tiene un GSSP certificado. La definición de trabajo para la base del Calloviano es la primera aparición de amonitas pertenecientes al género Kepplerites . [14]

Jurásico tardío

El Oxfordiano recibe su nombre de la ciudad de Oxford en Inglaterra y fue nombrado por Alcide d'Orbigny en 1844 en referencia a Oxford Clay . La base del Oxfordiano carece de un GSSP definido. WJ Arkell en estudios de 1939 y 1946 situó el límite inferior del Oxfordiano como la primera aparición de la amonita Quenstedtoceras mariae (entonces situada en el género Vertumniceras ). Propuestas posteriores han sugerido la primera aparición de Cardioceras redcliffense como el límite inferior. [3] [14]

El pueblo de Kimmeridge en la costa de Dorset , Inglaterra, es el origen del nombre del Kimmeridgiano. La etapa fue nombrada por Alcide d'Orbigny en 1842 en referencia a la arcilla de Kimmeridge . El GSSP para la base del Kimmeridgiano es la sección Flodigarry en la bahía de Staffin en la isla de Skye , Escocia , [15] que fue ratificada en 2021. El límite está definido por la primera aparición de amonitas que marcan la zona boreal de Bauhini y la zona subboreal de Baylei. [14]

El Titoniano fue introducido en la literatura científica por Albert Oppel en 1865. El nombre Titoniano es inusual en los nombres de etapas geológicas porque se deriva de la mitología griega en lugar de un nombre de lugar. Titonio era hijo de Laomedonte de Troya y se enamoró de Eos , la diosa griega del amanecer . Su nombre fue elegido por Albert Oppel para esta etapa estratigráfica porque el Titoniano se encuentra de la mano con el amanecer del Cretácico. La base del Titoniano actualmente carece de un GSSP. [3] La definición de trabajo para la base del Titoniano es la primera aparición del género de amonitas Gravesia . [14]

El límite superior del Jurásico no está definido actualmente, y el límite Jurásico-Cretácico es actualmente el único límite del sistema que carece de un GSSP definido. Colocar un GSSP para este límite ha sido difícil debido a la fuerte regionalidad de la mayoría de los marcadores bioestratigráficos y la falta de eventos quimioestratigráficos , como excursiones isotópicas (grandes cambios repentinos en las proporciones de isótopos ), que podrían usarse para definir o correlacionar un límite. Se ha sugerido que los calpionélidos , un grupo enigmático de protistos planctónicos con pruebas calcíticas en forma de urna brevemente abundantes durante el último Jurásico hasta el Cretácico más temprano, representan los candidatos más prometedores para fijar el límite Jurásico-Cretácico [16] En particular, la primera aparición de Calpionella alpina , coincidiendo con la base de la subzona epónima Alpina, se ha propuesto como la definición de la base del Cretácico. [17] La ​​definición de trabajo para el límite a menudo se ha situado como la primera aparición de la amonita Strambergella jacobi , anteriormente ubicada en el género Berriasella , pero su uso como indicador estratigráfico ha sido cuestionado, ya que su primera aparición no se correlaciona con la de C. alpina . [18]

Yacimientos minerales y de hidrocarburos

La arcilla de Kimmeridge y sus equivalentes son la principal roca fuente del petróleo del Mar del Norte . [19] La cuenca intraplataforma árabe, depositada durante el Jurásico medio y tardío, es el escenario de las mayores reservas de petróleo del mundo, incluido el campo Ghawar , el yacimiento petrolífero más grande del mundo. [20] Las formaciones Sargelu [21] y Naokelekan [22], de edad jurásica , son las principales rocas fuente de petróleo en Irak . Más de 1500 gigatoneladas de reservas de carbón jurásico se encuentran en el noroeste de China, principalmente en la cuenca de Turpan-Hami y la cuenca de Ordos . [23]

Estructuras de impacto

Entre las principales estructuras de impacto se encuentra la estructura de impacto Morokweng , de 70 km de diámetro y enterrada bajo el desierto de Kalahari, en el norte de Sudáfrica. El impacto se remonta al Titoniano, hace aproximadamente 146,06 ± 0,16 millones de años. [24] Otra estructura importante es el cráter Puchezh-Katunki , de 40 kilómetros de diámetro, enterrado bajo el óblast de Nizhny Novgorod, en el oeste de Rusia. El impacto se remonta al Sinemuriano, hace 195,9 ± 1,0 millones de años. [25]

Paleogeografía y tectónica

Pangea al comienzo del Jurásico
La ruptura de Gondwana tuvo lugar durante el Jurásico Superior y, como resultado, el Océano Índico se abrió.

A principios del Jurásico, todas las principales masas continentales del mundo se fusionaron en el supercontinente Pangea , que durante el Jurásico Temprano comenzó a fragmentarse en el supercontinente norteño Laurasia y el supercontinente sur Gondwana . [26] La ruptura entre América del Norte y África fue la primera en iniciarse, a principios del Jurásico, asociada con el emplazamiento de la Provincia Magmática del Atlántico Central . [27]

Durante el Jurásico, el océano Atlántico Norte permaneció relativamente estrecho, mientras que el Atlántico Sur no se abrió hasta el Cretácico. [28] [27] Los continentes estaban rodeados por Panthalassa , con el océano Tetis entre Gondwana y Asia. Al final del Triásico, hubo una transgresión marina en Europa, inundando la mayor parte de Europa central y occidental transformándola en un archipiélago de islas rodeadas de mares poco profundos. [29] Durante el Jurásico, tanto el Polo Norte como el Polo Sur estaban cubiertos por océanos. [26] A partir del Jurásico Temprano, el océano Boreal estaba conectado al protoatlántico por el "corredor vikingo" o vía marítima transcontinental Laurasia, un paso entre el escudo báltico y Groenlandia de varios cientos de kilómetros de ancho. [30] [31] [32] Durante el Calloviano, se formó el mar epicontinental de Turgai , creando una barrera marina entre Europa y Asia. [33]

Madagascar y la Antártida comenzaron a separarse de África durante el Jurásico Temprano tardío en asociación con la erupción de las grandes provincias ígneas Karoo-Ferrar , abriendo el Océano Índico occidental y comenzando la fragmentación de Gondwana. [34] [35] A principios del Jurásico, América del Norte y del Sur permanecieron conectadas, pero a principios del Jurásico Tardío se habían separado para formar la Vía Marítima del Caribe, también conocida como el Corredor Hispánico, que conectaba el Océano Atlántico Norte con el este de Panthalassa. Los datos paleontológicos sugieren que la vía marítima había estado abierta desde el Jurásico Temprano. [36]

Como parte de la orogenia Nevadan , que comenzó durante el Triásico, el océano Cache Creek se cerró y varios terrenos , incluido el gran terreno Wrangellia, se acrecentaron en el margen occidental de América del Norte. [37] [38] En el Jurásico medio, la placa siberiana y el bloque del norte de China-Amuria habían chocado, lo que resultó en el cierre del océano Mongol-Ojotsk . [39]

Formación de la placa del Pacífico durante el Jurásico Temprano

Durante el Jurásico Temprano, hace unos 190 millones de años, la placa del Pacífico se originó en la triple unión de las placas tectónicas Farallón , Fénix e Izanagi , las tres placas oceánicas principales de Panthalassa. La triple unión previamente estable se había convertido en una disposición inestable rodeada por todos lados por fallas transformantes debido a una torcedura en uno de los límites de las placas, lo que resultó en la formación de la placa del Pacífico en el centro de la unión. [40] Durante el Jurásico Medio y Tardío, la vía marítima de Sundance , un mar epicontinental poco profundo , cubrió gran parte del noroeste de América del Norte. [41]

Granito con ooides calcíticos y cemento de calcita espátula; Formación Carmel , Jurásico medio, del sur de Utah, EE. UU.

Se estima que el nivel del mar eustático estuvo cerca de los niveles actuales durante el Hettangiense y el Sinemurien, aumentando varias decenas de metros durante el Sinemurien tardío-Pliensbachiense antes de retroceder a niveles cercanos a los actuales a finales del Pliensbachiense. Parece haber habido un aumento gradual hasta un pico de ~75 m sobre el nivel del mar actual durante el Toarciense. Durante la última parte del Toarciense, el nivel del mar volvió a descender varias decenas de metros. Aumentó progresivamente desde el Aalenien en adelante, aparte de caídas de unas pocas decenas de metros en el Bajociense y alrededor del límite Calloviano-Oxfordien, alcanzando posiblemente un pico de hasta 140 metros sobre el nivel del mar actual en el límite Kimmeridgiano-Tithonien. El nivel del mar cae a finales del Tithonian, quizás a alrededor de 100 metros, antes de rebotar a alrededor de 110 metros en el límite Tithonian-Berriasian.

El nivel del mar en las tendencias a largo plazo durante el Jurásico fue cíclico, con 64 fluctuaciones, 15 de las cuales superaron los 75 metros. La ciclicidad más notable en las rocas jurásicas es de cuarto orden, con una periodicidad de aproximadamente 410.000 años. [42]

Durante el Jurásico Temprano, los océanos del mundo pasaron de una química de mar de aragonito a una de mar de calcita , favoreciendo la disolución de aragonito y la precipitación de calcita . [43] El surgimiento del plancton calcáreo durante el Jurásico Medio alteró profundamente la química de los océanos, y la deposición de plancton biomineralizado en el fondo del océano actuó como un amortiguador contra las grandes emisiones de CO 2 . [44]

Clima

El clima del Jurásico era generalmente más cálido que el actual, entre 5 °C (41 °F) y 10 °C (50 °F), con un dióxido de carbono atmosférico probablemente cuatro veces más alto. Sin embargo, se sabe que hubo intervalos intermitentes de "olas de frío" durante este período de tiempo, que interrumpieron el clima de invernadero que, por lo demás, era cálido. [45] Es probable que los bosques crecieran cerca de los polos, donde experimentaron veranos cálidos e inviernos fríos, a veces nevados; es poco probable que haya habido capas de hielo dadas las altas temperaturas de verano que impidieron la acumulación de nieve, aunque es posible que haya habido glaciares de montaña. [46] Las rocas caídas y las glendonitas en el noreste de Siberia durante el Jurásico temprano y medio indican inviernos fríos. [47] Las profundidades del océano probablemente fueron 8 °C (46 F) más cálidas que en la actualidad, y los arrecifes de coral crecieron 10° de latitud más al norte y al sur. La Zona de Convergencia Intertropical probablemente existió sobre los océanos, lo que dio lugar a grandes áreas de desierto y matorrales en las latitudes más bajas entre 40° N y S del ecuador. Es probable que los biomas de selva tropical y tundra hayan sido raros o inexistentes. [46] El Jurásico también fue testigo de la disminución del megamonzón de Pangea que había caracterizado los períodos Pérmico y Triásico anteriores. [48] La variación en la frecuencia de la actividad de incendios forestales en el Jurásico estuvo regida por el ciclo de excentricidad de 405 mil años . [49] Gracias a la ruptura de Pangea, el ciclo hidrológico durante el Jurásico se mejoró significativamente. [50]

El comienzo del Jurásico probablemente estuvo marcado por un pico térmico correspondiente a la extinción y erupción del Triásico-Jurásico de la provincia magmática del Atlántico Central. La primera parte del Jurásico estuvo marcada por el Intervalo Frío del Jurásico Temprano entre 199 y 183 millones de años atrás. [47] Se ha propuesto que la glaciación estuvo presente en el hemisferio norte durante el Pliensbachiano temprano [51] y el Pliensbachiano más tardío. [52] [53] Hubo un pico en las temperaturas globales de alrededor de 4-8 °C (39-46 F) durante la primera parte del Toarciense correspondiente al Evento Anóxico Oceánico Toarciense y la erupción de las grandes provincias ígneas Karoo-Ferrar en el sur de Gondwana, con el intervalo cálido extendiéndose hasta el final del Toarciense hace alrededor de 174 millones de años. [47] Durante el Intervalo Cálido Toarciense, las temperaturas de la superficie del océano probablemente excedieron los 30 °C (86 F), y es probable que las regiones ecuatoriales y subtropicales (30°N–30°S) hayan sido extremadamente áridas, con temperaturas en el interior de Pangea probablemente superiores a los 40 °C (104 F). El Intervalo Cálido Toarciense es seguido por el Intervalo Frío del Jurásico Medio (MJCI) entre 174 y 164 millones de años atrás, [47] que puede haber sido puntuado por breves y efímeros intervalos de casas de hielo. [54] [55] Durante el Aaleniense, los cambios climáticos forzados por la precesión dictaron la magnitud y frecuencia de los incendios forestales en las turberas. [56] El clima europeo parece haberse vuelto notablemente más húmedo en el límite Aaleniense-Bajociense, pero luego se volvió más árido durante el Bajociense medio. [57] Una edad de hielo transitoria posiblemente ocurrió a finales del Bajociense. [58] El límite Calloviano-Oxfordiano al final del MJCI fue testigo de un enfriamiento global particularmente notable, [59] [60] potencialmente incluso una edad de hielo. [61] Esto es seguido por el Intervalo Cálido Kimmeridgiano (KWI) entre 164 y 150 millones de años atrás. [47] Basándose en la distribución de la madera fósil , este fue uno de los intervalos más húmedos del Jurásico. [62] El interior de Pangea tuvo oscilaciones estacionales menos severas que en períodos cálidos anteriores a medida que la expansión del Atlántico Central y el Océano Índico Occidental proporcionaron nuevas fuentes de humedad. [47] Una caída prominente de las temperaturas ocurrió durante el Titoniano, conocido como el Evento de Enfriamiento Titoniano Temprano (ETCE). [60] El final del Jurásico estuvo marcado por el Intervalo Frío Titoniano-Barremiano Temprano (TBCI), que comenzó hace 150 millones de años y continuó hasta el Cretácico Temprano . [47]

Eventos climáticos

Evento anóxico oceánico toarciano

El Evento Anóxico Oceánico Toarciense (TOAE), también conocido como el Evento Jenkyns, fue un episodio de anoxia oceánica generalizada durante la primera parte de la Era Toarciense, hace aproximadamente 183 millones de años. Está marcado por una excursión de isótopos de carbono negativos de gran amplitud documentada a nivel mundial , [63] [64] así como por la deposición de esquistos negros [65] y la extinción y colapso de organismos marinos productores de carbonato, asociados con un importante aumento de las temperaturas globales. [66]

La TOAE se atribuye a menudo a la erupción de las grandes provincias ígneas de Karoo-Ferrar y al aumento asociado de la concentración de dióxido de carbono en la atmósfera, así como a la posible liberación asociada de clatratos de metano . [66] Esto probablemente aceleró el ciclo hidrológico y aumentó la erosión de silicatos , como lo demuestra una mayor cantidad de materia orgánica de origen terrestre encontrada en depósitos marinos durante la TOAE. [67] Los grupos afectados incluyen amonitas, [68] ostrácodos , [65] [69] foraminíferos , [70] [71] bivalvos , [65] cnidarios y, especialmente, braquiópodos , [72] [73] [74] para los cuales la TOAE representó una de las extinciones más graves en su historia evolutiva. [75] Si bien el evento tuvo un impacto significativo en los invertebrados marinos, tuvo poco efecto en los reptiles marinos. [76] Durante la TOAE, la cuenca de Sichuan se transformó en un lago gigante , probablemente tres veces el tamaño del actual Lago Superior , representado por el Miembro Da'anzhai de la Formación Ziliujing . El lago probablemente secuestró ~460 gigatoneladas (Gt) de carbono orgánico y ~1.200 Gt de carbono inorgánico durante el evento. [77] El pH del agua de mar , que ya había disminuido sustancialmente antes del evento, aumentó ligeramente durante las primeras etapas de la TOAE, antes de caer a su punto más bajo alrededor de la mitad del evento. [78] Esta acidificación del océano es la causa probable del colapso de la producción de carbonato. [79] [80] Además, las condiciones anóxicas se vieron exacerbadas por el reciclaje mejorado de fósforo de regreso al agua del océano como resultado de la alta acidez y temperatura del océano que inhiben su mineralización en apatita; la abundancia de fósforo en ambientes marinos causó una mayor eutrofización y la consiguiente anoxia en un ciclo de retroalimentación positiva. [81]

Transición del fin del Jurásico

La transición del final del Jurásico se consideró originalmente una de ocho extinciones masivas, pero ahora se considera un intervalo complejo de recambio faunístico, con el aumento de la diversidad de algunos grupos y la disminución de otros, aunque la evidencia de esto es principalmente europea, probablemente controlada por cambios en el nivel eustático del mar. [82]

Flora

Extinción del final del Triásico

No hay evidencia de una extinción masiva de plantas en el límite Triásico-Jurásico. [83] En el límite Triásico-Jurásico en Groenlandia, el registro de esporomorfos (polen y esporas) sugiere una renovación floral completa. [84] Un análisis de las comunidades florales de macrofósiles en Europa sugiere que los cambios se debieron principalmente a la sucesión ecológica local . [85] Al final del Triásico, las Peltaspermaceae se extinguieron en la mayor parte del mundo, y Lepidopteris persistió hasta el Jurásico Temprano en la Patagonia. [86] Dicroidium , un helecho con semillas de coristosperma que era una parte dominante de las comunidades florales de Gondwana durante el Triásico, también disminuyó en el límite Triásico-Jurásico, sobreviviendo como un relicto en la Antártida hasta el Jurásico Temprano. [87]

Composición floral

Coníferas

Dos imágenes de un cono de conífera redondo, la de la izquierda es una sección transversal.
Cono petrificado de Araucaria mirabilis del Jurásico Medio de Argentina

Las coníferas formaron un componente dominante de las floras del Jurásico. El Triásico Tardío y el Jurásico fueron una época de gran diversificación de las coníferas, y la mayoría de los grupos de coníferas modernas aparecieron en el registro fósil hacia fines del Jurásico, habiendo evolucionado a partir de ancestros voltzialianos . [88] [89]

Las coníferas araucarias tienen sus primeros registros inequívocos durante el Jurásico Temprano, y los miembros del género moderno Araucaria estaban ampliamente distribuidos en ambos hemisferios en el Jurásico Medio. [89] [90] [91]

También abundó durante el Jurásico la extinta familia Cheirolepidiaceae , a menudo reconocida por su polen Classopolis altamente distintivo . Los representantes del Jurásico incluyen el cono de polen Classostrobus y el cono de semilla Pararaucaria . Las coníferas Araucarian y Cheirolepidiaceae a menudo se encuentran en asociación. [92]

El registro definitivo más antiguo de la familia de los cipreses ( Cupressaceae ) es Austrohamia minuta del Jurásico Temprano (Pliensbachiano) de la Patagonia, conocido a partir de muchas partes de la planta. [93] Las estructuras reproductivas de Austrohamia tienen fuertes similitudes con las de los géneros de cipreses primitivos actuales Taiwania y Cunninghamia . Hacia el Jurásico medio y tardío, las Cupressaceae eran abundantes en las regiones templadas cálidas-tropicales del hemisferio norte, representadas más abundantemente por el género Elatides . [94] El Jurásico también vio las primeras apariciones de algunos géneros modernos de cipreses, como Sequoia . [95]

Los miembros del género extinto Schizolepidopsis , que probablemente representan un grupo troncal de la familia de los pinos ( Pinaceae ), se distribuyeron ampliamente por Eurasia durante el Jurásico. [96] [97] El registro inequívoco más antiguo de Pinaceae es la piña Eathiestrobus , conocida del Jurásico tardío (Kimmeridgiano) de Escocia, que sigue siendo el único fósil inequívoco conocido del grupo antes del Cretácico. [98] A pesar de ser el miembro más antiguo conocido de las Pinaceae, Eathiestrobus parece ser un miembro del clado pinoideo de la familia, lo que sugiere que la diversificación inicial de las Pinaceae ocurrió antes de lo que se ha encontrado en el registro fósil. [99] [89]

El registro más antiguo de la familia del tejo ( Taxaceae ) es Palaeotaxus rediviva , del Hettangiense de Suecia, que se sugiere que está estrechamente relacionado con el Austrotaxus actual , mientras que Marskea jurassica del Jurásico Medio de Yorkshire, Inglaterra y el material del lecho Daohugou del Calloviano-Oxfordiense en China se cree que están estrechamente relacionados con Amentotaxus , y este último material se asigna al género moderno, lo que indica que las Taxaceae se habían diversificado sustancialmente a fines del Jurásico. [100]

Los miembros inequívocos más antiguos de Podocarpaceae se conocen desde el Jurásico y se encuentran en ambos hemisferios, incluyendo Scarburgia y Harrisiocarpus del Jurásico Medio de Inglaterra, así como especies sin nombre del Jurásico Medio-Superior de la Patagonia. [101]

Durante el Jurásico temprano, la flora de las latitudes medias del este de Asia estaba dominada por la extinta conífera de hoja ancha caduca Podozamites , que parece no estar estrechamente relacionada con ninguna familia de coníferas actual. Su área de distribución se extendió hacia el norte hasta las latitudes polares de Siberia y luego se contrajo hacia el norte en el Jurásico medio y tardío, en correspondencia con la creciente aridez de la región. [102]

Ginkgo biloba

Fósiles negros de hojas sobre roca de color amarillo.
Hojas de Ginkgo huttonii del Jurásico Medio de Inglaterra

Los ginkgoales , de los cuales la única especie viva es Ginkgo biloba , fueron más diversos durante el Jurásico: estaban entre los componentes más importantes de las floras jurásicas euroasiáticas y se adaptaron a una amplia variedad de condiciones climáticas. [103] Los primeros representantes del género Ginkgo , representados por órganos ovulatorios y polínicos similares a los de las especies modernas, se conocen del Jurásico Medio en el hemisferio norte. [103] Se conocen varios otros linajes de ginkgoales de rocas jurásicas, incluidos Yimaia , Grenana , Nagrenia y Karkenia . Estos linajes están asociados con hojas similares a las de Ginkgo , pero se distinguen de los representantes vivos y fósiles de Ginkgo por tener estructuras reproductivas dispuestas de manera diferente. [103] [104] Umaltolepis del Jurásico de Asia tiene hojas en forma de correa similares a las del ginkgo con estructuras reproductivas muy distintas con similitudes con las de los helechos con semillas peltaspermas y coristospermas, y se ha sugerido que es un miembro de Ginkgoales sensu lato. [105]

Bennettitales

Restauración de un miembro de Bennettitales perteneciente a Williamsoniaceae.

Bennettitales , habiéndose difundido por primera vez durante el Triásico precedente, eran miembros diversos y abundantes de las floras jurásicas en ambos hemisferios. [106] El follaje de Bennettitales tiene fuertes similitudes con las de las cícadas, a tal grado que no se pueden distinguir de manera confiable basándose solo en la morfología. Las hojas de Bennettitales se pueden distinguir de las de las cícadas por su diferente disposición de los estomas , y no se cree que los dos grupos estén estrechamente relacionados. [107] Los Bennettitales jurásicos pertenecen predominantemente al grupo Williamsoniaceae , [106] que crecían como arbustos y árboles pequeños. Se cree que las Williamsoniaceae tenían un hábito de ramificación divaricada , similar al de Banksia viviente , y se adaptaron a crecer en hábitats abiertos con malas condiciones de nutrientes del suelo. [108] Los Bennettitales exhiben estructuras reproductivas complejas, similares a las flores , algunas de las cuales se cree que fueron polinizadas por insectos. Se sugiere que varios grupos de insectos que tienen probóscides largas, incluidas familias extintas como las crisopas caligramátidas [109] y otras actuales como las moscas acrocéridas , [110] fueron polinizadores de bennettitales, alimentándose del néctar producido por los conos de bennettitaleans.

Cícadas

Las cícadas alcanzaron su punto máximo de diversidad durante los períodos Jurásico y Cretácico. [111] A pesar de que a veces se denomina al Mesozoico la "Era de las Cícadas", se cree que las cícadas fueron un componente relativamente menor de las floras del Mesozoico medio, siendo dominantes las Bennettitales y las Nilssoniales , que tienen un follaje similar al de las cícadas. [112] Las Nilssoniales a menudo se han considerado cícadas o parientes de las cícadas, pero se ha descubierto que son distintas por razones químicas y quizás más estrechamente relacionadas con las Bennettitales. [113] Las relaciones de la mayoría de las cícadas mesozoicas con los grupos actuales son ambiguas, [112] sin que ninguna cícada jurásica pertenezca a ninguno de los dos grupos modernos de cícadas, aunque algunas cícadas jurásicas posiblemente representan parientes del grupo de tallo de las modernas Cycadaceae , como el género de hojas Paracycas conocido en Europa, y Zamiaceae , como algunas especies europeas del género de hojas Pseudoctenis . También muy extendido durante el Jurásico estaba el linaje extinto Ctenis , que parece estar distantemente relacionado con las cícadas modernas. [114] Las cícadas modernas son polinizadas por escarabajos, y se cree que dicha asociación se formó en el Jurásico temprano. [111]

Otras plantas con semillas

Aunque ha habido varios registros reclamados, no hay registros fósiles jurásicos ampliamente aceptados de plantas con flores , que constituyen el 90% de las especies de plantas vivas, y la evidencia fósil sugiere que el grupo se diversificó durante el Cretácico siguiente. [115]

Las primeras gnetofitas conocidas , uno de los cuatro grupos principales de gimnospermas vivientes , aparecieron a finales del Jurásico, siendo la gnetofita inequívoca más antigua la semilla Dayvaultia del Jurásico Superior de América del Norte. [116]

Una hoja fósil, cuatro hojas alargadas se ramifican desde el mismo punto en el tallo.
Sagenopteris phillipsi ( Caytoniales ) del Jurásico Medio de Yorkshire, Inglaterra

"Helechos con semillas" ( Pteridospermatophyta ) es un término colectivo para referirse a linajes dispares de plantas similares a helechos que producen semillas pero tienen afinidades inciertas con grupos de plantas con semillas actuales. Un grupo destacado de helechos con semillas del Jurásico son los Caytoniales , que alcanzaron su apogeo durante el Jurásico, con registros generalizados en el hemisferio norte, aunque los registros en el hemisferio sur siguen siendo raros. Debido a sus cápsulas portadoras de semillas similares a bayas , a menudo se ha sugerido que estaban estrechamente relacionadas o quizás eran ancestrales a las plantas con flores, pero la evidencia de esto no es concluyente. [117] Los helechos con semillas alineados con corystospermas , como Pachypteris y Komlopteris , estaban muy extendidos en ambos hemisferios durante el Jurásico. [118]

Czekanowskiales , también conocidas como Leptostrobales, son un grupo de plantas con semillas de afinidades inciertas con hojas persistentes muy disecadas que nacen en brotes cortos caducos, sostenidos por hojas en forma de escamas, conocidas desde el Triásico Tardío (posiblemente el Pérmico Tardío [119] ) hasta el Cretácico. [120] Se cree que tenían un hábito similar a un árbol o un arbusto y formaron un componente notable de las floras templadas y templadas cálidas del Mesozoico del hemisferio norte. [119] El género Phoenicopsis estaba muy extendido en las floras del Jurásico Temprano-Medio de Asia Oriental y Siberia. [121]

Las Pentoxylales , un grupo pequeño pero claramente diferenciado de plantas con semillas similares a las lianas y de afinidades poco claras, aparecieron por primera vez durante el Jurásico. Su distribución parece haber estado confinada al este de Gondwana. [122]

Helechos y aliados

Las familias vivas de helechos extendidas durante el Jurásico incluyen Dipteridaceae , Matoniaceae , Gleicheniaceae , Osmundaceae y Marattiaceae . [123] [124] Los Polypodiales , que constituyen el 80% de la diversidad de helechos vivos, no tienen registro del Jurásico y se cree que se diversificaron en el Cretácico, [125] aunque el género de helechos herbáceos jurásicos extendido Coniopteris , históricamente interpretado como un pariente cercano de los helechos arborescentes de la familia Dicksoniaceae , ha sido reinterpretado recientemente como un pariente temprano del grupo. [126]

Los Cyatheales , el grupo que contiene la mayoría de los helechos arbóreos modernos, aparecieron durante el Jurásico Superior, representados por miembros del género Cyathocaulis , que se sugiere que son miembros tempranos de Cyatheaceae sobre la base del análisis cladístico. [127] Solo existen un puñado de posibles registros de Hymenophyllaceae del Jurásico, incluido Hymenophyllites macrosporangiatus del Jurásico ruso. [128]

Los restos más antiguos de colas de caballo modernas del género Equisetum aparecen por primera vez en el Jurásico Temprano, representados por Equisetum dimorphum del Jurásico Temprano de la Patagonia [129] y Equisetum laterale del Jurásico Temprano a Medio de Australia. [130] [131] Los restos silicificados de Equisetum thermale del Jurásico Tardío de Argentina exhiben todos los caracteres morfológicos de los miembros modernos del género. [132] Se estima que la división estimada entre Equisetum bogotense y todos los demás Equisetum vivos ocurrió no más tarde del Jurásico Temprano. [131]

Plantas inferiores

Se conocen plantas de la familia Quillwort prácticamente idénticas a las especies modernas desde el Jurásico en adelante. Isoetites rolandii del Jurásico Medio de Oregón es la especie más antigua conocida que presenta todas las características morfológicas principales de las Isoetes modernas . Formas más primitivas como Nathorstiana, que conservan un tallo alargado, persistieron hasta el Cretácico Inferior. [133]

Se cree que el musgo Kulindobryum del Jurásico medio de Rusia, que se encontró asociado con huesos de dinosaurio, está relacionado con las Splachnaceae , que crecen en los cadáveres de los animales. [134] Se cree que Bryokhutuliinia de la misma región está relacionado con Dicranales . [134] Se cree que Heinrichsiella del Jurásico de la Patagonia pertenece a Polytrichaceae o Timmiellaceae . [135]

La hepática Pellites hamiensis de la Formación Xishanyao del Jurásico Medio de China es el registro más antiguo de la familia Pelliaceae . [136] Se cree que Pallaviciniites sandaolingensis del mismo depósito pertenece a la subclase Pallaviciniineae dentro de Pallaviciniales . [137] Ricciopsis sandaolingensis , también del mismo depósito, es el único registro jurásico de Ricciaceae . [138]

Fauna

Reptiles

Crocodilomorfos

Ejemplar holotipo de Platysuchus , un talatosuquio telosáurido

La extinción masiva del Triásico-Jurásico diezmó la diversidad de pseudosuquios , siendo los crocodilomorfos , que se originaron a principios del Triásico Tardío, el único grupo de pseudosuquios que sobrevivió. Todos los demás pseudosuquios, incluidos los herbívoros aetosaurios y los carnívoros " rauisuquios ", se extinguieron. [139] La diversidad morfológica de los crocodilomorfos durante el Jurásico Temprano fue aproximadamente la misma que la de los pseudosuquios del Triásico Tardío, pero ocuparon diferentes áreas del morfoespacio, lo que sugiere que ocuparon nichos ecológicos diferentes a sus contrapartes del Triásico y que hubo una radiación rápida y extensa de crocodilomorfos durante este intervalo. [140] Si bien los crocodilianos actuales están confinados principalmente a un estilo de vida de depredador acuático de emboscada, los crocodilomorfos del Jurásico exhibieron una amplia variedad de hábitos de vida. Un protosúquido sin nombre conocido a partir de dientes del Jurásico Temprano de Arizona representa el crocodilomorfo herbívoro más antiguo conocido, una adaptación que apareció varias veces durante el Mesozoico. [141]

Los Thalattosuchia , un clado de crocodilomorfos predominantemente marinos, aparecieron por primera vez durante el Jurásico Temprano y se convirtieron en una parte importante de los ecosistemas marinos. [142] Dentro de Thalattosuchia, los Metriorhynchidae se adaptaron altamente para la vida en el océano abierto, incluida la transformación de las extremidades en aletas, el desarrollo de una aleta caudal y una piel suave y sin escamas. [143] La diversidad morfológica de los crocodilomorfos durante el Jurásico Temprano y Medio fue relativamente baja en comparación con la de períodos posteriores y estuvo dominada por esfenosuquios terrestres de cuerpo pequeño y patas largas , crocodiliformes tempranos y talatosuquios. [144] [142] Los Neosuchia , un grupo importante de crocodilomorfos, aparecieron por primera vez durante el Jurásico Temprano a Medio. Neosuchia representa la transición de un estilo de vida ancestralmente terrestre a una ecología acuática de agua dulce similar a la ocupada por los crocodilianos modernos. [145] El momento del origen de Neosuchia es discutido. Se ha sugerido que el registro más antiguo de Neosuchios es Calsoyasuchus , del Jurásico Temprano de Arizona, que en muchos análisis se ha recuperado como el miembro ramificado más antiguo de la familia neosuchia Goniopholididae , lo que altera radicalmente los tiempos de diversificación de los crocodilomorfos. Sin embargo, esta ubicación ha sido disputada, con algunos análisis que lo encuentran fuera de Neosuchia, lo que colocaría los registros más antiguos de Neosuchia en el Jurásico Medio. [145] Se ha sugerido que Razanandrongobe del Jurásico Medio de Madagascar representa el registro más antiguo de Notosuchia , un clado principalmente gondwánico de crocodilomorfos principalmente terrestres, también conocido del Cretácico y el Cenozoico. [146]

Tortugas

Thalassemys , una tortuga marina talasoquelidia conocida del Jurásico tardío de Alemania.

Las tortugas del grupo troncal ( Testudinata ) se diversificaron durante el Jurásico. Las tortugas troncales del Jurásico pertenecen a dos clados progresivamente más avanzados, Mesochelydia y Perichelydia . [147] Se cree que la condición ancestral de los mesochelydia es acuática, a diferencia de la terrestre para los testudinatos. [148] Los dos grupos modernos de tortugas ( Testudines ), Pleurodira y Cryptodira , divergieron a principios del Jurásico tardío. [147] Los pleurodiros más antiguos conocidos, los Platychelyidae , se conocen del Jurásico tardío de Europa y América, [149] mientras que el criptodiro inequívoco más antiguo, Sinaspideretes , un pariente temprano de las tortugas de caparazón blando , se conoce del Jurásico tardío de China. [150] Las Thalassochelydia , un linaje diverso de tortugas marinas no relacionadas con las tortugas marinas modernas , se conocen del Jurásico tardío de Europa y Sudamérica. [151]

Lepidosaurios

Los rincocéfalos (cuyo único representante vivo es el tuátara ) habían alcanzado una distribución global a principios del Jurásico, [152] y representaban el grupo dominante de pequeños reptiles durante el Jurásico a nivel mundial. [153] Los rincocéfalos alcanzaron su mayor diversidad morfológica en su historia evolutiva durante el Jurásico, ocupando una amplia gama de estilos de vida, incluidos los pleurosaurios acuáticos con cuerpos largos similares a serpientes y extremidades reducidas, los eilenodontinos herbívoros especializados , así como los safeosaurios que tenían placas dentales anchas indicativas de durofagia . [154] Los rincocéfalos desaparecieron de Asia después del Jurásico Temprano. [152] Se estima que el último ancestro común de los escamosos actuales (que incluye lagartijas y serpientes ) vivió hace unos 190 millones de años durante el Jurásico Temprano, y se estima que las principales divergencias entre los linajes de escamosos modernos ocurrieron durante el Jurásico Temprano y Medio. [155] Los escamosos aparecen por primera vez en el registro fósil durante el Jurásico Medio , [156] incluidos miembros de clados modernos como Scincomorpha , [157] aunque muchos escamosos jurásicos tienen relaciones poco claras con los grupos actuales. [158] Se ha sugerido que Eichstaettisaurus del Jurásico Tardío de Alemania es un pariente temprano de los geckos y muestra adaptaciones para trepar. [159] Dorsetisaurus del Jurásico Tardío de América del Norte y Europa representa el registro más antiguo ampliamente aceptado de Anguimorpha . [160] Se ha sugerido que Marmoretta del Jurásico Medio de Gran Bretaña representa un lepidosauromorfo superviviente tardío fuera de Rhynchocephalia y Squamata, aunque algunos estudios lo han recuperado como un escamoso primitivo. [161]

Coristóderos

Esqueleto de Coeruleodraco

Los restos más antiguos conocidos de Choristodera , un grupo de reptiles acuáticos de agua dulce con afinidades inciertas con otros grupos de reptiles, se encuentran en el Jurásico Medio. Solo se conocen dos géneros de coristoderos del Jurásico. Uno es Cteniogenys , un pequeño lagarto parecido a un lagarto , que se cree que es el coristodero más basal conocido; se lo conoce del Jurásico Medio a Superior de Europa y del Jurásico Superior de América del Norte, con restos similares también conocidos del Jurásico Medio superior de Kirguistán y Siberia occidental. [162] El otro es Coeruleodraco del Jurásico Superior de China, que es un coristodero más avanzado, aunque todavía pequeño y con morfología similar a la de un lagarto. [163]

Ictiosaurios

Esqueleto de un ictiosaurio en vista lateral
Fósil de Ichthyosaurus somersetensis en el Museo de Historia Natural de Londres

Los ictiosaurios sufrieron un cuello de botella evolutivo durante la extinción del Triásico final, y todos los no neoictiosaurios se extinguieron. Los ictiosaurios alcanzaron su ápice de diversidad de especies durante el Jurásico Temprano, con una variedad de morfologías que incluían al enorme depredador superior Temnodontosaurus y al pez espada Eurhinosaurus , aunque los ictiosaurios del Jurásico Temprano eran significativamente menos diversos morfológicamente que sus contrapartes del Triásico. [164] [165] En el límite del Jurásico Temprano-Medio, entre el final del Toarciense y el comienzo del Bajociense, la mayoría de los linajes de ictiosaurios parecen haberse extinguido, con la primera aparición de Ophthalmosauridae , el clado que abarcaría casi todos los ictiosaurios a partir de entonces, durante el Bajociense temprano. [166] Los oftalmosáuridos eran diversos en el Jurásico tardío, pero no lograron llenar muchos de los nichos que habían sido ocupados por los ictiosaurios durante el Jurásico temprano. [166] [164] [165]

Plesiosaurios

Rhomaleosaurus cramptoni en el Museo de Historia Natural de Londres

Los plesiosaurios se originaron a finales del Triásico (Rético). Para finales del Triásico, todos los demás sauropterigios , incluidos los placodontos y los notosaurios , se habían extinguido. Al menos seis linajes de plesiosaurios cruzaron el límite Triásico-Jurásico. [167] Los plesiosaurios ya eran diversos en el Jurásico temprano, y la mayoría de los plesiosaurios en el Lias Azul de la edad del Hettangiense pertenecían a los Rhomaleosauridae . Los primeros plesiosaurios eran generalmente de cuerpo pequeño, y el tamaño corporal aumentó en el Toarciense. [168] Parece haber habido una fuerte rotación alrededor del límite Jurásico Temprano-Medio, con microcleídidos y romaleosáuridos extintos y casi extintos respectivamente después del final del Toarciense con la primera aparición del clado dominante de plesiosaurios de la segunda mitad del Jurásico, Cryptoclididae durante el Bajociense. [166] El Jurásico Medio vio la evolución de pliosaurios talasófonos de cuello corto y cabeza grande a partir de formas ancestrales de cabeza pequeña y cuello largo . [169] [166] Algunos pliosaurios talasófonos, como algunas especies de Pliosaurus , tenían cráneos de hasta dos metros de largo con longitudes corporales estimadas alrededor de 10-12 metros (32-39 pies), lo que los convierte en los depredadores máximos de los océanos del Jurásico Tardío. [170] [166] Los plesiosaurios invadieron ambientes de agua dulce durante el Jurásico, y se conocen restos indeterminados de pleisosaurios de cuerpo pequeño en sedimentos de agua dulce del Jurásico de China y Australia. [171] [172]

Pterosaurios

Esqueleto de Rhamphorhynchus muensteri en el Museo Teylers de Haarlem

Los pterosaurios aparecieron por primera vez a finales del Triásico. Una radiación importante de los pterosaurios jurásicos es la de los Rhamphorhynchidae , que aparecieron por primera vez a finales del Jurásico Temprano (Toarciense); [173] se cree que eran piscívoros . [174] Los anurognátidos , que aparecieron por primera vez en el Jurásico Medio, poseían cabezas cortas y cuerpos densamente cubiertos de pelo, y se cree que eran insectívoros. [174] Los pterosaurios monofenestratanos derivados , como los wukongopteridos, aparecieron a finales del Jurásico Medio. Los pterodactiloides avanzados de cola corta aparecieron por primera vez en el límite entre el Jurásico Medio y Superior. Los pterodactiloides jurásicos incluyen a los ctenocasmátidos , como Ctenochasma , que tienen dientes en forma de aguja muy espaciados que presumiblemente se usaban para la alimentación por filtración . [174] El extraño ctenocasmatoideo del Jurásico tardío Cycnorhamphus tenía una mandíbula con dientes solo en las puntas, con mandíbulas dobladas como las de las cigüeñas de pico abierto actuales que pueden haber sido utilizadas para sujetar y aplastar invertebrados duros. [174]

Dinosaurios

Los dinosaurios , que se habían diversificado morfológicamente en el Triásico Tardío, experimentaron un aumento importante en diversidad y abundancia durante el Jurásico Temprano como consecuencia de la extinción del Triásico final y la extinción de otros grupos de reptiles, convirtiéndose en los vertebrados dominantes en los ecosistemas terrestres. [175] [176] Chilesaurus , un dinosaurio herbívoro morfológicamente aberrante del Jurásico Tardío de América del Sur, tiene relaciones inciertas con los tres grupos principales de dinosaurios, habiendo sido recuperado como miembro de los tres en diferentes análisis. [177]

Terópodos

Los terópodos avanzados pertenecientes a Neotheropoda aparecieron por primera vez en el Triásico Tardío. Los neoterópodos basales, como los celofisoides y los dilofosaurios , persistieron hasta el Jurásico Temprano, pero se extinguieron en el Jurásico Medio. [178] Los primeros averostranos aparecen durante el Jurásico Temprano, y el primer miembro conocido de Ceratosauria es Saltriovenator, del Sinemuriense temprano (hace 199,3–197,5 millones de años) de Italia. [179] El inusual ceratosaurio Limusaurus del Jurásico Tardío de China tenía una dieta herbívora, y los adultos tenían mandíbulas con pico edéntulas , [180] lo que lo convierte en el primer terópodo conocido que se convirtió de una dieta ancestralmente carnívora. [181] Los primeros miembros de Tetanurae aparecieron a finales del Jurásico Temprano o principios del Jurásico Medio. [182] Los Megalosauridae representan la radiación más antigua de los Tetanurae, apareciendo por primera vez en Europa durante el Bajociense. [183] ​​Se ha sugerido que el miembro más antiguo de Allosauroidea es Asfaltovenator del Jurásico Medio de Sudamérica. [182] Los celurosaurios aparecieron por primera vez durante el Jurásico Medio, incluidos los primeros tiranosaurios como Proceratosaurus del Bathoniano de Gran Bretaña. [184] Se sugiere que algunos celurosaurios del Jurásico Tardío de China, incluidos Shishugounykus y Haplocheirus, representan a los primeros alvarezsaurios , [185] sin embargo, esto ha sido cuestionado. [186] Los escansoriopterígidos , un grupo de pequeños celurosaurios emplumados con alas membranosas similares a las de los murciélagos para planear, se conocen del Jurásico Medio a Tardío de China. [187] Se sugiere que el registro más antiguo de troodóntidos es Hesperornithoides del Jurásico Superior de América del Norte. Se conocen restos de dientes que se cree que representan a los de los dromeosaurios del Jurásico, pero no se conocen restos de cadáveres hasta el Cretácico. [188]

Pájaros
Fósil de Archaeopteryx completo, incluidas hendiduras de plumas en las alas y la cola.
Archaeopteryx lithographica del Jurásico Superior (Tithoniano) de Alemania

Los primeros avianos , que incluyen a las aves y sus ancestros, aparecen durante el Jurásico medio a superior, representados definitivamente por Archaeopteryx del Jurásico superior de Alemania. Los avianos pertenecen al clado Paraves dentro de Coelurosauria, que también incluye a los dromaeosaurios y troodóntidos. Los Anchiornithidae del Jurásico medio a superior de Eurasia han sido sugeridos con frecuencia como avianos, pero también se los ha encontrado como un linaje separado de paravianos. [189]

Esqueleto de Heterodontosaurus , un ornitisquio primitivo del Jurásico temprano de Sudáfrica

Ornitisquios

Los primeros ornitisquios definitivos aparecen durante el Jurásico Temprano, representados por ornitisquios basales como Lesothosaurus , heterodontosáuridos y los primeros miembros de Thyreophora . Los primeros miembros de Ankylosauria y Stegosauria aparecen durante el Jurásico Medio. [190] El neornitisquio basal Kulindadromeus del Jurásico Medio de Rusia indica que al menos algunos ornitisquios estaban cubiertos de protoplumas . [191] Los primeros miembros de Ankylopollexia , que se vuelven prominentes en el Cretácico, aparecieron durante el Jurásico Tardío, representados por formas bípedas como Camptosaurus . [192] Los ceratopsianos aparecieron por primera vez en el Jurásico Tardío de China, representados por miembros de Chaoyangsauridae . [193]

Sauropodomorfos

Esqueleto de Mamenchisaurus sinocanadorum del Jurásico medio-superior de China

Los saurópodos se convirtieron en los grandes herbívoros dominantes en los ecosistemas terrestres durante el Jurásico. [194] Algunos saurópodos del Jurásico alcanzaron tamaños gigantescos, convirtiéndose en los organismos más grandes que hayan vivido alguna vez en la tierra. [195]

Los sauropodomorfos bípedos basales , como los massospondylids , continuaron existiendo hasta el Jurásico Temprano, pero se extinguieron a principios del Jurásico Medio. [194] Los sauropomorfos cuadrúpedos aparecieron durante el Triásico Tardío. El Ledumahadi cuadrúpedo del Jurásico temprano de Sudáfrica alcanzó un peso estimado de 12 toneladas, muy por encima de otros sauropodomorfos basales conocidos. [196] Los saurópodos gravisaurios aparecieron por primera vez durante el Jurásico Temprano, y el registro definitivo más antiguo es Vulcanodon de Zimbabue, probablemente de la edad Sinemuriense. [197] Los eusaurópodos aparecieron por primera vez a finales del Jurásico Temprano (Toarciense) y se diversificaron durante el Jurásico Medio; [194] estos incluían cetiosáuridos , turiasaurios , [198] y mamenchisaurios . [199] Los neosaurópodos como los macronarios y los diplodocoideos aparecieron por primera vez durante el Jurásico Medio, antes de volverse abundantes y distribuidos globalmente durante el Jurásico Tardío. [200]

Anfibios

Vista superior del esqueleto de una salamandra
Esqueleto de Karaurus sharovi , una salamandra del grupo troncal del Jurásico medio a tardío de Kazajstán

La diversidad de temnospóndilos había disminuido progresivamente a lo largo del Triásico Tardío, y solo los braquiopoides sobrevivieron hasta el Jurásico y más allá. [201] Se conocen miembros de la familia Brachyopidae de depósitos jurásicos en Asia, [202] mientras que el chigutisáurido Siderops se conoce del Jurásico Temprano de Australia. [203] Los lisanfibios modernos comenzaron a diversificarse durante el Jurásico. Se cree que el Prosalirus del Jurásico Temprano representa el primer pariente de las ranas con una morfología capaz de saltar como las ranas actuales. [204] Se conocen ranas de tallo morfológicamente reconocibles como el Notobatrachus sudamericano del Jurásico Medio, [205] y las ranas del grupo corona modernas como Enneabatrachus y Rhadinosteus aparecieron hacia el Jurásico Tardío. [206] Mientras que los primeros anfibios de la línea de salamandras se conocen del Triásico, [207] las salamandras del grupo corona aparecen por primera vez durante el Jurásico medio a tardío en Eurasia, junto con parientes del grupo madre. Se cree que muchas salamandras del grupo madre del Jurásico, como Marmorerpeton y Kokartus , fueron neoténicas . [208] Los primeros representantes de las salamandras del grupo corona incluyen a Chunerpeton , Pangerpeton y Linglongtriton de la biota Yanliao del Jurásico medio a tardío de China. Se sugiere que algunas de estas pertenecen a Cryptobranchoidea , que contiene salamandras asiáticas y gigantes vivas . [209] Se cree que Beiyanerpeton y Qinglongtriton de la misma biota son miembros tempranos de Salamandroidea , el grupo que contiene todas las demás salamandras vivas. [210] [211] Las salamandras se dispersaron en América del Norte a finales del Jurásico, como lo demuestra Iridotriton , encontrado en la Formación Morrison del Jurásico Tardío . [212] La cecilia madre Eocaecilia se conoce del Jurásico Temprano de Arizona. [213] El cuarto grupo de lisanfibios, los albanerpetontidos extintos parecidos a salamandras , aparecieron por primera vez en el Jurásico Medio, representados por Anoualerpeton priscus.del Bathoniano de Gran Bretaña, así como restos indeterminados de sedimentos de edad equivalente en Francia y la Formación Anoual de Marruecos. [214]

Henkelotherium , un probable diolestoideo arbóreo del Jurásico Superior de Portugal

Mamíferos en forma

Los mamíferos , incluidos los mamíferos , se originaron a partir de los cinodontos al final del Triásico y se diversificaron ampliamente durante el Jurásico. [215] Si bien la mayoría de los mamíferos del Jurásico se conocen únicamente a partir de dientes aislados y fragmentos de mandíbula, los restos excepcionalmente conservados han revelado una variedad de estilos de vida. [215] El docodonte Castorocauda estaba adaptado a la vida acuática, de manera similar al ornitorrinco y las nutrias . [216] Algunos miembros de Haramiyida [217] y la tribu eutriconodontana Volaticotherini [218] tenían un patagio similar al de las ardillas voladoras , lo que les permitía planear por el aire. El mamífero parecido al cerdo hormiguero Fruitafossor , de taxonomía incierta, probablemente era un especialista en insectos coloniales, de manera similar a los osos hormigueros actuales . [219] Australosphenida , un grupo de mamíferos posiblemente relacionados con los monotremas actuales , apareció por primera vez en el Jurásico Medio de Gondwana. [220] Los primeros registros de multituberculados , de los órdenes de mamíferos más duraderos y exitosos, se conocen del Jurásico Medio. [221] Los mamíferos terianos , representados hoy por placentarios y marsupiales actuales , tienen sus primeros registros durante el Jurásico Tardío temprano, representado por Juramaia , un mamífero euterio más cercano a la ascendencia de los placentarios que de los marsupiales. [222] Juramaia es mucho más avanzado de lo esperado para su edad, ya que otros mamíferos terianos no se conocen hasta el Cretácico Inferior, y se ha sugerido que Juramaia también puede originarse en el Cretácico Inferior. [223] Dos grupos de cinodontes no mamaliaformes persistieron más allá del final del Triásico. El grupo insectívoro Tritheledontidae tiene algunos registros del Jurásico Temprano. El grupo herbívoro Tritylodontidae , que apareció por primera vez durante el Rético, tiene abundantes registros del Jurásico, en su gran mayoría del hemisferio norte. [224] [225]

Pez

Pez sin mandíbula

Fósiles y restauraciones de vida de las dos especies de Yanliaomyzon , una lamprea conocida del Jurásico Medio de China

La última especie conocida de conodonte , una clase de pez sin mandíbula cuyos elementos duros, similares a dientes, son fósiles índice clave, finalmente se extinguió durante el Jurásico temprano después de más de 300 millones de años de historia evolutiva, con una extinción asincrónica que ocurrió primero en Tetis y Panthalassa oriental y los sobrevivientes persistieron hasta el Hettangiense temprano de Hungría y Panthalassa central. [226] Los conodontes del Triásico final estaban representados por solo un puñado de especies y habían estado disminuyendo progresivamente durante el Triásico medio y tardío. [227] Yanliaomyzon del Jurásico medio de China representa la lamprea post Paleozoica más antigua , y la lamprea más antigua que tiene el aparato de alimentación dentado y probablemente el ciclo de vida de tres etapas típico de los miembros modernos del grupo. [228]

Sarcopterigios

Celacanto de la caliza de Solnhofen

Los peces pulmonados (Dipnoi) estuvieron presentes en ambientes de agua dulce de ambos hemisferios durante el Jurásico. [229] Algunos estudios han propuesto que el último ancestro común de todos los peces pulmonados vivos vivió durante el Jurásico. [230] Los mawsoniidos , un grupo marino y de agua dulce/salobre de celacantos , que apareció por primera vez en América del Norte durante el Triásico, se expandió a Europa y América del Sur a finales del Jurásico. [231] Los latimeríidos marinos , que contienen los celacantos vivos del género Latimeria , también estuvieron presentes en el Jurásico, habiéndose originado en el Triásico, con varios registros del Jurásico de Europa, incluido Swenzia , que se cree que es el pariente más cercano conocido de los celacantos vivos. [232]

Actinopterigios

Fósil de Thrissops , un teleósteo del grupo troncal ictiodectídeo de la caliza Solnhofen del Jurásico tardío de Alemania, que muestra una coloración preservada

Los peces con aletas radiadas ( Actinopterygii ) fueron componentes principales de los ecosistemas marinos y de agua dulce del Jurásico. Los peces " paleoniscoideos " arcaicos, que eran comunes tanto en hábitats marinos como de agua dulce durante el Triásico anterior, declinaron durante el Jurásico, siendo reemplazados en gran parte por linajes actinopterigios más derivados . [233] Los Acipenseriformes más antiguos conocidos , el grupo que contiene al esturión y al pez espátula actuales , son del Jurásico Temprano. [234] Los peces amiiformes (que hoy solo incluyen al bowfin ) aparecieron por primera vez durante el Jurásico Temprano, representados por Caturus del Pliensbachiano de Gran Bretaña; después de su aparición en el oeste de Tetis, se expandieron a África, América del Norte y el sudeste y este de Asia a fines del Jurásico, [235] y la familia moderna Amiidae apareció durante el Jurásico Tardío. [236] Los Pycnodontiformes , que aparecieron por primera vez en el oeste de Tetis durante el Triásico Superior, se expandieron a Sudamérica y el sudeste asiático a finales del Jurásico, teniendo una gran diversidad en Europa durante el Jurásico Superior. [235] Durante el Jurásico, los Ginglymodi , cuyos únicos representantes vivos son los gars (Lepisosteidae), fueron diversos tanto en ambientes de agua dulce como marinos. Los representantes más antiguos conocidos de los gars anatómicamente modernos aparecieron durante el Jurásico Superior. [237] Los teleósteos del grupo troncal , que constituyen más del 99% de los Actinopterygii vivos, habían aparecido por primera vez durante el Triásico en el oeste de Tetis; experimentaron una importante diversificación a partir del Jurásico Superior, con los primeros representantes de los clados de teleósteos modernos como Elopomorpha y Osteoglossoidei apareciendo durante este tiempo. [238] [239] Los Pachycormiformes , un grupo de teleósteos troncales marinos, aparecieron por primera vez en el Jurásico Temprano e incluían formas depredadoras y filtradoras similares al atún , estas últimas incluían el pez óseo más grande que se sabe que haya existido: Leedsichthys , con una longitud máxima estimada de más de 15 metros, conocido desde finales del Jurásico Medio hasta finales del Jurásico. [240]

Condrictios

Fósil de tiburón preservado en vista desde abajo
Fósil de Palaeocarcharias , el tiburón lamniforme más antiguo conocido

Durante el Jurásico Temprano, los hibodontos similares a tiburones , que representaban el grupo dominante de condrictios durante el Triásico precedente, eran comunes tanto en entornos marinos como de agua dulce; sin embargo, en el Jurásico Tardío, los hibodontos se habían convertido en componentes menores de la mayoría de las comunidades marinas, habiendo sido reemplazados en gran medida por los neoselachios modernos , pero siguieron siendo comunes en agua dulce y ambientes marinos restringidos. [241] [242] Los Neoselachii, que contienen todos los tiburones y rayas vivos, irradiaron a partir del Jurásico Temprano. [243] La raya más antigua conocida ( Batoidea ) es Antiquaobatis del Pliensbachiano de Alemania. [244] Los batoideos jurásicos conocidos a partir de restos completos conservan una morfología conservadora, similar a la del pez guitarra . [245] Los Hexanchiformes y tiburones alfombra (Orectolobiformes) más antiguos conocidos son del Jurásico Temprano (Pliensbachiano y Toarciense, respectivamente) de Europa. [246] [247] Los miembros más antiguos conocidos de los Heterodontiformes , cuyos únicos miembros vivos son el tiburón toro ( Heterodontus ), aparecieron por primera vez en el Jurásico Temprano, con representantes del género vivo que aparecen durante el Jurásico Tardío. [248] Los tiburones caballa más antiguos conocidos (Lamniformes) son del Jurásico Medio, representados por el género Palaeocarcharias , que tiene un cuerpo similar al orectolobiforme pero comparte similitudes clave en la histología dental con los lamniformes, incluida la ausencia de ortodentina. [249] El registro más antiguo de tiburones ángel ( Squatiniformes ) es Pseudorhina del Jurásico Tardío (Oxfordiense-Tithoniano) de Europa, que ya tiene una forma corporal similar a los miembros del único género vivo del orden, Squatina . [250] Los restos más antiguos conocidos de Carcharhiniformes , el orden más grande de tiburones vivos, aparecen por primera vez a finales del Jurásico Medio (Bathoniano) en el oeste de Tetis (Inglaterra y Marruecos). Los restos dentales y corporales excepcionalmente conservados conocidos de Carchariniformes del Jurásico son similares a los de los tiburones gato actuales . [251] Synechodontiformes , un grupo extinto de tiburones estrechamente relacionado con Neoselachii, también estaban muy extendidos durante el Jurásico. [252] Los restos más antiguos de quimeras modernas son del Jurásico Temprano de Europa, con miembros de la familia vivaCallorhinchidae que apareció durante el Jurásico medio. A diferencia de la mayoría de las quimeras actuales, las quimeras jurásicas suelen encontrarse en entornos de aguas poco profundas. [253] Los Squaloraja y los myriacanthoids, estrechamente relacionados, también se conocen del Jurásico de Europa. [254]

Insectos y arácnidos

Lichnomesopsyche daohugouensis , una mosca escorpión mesopsíquida extinta del Jurásico tardío de China

Parece que no hubo una gran extinción de insectos en el límite Triásico-Jurásico. [83] Se conocen muchas localidades importantes de fósiles de insectos del Jurásico de Eurasia, siendo las más importantes la Formación Karabastau de Kazajstán y los diversos depósitos de la Biota de Yanliao en Mongolia Interior, China, como el lecho Daohugou, que data del Calloviano-Oxfordiano. La diversidad de insectos se estancó a lo largo del Jurásico Temprano y Medio, pero durante el último tercio del Jurásico las tasas de origen aumentaron sustancialmente mientras que las tasas de extinción se mantuvieron estables. [255] La creciente diversidad de insectos en el Jurásico Medio-Superior se corresponde con un aumento sustancial en la diversidad de piezas bucales de los insectos . [256] El Jurásico medio a superior fue una época de gran diversificación para los escarabajos , [257] particularmente para el suborden Polyphaga , que representa el 90% de las especies de escarabajos vivos pero que era raro durante el Triásico anterior. [258] Los gorgojos aparecen por primera vez en el registro fósil durante el Jurásico medio a superior, pero se sospecha que se originaron durante el Triásico superior al Jurásico inferior. [259] La diversidad de ortópteros había disminuido durante el Triásico superior, pero se recuperó durante el Jurásico inferior, [260] siendo los Hagloidea , una superfamilia de ortópteros ensíferos hoy confinada a unas pocas especies vivas, particularmente diversos durante el Jurásico. [261] Los lepidópteros más antiguos conocidos (el grupo que contiene mariposas y polillas) se conocen del límite Triásico-Jurásico, con escamas de alas pertenecientes al suborden Glossata y polillas de grado Micropterigidae de los depósitos de esta era en Alemania. [262] Los representantes modernos tanto de libélulas como de caballitos del diablo también aparecieron por primera vez durante el Jurásico. [263] Aunque los representantes modernos no se conocen hasta el Cenozoico, los insectos ectoparásitos que se cree que representan pulgas primitivas , pertenecientes a la familia Pseudopulicidae , se conocen del Jurásico Medio de Asia. Estos insectos son sustancialmente diferentes de las pulgas modernas, carecen de la morfología especializada de estas últimas y son más grandes. [264] [265] Las avispas parasitoides ( Apocrita ) aparecieron por primera vez durante el Jurásico Temprano y posteriormente se generalizaron, remodelando las redes alimentarias terrestres. [266]El Jurásico también vio las primeras apariciones de varios otros grupos de insectos, incluidos Phasmatodea (insectos palo), [267] Mantophasmatidae (gladiadores), [268] Embioptera (tejedores de telarañas), [269] y Raphidioptera (moscas serpiente). [270]

Mongolarachne del Jurásico Superior de China

Solo se conocen unos pocos registros de ácaros del Jurásico, incluido Jureremus , un ácaro oribátido perteneciente a la familia Cymbaeremaeidae conocido del Jurásico tardío de Gran Bretaña y Rusia, [271] y un miembro del género orbátido aún vivo Hydrozetes del Jurásico temprano de Suecia. [272] Las arañas se diversificaron a lo largo del Jurásico. [273] El Seppo koponeni del Jurásico temprano puede representar un grupo madre de Palpimanoidea . [274] Eoplectreurys del Jurásico medio de China se considera un linaje madre de Synspermiata . El miembro más antiguo de la familia Archaeidae , Patarchaea , se conoce del Jurásico medio de China. [273] Mongolarachne del Jurásico medio de China se encuentra entre las arañas fósiles más grandes conocidas, con patas de más de 5 centímetros de largo. [275] El único escorpión conocido del Jurásico es Liassoscorpionides del Jurásico Temprano de Alemania, de ubicación incierta. [276] Los opiliones son conocidos del Jurásico Medio de China, incluidos miembros de la familia Sclerosomatidae . [277] [278]

Invertebrados marinos

Extinción del final del Triásico

Durante la extinción del Triásico final, se extinguieron entre el 46% y el 72% de todos los géneros marinos. Los efectos de la extinción del Triásico final fueron mayores en las latitudes tropicales y más graves en Panthalassa que en los océanos Tetis o Boreal. Los ecosistemas de arrecifes tropicales colapsaron durante el evento y no se recuperaron por completo hasta mucho más tarde en el Jurásico. Los organismos filtradores sésiles y los organismos fotosimbióticos estuvieron entre los más gravemente afectados. [279]

Ecosistemas marinos

Habiendo disminuido en el límite Triásico-Jurásico, los arrecifes se expandieron sustancialmente durante el Jurásico Tardío, incluyendo arrecifes de esponjas y arrecifes de coral escleractinios . Los arrecifes del Jurásico Tardío eran similares en forma a los arrecifes modernos pero tenían más carbonatos microbianos y esponjas hipercalcificadas , y tenían una unión biogénica débil. Los arrecifes disminuyeron drásticamente al final del Jurásico, [280] lo que causó una caída asociada en la diversidad de crustáceos decápodos . [281] Los primeros foraminíferos planctónicos, que constituyen el suborden Globigerinina , son conocidos desde finales del Jurásico Temprano (mediados del Toarciense) del Tetis occidental, expandiéndose por todo el Tetis en el Jurásico Medio y distribuyéndose globalmente en latitudes tropicales en el Jurásico Tardío. [282] Los cocolitóforos y dinoflagelados , que habían aparecido por primera vez durante el Triásico, irradiaron durante el Jurásico Temprano a Medio, convirtiéndose en miembros prominentes del fitoplancton . [283] Los gusanos tubícolas microcónquidos , el último orden restante de Tentaculita , un grupo de animales de afinidades inciertas que eran convergentes en los gusanos tubícolas Spirorbis , eran raros después del Triásico y se habían reducido al único género Punctaconchus , que se extinguió a finales del Bathoniano. [284] La diatomea más antigua conocida es del ámbar del Jurásico Tardío de Tailandia, asignado al género viviente Hemiaulus. [285]

Equinodermos

Los crinoideos se diversificaron a lo largo del Jurásico, alcanzando su máxima diversidad mesozoica durante el Jurásico Superior, principalmente debido a la radiación de formas sésiles pertenecientes a los órdenes Cyrtocrinida y Millericrinida . [286] Los equinoides (erizos de mar) experimentaron una diversificación sustancial a partir del Jurásico Temprano, impulsada principalmente por la radiación de formas irregulares (asimétricas), que se estaban adaptando a la alimentación por depósitos. Las tasas de diversificación cayeron drásticamente durante el Jurásico Superior. [287]

Crustáceos

Eryon , un crustáceo decápodo poliquelido del Jurásico tardío de Alemania.

El Jurásico fue un tiempo significativo para la evolución de los decápodos . [281] Los primeros cangrejos verdaderos ( Brachyura ) se conocen del Jurásico Temprano, siendo el más antiguo Eocarcinus praecursor del Pliensbachiano temprano de Inglaterra, que carecía de la morfología similar a la de los cangrejos ( carcinización ) de los cangrejos modernos, [288] y Eoprosopon klugi del Pliensbachiano tardío de Alemania, que puede pertenecer a la familia viviente Homolodromiidae . [289] La mayoría de los cangrejos del Jurásico se conocen solo a partir de trozos de caparazón , lo que dificulta determinar sus relaciones. [290] Aunque raros en el Jurásico Temprano y Medio, los cangrejos se volvieron abundantes durante el Jurásico Tardío a medida que se expandieron desde su hábitat ancestral de fondo marino limoso hacia hábitats de sustrato duro como arrecifes, con grietas en los arrecifes que proporcionaban refugio de los depredadores. [290] [281] Los cangrejos ermitaños también aparecieron por primera vez durante el Jurásico, siendo el primero conocido Schobertella hoelderi del Hettangiense tardío de Alemania. [291] Los primeros cangrejos ermitaños están asociados con caparazones de amonites en lugar de los de gasterópodos. [292] Los glífidos , que hoy en día solo se conocen de dos especies, alcanzaron su máxima diversidad durante el Jurásico, con alrededor de 150 especies de un registro fósil total de 250 conocidas del período. [293] Los percebes jurásicos tenían una baja diversidad en comparación con los actuales, [294] pero se conocen varias innovaciones evolutivas importantes, incluidas las primeras apariciones de formas con caparazón de calcita y especies con un modo de vida epiplanctónico. [295]

Braquiópodos

La diversidad de braquiópodos disminuyó durante la extinción Triásico-Jurásico. Los braquiópodos con espiras (Spiriferinida y Athyridida ) no recuperaron su biodiversidad y se extinguieron en la TOAE. [296] Rhynchonellida y Terebratulida también disminuyeron durante la extinción Triásico-Jurásico, pero se recuperaron durante el Jurásico Temprano; ninguno de los clados experimentó mucha variación morfológica. [297] Los braquiópodos disminuyeron sustancialmente en el Jurásico Tardío; las causas son poco conocidas. Las razones propuestas incluyen un aumento de la depredación, competencia con bivalvos, bioturbación mejorada o mayor presión de pastoreo . [298]

Briozoos

Al igual que en el Triásico anterior, la diversidad de briozoos fue relativamente baja en comparación con el Paleozoico. La gran mayoría de los briozoos del Jurásico son miembros de Cyclostomatida , que experimentó una radiación durante el Jurásico Medio, y todos los representantes del Jurásico pertenecen a los subórdenes Tubuliporina y Cerioporina . Cheilostomata , el grupo dominante de los briozoos modernos, apareció por primera vez durante el Jurásico Superior. [299]

Moluscos

Bivalvos

La extinción del final del Triásico tuvo un impacto severo en la diversidad de bivalvos, aunque tuvo poco impacto en la diversidad ecológica de bivalvos. La extinción fue selectiva, teniendo un impacto menor en los bivalvos que excavan en profundidad, pero no hay evidencia de un impacto diferencial entre los bivalvos que viven en la superficie (epifaunal) y los que excavan (infaunal). [300] La diversidad a nivel de familia de bivalvos después del Jurásico Temprano fue estática, aunque la diversidad de género experimentó un aumento gradual a lo largo del período. [301] Los rudistas , los organismos constructores de arrecifes dominantes del Cretácico, aparecieron por primera vez en el Jurásico Tardío (mediados del Oxfordiense) en el margen norte del Tetis occidental, expandiéndose al Tetis oriental a fines del Jurásico. [302]

Cefalópodos
Ejemplar fósil de Proteroctopus del Jurásico Medio de Francia, considerado anteriormente el pulpo más antiguo conocido del mundo.

Los amonites fueron devastados por la extinción masiva del Triásico, y solo sobrevivieron unos pocos géneros pertenecientes a la familia Psiloceratidae del suborden Phylloceratina , que se convirtieron en los ancestros de todos los amonites del Jurásico y Cretácico posteriores. Los amonites se diversificaron de forma explosiva durante el Jurásico Inferior, y durante el Jurásico aparecieron los órdenes Psiloceratina, Ammonitina , Lytoceratina , Haploceratina , Perisphinctina y Ancyloceratina . Las faunas de amonites durante el Jurásico eran regionales y se dividían en alrededor de 20 provincias y subprovincias distinguibles en dos reinos: el reino panboreal de alta latitud del norte, que consta de las regiones ártica, norte de Panthalassa y norte del Atlántico, y el reino pantetiano ecuatorial-meridional, que incluía el Tetis y la mayor parte de Panthalassa. [303] Las diversificaciones de amonitas ocurrieron simultáneamente con las transgresiones marinas , mientras que sus nadirs de diversidad ocurrieron durante las regresiones marinas . [304]

Los registros definitivos más antiguos de los belemnites parecidos a calamares son del Jurásico temprano (Hettangiense-Sinemuriano) de Europa y Japón; se expandieron por todo el mundo durante el Jurásico. [305] Los belemnites eran habitantes de aguas poco profundas, que habitaban los 200 metros superiores de la columna de agua en las plataformas continentales y en la zona litoral . Eran componentes clave de los ecosistemas jurásicos, tanto como depredadores como presas, como lo demuestra la abundancia de belemnites guardianes en las rocas jurásicas. [306]

Los primeros vampyromorfos , de los cuales el único miembro vivo es el calamar vampiro , aparecieron por primera vez durante el Jurásico Temprano. [307] Los primeros pulpos aparecieron durante el Jurásico Medio, habiéndose separado de sus parientes vivos más cercanos, los vampyromorfos, durante el Triásico al Jurásico Temprano. [308] Todos los pulpos del Jurásico se conocen únicamente a partir del gladius duro . [308] [309] Los pulpos probablemente se originaron a partir de ancestros que vivían en el fondo ( bentónicos ) que vivían en ambientes poco profundos. [308] Proteroctopus de finales del Jurásico Medio La Voulte-sur-Rhône lagerstätte , previamente interpretado como un pulpo temprano, ahora se piensa que es un taxón basal fuera del clado que contiene vampyromorfos y pulpos. [310]

Referencias

Citas

  1. ^ "Cuadro cronoestratigráfico internacional" (PDF) . Comisión Internacional de Estratigrafía.
  2. ^ "Dictionary.com | Significados y definiciones de palabras en inglés". Dictionary.com . 2024-04-17 . Consultado el 2024-04-18 .
  3. ^ abcdefghijkl Ogg, JG; Hinnov, LA; Huang, C. (2012), "Jurásico", La escala de tiempo geológico , Elsevier, págs. 731–791, doi :10.1016/b978-0-444-59425-9.00026-3, ISBN 978-0-444-59425-9, consultado el 5 de diciembre de 2020
  4. ^ Brongniart, Alexandre (1829). Tableau des lands qui composent l'écorce du Globe ou essai sur la Structure de la partie connue de la terre [ Descripción de los terrenos que constituyen la corteza terrestre o Ensayo sobre la estructura de las tierras conocidas de la Tierra ] (en francés ). Estrasburgo, Francia: FG Levrault – vía Gallica. De la pág. 221, nota al pie 2: "Souvent aussi calcaire oolithique moyen ou principal (gran oolithe); mais le nom de lands jurassiques nous paroît préférable […] analogue à celle de la chaîne du Jura". (A menudo también calizas oolíticas medias o principales (gran oolito); pero nos parece preferible el nombre de "terrenos jurásicos", porque es más general, porque indica un terreno compuesto de diferentes rocas, estando en una posición geognóstica análoga a aquella. de la cadena Jura.)
  5. ^ von Buch, L., 1839. Über den Jura en Deutschland. Der Königlich Preussischen Akademie der Wissenschaften, Berlín, pág. 87.
  6. ^ Cohen, KM, Finney, SC, Gibbard, PL y Fan, J.-X. (2013; actualizado) La Carta Cronoestratigráfica Internacional del ICS. Episodios 36: 199–204.
  7. ^ Hillebrandt, Av; Krystyn, L.; Kürschner, WM; Bonis, NR; Ruhl, M.; Richoz, S.; Schobben, MAN; Urlichs, M.; Bown, PR; Kment, K.; McRoberts, CA (1 de septiembre de 2013). "Secciones y puntos del estratotipo global (GSSP) para la base del sistema jurásico en Kuhjoch (montañas Karwendel, Alpes calcáreos del norte, Tirol, Austria)". Episodios . 36 (3): 162–198. doi : 10.18814/epiiugs/2013/v36i3/001 . ISSN  0705-3797.
  8. ^ Bloos, Gert; Page, Kevin N. (1 de marzo de 2002). "Sección del estratotipo global y punto de base del estadio Sinemuriense (Jurásico Inferior)". Episodios . 25 (1): 22–28. doi : 10.18814/epiiugs/2002/v25i1/003 . ISSN  0705-3797.
  9. ^ Meister, Christian; Aberhan, Martin; Blau, Joachim; Dommergues, Jean-Louis; Feist-Burkhardt, Susanne; Hailwood, Ernie A.; Hart, Malcom; Hesselbo, Stephen P.; Hounslow, Mark W.; Hylton, Mark; Morton, Nicol (1 de junio de 2006). "La sección y punto del estratotipo límite global (GSSP) para la base del estadio Pliensbachiano (Jurásico inferior), Wine Haven, Yorkshire, Reino Unido". Episodios . 29 (2): 93–106. doi : 10.18814/epiiugs/2006/v29i2/003 . ISSN  0705-3797.
  10. ^ Rocha, Rogério Bordalo da; Mattioli, Emanuela; Duarte, Luis Vítor; Pittet, Bernardo; Elmi, Serge; Mouterde, René; Cabral, María Cristina; Comas-Rengifo, María José; Gómez, Juan José; Goy, Antonio; Hesselbo, Stephen P. (1 de septiembre de 2016). "Base de la Etapa Toarciana del Jurásico Inferior definida por la Sección y Punto del Estratotipo de Límite Global (GSSP) en la sección de Peniche (Portugal)". Episodios . 39 (3): 460–481. doi : 10.18814/epiiugs/2016/v39i3/99741 . hdl : 10261/140775 . ISSN  0705-3797. Número de identificación del sujeto  131791652.
  11. ^ Barrón, Eduardo; Ureta, Soledad; Goy, Antonio; Lassaletta, Luis (agosto de 2010). "Palinología de la Sección y Punto Estratotípico de Límite Global (GSSP) Toarciense-Aaleniano en Fuentelsaz (Jurásico Inferior-Medio, Cordillera Ibérica, España)". Revista de Paleobotánica y Palinología . 162 (1): 11–28. Código Bibliográfico :2010RPaPa.162...11B. doi :10.1016/j.revpalbo.2010.04.003.
  12. ^ Pavia, G.; Enay, R. (1997-03-01). "Definición del límite de la etapa Aaleniana-Bajociense". Episodios . 20 (1): 16–22. doi : 10.18814/epiiugs/1997/v20i1/004 . ISSN  0705-3797.
  13. ^ López, Fernández; Rafael, Sixto; Pavía, Giulio; Erba, Elisabetta; Guiomar, Myette; Paiva Henriques, María Helena; Lanza, Roberto; Mangold, Charles; Morton, Nicol; Olivero, Davide; Tiraboschi, Daniele (2009). "La sección y el punto del estratotipo de límite global (GSSP) para la base de la etapa Bathonian (Jurásico medio), sección Ravin du Bès, sureste de Francia" (PDF) . Episodios . 32 (4): 222–248. doi :10.18814/epiiugs/2009/v32i4/001. S2CID  51754708. Archivado desde el original (PDF) el 4 de marzo de 2016 . Consultado el 5 de junio de 2015 .
  14. ^ abcd «Comisión Internacional de Estratigrafía-Subcomisión de Estratigrafía Jurásica». jurassic.stratigraphy.org . Consultado el 9 de abril de 2021 .
  15. ^ BARSKI, Marcin (6 de septiembre de 2018). "Conjuntos de quistes de dinoflagelados a lo largo del límite Oxfordiano/Kimmeridgiano (Jurásico superior) en Flodigarry, bahía Staffin, isla de Skye, Escocia: un GSSP propuesto para la base del Kimmeridgiano". Volumina Jurassica . XV (1): 51–62. doi :10.5604/01.3001.0012.4594 (inactivo 20 de mayo de 2024). ISSN  1731-3708. S2CID  133861564.{{cite journal}}: CS1 maint: DOI inactive as of May 2024 (link)
  16. ^ WIMBLEDON, William AP (27 de diciembre de 2017). "Desarrollos con fijación de un límite Titoniano/Berriasiano (J/K)". Volumina Jurassica . 15 (1): 107–112. doi :10.5604/01.3001.0010.7467. ISSN  1731-3708.
  17. ^ Wimbledon, William AP; Rehakova, Daniela; Svobodová, Andrea; Schnabl, Petr; Podador, Petr; Elbra, Tiiu; Šifnerová, Kristýna; Kdýr, Šimon; Señora, Camille; Schnyder, Johann; Galbrun, Bruno (11 de febrero de 2020). "Fijación de un límite J/K: un relato comparativo de perfiles clave del Tithoniano-Berriasiano en los departamentos de Drôme y Altos Alpes, Francia". Geológica Cárpatica . 71 (1). doi : 10.31577/GeolCarp.71.1.3 . S2CID  213694912.
  18. ^ Frau, Camille; Bulot, Luc G.; Reháková, Daniela; Wimbledon, William AP; Ifrim, Christina (noviembre de 2016). "Revisión de la especie índice de ammonites Berriasella jacobi Mazenot, 1939 y sus consecuencias para la bioestratigrafía del estadio Berriasiano". Cretaceous Research . 66 : 94–114. Bibcode :2016CrRes..66...94F. doi :10.1016/j.cretres.2016.05.007.
  19. ^ Gautier DL (2005). "Sistema petrolero total de esquistos kimmeridgianos de la provincia de Graben del Mar del Norte" (PDF) . Servicio Geológico de los Estados Unidos . Consultado el 2 de noviembre de 2018 .
  20. ^ Wilson, AO (2020). "Capítulo 1 Introducción a la cuenca intraplataforma árabe del Jurásico". Geological Society, Londres, Memorias . 53 (1): 1–19. doi : 10.1144/M53.1 . ISSN  0435-4052. S2CID  226967035.
  21. ^ Abdula, Rzger A. (agosto de 2015). "Potencial de hidrocarburos de la Formación Sargelu y correlación con la fuente de petróleo, Kurdistán iraquí". Revista árabe de geociencias . 8 (8): 5845–5868. Código Bibliográfico :2015ArJG....8.5845A. doi :10.1007/s12517-014-1651-0. ISSN  1866-7511. S2CID  129120960.
  22. ^ Universidad Soran; Abdula, Rzger A. (16 de octubre de 2016). "Evaluación de la roca madre de la Formación Naokelekan en el Kurdistán iraquí". Revista de Zankoy Sulaimani – Parte A . 19 (1): 103–124. doi : 10.17656/jzs.10589 .
  23. ^ Ao, Weihua; Huang, Wenhui; Weng, Chengmin; Xiao, Xiuling; Liu, Dameng; Tang, Xiuyi; Chen, Ping; Zhao, Zhigen; Wan, Huan; Finkelman, Robert B. (enero de 2012). "Petrología del carbón y génesis del carbón jurásico en la cuenca de Ordos, China". Fronteras de las geociencias . 3 (1): 85–95. Bibcode :2012GeoFr...3...85A. doi : 10.1016/j.gsf.2011.09.004 .
  24. ^ Kenny, Gavin G.; Harrigan, Claire O.; Schmitz, Mark D.; Crowley, James L.; Wall, Corey J.; Andreoli, Marco AG; Gibson, Roger L.; Maier, Wolfgang D. (1 de agosto de 2021). "Escalas de tiempo de la cristalización de la lámina de fusión por impacto y la edad precisa de la estructura de impacto de Morokweng, Sudáfrica". Earth and Planetary Science Letters . 567 : 117013. Bibcode :2021E&PSL.56717013K. doi : 10.1016/j.epsl.2021.117013 . ISSN  0012-821X. S2CID  235666971.
  25. ^ Holm-Alwmark, Sanna; Jourdan, Fred; Ferrière, Ludovic; Alwmark, Carl; Koeberl, Christian (15 de mayo de 2021). "Resolución de la edad de la estructura de impacto de Puchezh-Katunki (Rusia) frente a la alteración y el 40Ar* heredado: sin vínculo con las extinciones". Geochimica et Cosmochimica Acta . 301 : 116–140. Código Bibliográfico :2021GeCoA.301..116H. doi : 10.1016/j.gca.2021.03.001 . S2CID  233620694.
  26. ^ ab Scotese, Christopher R. (30 de mayo de 2021). "Atlas de mapas paleogeográficos del Fanerozoico: los mares entran y los mares salen". Revista anual de ciencias de la Tierra y planetarias . 49 (1): 679–728. Bibcode :2021AREPS..49..679S. doi : 10.1146/annurev-earth-081320-064052 . ISSN  0084-6597. S2CID  233708826.
  27. ^ ab Frizon de Lamotte, Dominique; Fourdan, Brendan; Leleu, Sophie; Leparmentier, François; de Clarens, Philippe (24 de abril de 2015). "Estilo de rifting y las etapas de la ruptura de Pangea". Tectónica . 34 (5): 1009–1029. Bibcode :2015Tecto..34.1009F. doi : 10.1002/2014TC003760 . S2CID  135409359.
  28. ^ Hosseinpour, Maral; Williams, Simon; Seton, Maria; Barnett-Moore, Nicholas; Müller, R. Dietmar (2016-10-02). "Evolución tectónica del Tetis occidental desde el Jurásico hasta la actualidad: acoplamiento de datos geológicos y geofísicos con modelos de tomografía sísmica". International Geology Review . 58 (13): 1616–1645. Bibcode :2016IGRv...58.1616H. doi :10.1080/00206814.2016.1183146. hdl : 2123/20835 . ISSN  0020-6814. S2CID  130537970.
  29. ^ Barth, G.; Franz, M.; Heunisch, C.; Ernst, W.; Zimmermann, J.; Wolfgramm, M. (1 de enero de 2018). "Sedimentación marina y terrestre a lo largo de la transición T-J en la cuenca del norte de Alemania". Paleogeografía, Paleoclimatología, Paleoecología . 489 : 74–94. Bibcode :2018PPP...489...74B. doi :10.1016/j.palaeo.2017.09.029. ISSN  0031-0182.
  30. ^ Korte, Christoph; Hesselbo, Stephen P.; Ullmann, Clemens V.; Dietl, Gerd; Ruhl, Micha; Schweigert, Günter; Thibault, Nicolas (diciembre de 2015). "Modo climático jurásico gobernado por la puerta de entrada al océano". Nature Communications . 6 (1): 10015. Bibcode :2015NatCo...610015K. doi :10.1038/ncomms10015. ISSN  2041-1723. PMC 4682040 . PMID  26658694. 
  31. ^ Bjerrum, Christian J.; Surlyk, Finn; Callomon, John H.; Slingerland, Rudy L. (agosto de 2001). "Estudio paleoceanográfico numérico de la vía marítima transcontinental laurasiática del Jurásico temprano". Paleoceanografía y paleoclimatología . 16 (4): 390–404. Código Bibliográfico :2001PalOc..16..390B. doi :10.1029/2000PA000512. S2CID  128465643.
  32. ^ Mitchell, Andrew J.; Allison, Peter A.; Gorman, Gerald J.; Piggott, Matthew D.; Pain, Christopher C. (1 de marzo de 2011). "Circulación de mareas en un antiguo mar epicontinental: la vía marítima laurasiática del Jurásico temprano". Geología . 39 (3): 207–210. Código Bibliográfico :2011Geo....39..207M. doi :10.1130/G31496.1 . Consultado el 21 de abril de 2023 .
  33. ^ Upchurch, Paul; Hunn, Craig A.; Norman, David B. (22 de marzo de 2002). "An analysis of dinosaurian biogeography: evidence for the existing of vicariance and dispersion patterns caused by geographical events" (Un análisis de la biogeografía de los dinosaurios: evidencia de la existencia de patrones de vicarianza y dispersión causados ​​por eventos geológicos). Proceedings of the Royal Society B: Biological Sciences (Actas de la Royal Society B: Ciencias Biológicas) . 269 (1491): 613–621. doi :10.1098/rspb.2001.1921. PMC 1690931. PMID  11916478 . 
  34. ^ Geiger, Markus; Clark, David Norman; Mette, Wolfgang (marzo de 2004). "Reevaluación del momento de la ruptura de Gondwana en función de la evidencia sedimentológica y sísmica de la cuenca de Morondava, Madagascar". Revista de Ciencias de la Tierra de África . 38 (4): 363–381. Bibcode :2004JAfES..38..363G. doi :10.1016/j.jafrearsci.2004.02.003.
  35. ^ Nguyen, Luan C.; Hall, Stuart A.; Bird, Dale E.; Ball, Philip J. (junio de 2016). "Reconstrucción de los márgenes continentales de África Oriental y la Antártida: RECONSTRUCCIÓN ÁFRICA-ANTÁRTICA". Revista de investigación geofísica: Tierra sólida . 121 (6): 4156–4179. doi : 10.1002/2015JB012776 .
  36. ^ Iturralde-Vinent, Manuel A. (1 de enero de 2003). "El registro paleontológico y estratigráfico contrapuesto de la formación de la vía marítima del Caribe". La región del golfo de México y el Caribe: hábitats de hidrocarburos, formación de cuencas y tectónica de placas . Vol. 79. Asociación Estadounidense de Geólogos del Petróleo . doi :10.1306/M79877. ISBN. 978-1-62981-054-6.
  37. ^ Blakey, Ronald C.; Ranney, Wayne D. (2018), "La llegada de Wrangellia y la orogenia nevadense: Triásico tardío a Jurásico tardío: ca. 240-145 Ma", Paisajes antiguos del oeste de Norteamérica , Cham: Springer International Publishing, págs. 89-101, doi :10.1007/978-3-319-59636-5_7, ISBN 978-3-319-59634-1, consultado el 10 de abril de 2021
  38. ^ Clennett, Edward J.; Sigloch, Karin; Mihalynuk, Mitchell G.; Seton, Maria; Henderson, Martha A.; Hosseini, Kasra; Mohammadzaheri, Afsaneh; Johnston, Stephen T.; Müller, R. Dietmar (agosto de 2020). "Una reconstrucción cuantitativa de la placa tomotectónica del oeste de América del Norte y la cuenca del Pacífico oriental". Geoquímica, Geofísica, Geosistemas . 21 (8): e09117. Bibcode :2020GGG....2109117C. doi :10.1029/2020GC009117. ISSN  1525-2027. S2CID  225443040.
  39. ^ Yi, Zhiyu; Meert, Joseph G. (16 de agosto de 2020). "Un cierre del océano Mongol-Ojotsk en el Jurásico medio: reconciliación de la evidencia paleomagnética y geológica". Geophysical Research Letters . 47 (15). Código Bibliográfico :2020GeoRL..4788235Y. doi :10.1029/2020GL088235. ISSN  0094-8276. S2CID  225430978.
  40. ^ Boschman, Lydian M.; van Hinsbergen, Douwe JJ (julio de 2016). "Sobre el enigmático nacimiento de la placa del Pacífico dentro del océano Panthalassa". Science Advances . 2 (7): e1600022. Bibcode :2016SciA....2E0022B. doi :10.1126/sciadv.1600022. ISSN  2375-2548. PMC 5919776 . PMID  29713683. 
  41. ^ Danise, Silvia; Holland, Steven M. (julio de 2018). "Un marco estratigráfico secuencial para el Jurásico medio y tardío de la vía marítima de Sundance, Wyoming: implicaciones para la correlación, la evolución de la cuenca y el cambio climático". The Journal of Geology . 126 (4): 371–405. Bibcode :2018JG....126..371D. doi :10.1086/697692. ISSN  0022-1376. S2CID  133707199.
  42. ^ Haq, Bilal U. (1 de enero de 2018). "Variaciones del nivel del mar durante el Jurásico: una reevaluación". GSA Today : 4–10. doi : 10.1130/GSATG359A.1 .
  43. ^ Vulpius, Sara; Kiessling, Wolfgang (enero de 2018). "Nuevas limitaciones en la última transición marina de aragonito-calcita a partir de ooides del Jurásico temprano". Facies . 64 (1): 3. Bibcode :2018Faci...64....3V. doi :10.1007/s10347-017-0516-x. ISSN  0172-9179. S2CID  135202813.
  44. ^ Eichenseer, Kilian; Balthasar, Uwe; Smart, Christopher W.; Stander, Julian; Haaga, Kristian A.; Kiessling, Wolfgang (agosto de 2019). "Cambio jurásico del control abiótico al biótico en el éxito ecológico marino". Nature Geoscience . 12 (8): 638–642. doi :10.1038/s41561-019-0392-9. hdl : 10026.1/14472 . ISSN  1752-0894. S2CID  197402218.
  45. ^ Dai, Xianduo; Du, Yuansheng; Ziegler, Martin; Wang, Chaowen; Ma, Qianli; Chai, Rong; Guo, Hua (1 January 2022). "Middle Triassic to Late Jurassic climate change on the northern margin of the South China Plate: Insights from chemical weathering indices and clay mineralogy". Palaeogeography, Palaeoclimatology, Palaeoecology. 585: 110744. Bibcode:2022PPP...58510744D. doi:10.1016/j.palaeo.2021.110744. hdl:1874/419504. S2CID 243463781. Retrieved 9 January 2023.
  46. ^ a b Sellwood, Bruce W.; Valdes, Paul J. (2008). "Jurassic climates". Proceedings of the Geologists' Association. 119 (1): 5–17. Bibcode:2008PrGA..119....5S. doi:10.1016/S0016-7878(59)80068-7.
  47. ^ a b c d e f g Scotese, Christopher R.; Song, Haijun; Mills, Benjamin J.W.; van der Meer, Douwe G. (April 2021). "Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years". Earth-Science Reviews. 215: 103503. Bibcode:2021ESRv..21503503S. doi:10.1016/j.earscirev.2021.103503. ISSN 0012-8252. S2CID 233579194. Archived from the original on 8 January 2021. Alt URL
  48. ^ Landwehrs, Jan; Feulner, Georg; Petri, Stefan; Sames, Benjamin; Wagreich, Michael (20 May 2021). "Investigating Mesozoic Climate Trends and Sensitivities With a Large Ensemble of Climate Model Simulations". Paleoceanography and Paleoclimatology. 36 (6): e2020PA004134. Bibcode:2021PaPa...36.4134L. doi:10.1029/2020PA004134. PMC 8251552. PMID 34240008.
  49. ^ Zhang, Zhihui; Lv, Dawei; Lu, Man; Yu, Zicheng; Gao, Yuan; Wang, Tiantian; Gao, Jie; Wang, Chengshan (March 2023). "Wildfire activity driven by the 405-kyr orbital climate cycles in the Middle Jurassic". Global and Planetary Change. 222: 104069. Bibcode:2023GPC...22204069Z. doi:10.1016/j.gloplacha.2023.104069. S2CID 257059454. Retrieved 16 September 2023.
  50. ^ Allmon, Warren D.; Martin, Ronald E. (Spring 2014). "Seafood through time revisited: the Phanerozoic increase in marine trophic resources and its macroevolutionary consequences". Paleobiology. 40 (2): 256–287. doi:10.1666/13065. ISSN 0094-8373. S2CID 86765146. Retrieved 16 September 2023.
  51. ^ Bougeault, Cédric; Pellenard, Pierre; Deconinck, Jean-François; Hesselbo, Stephen P.; Dommergues, Jean-Louis; Bruneau, Ludovic; Cocquerez, Théophile; Laffont, Rémi; Huret, Emilia; Thibault, Nicholas (February 2017). "Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe)". Global and Planetary Change. 149: 139–152. Bibcode:2017GPC...149..139B. doi:10.1016/j.gloplacha.2017.01.005. hdl:10871/25335. Retrieved 14 May 2023.
  52. ^ Ruebsam, Wolfgang; Mayer, Bernhard; Schwark, Lorenz (January 2019). "Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution". Global and Planetary Change. 172: 440–453. Bibcode:2019GPC...172..440R. doi:10.1016/j.gloplacha.2018.11.003. S2CID 133660136.
  53. ^ Ruebsam, Wolfgang; Schwark, Lorenz (2021-05-11). "Impact of a northern-hemispherical cryosphere on late Pliensbachian–early Toarcian climate and environment evolution". Geological Society, London, Special Publications. 514 (1): SP514–2021–11. Bibcode:2021GSLSP.514..359R. doi:10.1144/SP514-2021-11. ISSN 0305-8719. S2CID 236600012.
  54. ^ Ikeda, Masayuki; Bôle, Maximilien; Baumgartner, Peter O. (1 September 2016). "Orbital-scale changes in redox condition and biogenic silica/detrital fluxes of the Middle Jurassic Radiolarite in Tethys (Sogno, Lombardy, N-Italy): Possible link with glaciation?". Palaeogeography, Palaeoclimatology, Palaeoecology. 457: 247–257. Bibcode:2016PPP...457..247I. doi:10.1016/j.palaeo.2016.06.009. Retrieved 10 April 2023.
  55. ^ Li, Jun; Huang, Cheng-Min; Yang, Guo-Lin; Pan, Yuan-Yuan; Wen, Xing-Yue (January 2022). "Middle Jurassic climate oscillations from paleosol records of the Sichuan Basin, SW China". Journal of Palaeogeography. 11 (1): 97–122. Bibcode:2022JPalG..11...97L. doi:10.1016/j.jop.2022.01.003. S2CID 252949484.
  56. ^ Zhang, Zhihui; Wang, Chengshan; Lv, Dawei; Hay, William W.; Wang, Tiantian; Cao, Shuo (1 January 2020). "Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period". Global and Planetary Change. 184: 103051. Bibcode:2020GPC...18403051Z. doi:10.1016/j.gloplacha.2019.103051. ISSN 0921-8181. Retrieved 26 February 2024 – via Elsevier Science Direct.
  57. ^ Hesselbo, Stephen P.; Morgans-Bell, Helen S.; McElwain, Jennifer C.; Rees, P. McAllister; Robinson, Stuart A.; Ross, C. Elizabeth (May 2003). "Carbon-Cycle Perturbation in the Middle Jurassic and Accompanying Changes in the Terrestrial Paleoenvironment". The Journal of Geology. 111 (3): 259–276. Bibcode:2003JG....111..259H. doi:10.1086/373968. ISSN 0022-1376. Retrieved 4 May 2024 – via The University of Chicago Press Journals.
  58. ^ Wierzbowski, H.; Joachimski, M. (22 October 2007). "Reconstruction of late Bajocian–Bathonian marine palaeoenvironments using carbon and oxygen isotope ratios of calcareous fossils from the Polish Jura Chain (central Poland)". Palaeogeography, Palaeoclimatology, Palaeoecology. 254 (3–4): 523–540. Bibcode:2007PPP...254..523W. doi:10.1016/j.palaeo.2007.07.010. Retrieved 10 April 2023.
  59. ^ Jenkyns, Hugh C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, Jaap S. (2 February 2012). "Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean". Climate of the Past. 8 (1): 215–226. Bibcode:2012CliPa...8..215J. doi:10.5194/cp-8-215-2012. S2CID 203095372. Retrieved 8 April 2023.
  60. ^ a b Li, Gaojie; Xia, Guoqing; Yi, Haisheng; Wu, Chihua; Wagreich, Michael (15 September 2022). "Climate changes as recorded in stable carbon isotopic compositions of the Late Jurassic marine sedimentary succession in the Qiangtang Basin, Northern Tibet". Journal of Asian Earth Sciences. 236: 105317. Bibcode:2022JAESc.23605317L. doi:10.1016/j.jseaes.2022.105317. S2CID 250103419. Retrieved 8 January 2023.
  61. ^ Dromart, G.; Garcia, J.-P.; Picard, S.; Atrops, F.; Lécuyer, C.; Sheppard, S. M. F. (25 August 2003). "Ice age at the Middle–Late Jurassic transition?". Earth and Planetary Science Letters. 213 (3–4): 205–220. Bibcode:2003E&PSL.213..205D. doi:10.1016/S0012-821X(03)00287-5. Retrieved 8 January 2023.
  62. ^ Philippe, Marc; Puijalon, Sara; Suan, Guillaume; Mousset, Sylvain; Thévenard, Frédéric; Mattioli, Emanuela (15 January 2017). "The palaeolatitudinal distribution of fossil wood genera as a proxy for European Jurassic terrestrial climate". Palaeogeography, Palaeoclimatology, Palaeoecology. 466: 373–381. Bibcode:2017PPP...466..373P. doi:10.1016/j.palaeo.2016.11.029. Retrieved 10 June 2023.
  63. ^ Them, T.R.; Gill, B.C.; Caruthers, A.H.; Gröcke, D.R.; Tulsky, E.T.; Martindale, R.C.; Poulton, T.P.; Smith, P.L. (February 2017). "High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle". Earth and Planetary Science Letters. 459: 118–126. Bibcode:2017E&PSL.459..118T. doi:10.1016/j.epsl.2016.11.021.
  64. ^ Ros-Franch, Sonia; Echevarría, Javier; Damborenea, Susana E.; Manceñido, Miguel O.; Jenkyns, Hugh C.; Al-Suwaidi, Aisha; Hesselbo, Stephen P.; Riccardi, Alberto C. (1 July 2019). "Population response during an Oceanic Anoxic Event: The case of Posidonotis (Bivalvia) from the Lower Jurassic of the Neuquén Basin, Argentina". Palaeogeography, Palaeoclimatology, Palaeoecology. 525: 57–67. Bibcode:2019PPP...525...57R. doi:10.1016/j.palaeo.2019.04.009. hdl:11336/128130. S2CID 146525666. Retrieved 23 November 2022.
  65. ^ a b c Wignall, Paul B.; Bond, David P. G. (2008). "The end-Triassic and Early Jurassic mass extinction records in the British Isles". Proceedings of the Geologists' Association. 119 (1): 73–84. Bibcode:2008PrGA..119...73W. doi:10.1016/S0016-7878(08)80259-3. Retrieved 23 November 2022.
  66. ^ a b Reolid, Matías; Mattioli, Emanuela; Duarte, Luís V.; Ruebsam, Wolfgang (2021-09-22). "The Toarcian Oceanic Anoxic Event: where do we stand?". Geological Society, London, Special Publications. 514 (1): 1–11. Bibcode:2021GSLSP.514....1R. doi:10.1144/SP514-2021-74. ISSN 0305-8719. S2CID 238683028.
  67. ^ Rodrigues, Bruno; Duarte, Luís V.; Silva, Ricardo L.; Mendonça Filho, João Graciano (15 September 2020). "Sedimentary organic matter and early Toarcian environmental changes in the Lusitanian Basin (Portugal)". Palaeogeography, Palaeoclimatology, Palaeoecology. 554: 109781. Bibcode:2020PPP...55409781R. doi:10.1016/j.palaeo.2020.109781. S2CID 219059687. Retrieved 27 September 2022.
  68. ^ Dera, Guillaume; Neige, Pascal; Dommergues, Jean-Louis; Fara, Emmanuel; Laffont, Rémi; Pellenard, Pierre (January 2010). "High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian–Toarcian ammonites (Cephalopoda)". Journal of the Geological Society. 167 (1): 21–33. Bibcode:2010JGSoc.167...21D. doi:10.1144/0016-76492009-068. ISSN 0016-7649. S2CID 128908746.
  69. ^ Arias, Carmen (1 October 2013). "The early Toarcian (early Jurassic) ostracod extinction events in the Iberian Range: The effect of temperature changes and prolonged exposure to low dissolved oxygen concentrations". Palaeogeography, Palaeoclimatology, Palaeoecology. 387: 40–55. Bibcode:2013PPP...387...40A. doi:10.1016/j.palaeo.2013.07.004. Retrieved 23 November 2022.
  70. ^ Hess, Silvia; Nagy, Jenő; Laursen, Gitte Vestergaard (28 January 2014). "Benthic foraminifera from the Lower Jurassic transgressive mudstones of the south-western Barents Sea—a possible high-latitude expression of the global Pliensbachian–Toarcian turnover?". Polar Research. 33 (1): 20206. doi:10.3402/polar.v33.20206. S2CID 128492520.
  71. ^ Reolid, Matías; Copestake, Philip; Johnson, Ben (15 October 2019). "Foraminiferal assemblages, extinctions and appearances associated with the Early Toarcian Oceanic Anoxic Event in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, United Kingdom". Palaeogeography, Palaeoclimatology, Palaeoecology. 532: 109277. Bibcode:2019PPP...53209277R. doi:10.1016/j.palaeo.2019.109277. S2CID 200072488. Retrieved 23 November 2022.
  72. ^ Danise, Silvia; Clémence, Marie-Emilie; Price, Gregory D.; Murphy, Daniel P.; Gómez, Juan J.; Twitchett, Richard J. (15 June 2019). "Stratigraphic and environmental control on marine benthic community change through the early Toarcian extinction event (Iberian Range, Spain)". Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 183–200. Bibcode:2019PPP...524..183D. doi:10.1016/j.palaeo.2019.03.039. hdl:10026.1/13668. S2CID 134835736. Retrieved 23 November 2022.
  73. ^ Caruthers, Andrew H.; Smith, Paul L.; Gröcke, Darren R. (September 2013). "The Pliensbachian–Toarcian (Early Jurassic) extinction, a global multi-phased event". Palaeogeography, Palaeoclimatology, Palaeoecology. 386: 104–118. Bibcode:2013PPP...386..104C. doi:10.1016/j.palaeo.2013.05.010.
  74. ^ Vörös, Attila; Kocsis, Ádám; Pálfy, József (1 September 2016). "Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 457: 233–241. Bibcode:2016PPP...457..233V. doi:10.1016/j.palaeo.2016.06.022. Retrieved 29 October 2022.
  75. ^ Joran, Fernando García; Baeza-Carratalá, José Francisco; Goy, Antonio (1 October 2018). "Changes in brachiopod body size prior to the Early Toarcian (Jurassic) Mass Extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 506: 242–249. Bibcode:2018PPP...506..242G. doi:10.1016/j.palaeo.2018.06.045. hdl:10045/77781. S2CID 135368506. Retrieved 29 October 2022.
  76. ^ Maxwell, Erin E.; Vincent, Peggy (2015-11-06). "Effects of the early Toarcian Oceanic Anoxic Event on ichthyosaur body size and faunal composition in the Southwest German Basin". Paleobiology. 42 (1): 117–126. doi:10.1017/pab.2015.34. ISSN 0094-8373. S2CID 131623205.
  77. ^ Xu, Weimu; Ruhl, Micha; Jenkyns, Hugh C.; Hesselbo, Stephen P.; Riding, James B.; Selby, David; Naafs, B. David A.; Weijers, Johan W. H.; Pancost, Richard D.; Tegelaar, Erik W.; Idiz, Erdem F. (February 2017). "Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event". Nature Geoscience. 10 (2): 129–134. Bibcode:2017NatGe..10..129X. doi:10.1038/ngeo2871. hdl:10871/24965. ISSN 1752-0894.
  78. ^ Müller, Tamás; Jurikova, Hana; Gutjahr, Marcus; Tomašových, Adam; Schlögl, Jan; Liebetrau, Volker; Duarte, Luís v.; Milovský, Rastislav; Suan, Guillaume; Mattioli, Emanuela; Pittet, Bernard (2020-12-01). "Ocean acidification during the early Toarcian extinction event: Evidence from boron isotopes in brachiopods". Geology. 48 (12): 1184–1188. Bibcode:2020Geo....48.1184M. doi:10.1130/G47781.1. hdl:10023/20595. ISSN 0091-7613.
  79. ^ Trecalli, Alberto; Spangenberg, Jorge; Adatte, Thierry; Föllmi, Karl B.; Parente, Mariano (December 2012). "Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event". Earth and Planetary Science Letters. 357–358: 214–225. Bibcode:2012E&PSL.357..214T. doi:10.1016/j.epsl.2012.09.043.
  80. ^ Ettinger, Nicholas P.; Larson, Toti E.; Kerans, Charles; Thibodeau, Alyson M.; Hattori, Kelly E.; Kacur, Sean M.; Martindale, Rowan C. (2020-09-23). Eberli, Gregor (ed.). "Ocean acidification and photic-zone anoxia at the Toarcian Oceanic Anoxic Event: Insights from the Adriatic Carbonate Platform". Sedimentology. 68: 63–107. doi:10.1111/sed.12786. ISSN 0037-0746. S2CID 224870464.
  81. ^ Papadomanolaki, Nina M.; Lenstra, Wytze K.; Wolthers, Mariette; Slomp, Caroline P. (1 July 2022). "Enhanced phosphorus recycling during past oceanic anoxia amplified by low rates of apatite authigenesis". Science Advances. 8 (26): eabn2370. Bibcode:2022SciA....8N2370P. doi:10.1126/sciadv.abn2370. hdl:1874/421467. PMC 10883373. PMID 35776794. S2CID 250218660.
  82. ^ Tennant, Jonathan P.; Mannion, Philip D.; Upchurch, Paul (2016-09-02). "Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval". Nature Communications. 7 (1): 12737. Bibcode:2016NatCo...712737T. doi:10.1038/ncomms12737. ISSN 2041-1723. PMC 5025807. PMID 27587285.
  83. ^ a b Lucas, Spencer G.; Tanner, Lawrence H. (October 2015). "End-Triassic nonmarine biotic events". Journal of Palaeogeography. 4 (4): 331–348. Bibcode:2015JPalG...4..331L. doi:10.1016/j.jop.2015.08.010.
  84. ^ Mander, Luke; Kürschner, Wolfram M.; McElwain, Jennifer C. (2010-08-31). "An explanation for conflicting records of Triassic–Jurassic plant diversity". Proceedings of the National Academy of Sciences. 107 (35): 15351–15356. Bibcode:2010PNAS..10715351M. doi:10.1073/pnas.1004207107. ISSN 0027-8424. PMC 2932585. PMID 20713737.
  85. ^ Barbacka, Maria; Pacyna, Grzegorz; Kocsis, Ádam T.; Jarzynka, Agata; Ziaja, Jadwiga; Bodor, Emese (August 2017). "Changes in terrestrial floras at the Triassic-Jurassic Boundary in Europe". Palaeogeography, Palaeoclimatology, Palaeoecology. 480: 80–93. Bibcode:2017PPP...480...80B. doi:10.1016/j.palaeo.2017.05.024.
  86. ^ Elgorriaga, Andrés; Escapa, Ignacio H.; Cúneo, N. Rubén (July 2019). "Relictual Lepidopteris (Peltaspermales) from the Early Jurassic Cañadón Asfalto Formation, Patagonia, Argentina". International Journal of Plant Sciences. 180 (6): 578–596. doi:10.1086/703461. ISSN 1058-5893. S2CID 195435840.
  87. ^ Bomfleur, Benjamin; Blomenkemper, Patrick; Kerp, Hans; McLoughlin, Stephen (2018), "Polar Regions of the Mesozoic–Paleogene Greenhouse World as Refugia for Relict Plant Groups", Transformative Paleobotany, Elsevier, pp. 593–611, doi:10.1016/b978-0-12-813012-4.00024-3, ISBN 978-0-12-813012-4, retrieved 2020-11-12
  88. ^ Atkinson, Brian A.; Serbet, Rudolph; Hieger, Timothy J.; Taylor, Edith L. (October 2018). "Additional evidence for the Mesozoic diversification of conifers: Pollen cone of Chimaerostrobus minutus gen. et sp. nov. (Coniferales), from the Lower Jurassic of Antarctica". Review of Palaeobotany and Palynology. 257: 77–84. Bibcode:2018RPaPa.257...77A. doi:10.1016/j.revpalbo.2018.06.013. S2CID 133732087.
  89. ^ a b c Leslie, Andrew B.; Beaulieu, Jeremy; Holman, Garth; Campbell, Christopher S.; Mei, Wenbin; Raubeson, Linda R.; Mathews, Sarah (September 2018). "An overview of extant conifer evolution from the perspective of the fossil record". American Journal of Botany. 105 (9): 1531–1544. doi:10.1002/ajb2.1143. PMID 30157290. S2CID 52120430.
  90. ^ Stockey, Ruth A.; Rothwell, Gar W. (July 2020). "Diversification of crown group Araucaria : the role of Araucaria famii sp. nov. in the Late Cretaceous (Campanian) radiation of Araucariaceae in the Northern Hemisphere". American Journal of Botany. 107 (7): 1072–1093. doi:10.1002/ajb2.1505. ISSN 0002-9122. PMID 32705687. S2CID 225568264.
  91. ^ Escapa, Ignacio H.; Catalano, Santiago A. (October 2013). "Phylogenetic Analysis of Araucariaceae: Integrating Molecules, Morphology, and Fossils". International Journal of Plant Sciences. 174 (8): 1153–1170. doi:10.1086/672369. hdl:11336/3583. ISSN 1058-5893. S2CID 56238574.
  92. ^ Stockey, Ruth A.; Rothwell, Gar W. (March 2013). "Pararaucaria carrii sp. nov., Anatomically Preserved Evidence for the Conifer Family Cheirolepidiaceae in the Northern Hemisphere". International Journal of Plant Sciences. 174 (3): 445–457. doi:10.1086/668614. ISSN 1058-5893. S2CID 59269291.
  93. ^ Escapa, Ignacio; Cúneo, Rubén; Axsmith, Brian (September 2008). "A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: Implications for conifer megasporangiate cone homologies". Review of Palaeobotany and Palynology. 151 (3–4): 110–122. Bibcode:2008RPaPa.151..110E. doi:10.1016/j.revpalbo.2008.03.002.
  94. ^ Contreras, Dori L.; Escapa, Ignacio H.; Iribarren, Rocio C.; Cúneo, N. Rubén (October 2019). "Reconstructing the Early Evolution of the Cupressaceae: A Whole-Plant Description of a New Austrohamia Species from the Cañadón Asfalto Formation (Early Jurassic), Argentina". International Journal of Plant Sciences. 180 (8): 834–868. doi:10.1086/704831. ISSN 1058-5893. S2CID 202862782.
  95. ^ Ma, Qing-Wen; K. Ferguson, David; Liu, Hai-Ming; Xu, Jing-Xian (2020). "Compressions of Sequoia (Cupressaceae sensu lato) from the Middle Jurassic of Daohugou, Ningcheng, Inner Mongolia, China". Palaeobiodiversity and Palaeoenvironments. 1 (9): 1. doi:10.1007/s12549-020-00454-z. S2CID 227180592. Retrieved 9 March 2021.
  96. ^ Domogatskaya, Ksenia V.; Herman, Alexei B. (May 2019). "New species of the genus Schizolepidopsis (conifers) from the Albian of the Russian high Arctic and geological history of the genus". Cretaceous Research. 97: 73–93. Bibcode:2019CrRes..97...73D. doi:10.1016/j.cretres.2019.01.012. S2CID 134849082.
  97. ^ Matsunaga, Kelly K. S.; Herendeen, Patrick S.; Herrera, Fabiany; Ichinnorov, Niiden; Crane, Peter R.; Shi, Gongle (2021-05-10). "Ovulate Cones of Schizolepidopsis ediae sp. nov. Provide Insights into the Evolution of Pinaceae". International Journal of Plant Sciences. 182 (6): 490–507. doi:10.1086/714281. ISSN 1058-5893. S2CID 235426888.
  98. ^ Rothwell, Gar W.; Mapes, Gene; Stockey, Ruth A.; Hilton, Jason (April 2012). "The seed cone Eathiestrobus gen. nov.: Fossil evidence for a Jurassic origin of Pinaceae". American Journal of Botany. 99 (4): 708–720. doi:10.3732/ajb.1100595. PMID 22491001.
  99. ^ Smith, Selena Y.; Stockey, Ruth A.; Rothwell, Gar W.; Little, Stefan A. (2017-01-02). "A new species of Pityostrobus (Pinaceae) from the Cretaceous of California: moving towards understanding the Cretaceous radiation of Pinaceae". Journal of Systematic Palaeontology. 15 (1): 69–81. Bibcode:2017JSPal..15...69S. doi:10.1080/14772019.2016.1143885. ISSN 1477-2019. S2CID 88292891.
  100. ^ Dong, Chong; Shi, Gongle; Herrera, Fabiany; Wang, Yongdong; Herendeen, Patrick S; Crane, Peter R (2020-06-18). "Middle–Late Jurassic fossils from northeastern China reveal morphological stasis in the catkin-yew". National Science Review. 7 (11): 1765–1767. doi:10.1093/nsr/nwaa138. ISSN 2095-5138. PMC 8288717. PMID 34691509.
  101. ^ Andruchow-Colombo, Ana; Escapa, Ignacio H; Aagesen, Lone; Matsunaga, Kelly K S (2023-08-04). "In search of lost time: tracing the fossil diversity of Podocarpaceae through the ages". Botanical Journal of the Linnean Society. 203 (4): 315–336. doi:10.1093/botlinnean/boad027. hdl:11336/227952. ISSN 0024-4074.
  102. ^ Pole, Mike; Wang, Yongdong; Bugdaeva, Eugenia V.; Dong, Chong; Tian, Ning; Li, Liqin; Zhou, Ning (2016-12-15). "The rise and demise of Podozamites in east Asia—An extinct conifer life style". Palaeogeography, Palaeoclimatology, Palaeoecology. Mesozoic ecosystems – Climate and Biota. 464: 97–109. Bibcode:2016PPP...464...97P. doi:10.1016/j.palaeo.2016.02.037. ISSN 0031-0182.
  103. ^ a b c Zhou, Zhi-Yan (March 2009). "An overview of fossil Ginkgoales". Palaeoworld. 18 (1): 1–22. doi:10.1016/j.palwor.2009.01.001.
  104. ^ Nosova, Natalya (October 2013). "Revision of the genus Grenana Samylina from the Middle Jurassic of Angren, Uzbekistan". Review of Palaeobotany and Palynology. 197: 226–252. Bibcode:2013RPaPa.197..226N. doi:10.1016/j.revpalbo.2013.06.005.
  105. ^ Dong, Chong; Shi, Gongle; Zhang, Xiaoqing; Wang, Zixi; Wang, Yongdong (November 2022). "Middle-Late Jurassic fossils from Northeast China confirm the affiliation of Umaltolepis seed-bearing structures and Pseudotorellia leaves". Review of Palaeobotany and Palynology. 306: 104763. Bibcode:2022RPaPa.30604763D. doi:10.1016/j.revpalbo.2022.104763. S2CID 251917169.
  106. ^ a b Popa, Mihai E. (June 2014). "Early Jurassic bennettitalean reproductive structures of Romania". Palaeobiodiversity and Palaeoenvironments. 94 (2): 327–362. Bibcode:2014PdPe...94..327P. doi:10.1007/s12549-014-0165-9. ISSN 1867-1594. S2CID 128411467.
  107. ^ Taylor, T (2009), "Cycadophytes", Biology and Evolution of Fossil Plants, Elsevier, pp. 703–741, doi:10.1016/b978-0-12-373972-8.00017-6, ISBN 978-0-12-373972-8, retrieved 2020-12-12
  108. ^ Pott, Christian; McLoughlin, Stephen (2014-06-01). "Divaricate growth habit in Williamsoniaceae (Bennettitales): unravelling the ecology of a key Mesozoic plant group". Palaeobiodiversity and Palaeoenvironments. 94 (2): 307–325. Bibcode:2014PdPe...94..307P. doi:10.1007/s12549-014-0157-9. ISSN 1867-1608. S2CID 84440045.
  109. ^ Labandeira, Conrad C.; Yang, Qiang; Santiago-Blay, Jorge A.; Hotton, Carol L.; Monteiro, Antónia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljeström, Sandra; Rose, Tim R.; Dilcher, David L. (2016-02-10). "The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies". Proceedings of the Royal Society B: Biological Sciences. 283 (1824): 20152893. doi:10.1098/rspb.2015.2893. ISSN 0962-8452. PMC 4760178. PMID 26842570.
  110. ^ Khramov, Alexander V.; Lukashevich, Elena D. (July 2019). "A Jurassic dipteran pollinator with an extremely long proboscis". Gondwana Research. 71: 210–215. Bibcode:2019GondR..71..210K. doi:10.1016/j.gr.2019.02.004. S2CID 134847380.
  111. ^ a b Cai, Chenyang; Escalona, Hermes E.; Li, Liqin; Yin, Ziwei; Huang, Diying; Engel, Michael S. (September 2018). "Beetle Pollination of Cycads in the Mesozoic". Current Biology. 28 (17): 2806–2812.e1. Bibcode:2018CBio...28E2806C. doi:10.1016/j.cub.2018.06.036. PMID 30122529. S2CID 52038878.
  112. ^ a b Coiro, Mario; Pott, Christian (December 2017). "Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia?". BMC Evolutionary Biology. 17 (1): 97. Bibcode:2017BMCEE..17...97C. doi:10.1186/s12862-017-0943-x. ISSN 1471-2148. PMC 5383990. PMID 28388891.
  113. ^ Vajda, Vivi; Pucetaite, Milda; McLoughlin, Stephen; Engdahl, Anders; Heimdal, Jimmy; Uvdal, Per (August 2017). "Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships". Nature Ecology & Evolution. 1 (8): 1093–1099. Bibcode:2017NatEE...1.1093V. doi:10.1038/s41559-017-0224-5. ISSN 2397-334X. PMID 29046567. S2CID 3604369.
  114. ^ Coiro, Mario; Allio, Rémi; Mazet, Nathan; Seyfullah, Leyla J.; Condamine, Fabien L. (2023-06-11). "Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity". New Phytologist. 240 (4): 1616–1635. doi:10.1111/nph.19010. ISSN 0028-646X. PMC 10953041. PMID 37302411. S2CID 259137975.
  115. ^ Bateman, Richard M (2020-01-01). Ort, Donald (ed.). "Hunting the Snark: the flawed search for mythical Jurassic angiosperms". Journal of Experimental Botany. 71 (1): 22–35. doi:10.1093/jxb/erz411. ISSN 0022-0957. PMID 31538196.
  116. ^ Coiro, Mario; Roberts, Emily A.; Hofmann, Christa-Ch.; Seyfullah, Leyla J. (2022-12-14). "Cutting the long branches: Consilience as a path to unearth the evolutionary history of Gnetales". Frontiers in Ecology and Evolution. 10: 1082639. doi:10.3389/fevo.2022.1082639. ISSN 2296-701X.
  117. ^ Elgorriaga, Andrés; Escapa, Ignacio H.; Cúneo, N. Rubén (2019-09-02). "Southern Hemisphere Caytoniales: vegetative and reproductive remains from the Lonco Trapial Formation (Lower Jurassic), Patagonia". Journal of Systematic Palaeontology. 17 (17): 1477–1495. Bibcode:2019JSPal..17.1477E. doi:10.1080/14772019.2018.1535456. ISSN 1477-2019. S2CID 92287804.
  118. ^ Slodownik, Miriam; Hill, Robert S.; McLoughlin, Stephen (October 2023). "Komlopteris: A persistent lineage of post-Triassic corystosperms in Gondwana". Review of Palaeobotany and Palynology. 317: 104950. Bibcode:2023RPaPa.31704950S. doi:10.1016/j.revpalbo.2023.104950. S2CID 260015702.
  119. ^ a b Kustatscher, Evelyn; Visscher, Henk; van Konijnenburg-van Cittert, Johanna H. A. (2019-09-01). "Did the Czekanowskiales already exist in the late Permian?". PalZ. 93 (3): 465–477. Bibcode:2019PalZ...93..465K. doi:10.1007/s12542-019-00468-9. ISSN 1867-6812. S2CID 199473893.
  120. ^ Taylor, T (2009), "Gymnosperms with obscure affinities", Biology and Evolution of Fossil Plants, Elsevier, pp. 757–785, doi:10.1016/b978-0-12-373972-8.00019-x, ISBN 978-0-12-373972-8, retrieved 2020-12-13
  121. ^ Sun, Chunlin; Li, Yunfeng; Dilcher, David L.; Wang, Hongshan; Li, Tao; Na, Yuling; Wang, Anping (November 2015). "An introductory report on the biodiversity of Middle Jurassic Phoenicopsis (Czekanowskiales) from the Ordos Basin, China". Science Bulletin. 60 (21): 1858–1865. Bibcode:2015SciBu..60.1858S. doi:10.1007/s11434-015-0904-y. S2CID 140617907.
  122. ^ Pattemore, G.A., Rigby, J.F. and Playford, G., 2015. Triassic-Jurassic pteridosperms of Australasia: speciation, diversity and decline. Boletín Geológico y Minero, 126 (4): 689–722
  123. ^ Skog, Judith E. (April 2001). "Biogeography of Mesozoic leptosporangiate ferns related to extant ferns". Brittonia. 53 (2): 236–269. Bibcode:2001Britt..53..236S. doi:10.1007/bf02812701. ISSN 0007-196X. S2CID 42781830.
  124. ^ Tian, Ning; Wang, Yong-Dong; Zhang, Wu; Zheng, Shao-Lin; Zhu, Zhi-Peng; Liu, Zhong-Jian (2018-03-01). "Permineralized osmundaceous and gleicheniaceous ferns from the Jurassic of Inner Mongolia, NE China". Palaeobiodiversity and Palaeoenvironments. 98 (1): 165–176. Bibcode:2018PdPe...98..165T. doi:10.1007/s12549-017-0313-0. ISSN 1867-1608. S2CID 134149095.
  125. ^ Regalado, Ledis; Schmidt, Alexander R.; Müller, Patrick; Niedermeier, Lisa; Krings, Michael; Schneider, Harald (July 2019). "Heinrichsia cheilanthoides gen. et sp. nov., a fossil fern in the family Pteridaceae (Polypodiales) from the Cretaceous amber forests of Myanmar". Journal of Systematics and Evolution. 57 (4): 329–338. doi:10.1111/jse.12514. ISSN 1674-4918. S2CID 182754946.
  126. ^ Li, Chunxiang; Miao, Xinyuan; Zhang, Li-Bing; Ma, Junye; Hao, Jiasheng (January 2020). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research. 105: 104136. Bibcode:2020CrRes.10504136L. doi:10.1016/j.cretres.2019.04.007. S2CID 146355798.
  127. ^ Korall, Petra; Pryer, Kathleen M. (February 2014). Parmakelis, Aristeidis (ed.). "Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal". Journal of Biogeography. 41 (2): 402–413. Bibcode:2014JBiog..41..402K. doi:10.1111/jbi.12222. ISSN 0305-0270. PMC 4238398. PMID 25435648.
  128. ^ Axsmith, Brian J.; Krings, Michael; Taylor, Thomas N. (September 2001). "A filmy fern from the Upper Triassic of North Carolina (USA)". American Journal of Botany. 88 (9): 1558–1567. doi:10.2307/3558399. ISSN 0002-9122. JSTOR 3558399. PMID 21669688.
  129. ^ Elgorriaga, Andrés; Escapa, Ignacio H.; Bomfleur, Benjamin; Cúneo, Rubén; Ottone, Eduardo G. (February 2015). "Reconstruction and Phylogenetic Significance of a New Equisetum Linnaeus Species from the Lower Jurassic of Cerro Bayo (Chubut Province, Argentina)". Ameghiniana. 52 (1): 135–152. doi:10.5710/AMGH.15.09.2014.2758. hdl:11336/66623. ISSN 0002-7014. S2CID 6134534.
  130. ^ Gould, R. E. 1968. Morphology of Equisetum laterale Phillips, 1829, and E. bryanii sp. nov. from the Mesozoic of south‐eastern Queensland. Australian Journal of Botany 16: 153–176.
  131. ^ a b Elgorriaga, Andrés; Escapa, Ignacio H.; Rothwell, Gar W.; Tomescu, Alexandru M. F.; Rubén Cúneo, N. (August 2018). "Origin of Equisetum : Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida". American Journal of Botany. 105 (8): 1286–1303. doi:10.1002/ajb2.1125. PMID 30025163.
  132. ^ Channing, Alan; Zamuner, Alba; Edwards, Dianne; Guido, Diego (2011). "Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: Anatomy, paleoecology, and inferred paleoecophysiology". American Journal of Botany. 98 (4): 680–697. doi:10.3732/ajb.1000211. hdl:11336/95234. ISSN 1537-2197. PMID 21613167.
  133. ^ Wood, Daniel; Besnard, Guillaume; Beerling, David J.; Osborne, Colin P.; Christin, Pascal-Antoine (2020-06-18). "Phylogenomics indicates the "living fossil" Isoetes diversified in the Cenozoic". PLOS ONE. 15 (6): e0227525. Bibcode:2020PLoSO..1527525W. doi:10.1371/journal.pone.0227525. ISSN 1932-6203. PMC 7302493. PMID 32555586.
  134. ^ a b Mamontov, Yuriy S.; Ignatov, Michael S. (July 2019). "How to rely on the unreliable: Examples from Mesozoic bryophytes of Transbaikalia". Journal of Systematics and Evolution. 57 (4): 339–360. doi:10.1111/jse.12483. ISSN 1674-4918. S2CID 92268163.
  135. ^ Bippus, Alexander C.; Savoretti, Adolfina; Escapa, Ignacio H.; Garcia-Massini, Juan; Guido, Diego (October 2019). "Heinrichsiella patagonica gen. et sp. nov.: A Permineralized Acrocarpous Moss from the Jurassic of Patagonia". International Journal of Plant Sciences. 180 (8): 882–891. doi:10.1086/704832. ISSN 1058-5893. S2CID 202859471.
  136. ^ Li, Ruiyun; Li, Xiaoqiang; Deng, Shenghui; Sun, Bainian (August 2020). "Morphology and microstructure of Pellites hamiensis nov. sp., a Middle Jurassic liverwort from northwestern China and its evolutionary significance". Geobios. 62: 23–29. Bibcode:2020Geobi..62...23L. doi:10.1016/j.geobios.2020.07.003. S2CID 225500594.
  137. ^ Li, Rui-Yun; Wang, Xue-lian; Chen, Jing-Wei; Deng, Sheng-Hui; Wang, Zi-Xi; Dong, Jun-Ling; Sun, Bai-Nian (June 2016). "A new thalloid liverwort: Pallaviciniites sandaolingensis sp. nov. from the Middle Jurassic of Turpan–Hami Basin, NW China". PalZ. 90 (2): 389–397. Bibcode:2016PalZ...90..389L. doi:10.1007/s12542-016-0299-3. ISSN 0031-0220. S2CID 131295547.
  138. ^ Li, Ruiyun; Li, Xiaoqiang; Wang, Hongshan; Sun, Bainian (2019). "Ricciopsis sandaolingensis sp. nov., a new fossil bryophyte from the Middle Jurassic Xishanyao Formation in the Turpan-Hami Basin, Xinjiang, Northwest China". Palaeontologia Electronica. 22 (2). doi:10.26879/917. ISSN 1094-8074.
  139. ^ Allen, Bethany J.; Stubbs, Thomas L.; Benton, Michael J.; Puttick, Mark N. (March 2019). Mannion, Philip (ed.). "Archosauromorph extinction selectivity during the Triassic-Jurassic mass extinction". Palaeontology. 62 (2): 211–224. Bibcode:2019Palgy..62..211A. doi:10.1111/pala.12399. hdl:1983/e3fc2e40-c849-42ed-99fe-ea17fc26b2ec. S2CID 55009185.
  140. ^ Toljagić, Olja; Butler, Richard J. (2013-06-23). "Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs". Biology Letters. 9 (3): 20130095. doi:10.1098/rsbl.2013.0095. ISSN 1744-9561. PMC 3645043. PMID 23536443.
  141. ^ Melstrom, Keegan M.; Irmis, Randall B. (July 2019). "Repeated Evolution of Herbivorous Crocodyliforms during the Age of Dinosaurs". Current Biology. 29 (14): 2389–2395.e3. Bibcode:2019CBio...29E2389M. doi:10.1016/j.cub.2019.05.076. PMID 31257139. S2CID 195699188.
  142. ^ a b Stubbs, Thomas L.; Pierce, Stephanie E.; Elsler, Armin; Anderson, Philip S. L.; Rayfield, Emily J.; Benton, Michael J. (2021-03-31). "Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation". Proceedings of the Royal Society B: Biological Sciences. 288 (1947): 20210069. doi:10.1098/rspb.2021.0069. PMC 8059953. PMID 33757349. S2CID 232326789.
  143. ^ Spindler, Frederik; Lauer, René; Tischlinger, Helmut; Mäuser, Matthias (2021-07-05). "The integument of pelagic crocodylomorphs (Thalattosuchia: Metriorhynchidae)". Palaeontologia Electronica. 24 (2): 1–41. doi:10.26879/1099. ISSN 1094-8074.
  144. ^ Irmis, Randall B.; Nesbitt, Sterling J.; Sues, Hans-Dieter (2013). "Early Crocodylomorpha". Geological Society, London, Special Publications. 379 (1): 275–302. Bibcode:2013GSLSP.379..275I. doi:10.1144/SP379.24. ISSN 0305-8719. S2CID 219190410.
  145. ^ a b Wilberg, Eric W.; Turner, Alan H.; Brochu, Christopher A. (2019-01-24). "Evolutionary structure and timing of major habitat shifts in Crocodylomorpha". Scientific Reports. 9 (1): 514. Bibcode:2019NatSR...9..514W. doi:10.1038/s41598-018-36795-1. ISSN 2045-2322. PMC 6346023. PMID 30679529.
  146. ^ Dal Sasso, C.; Pasini, G.; Fleury, G.; Maganuco, S. (2017). "Razanandrongobe sakalavae, a gigantic mesoeucrocodylian from the Middle Jurassic of Madagascar, is the oldest known notosuchian". PeerJ. 5: e3481. doi:10.7717/peerj.3481. PMC 5499610. PMID 28690926.
  147. ^ a b Joyce, Walter G. (April 2017). "A Review of the Fossil Record of Basal Mesozoic Turtles" (PDF). Bulletin of the Peabody Museum of Natural History. 58 (1): 65–113. doi:10.3374/014.058.0105. ISSN 0079-032X. S2CID 54982901.
  148. ^ Sterli, Juliana; de la Fuente, Marcelo S.; Rougier, Guillermo W. (2018-07-04). "New remains of Condorchelys antiqua (Testudinata) from the Early-Middle Jurassic of Patagonia: anatomy, phylogeny, and paedomorphosis in the early evolution of turtles". Journal of Vertebrate Paleontology. 38 (4): (1)–(17). Bibcode:2018JVPal..38....1S. doi:10.1080/02724634.2018.1480112. hdl:11336/99525. ISSN 0272-4634. S2CID 109556104.
  149. ^ Sullivan, Patrick M.; Joyce, Walter G. (August 2017). "The shell and pelvic anatomy of the Late Jurassic turtle Platychelys oberndorferi based on material from Solothurn, Switzerland". Swiss Journal of Palaeontology. 136 (2): 323–343. Bibcode:2017SwJP..136..323S. doi:10.1007/s13358-017-0136-7. ISSN 1664-2376. S2CID 90587841.
  150. ^ Evers, Serjoscha W.; Benson, Roger B. J. (January 2019). Smith, Andrew (ed.). "A new phylogenetic hypothesis of turtles with implications for the timing and number of evolutionary transitions to marine lifestyles in the group". Palaeontology. 62 (1): 93–134. Bibcode:2019Palgy..62...93E. doi:10.1111/pala.12384. S2CID 134736808.
  151. ^ Anquetin, Jérémy; Püntener, Christian; Joyce, Walter G. (October 2017). "A Review of the Fossil Record of Turtles of the Clade Thalassochelydia". Bulletin of the Peabody Museum of Natural History. 58 (2): 317–369. doi:10.3374/014.058.0205. ISSN 0079-032X. S2CID 31091127.
  152. ^ a b Evans, Susan E.; Jones, Marc E.H. (2010), "The Origin, Early History and Diversification of Lepidosauromorph Reptiles", New Aspects of Mesozoic Biodiversity, Lecture Notes in Earth Sciences, vol. 132, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 27–44, Bibcode:2010LNES..132...27E, doi:10.1007/978-3-642-10311-7_2, ISBN 978-3-642-10310-0, retrieved 2021-01-07
  153. ^ Brownstein, Chase D.; Meyer, Dalton L.; Fabbri, Matteo; Bhullar, Bhart-Anjan S.; Gauthier, Jacques A. (29 de noviembre de 2022). "Orígenes evolutivos de la radiación escamosa prolongada existente". Nature Communications . 13 (1): 7087. Bibcode :2022NatCo..13.7087B. doi :10.1038/s41467-022-34217-5. ISSN  2041-1723. PMC 9708687 . PMID  36446761. 
  154. ^ Herrera-Flores, Jorge A.; Stubbs, Thomas L.; Benton, Michael J. (2017). "Patrones macroevolutivos en Rhynchocephalia: ¿es el tuátara (Sphenodon punctatus) un fósil viviente?". Paleontología . 60 (3): 319–328. Bibcode :2017Palgy..60..319H. doi : 10.1111/pala.12284 . ISSN  1475-4983.
  155. ^ Burbrink, Frank T; Grazziotin, Felipe G; Pyron, R Alexander; Cundall, David; Donnellan, Steve; Irish, Frances; Keogh, J Scott; Kraus, Fred; Murphy, Robert W; Noonan, Brice; Raxworthy, Christopher J (1 de mayo de 2020). Thomson, Robert (ed.). "La interrogación de datos a escala genómica de Squamata (lagartos, serpientes y anfisbénias) no muestra respaldo para relaciones morfológicas tradicionales clave". Biología sistemática . 69 (3): 502–520. doi :10.1093/sysbio/syz062. ISSN  1063-5157. PMID  31550008.
  156. ^ Cleary, Terri J.; Benson, Roger BJ; Evans, Susan E.; Barrett, Paul M. (21 de marzo de 2018). "Diversidad de lepidosaurios en el Mesozoico-Paleógeno: los roles potenciales de los sesgos de muestreo y los factores ambientales". Royal Society Open Science . 5 (3): 171830. Bibcode :2018RSOS....571830C. doi :10.1098/rsos.171830. PMC 5882712 . PMID  29657788. 
  157. ^ Evans, SE (1998). "Lagartos del grupo corona (Reptilia, Squamata) del Jurásico medio de las Islas Británicas". Palaeontographica, Abteilung A . 250 (4–6): 123–154. Código Bibliográfico :1998PalAA.250..123E. doi :10.1127/pala/250/1998/123. S2CID  246932992.
  158. ^ Dong, Liping; Wang, Yuan; Mou, Lijie; Zhang, Guoze; Evans, Susan E. (13 de septiembre de 2019). "Un nuevo lagarto jurásico de China". Geodiversitas . 41 (16): 623. doi : 10.5252/geodiversitas2019v41a16 . ISSN  1280-9659. S2CID  204256127.
  159. ^ Simões, Tiago R.; Caldwell, Michael W.; Nydam, Randall L.; Jiménez-Huidobro, Paulina (septiembre de 2016). "Osteología, filogenia y morfología funcional de dos especies de lagartos jurásicos y la evolución temprana de la escansorialidad en gecos". Revista Zoológica de la Sociedad Linneana . doi :10.1111/zoj.12487.
  160. ^ Daza, JD; Bauer, AM; Stanley, EL; Bolet, A.; Dickson, B.; Losos, JB (1 de noviembre de 2018). "Un lagarto entero enigmático, miniaturizado y atenuado del ámbar del Cretácico medio de Myanmar". Breviora . 563 (1): 1. doi :10.3099/MCZ49.1. hdl : 1983/0955fcf4-a32a-4498-b920-1421dcea67de . ISSN  0006-9698. S2CID  91589111.
  161. ^ Griffiths, Elizabeth F.; Ford, David P.; Benson, Roger BJ; Evans, Susan E. (septiembre de 2021). Ruta, Marcello (ed.). "Nueva información sobre el lepidosauromorfo jurásico Marmoretta oxoniensis". Artículos en Paleontología . 7 (4): 2255–2278. Código Bibliográfico :2021PPal....7.2255G. doi :10.1002/spp2.1400. ISSN  2056-2799. S2CID  239140732.
  162. ^ Matsumoto, R.; Evans, SE (2010). "Choristoderes y las asociaciones de agua dulce de Laurasia". Revista de Geología Ibérica . 36 (2): 253–274. Bibcode :2010JIbG...36..253M. doi : 10.5209/rev_JIGE.2010.v36.n2.11 . ISSN  1698-6180.
  163. ^ Matsumoto, Ryoko; Dong, Liping; Wang, Yuan; Evans, Susan E. (18 de junio de 2019). "El primer registro de un coristodero casi completo (Reptilia: Diapsida) del Jurásico Superior de la provincia de Hebei, República Popular China". Revista de Paleontología Sistemática . 17 (12): 1031–1048. Código Bibliográfico :2019JSPal..17.1031M. doi :10.1080/14772019.2018.1494220. ISSN  1477-2019. S2CID  92421503.
  164. ^ ab Thorne, PM; Ruta, M.; Benton, MJ (17 de mayo de 2011). "Restableciendo la evolución de los reptiles marinos en el límite Triásico-Jurásico". Actas de la Academia Nacional de Ciencias . 108 (20): 8339–8344. Bibcode :2011PNAS..108.8339T. doi : 10.1073/pnas.1018959108 . ISSN  0027-8424. PMC 3100925 . PMID  21536898. 
  165. ^ ab Moon, Benjamin C.; Stubbs, Thomas L. (13 de febrero de 2020). "Tasas altas tempranas y disparidad en la evolución de los ictiosaurios". Communications Biology . 3 (1): 68. doi :10.1038/s42003-020-0779-6. ISSN  2399-3642. PMC 7018711 . PMID  32054967. 
  166. ^ abcde Fischer, Valentin; Weis, Robert; Thuy, Ben (22 de febrero de 2021). "Refinamiento de la rotación de reptiles marinos en la transición del Jurásico Temprano al Jurásico Medio". PeerJ . 9 : e10647. doi : 10.7717/peerj.10647 . ISSN  2167-8359. PMC 7906043 . PMID  33665003. 
  167. ^ Wintrich, Tanja; Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Sander, P. Martin (1 de diciembre de 2017). "Un esqueleto y una histología ósea de plesiosaurio del Triásico informan sobre la evolución de un plan corporal único". Science Advances . 3 (12): e1701144. Bibcode :2017SciA....3E1144W. doi :10.1126/sciadv.1701144. ISSN  2375-2548. PMC 5729018 . PMID  29242826. 
  168. ^ Benson, Roger BJ; Evans, Mark; Druckenmiller, Patrick S. (16 de marzo de 2012). "Alta diversidad, baja disparidad y pequeño tamaño corporal en plesiosaurios (Reptilia, Sauropterygia) del límite Triásico-Jurásico". PLOS ONE . ​​7 (3): e31838. Bibcode :2012PLoSO...731838B. doi : 10.1371/journal.pone.0031838 . ISSN  1932-6203. PMC 3306369 . PMID  22438869. 
  169. ^ O'Keefe, F. Robin (2002). "La evolución de los morfotipos de plesiosaurio y pliosaurio en Plesiosauria (Reptilia: Sauropterygia)". Paleobiología . 28 (1): 101–112. Bibcode :2002Pbio...28..101O. doi :10.1666/0094-8373(2002)028<0101:TEOPAP>2.0.CO;2. ISSN  0094-8373. S2CID  85753943.
  170. ^ Benson, Roger BJ; Evans, Mark; Smith, Adam S.; Sassoon, Judyth; Moore-Faye, Scott; Ketchum, Hilary F.; Forrest, Richard (31 de mayo de 2013). "Un cráneo de pliosaurio gigante del Jurásico tardío de Inglaterra". PLOS ONE . ​​8 (5): e65989. Bibcode :2013PLoSO...865989B. doi : 10.1371/journal.pone.0065989 . ISSN  1932-6203. PMC 3669260 . PMID  23741520. 
  171. ^ Gao, Ting; Li, Da-Qing; Li, Long-Feng; Yang, Jing-Tao (13 de agosto de 2019). "El primer registro de plesiosaurio de agua dulce del Jurásico medio de Gansu, noroeste de China, con sus implicaciones para la paleobiogeografía local". Revista de Paleogeografía . 8 (1): 27. Bibcode :2019JPalG...8...27G. doi : 10.1186/s42501-019-0043-5 . ISSN  2524-4507. S2CID  199547716.
  172. ^ Kear, Benjamin P. (2 de agosto de 2012). "Una revisión de los plesiosaurios jurásicos de Australia". Paleontología . 55 (5): 1125–1138. Código Bibliográfico :2012Palgy..55.1125K. doi : 10.1111/j.1475-4983.2012.01183.x .
  173. ^ O'Sullivan, Michael; Martill, David M. (17 de noviembre de 2017). "Taxonomía y sistemática de Parapsicephalus purdoni (Reptilia: Pterosauria) de la Formación Whitby Mudstone del Jurásico Inferior, Whitby, Reino Unido". Biología histórica . 29 (8): 1009–1018. Código Bibliográfico :2017HBio...29.1009O. doi :10.1080/08912963.2017.1281919. ISSN  0891-2963. S2CID  132532024.
  174. ^ abcd Bestwick, Jordan; Unwin, David M.; Butler, Richard J.; Henderson, Donald M.; Purnell, Mark A. (noviembre de 2018). "Hipótesis dietéticas de los pterosaurios: una revisión de ideas y enfoques: Hipótesis dietéticas de los pterosaurios". Biological Reviews . 93 (4): 2021–2048. doi :10.1111/brv.12431. PMC 6849529 . PMID  29877021. 
  175. ^ Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T (23 de diciembre de 2008). "Los primeros 50 millones de años de evolución de los dinosaurios: patrón macroevolutivo y disparidad morfológica". Biology Letters . 4 (6): 733–736. doi :10.1098/rsbl.2008.0441. PMC 2614175 . PMID  18812311. 
  176. ^ Brusatte, SL; Benton, MJ; Ruta, M.; Lloyd, GT (12 de septiembre de 2008). "Superioridad, competencia y oportunismo en la radiación evolutiva de los dinosaurios" (PDF) . Science . 321 (5895): 1485–88. Bibcode :2008Sci...321.1485B. doi :10.1126/science.1161833. hdl :20.500.11820/00556baf-6575-44d9-af39-bdd0b072ad2b. PMID  18787166. S2CID  13393888. Archivado desde el original (PDF) el 24 de junio de 2014 . Consultado el 14 de enero de 2012 .
  177. ^ Temp Müller, Rodrigo; Augusto Pretto, Flávio; Kerber, Leonardo; Silva-Neves, Eduardo; Dias-da-Silva, Sérgio (28 de marzo de 2018). "Comentario sobre '¿Un eslabón perdido de los dinosaurios? Chilesaurus y la evolución temprana de los dinosaurios ornitisquios'". Biology Letters . 14 (3): 20170581. doi :10.1098/rsbl.2017.0581. ISSN  1744-9561. PMC 5897605 . PMID  29593074. 
  178. ^ Zahner, Marion; Brinkmann, Winand (agosto de 2019). "Un terópodo de la línea averostánica del Triásico de Suiza y la evolución temprana de los dinosaurios". Nature Ecology & Evolution . 3 (8): 1146–1152. Bibcode :2019NatEE...3.1146Z. doi :10.1038/s41559-019-0941-z. ISSN  2397-334X. PMC 6669044 . PMID  31285577. 
  179. ^ Sasso, Cristiano Dal; Maganuco, Simone; Cau, Andrea (19 de diciembre de 2018). "El ceratosaurio (Dinosauria: Theropoda) más antiguo del Jurásico Inferior de Italia arroja luz sobre la evolución de la mano de tres dedos de las aves". PeerJ . 6 : e5976. doi : 10.7717/peerj.5976 . ISSN  2167-8359. PMC 6304160 . PMID  30588396. 
  180. ^ Wang, Shuo; Stiegler, Josef; Amiot, Romain; Wang, Xu; Du, Guo-hao; Clark, James M.; Xu, Xing (enero de 2017). "Cambios ontogenéticos extremos en un terópodo ceratosaurio". Current Biology . 27 (1): 144–148. Bibcode :2017CBio...27..144W. doi : 10.1016/j.cub.2016.10.043 . PMID  28017609. S2CID  441498.
  181. ^ Zanno, Lindsay E.; Makovicky, Peter J. (4 de enero de 2011). "Ecomorfología herbívora y patrones de especialización en la evolución de los dinosaurios terópodos". Actas de la Academia Nacional de Ciencias . 108 (1): 232–237. Bibcode :2011PNAS..108..232Z. doi : 10.1073/pnas.1011924108 . ISSN  0027-8424. PMC 3017133 . PMID  21173263. 
  182. ^ ab Rauhut, Oliver WM; Pol, Diego (11 de diciembre de 2019). "Probable alosauroide basal de la Formación Cañadón Asfalto del Jurásico Medio de Argentina resalta la incertidumbre filogenética en los dinosaurios terópodos tetanuros". Scientific Reports . 9 (1): 18826. Bibcode :2019NatSR...918826R. doi : 10.1038/s41598-019-53672-7 . ISSN  2045-2322. PMC 6906444 . PMID  31827108. 
  183. ^ Benson, RBJ (2010). "Una descripción de Megalosaurus bucklandii (Dinosauria: Theropoda) del Bathoniano del Reino Unido y las relaciones de los terópodos del Jurásico medio". Revista Zoológica de la Sociedad Linneana . 158 (4): 882–935. doi : 10.1111/j.1096-3642.2009.00569.x .
  184. ^ Rauhut, Oliver WM; Milner, Angela C.; Moore-Fay, Scott (2010). "Osteología craneal y posición filogenética del dinosaurio terópodo Proceratosaurus bradleyi (Woodward, 1910) del Jurásico medio de Inglaterra". Revista Zoológica de la Sociedad Linneana . 158 : 155–195. doi : 10.1111/j.1096-3642.2009.00591.x .
  185. ^ Qin, Z., Clark, J., Choiniere, J. y Xu, X. (2019). Un nuevo terópodo alvarezsaurio de la Formación Shishugou del Jurásico Superior del oeste de China. Scientific Reports, 9: 11727. doi :10.1038/s41598-019-48148-7
  186. ^ Agnolín, Federico L.; Lu, Jun-Chang; Kundrát, Martin; Xu, Li (2021-06-02). "Osteología de los alvarezsáuridos: nuevos datos sobre la anatomía craneal". Biología histórica . 34 (3): 443–452. doi :10.1080/08912963.2021.1929203. ISSN  0891-2963. S2CID  236221732.
  187. ^ Wang, Min; O'Connor, Jingmai K.; Xu, Xing; Zhou, Zhonghe (mayo de 2019). "Un nuevo escansoriopterígido jurásico y la pérdida de alas membranosas en dinosaurios terópodos". Nature . 569 (7755): 256–259. Bibcode :2019Natur.569..256W. doi :10.1038/s41586-019-1137-z. ISSN  1476-4687. PMID  31068719. S2CID  148571099.
  188. ^ Hartman, Scott; Mortimer, Mickey; Wahl, William R.; Lomax, Dean R.; Lippincott, Jessica; Lovelace, David M. (10 de julio de 2019). "Un nuevo dinosaurio paraviano del Jurásico tardío de América del Norte respalda una adquisición tardía del vuelo aviar". PeerJ . 7 : e7247. doi : 10.7717/peerj.7247 . ISSN  2167-8359. PMC 6626525 . PMID  31333906. 
  189. ^ Rauhut, Oliver WM; Foth, Christian (2020), Foth, Christian; Rauhut, Oliver WM (eds.), "El origen de las aves: consenso actual, controversia y la aparición de las plumas", La evolución de las plumas: desde su origen hasta la actualidad , Fascinating Life Sciences, Cham: Springer International Publishing, págs. 27–45, doi :10.1007/978-3-030-27223-4_3, ISBN 978-3-030-27223-4, S2CID  216372010 , consultado el 5 de enero de 2021
  190. ^ Norman, David B (1 de enero de 2021). "Scelidosaurus harrisonii (Dinosauria: Ornithischia) del Jurásico Temprano de Dorset, Inglaterra: biología y relaciones filogenéticas". Revista Zoológica de la Sociedad Linneana . 191 (1): 1–86. doi :10.1093/zoolinnean/zlaa061. ISSN  0024-4082.
  191. ^ Godefroit, Pascal; Sinitsa, Sofia M.; Cincotta, Aude; McNamara, Maria E.; Reshetova, Svetlana A.; Dhouailly, Danielle (2020), Foth, Christian; Rauhut, Oliver WM (eds.), "Estructuras tegumentarias en Kulindadromeus zabaikalicus, un dinosaurio neornitisquio basal del Jurásico de Siberia", La evolución de las plumas: desde su origen hasta el presente , Fascinating Life Sciences, Cham: Springer International Publishing, págs. 47–65, doi :10.1007/978-3-030-27223-4_4, ISBN 978-3-030-27223-4, S2CID  216261986 , consultado el 5 de enero de 2021
  192. ^ McDonald, Andrew T. (22 de mayo de 2012). Farke, Andrew A. (ed.). "Filogenia de los iguanodontes basales (Dinosauria: Ornithischia): una actualización". PLOS ONE . ​​7 (5): e36745. Bibcode :2012PLoSO...736745M. doi : 10.1371/journal.pone.0036745 . ISSN  1932-6203. PMC 3358318 . PMID  22629328. 
  193. ^ Han, Fenglu; Forster, Catherine A.; Clark, James M.; Xu, Xing (9 de diciembre de 2015). "Un nuevo taxón de ceratopsianos basales de China y la evolución temprana de Ceratopsia". PLOS ONE . ​​10 (12): e0143369. Bibcode :2015PLoSO..1043369H. doi : 10.1371/journal.pone.0143369 . ISSN  1932-6203. PMC 4674058 . PMID  26649770. 
  194. ^ abc Pol, D.; Ramezani, J.; Gomez, K.; Carballido, JL; Carabajal, A. Paulina; Rauhut, OWM; Escapa, IH; Cúneo, NR (2020-11-25). "Extinción de dinosaurios herbívoros vinculada al calentamiento global del Jurásico Temprano". Actas de la Royal Society B: Ciencias Biológicas . 287 (1939): 20202310. doi :10.1098/rspb.2020.2310. ISSN  0962-8452. PMC 7739499 . PMID  33203331. 
  195. ^ Sander, P. Martin; Christian, Andreas; Clauss, Marcus; Fechner, Regina; Gee, Carole T.; Griebeler, Eva-Maria; Gunga, Hanns-Christian; Hummel, Jürgen; Mallison, Heinrich; Perry, Steven F.; Preuschoft, Holger (febrero de 2011). "Biología de los dinosaurios saurópodos: la evolución del gigantismo". Biological Reviews . 86 (1): 117–155. doi :10.1111/j.1469-185X.2010.00137.x. PMC 3045712 . PMID  21251189. 
  196. ^ McPhee, Blair W.; Benson, Roger BJ; Botha-Brink, Jennifer; Bordy, Emese M.; Choiniere, Jonah N. (8 de octubre de 2018). "Un dinosaurio gigante del Jurásico temprano de Sudáfrica y la transición a la cuadrúpeda en los sauropodomorfos tempranos". Current Biology . 28 (19): 3143–3151.e7. Bibcode :2018CBio...28E3143M. doi : 10.1016/j.cub.2018.07.063 . PMID  30270189. S2CID  52890502.
  197. ^ Viglietti, Pia A.; Barrett, Paul M.; Broderick, Tim J.; Munyikwa, Darlington; MacNiven, Rowan; Broderick, Lucy; Chapelle, Kimberley; Glynn, Dave; Edwards, Steve; Zondo, Michel; Broderick, Patricia (enero de 2018). "Estratigrafía de la localidad tipo de Vulcanodon y sus implicaciones para las correlaciones regionales dentro del supergrupo Karoo". Revista de Ciencias de la Tierra Africanas . 137 : 149–156. Código Bibliográfico :2018JAfES.137..149V. doi :10.1016/j.jafrearsci.2017.10.015.
  198. ^ Royo-Torres, Rafael; Cobos, Alberto; Mocho, Pedro; Alcalá, Luis (2021-01-01). "Origin and evolution of turiasaur dinosaurs set by means of a new 'rosetta' specimen from Spain". Zoological Journal of the Linnean Society. 191 (1): 201–227. doi:10.1093/zoolinnean/zlaa091. ISSN 0024-4082.
  199. ^ Ren, Xin-Xin; Huang, Jian-Dong; You, Hai-Lu (2020-05-27). "The second mamenchisaurid dinosaur from the Middle Jurassic of Eastern China". Historical Biology. 32 (5): 602–610. Bibcode:2020HBio...32..602R. doi:10.1080/08912963.2018.1515935. ISSN 0891-2963. S2CID 91927243.
  200. ^ Ren, Xin-Xin; Jiang, Shan; Wang, Xu-Ri; Peng, Guang-Zhao; Ye, Yong; Jia, Lei; You, Hai-Lu (2022-11-14). "Re-examination of Dashanpusaurus dongi (Sauropoda: Macronaria) supports an early Middle Jurassic global distribution of neosauropod dinosaurs". Palaeogeography, Palaeoclimatology, Palaeoecology. 610: 111318. doi:10.1016/j.palaeo.2022.111318. ISSN 0031-0182.
  201. ^ Lucas, Spencer G. (2018), Tanner, Lawrence H. (ed.), "Late Triassic Terrestrial Tetrapods: Biostratigraphy, Biochronology and Biotic Events", The Late Triassic World, Topics in Geobiology, vol. 46, Cham: Springer International Publishing, pp. 351–405, doi:10.1007/978-3-319-68009-5_10, ISBN 978-3-319-68008-8, retrieved 2021-04-25
  202. ^ Averianov, Alexander O.; Martin, Thomas; Skutschas, Pavel P.; Rezvyi, Anton S.; Bakirov, Aizek A. (March 2008). "Amphibians from the Middle Jurassic Balabansai Svita in the Fergana Depression, Kyrgyzstan (Central Asia)". Palaeontology. 51 (2): 471–485. Bibcode:2008Palgy..51..471A. doi:10.1111/j.1475-4983.2007.00748.x.
  203. ^ Warren, A. A.; Hutchinson, M. N.; Hill, Dorothy (1983-09-13). "The last Labyrinthodont? A new brachyopoid (Amphibia, Temnospondyli) from the early Jurassic Evergreen formation of Queensland, Australia". Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 303 (1113): 1–62. Bibcode:1983RSPTB.303....1W. doi:10.1098/rstb.1983.0080.
  204. ^ Reilly, Stephen M.; Jorgensen, Michael E. (February 2011). "The evolution of jumping in frogs: Morphological evidence for the basal anuran locomotor condition and the radiation of locomotor systems in crown group anurans". Journal of Morphology. 272 (2): 149–168. doi:10.1002/jmor.10902. PMID 21210487. S2CID 14217777.
  205. ^ Báez, Ana Maria; Nicoli, Laura (March 2008). "A new species of Notobatrachus (Amphibia, Salientia) from the Middle Jurassic of northwestern Patagonia". Journal of Paleontology. 82 (2): 372–376. Bibcode:2008JPal...82..372B. doi:10.1666/06-117.1. hdl:11336/135748. ISSN 0022-3360. S2CID 130032431.
  206. ^ Marjanović, David; Laurin, Michel (2014-07-04). "An updated paleontological timetree of lissamphibians, with comments on the anatomy of Jurassic crown-group salamanders (Urodela)". Historical Biology. 26 (4): 535–550. Bibcode:2014HBio...26..535M. doi:10.1080/08912963.2013.797972. ISSN 0891-2963. S2CID 84581331.
  207. ^ Schoch, Rainer R.; Werneburg, Ralf; Voigt, Sebastian (2020-05-26). "A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders". Proceedings of the National Academy of Sciences. 117 (21): 11584–11588. Bibcode:2020PNAS..11711584S. doi:10.1073/pnas.2001424117. ISSN 0027-8424. PMC 7261083. PMID 32393623.
  208. ^ Skutschas, Pavel; Stein, Koen (April 2015). "Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan". Journal of Anatomy. 226 (4): 334–347. doi:10.1111/joa.12281. PMC 4386933. PMID 25682890.
  209. ^ Jia, Jia; Gao, Ke-Qin (2019-03-04). "A new stem hynobiid salamander (Urodela, Cryptobranchoidea) from the Upper Jurassic (Oxfordian) of Liaoning Province, China". Journal of Vertebrate Paleontology. 39 (2): e1588285. Bibcode:2019JVPal..39E8285J. doi:10.1080/02724634.2019.1588285. ISSN 0272-4634. S2CID 164310171.
  210. ^ Gao, K.-Q.; Shubin, N. H. (2012-04-10). "Late Jurassic salamandroid from western Liaoning, China". Proceedings of the National Academy of Sciences. 109 (15): 5767–5772. Bibcode:2012PNAS..109.5767G. doi:10.1073/pnas.1009828109. ISSN 0027-8424. PMC 3326464. PMID 22411790.
  211. ^ Jia, Jia; Gao, Ke-Qin (2016-05-04). "A New Basal Salamandroid (Amphibia, Urodela) from the Late Jurassic of Qinglong, Hebei Province, China". PLOS ONE. 11 (5): e0153834. Bibcode:2016PLoSO..1153834J. doi:10.1371/journal.pone.0153834. ISSN 1932-6203. PMC 4856324. PMID 27144770.
  212. ^ Evans, S. E.; Lally, C.; Chure, D. C.; Elder, A.; Maisano, J. A. (2005). "A Late Jurassic salamander (Amphibia: Caudata) from the Morrison Formation of North America". Zoological Journal of the Linnean Society. 143 (4): 599–616. doi:10.1111/j.1096-3642.2005.00159.x.
  213. ^ Santos, Rodolfo Otávio; Laurin, Michel; Zaher, Hussam (2020-11-03). "A review of the fossil record of caecilians (Lissamphibia: Gymnophionomorpha) with comments on its use to calibrate molecular timetrees". Biological Journal of the Linnean Society. 131 (4): 737–755. doi:10.1093/biolinnean/blaa148. ISSN 0024-4066.
  214. ^ Haddoumi, Hamid; Allain, Ronan; Meslouh, Said; Metais, Grégoire; Monbaron, Michel; Pons, Denise; Rage, Jean-Claude; Vullo, Romain; Zouhri, Samir (January 2016). "Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): First continental flora and fauna including mammals from the Middle Jurassic of Africa" (PDF). Gondwana Research. 29 (1): 290–319. Bibcode:2016GondR..29..290H. doi:10.1016/j.gr.2014.12.004. ISSN 1342-937X.
  215. ^ a b Lee, Michael S.Y.; Beck, Robin M.D. (31 August 2015). "Mammalian Evolution: A Jurassic Spark". Current Biology. 25 (17): R759–R761. Bibcode:2015CBio...25.R759L. doi:10.1016/j.cub.2015.07.008. PMID 26325137. S2CID 11088107.
  216. ^ Ji, Q.; Luo, Z.-X.; Yuan, C.-X.; Tabrum, A. R. (2006). "A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals" (PDF). Science. 311 (5, 764): 1, 123–1, 127. Bibcode:2006Sci...311.1123J. doi:10.1126/science.1123026. PMID 16497926. S2CID 46067702.
  217. ^ Meng, Qing-Jin; Grossnickle, David M.; Liu, Di; Zhang, Yu-Guang; Neander, April I.; Ji, Qiang; Luo, Zhe-Xi (August 2017). "New gliding mammaliaforms from the Jurassic". Nature. 548 (7667): 291–296. Bibcode:2017Natur.548..291M. doi:10.1038/nature23476. ISSN 1476-4687. PMID 28792929. S2CID 205259206.
  218. ^ Meng, J.; Hu, Y.-M.; Wang, Y.-Q.; Wang, X.-L.; Li, C.-K. (2007). "Corrigendum: A Mesozoic gliding mammal from northeastern China". Nature 446 (7131): 102. Bibcode:2007Natur.446Q.102M. doi:10.1038/nature05639.
  219. ^ Luo, Z.-X.; Wible, J.R. (2005). "A Late Jurassic Digging Mammal and Early Mammalian Diversification". Science. 308 (5718): 103–107. Bibcode:2005Sci...308..103L. doi:10.1126/science.1108875. ISSN 0036-8075. PMID 15802602. S2CID 7031381.
  220. ^ Luo, Zhe-Xi; Cifelli, Richard L.; Kielan-Jaworowska, Zofia (January 2001). "Dual origin of tribosphenic mammals". Nature. 409 (6816): 53–57. Bibcode:2001Natur.409...53L. doi:10.1038/35051023. ISSN 0028-0836. PMID 11343108. S2CID 4342585.
  221. ^ Mao, Fangyuan; Brewer, Philippa; Hooker, Jerry J.; Meng, Jin (2022-12-31). "New allotherian specimens from the Middle Jurassic Woodeaton Quarry (Oxfordshire) and implications for haramiyidan diversity and phylogeny". Journal of Systematic Palaeontology. 20 (1): 1–37. doi:10.1080/14772019.2022.2097021. ISSN 1477-2019.
  222. ^ Zhe-Xi Luo; Chong-Xi Yuan; Qing-Jin Meng; Qiang Ji (25 August 2011). "A Jurassic eutherian mammal and divergence of marsupials and placentals" (PDF). Nature. 476 (7361): 442–445. Bibcode:2011Natur.476..442L. doi:10.1038/nature10291. PMID 21866158. S2CID 205225806. Archived from the original (PDF) on 10 November 2013. Electronic supplementary material
  223. ^ King, Benedict; Beck, Robin M. D. (2020-06-10). "Tip dating supports novel resolutions of controversial relationships among early mammals". Proceedings of the Royal Society B: Biological Sciences. 287 (1928): 20200943. doi:10.1098/rspb.2020.0943. PMC 7341916. PMID 32517606.
  224. ^ Ruta, Marcello; Botha-Brink, Jennifer; Mitchell, Stephen A.; Benton, Michael J. (2013-10-22). "The radiation of cynodonts and the ground plan of mammalian morphological diversity". Proceedings of the Royal Society B: Biological Sciences. 280 (1769): 20131865. doi:10.1098/rspb.2013.1865. ISSN 0962-8452. PMC 3768321. PMID 23986112.
  225. ^ Abdala, Fernando; Gaetano, Leandro C. (2018), Tanner, Lawrence H. (ed.), "The Late Triassic Record of Cynodonts: Time of Innovations in the Mammalian Lineage", The Late Triassic World, Topics in Geobiology, vol. 46, Cham: Springer International Publishing, pp. 407–445, doi:10.1007/978-3-319-68009-5_11, ISBN 978-3-319-68008-8, retrieved 2021-05-24
  226. ^ Du, Yixing; Chiari, Marco; Karádi, Viktor; Nicora, Alda; Onoue, Tetsuji; Pálfy, József; Roghi, Guido; Tomimatsu, Yuki; Rigo, Manuel (April 2020). "The asynchronous disappearance of conodonts: New constraints from Triassic-Jurassic boundary sections in the Tethys and Panthalassa". Earth-Science Reviews. 203: 103176. Bibcode:2020ESRv..20303176D. doi:10.1016/j.earscirev.2020.103176. hdl:11577/3338908. S2CID 216173452.
  227. ^ Ginot, Samuel; Goudemand, Nicolas (December 2020). "Global climate changes account for the main trends of conodont diversity but not for their final demise". Global and Planetary Change. 195: 103325. Bibcode:2020GPC...19503325G. doi:10.1016/j.gloplacha.2020.103325. S2CID 225005180.
  228. ^ Wu, Feixiang; Janvier, Philippe; Zhang, Chi (2023-10-31). "The rise of predation in Jurassic lampreys". Nature Communications. 14 (1): 6652. Bibcode:2023NatCo..14.6652W. doi:10.1038/s41467-023-42251-0. ISSN 2041-1723. PMC 10618186. PMID 37907522.
  229. ^ Kemp, Anne; Cavin, Lionel; Guinot, Guillaume (April 2017). "Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera". Palaeogeography, Palaeoclimatology, Palaeoecology. 471: 209–219. Bibcode:2017PPP...471..209K. doi:10.1016/j.palaeo.2016.12.051.
  230. ^ Brownstein, Chase Doran; Harrington, Richard C; Near, Thomas J. (July 2023). "The biogeography of extant lungfishes traces the breakup of Gondwana". Journal of Biogeography. 50 (7): 1191–1198. Bibcode:2023JBiog..50.1191B. doi:10.1111/jbi.14609. ISSN 0305-0270.
  231. ^ Cavin, Lionel; Cupello, Camila; Yabumoto, Yoshitaka; Léo, Fragoso; Deersi, Uthumporn; Brito, Paul M. (2019). "Phylogeny and evolutionary history of mawsoniid coelacanths" (PDF). Bulletin of the Kitakyushu Museum of Natural History and Human History, Series A. 17: 3–13.
  232. ^ Clement, Gaël (2005-09-30). "A new coelacanth (Actinistia, Sarcopterygii) from the Jurassic of France, and the question of the closest relative fossil to Latimeria". Journal of Vertebrate Paleontology. 25 (3): 481–491. doi:10.1671/0272-4634(2005)025[0481:ANCASF]2.0.CO;2. ISSN 0272-4634. S2CID 86338307.
  233. ^ Skrzycka, Roksana (2014-07-03). "Revision of two relic actinopterygians from the Middle or Upper Jurassic Karabastau Formation, Karatau Range, Kazakhstan". Alcheringa: An Australasian Journal of Palaeontology. 38 (3): 364–390. Bibcode:2014Alch...38..364S. doi:10.1080/03115518.2014.880267. ISSN 0311-5518. S2CID 129308632.
  234. ^ Hilton, Eric J.; Grande, Lance; Jin, Fan (January 2021). "Redescription of † Yanosteus longidorsalis Jin et al., (Chondrostei, Acipenseriformes, †Peipiaosteidae) from the Early Cretaceous of China". Journal of Paleontology. 95 (1): 170–183. Bibcode:2021JPal...95..170H. doi:10.1017/jpa.2020.80. ISSN 0022-3360. S2CID 225158727.
  235. ^ a b Poyato-Ariza, Francisco José; Martín-Abad, Hugo (2020-07-19). "History of two lineages: Comparative analysis of the fossil record in Amiiformes and Pycnodontiformes (Osteischtyes, Actinopterygii)". Spanish Journal of Palaeontology. 28 (1): 79. doi:10.7203/sjp.28.1.17833. hdl:10486/710030. ISSN 2255-0550.
  236. ^ Deesri, Uthumporn; Naksri, Wilailuck; Jintasakul, Pratueng; Noda, Yoshikazu; Yukawa, Hirokazu; Hossny, Tamara El; Cavin, Lionel (2023-03-27). "A New Sinamiin Fish (Actinopterygii) from the Early Cretaceous of Thailand: Implications on the Evolutionary History of the Amiid Lineage". Diversity. 15 (4): 491. doi:10.3390/d15040491. ISSN 1424-2818.
  237. ^ Brito, Paulo M.; Alvarado-Ortega, Jésus; Meunier, François J. (December 2017). "Earliest known lepisosteoid extends the range of anatomically modern gars to the Late Jurassic". Scientific Reports. 7 (1): 17830. Bibcode:2017NatSR...717830B. doi:10.1038/s41598-017-17984-w. ISSN 2045-2322. PMC 5736718. PMID 29259200.
  238. ^ Arratia G. Mesozoic halecostomes and the early radiation of teleosts. In: Arratia G, Tintori A, editors. Mesozoic Fishes 3 – Systematics, Paleoenvironments and Biodiversity. München: Verlag Dr. Friedrich Pfeil; 2004. p. 279–315.
  239. ^ Tse, Tze-Kei; Pittman, Michael; Chang, Mee-mann (2015-03-26). "A specimen of Paralycoptera Chang & Chou 1977 (Teleostei: Osteoglossoidei) from Hong Kong (China) with a potential Late Jurassic age that extends the temporal and geographical range of the genus". PeerJ. 3: e865. doi:10.7717/peerj.865. ISSN 2167-8359. PMC 4380157. PMID 25834774.
  240. ^ Liston, J., Newbrey, M., Challands, T., and Adams, C., 2013, "Growth, age and size of the Jurassic pachycormid Leedsichthys problematicus (Osteichthyes: Actinopterygii) in: Arratia, G., Schultze, H. and Wilson, M. (eds.) Mesozoic Fishes 5 – Global Diversity and Evolution. Verlag Dr. Friedrich Pfeil, München, Germany, pp. 145–175
  241. ^ Rees, Jan; Underwood, Charlie J. (2008-01-17). "Hybodont sharks of the English Bathonian and Callovian (Middle Jurassic)". Palaeontology. 51 (1): 117–147. Bibcode:2008Palgy..51..117R. doi:10.1111/j.1475-4983.2007.00737.x.
  242. ^ Corso, Jacopo Dal; Bernardi, Massimo; Sun, Yadong; Song, Haijun; Seyfullah, Leyla J.; Preto, Nereo; Gianolla, Piero; Ruffell, Alastair; Kustatscher, Evelyn; Roghi, Guido; Merico, Agostino (September 2020). "Extinction and dawn of the modern world in the Carnian (Late Triassic)". Science Advances. 6 (38). Bibcode:2020SciA....6...99D. doi:10.1126/sciadv.aba0099. PMC 7494334. PMID 32938682.
  243. ^ Underwood, Charlie J. (March 2006). "Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous". Paleobiology. 32 (2): 215–235. Bibcode:2006Pbio...32..215U. doi:10.1666/04069.1. ISSN 0094-8373. S2CID 86232401.
  244. ^ Stumpf, Sebastian; Kriwet, Jürgen (2019-12-01). "A new Pliensbachian elasmobranch (Vertebrata, Chondrichthyes) assemblage from Europe, and its contribution to the understanding of late Early Jurassic elasmobranch diversity and distributional patterns". PalZ. 93 (4): 637–658. Bibcode:2019PalZ...93..637S. doi:10.1007/s12542-019-00451-4. ISSN 1867-6812. S2CID 181782998.
  245. ^ Underwood, Charlie J.; Claeson, Kerin M. (June 2019). "The Late Jurassic ray Kimmerobatis etchesi gen. et sp. nov. and the Jurassic radiation of the Batoidea". Proceedings of the Geologists' Association. 130 (3–4): 345–354. Bibcode:2019PrGA..130..345U. doi:10.1016/j.pgeola.2017.06.009. S2CID 90691006.
  246. ^ Kriwet, Jürgen; Klug, Stefanie (December 2011). "A new Jurassic cow shark (Chondrichthyes, Hexanchiformes) with comments on Jurassic hexanchiform systematics". Swiss Journal of Geosciences. 104 (S1): 107–114. Bibcode:2011SwJG..104..107K. doi:10.1007/s00015-011-0075-z. ISSN 1661-8726. S2CID 84405176.
  247. ^ Srdic, Alex; Duffin, Christopher J.; Martill, David M. (August 2016). "First occurrence of the orectolobiform shark Akaimia in the Oxford Clay Formation (Jurassic, Callovian) of England". Proceedings of the Geologists' Association. 127 (4): 506–513. Bibcode:2016PrGA..127..506S. doi:10.1016/j.pgeola.2016.07.002.
  248. ^ Slater, Tiffany S.; Ashbrook, Kate; Kriwet, Jürgen (August 2020). Cavin, Lionel (ed.). "Evolutionary relationships among bullhead sharks (Chondrichthyes, Heterodontiformes)". Papers in Palaeontology. 6 (3): 425–437. Bibcode:2020PPal....6..425S. doi:10.1002/spp2.1299. hdl:10468/10339. ISSN 2056-2802. S2CID 214133104.
  249. ^ Jambura, Patrick L.; Kindlimann, René; López-Romero, Faviel; Marramà, Giuseppe; Pfaff, Cathrin; Stumpf, Sebastian; Türtscher, Julia; Underwood, Charlie J.; Ward, David J.; Kriwet, Jürgen (December 2019). "Micro-computed tomography imaging reveals the development of a unique tooth mineralization pattern in mackerel sharks (Chondrichthyes; Lamniformes) in deep time". Scientific Reports. 9 (1): 9652. Bibcode:2019NatSR...9.9652J. doi:10.1038/s41598-019-46081-3. ISSN 2045-2322. PMC 6609643. PMID 31273249.
  250. ^ López-Romero, Faviel A.; Stumpf, Sebastian; Pfaff, Cathrin; Marramà, Giuseppe; Johanson, Zerina; Kriwet, Jürgen (2020-07-28). "Evolutionary trends of the conserved neurocranium shape in angel sharks (Squatiniformes, Elasmobranchii)". Scientific Reports. 10 (1): 12582. Bibcode:2020NatSR..1012582L. doi:10.1038/s41598-020-69525-7. ISSN 2045-2322. PMC 7387474. PMID 32724124.
  251. ^ Stumpf, Sebastian; Scheer, Udo; Kriwet, Jürgen (2019-03-04). "A new genus and species of extinct ground shark, †Diprosopovenator hilperti, gen. et sp. nov. (Carcharhiniformes, †Pseudoscyliorhinidae, fam. nov.), from the Upper Cretaceous of Germany". Journal of Vertebrate Paleontology. 39 (2): e1593185. Bibcode:2019JVPal..39E3185S. doi:10.1080/02724634.2019.1593185. ISSN 0272-4634. S2CID 155785248.
  252. ^ Klug, Stefanie; Tütken, Thomas; Wings, Oliver; Pfretzschner, Hans-Ulrich; Martin, Thomas (September 2010). "A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin, Xinjiang, Northwest China". Palaeobiodiversity and Palaeoenvironments. 90 (3): 241–257. Bibcode:2010PdPe...90..241K. doi:10.1007/s12549-010-0032-2. ISSN 1867-1594. S2CID 129236098.
  253. ^ Popov, Evgeny V.; Delsate, Dominique; Felten, Roland (2019-07-02). "A New Callorhinchid Genus (Holocephali, Chimaeroidei) from the Early Bajocian of Ottange-Rumelange, on the Luxembourg-French Border". Paleontological Research. 23 (3): 220. doi:10.2517/2018PR021. ISSN 1342-8144. S2CID 198423356.
  254. ^ Duffin, Christopher J.; Milàn, Jesper (2017-11-14). "A new myriacanthid holocephalian from the Early Jurassic of Denmark". Bulletin of the Geological Society of Denmark. 65: 161–170. doi:10.37570/bgsd-2017-65-10. ISSN 2245-7070.
  255. ^ Labandeira, Conrad C. (2018-05-23), "The Fossil History of Insect Diversity", Insect Biodiversity, Chichester, UK: John Wiley & Sons, Ltd, pp. 723–788, doi:10.1002/9781118945582.ch24, ISBN 978-1-118-94558-2
  256. ^ Nel, Patricia; Bertrand, Sylvain; Nel, André (December 2018). "Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts". Scientific Reports. 8 (1): 3516. Bibcode:2018NatSR...8.3516N. doi:10.1038/s41598-018-21938-1. ISSN 2045-2322. PMC 5824790. PMID 29476087.
  257. ^ McKenna, Duane D.; Shin, Seunggwan; Ahrens, Dirk; Balke, Michael; Beza-Beza, Cristian; Clarke, Dave J.; Donath, Alexander; Escalona, Hermes E.; Friedrich, Frank; Letsch, Harald; Liu, Shanlin (2019-12-03). "The evolution and genomic basis of beetle diversity". Proceedings of the National Academy of Sciences. 116 (49): 24729–24737. Bibcode:2019PNAS..11624729M. doi:10.1073/pnas.1909655116. ISSN 0027-8424. PMC 6900523. PMID 31740605.
  258. ^ Beutel, Rolf G.; Xu, Chunpeng; Jarzembowski, Edmund; Kundrata, Robin; Boudinot, Brendon E.; McKenna, Duane D.; Goczał, Jakub (13 February 2024). "The evolutionary history of Coleoptera (Insecta) in the late Palaeozoic and the Mesozoic". Systematic Entomology. 49 (3): 355–388. Bibcode:2024SysEn..49..355B. doi:10.1111/syen.12623. ISSN 0307-6970.
  259. ^ Shin, Seunggwan; Clarke, Dave J; Lemmon, Alan R; Moriarty Lemmon, Emily; Aitken, Alexander L; Haddad, Stephanie; Farrell, Brian D; Marvaldi, Adriana E; Oberprieler, Rolf G; McKenna, Duane D (2018-04-01). "Phylogenomic Data Yield New and Robust Insights into the Phylogeny and Evolution of Weevils". Molecular Biology and Evolution. 35 (4): 823–836. doi:10.1093/molbev/msx324. hdl:11336/57287. ISSN 0737-4038. PMID 29294021. S2CID 4366092.
  260. ^ Xu, Chunpeng; Fang, Yanan; Fang, Yan; Wang, He; Zhou, Qian; Jiang, Xueying; Zhang, Haichun (14 February 2024). "Early Jurassic orthopteran insects from the southern Junggar Basin, NW China, with discussion of biodiversity changes of Orthoptera across the Triassic–Jurassic boundary". Geological Society, London, Special Publications. 538 (1): 147–154. doi:10.1144/SP538-2021-184. ISSN 0305-8719. Retrieved 22 June 2024 – via Lyell Collection Geological Society Publications.
  261. ^ Woodrow, Charlie; Baker, Ed; Jonsson, Thorin; Montealegre-Z, Fernando (2022-08-10). Nityananda, Vivek (ed.). "Reviving the sound of a 150-year-old insect: The bioacoustics of Prophalangopsis obscura (Ensifera: Hagloidea)". PLOS ONE. 17 (8): e0270498. Bibcode:2022PLoSO..1770498W. doi:10.1371/journal.pone.0270498. ISSN 1932-6203. PMC 9365155. PMID 35947546.
  262. ^ van Eldijk, Timo J. B.; Wappler, Torsten; Strother, Paul K.; van der Weijst, Carolien M. H.; Rajaei, Hossein; Visscher, Henk; van de Schootbrugge, Bas (January 2018). "A Triassic-Jurassic window into the evolution of Lepidoptera". Science Advances. 4 (1): e1701568. Bibcode:2018SciA....4.1568V. doi:10.1126/sciadv.1701568. ISSN 2375-2548. PMC 5770165. PMID 29349295.
  263. ^ Kohli, Manpreet Kaur; Ware, Jessica L.; Bechly, Günter (2016). "How to date a dragonfly: Fossil calibrations for odonates". Palaeontologia Electronica. 19 (1). doi:10.26879/576.
  264. ^ Huang, DiYing; Engel, Michael S.; Cai, ChenYang; Nel, André (May 2013). "Mesozoic giant fleas from northeastern China (Siphonaptera): Taxonomy and implications for palaeodiversity". Chinese Science Bulletin. 58 (14): 1682–1690. Bibcode:2013ChSBu..58.1682H. doi:10.1007/s11434-013-5769-3. hdl:1808/14426. ISSN 1001-6538. S2CID 53578959.
  265. ^ Gao, Taiping; Shih, Chungkun; Rasnitsyn, Alexandr P.; Xu, Xing; Wang, Shuo; Ren, Dong (July 2013). "New Transitional Fleas from China Highlighting Diversity of Early Cretaceous Ectoparasitic Insects". Current Biology. 23 (13): 1261–1266. Bibcode:2013CBio...23.1261G. doi:10.1016/j.cub.2013.05.040. PMID 23810530. S2CID 9646168.
  266. ^ Labandeira, Conrad C.; Li, Longfeng (2021), De Baets, Kenneth; Huntley, John Warren (eds.), "The History of Insect Parasitism and the Mid-Mesozoic Parasitoid Revolution", The Evolution and Fossil Record of Parasitism, Topics in Geobiology, vol. 49, Cham: Springer International Publishing, pp. 377–533, doi:10.1007/978-3-030-42484-8_11, ISBN 978-3-030-42483-1, S2CID 236738176, retrieved 2021-12-02
  267. ^ Yang, Hongru; Shi, Chaofan; Engel, Michael S; Zhao, Zhipeng; Ren, Dong; Gao, Taiping (2020-04-02). "Early specializations for mimicry and defense in a Jurassic stick insect". National Science Review. 8 (1): nwaa056. doi:10.1093/nsr/nwaa056. ISSN 2095-5138. PMC 8288419. PMID 34691548.
  268. ^ Huang, Di-ying; Nel, André; Zompro, Oliver; Waller, Alain (2008-06-11). "Mantophasmatodea now in the Jurassic". Naturwissenschaften. 95 (10): 947–952. Bibcode:2008NW.....95..947H. doi:10.1007/s00114-008-0412-x. ISSN 0028-1042. PMID 18545982. S2CID 35408984.
  269. ^ Huang, Di-Ying; Nel, André (August 2009). "Oldest webspinners from the Middle Jurassic of Inner Mongolia, China (Insecta: Embiodea)". Zoological Journal of the Linnean Society. 156 (4): 889–895. doi:10.1111/j.1096-3642.2008.00499.x.
  270. ^ Engel, Michael S.; Winterton, Shaun L.; Breitkreuz, Laura C.V. (2018-01-07). "Phylogeny and Evolution of Neuropterida: Where Have Wings of Lace Taken Us?". Annual Review of Entomology. 63 (1): 531–551. doi:10.1146/annurev-ento-020117-043127. ISSN 0066-4170. PMID 29324039.
  271. ^ Selden, Paul A.; Baker, Anne S.; Phipps, Kenneth J. (2008). "An Oribatid Mite (arachnida: Acari) from the Oxford Clay (jurassic: Upper Callovian) of South Cave Station Quarry, Yorkshire, Uk". Palaeontology. 51 (3): 623–633. Bibcode:2008Palgy..51..623S. doi:10.1111/j.1475-4983.2008.00769.x. hdl:1808/8353. ISSN 1475-4983. S2CID 54046836.
  272. ^ Sivhed, Ulf; Wallwork, John A. (March 1978). "An Early Jurassic oribatid mite from southern Sweden". Geologiska Föreningen i Stockholm Förhandlingar. 100 (1): 65–70. doi:10.1080/11035897809448562. ISSN 0016-786X.
  273. ^ a b Magalhaes, Ivan L. F.; Azevedo, Guilherme H. F.; Michalik, Peter; Ramírez, Martín J. (February 2020). "The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic". Biological Reviews. 95 (1): 184–217. doi:10.1111/brv.12559. ISSN 1464-7931. PMID 31713947. S2CID 207937170.
  274. ^ Selden, Paul A.; Dunlop, Jason A. (2014). "The first fossil spider (Araneae: Palpimanoidea) from the Lower Jurassic (Grimmen, Germany)". Zootaxa. 3894 (1): 161–168. doi:10.11646/zootaxa.3894.1.13. PMID 25544628.
  275. ^ Selden, P. A.; Shih, C.K.; Ren, D. (2013). "A giant spider from the Jurassic of China reveals greater diversity of the orbicularian stem group". Naturwissenschaften. 100 (12): 1171–1181. Bibcode:2013NW....100.1171S. doi:10.1007/s00114-013-1121-7. PMC 3889289. PMID 24317464.
  276. ^ Dunlop, Jason A.; Kamenz, Carsten; Scholtz, Gerhard (June 2007). "Reinterpreting the morphology of the Jurassic scorpion Liassoscorpionides". Arthropod Structure & Development. 36 (2): 245–252. Bibcode:2007ArtSD..36..245D. doi:10.1016/j.asd.2006.09.003. PMID 18089103.
  277. ^ Huang, Diying; Selden, Paul A.; Dunlop, Jason A. (August 2009). "Harvestmen (Arachnida: Opiliones) from the Middle Jurassic of China". Naturwissenschaften. 96 (8): 955–962. Bibcode:2009NW.....96..955H. doi:10.1007/s00114-009-0556-3. ISSN 0028-1042. PMID 19495718. S2CID 9570512.
  278. ^ Giribet, Gonzalo; Tourinho, Ana Lúcia; Shih, ChungKun; Ren, Dong (March 2012). "An exquisitely preserved harvestman (Arthropoda, Arachnida, Opiliones) from the Middle Jurassic of China". Organisms Diversity & Evolution. 12 (1): 51–56. Bibcode:2012ODivE..12...51G. doi:10.1007/s13127-011-0067-x. ISSN 1439-6092. S2CID 15658216.
  279. ^ Dunhill, Alexander M.; Foster, William J.; Sciberras, James; Twitchett, Richard J. (January 2018). Hautmann, Michael (ed.). "Impact of the Late Triassic mass extinction on functional diversity and composition of marine ecosystems". Palaeontology. 61 (1): 133–148. Bibcode:2018Palgy..61..133D. doi:10.1111/pala.12332.
  280. ^ Kiessling, Wolfgang (December 2009). "Geologic and Biologic Controls on the Evolution of Reefs". Annual Review of Ecology, Evolution, and Systematics. 40 (1): 173–192. doi:10.1146/annurev.ecolsys.110308.120251. ISSN 1543-592X.
  281. ^ a b c Klompmaker, A. A.; Schweitzer, C. E.; Feldmann, R. M.; Kowalewski, M. (2013-11-01). "The influence of reefs on the rise of Mesozoic marine crustaceans". Geology. 41 (11): 1179–1182. Bibcode:2013Geo....41.1179K. doi:10.1130/G34768.1. ISSN 0091-7613.
  282. ^ Hudson, Wendy; Hart, Malcolm B.; Smart, Christopher W. (2009-01-01). "Palaeobiogeography of early planktonic foraminifera". Bulletin de la Société Géologique de France. 180 (1): 27–38. doi:10.2113/gssgfbull.180.1.27. ISSN 1777-5817.
  283. ^ Wiggan, Nickolas J.; Riding, James B.; Fensome, Robert A.; Mattioli, Emanuela (2018-05-01). "The Bajocian (Middle Jurassic): A key interval in the early Mesozoic phytoplankton radiation". Earth-Science Reviews. 180: 126–146. Bibcode:2018ESRv..180..126W. doi:10.1016/j.earscirev.2018.03.009. ISSN 0012-8252.
  284. ^ Zatoń, M.; Taylor, P.D. (2009-12-31). "Microconchids (Tentaculita) from the Middle Jurassic of Poland". Bulletin of Geosciences: 653–660. doi:10.3140/bull.geosci.1167. ISSN 1802-8225.
  285. ^ Girard, Vincent; Saint Martin, Simona; Buffetaut, Eric; Saint Martin, Jean-Paul; Néraudeau, Didier; Peyrot, Daniel; Roghi, Guido; Ragazzi, Eugenio; Suteethorn, Varavudh (2020). Saint Martin, J.-P.; Saint Martin, S. (eds.). "Thai amber: insights into early diatom history?". BSGF – Earth Sciences Bulletin. 191: 23. doi:10.1051/bsgf/2020028. ISSN 1777-5817.
  286. ^ Gorzelak, Przemysław; Salamon, Mariusz A.; Trzęsiok, Dawid; Lach, Rafał; Baumiller, Tomasz K. (April 2016). "Diversity dynamics of post-Palaeozoic crinoids – in quest of the factors affecting crinoid macroevolution". Lethaia. 49 (2): 231–244. Bibcode:2016Letha..49..231G. doi:10.1111/let.12141.
  287. ^ Hopkins, Melanie J.; Smith, Andrew B. (2015-03-24). "Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution". Proceedings of the National Academy of Sciences. 112 (12): 3758–3763. Bibcode:2015PNAS..112.3758H. doi:10.1073/pnas.1418153112. ISSN 0027-8424. PMC 4378421. PMID 25713369.
  288. ^ Scholtz, Gerhard (November 2020). "Eocarcinus praecursor Withers, 1932 (Malacostraca, Decapoda, Meiura) is a stem group brachyuran". Arthropod Structure & Development. 59: 100991. Bibcode:2020ArtSD..5900991S. doi:10.1016/j.asd.2020.100991. PMID 32891896.
  289. ^ Schweitzer, Carrie E.; Feldmann, Rodney M. (2010-05-01). "The Oldest Brachyura (Decapoda: Homolodromioidea: Glaessneropsoidea) Known to Date (Jurassic)". Journal of Crustacean Biology. 30 (2): 251–256. doi:10.1651/09-3231.1. ISSN 0278-0372. S2CID 84707572.
  290. ^ a b Guinot, Danièle (2019-11-14). "New hypotheses concerning the earliest brachyurans (Crustacea, Decapoda, Brachyura)". Geodiversitas. 41 (1): 747. doi:10.5252/geodiversitas2019v41a22. ISSN 1280-9659. S2CID 214220075.
  291. ^ Fraaije, René; Schweigert, Günter; Nützel, Alexander; Havlik, Philipe (2013-01-01). "New Early Jurassic hermit crabs from Germany and France". Journal of Crustacean Biology. 33 (6): 802–817. doi:10.1163/1937240X-00002191. ISSN 0278-0372.
  292. ^ Mironenko, Aleksandr (January 2020). "A hermit crab preserved inside an ammonite shell from the Upper Jurassic of central Russia: Implications to ammonoid palaeoecology". Palaeogeography, Palaeoclimatology, Palaeoecology. 537: 109397. Bibcode:2020PPP...53709397M. doi:10.1016/j.palaeo.2019.109397.
  293. ^ Bracken-Grissom, Heather D.; Ahyong, Shane T.; Wilkinson, Richard D.; Feldmann, Rodney M.; Schweitzer, Carrie E.; Breinholt, Jesse W.; Bendall, Matthew; Palero, Ferran; Chan, Tin-Yam; Felder, Darryl L.; Robles, Rafael (2014-07-01). "The Emergence of Lobsters: Phylogenetic Relationships, Morphological Evolution and Divergence Time Comparisons of an Ancient Group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida)". Systematic Biology. 63 (4): 457–479. doi:10.1093/sysbio/syu008. ISSN 1063-5157. PMID 24562813.
  294. ^ Chan, Benny K K; Dreyer, Niklas; Gale, Andy S; Glenner, Henrik; Ewers-Saucedo, Christine; Pérez-Losada, Marcos; Kolbasov, Gregory A; Crandall, Keith A; Høeg, Jens T (2021-02-25). "The evolutionary diversity of barnacles, with an updated classification of fossil and living forms". Zoological Journal of the Linnean Society. 193 (3): 789–846. doi:10.1093/zoolinnean/zlaa160. hdl:11250/2990967. ISSN 0024-4082.
  295. ^ Gale, Andy; Schweigert, Günter (January 2016). Hautmann, Michael (ed.). "A new phosphatic-shelled cirripede (Crustacea, Thoracica) from the Lower Jurassic (Toarcian) of Germany – the oldest epiplanktonic barnacle". Palaeontology. 59 (1): 59–70. Bibcode:2016Palgy..59...59G. doi:10.1111/pala.12207. S2CID 128383968.
  296. ^ Vörös, Attila; Kocsis, Ádám T.; Pálfy, József (September 2016). "Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event". Palaeogeography, Palaeoclimatology, Palaeoecology. 457: 233–241. Bibcode:2016PPP...457..233V. doi:10.1016/j.palaeo.2016.06.022.
  297. ^ Vörös, Attila; Kocsis, Ádám T.; Pálfy, József (2019). "Mass extinctions and clade extinctions in the history of brachiopods: Brief review and a post-Paleozoic case study". Rivista Italiana di Paleontologia e Stratigrafia. 125 (3). doi:10.13130/2039-4942/12184. ISSN 2039-4942. Archived from the original on 2020-09-01. Retrieved 2020-12-25.
  298. ^ Manojlovic, Marko; Clapham, Matthew E. (2020-11-23). "The role of bioturbation-driven substrate disturbance in the Mesozoic brachiopod decline". Paleobiology. 47: 86–100. doi:10.1017/pab.2020.50. ISSN 0094-8373.
  299. ^ Taylor, Paul D.; Ernst, Andrej (June 2008). "Bryozoans in transition: The depauperate and patchy Jurassic biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 263 (1–2): 9–23. Bibcode:2008PPP...263....9T. doi:10.1016/j.palaeo.2008.01.028.
  300. ^ Ros, Sonia; De Renzi, Miquel; Damborenea, Susana E.; Márquez-Aliaga, Ana (November 2011). "Coping between crises: Early Triassic–early Jurassic bivalve diversity dynamics". Palaeogeography, Palaeoclimatology, Palaeoecology. 311 (3–4): 184–199. Bibcode:2011PPP...311..184R. doi:10.1016/j.palaeo.2011.08.020. hdl:11336/81358.
  301. ^ Mondal, Subhronil; Harries, Peter J. (February 2016). "The Effect of Taxonomic Corrections on Phanerozoic Generic Richness Trends in Marine Bivalves with a Discussion on the Clade's Overall History". Paleobiology. 42 (1): 157–171. Bibcode:2016Pbio...42..157M. doi:10.1017/pab.2015.35. ISSN 0094-8373. S2CID 87260961.
  302. ^ Sha, J.; Cestari, R.; Fabbi, S. (April 2020). "Paleobiogeographic distribution of rudist bivalves (Hippuritida) in the Oxfordian–early Aptian (Late Jurassic–Early Cretaceous)". Cretaceous Research. 108: 104289. Bibcode:2020CrRes.10804289S. doi:10.1016/j.cretres.2019.104289. S2CID 210248232.
  303. ^ Page, Kevin N. (January 2008). "The evolution and geography of Jurassic ammonoids". Proceedings of the Geologists' Association. 119 (1): 35–57. Bibcode:2008PrGA..119...35P. doi:10.1016/S0016-7878(08)80257-X.
  304. ^ Sandoval, José; O'Dogherty, Jean; Guex, Jean (1 August 2001). "Evolutionary Rates of Jurassic Ammonites in Relation to Sea-level Fluctuations". PALAIOS. 16 (4): 311–335. Bibcode:2001Palai..16..311S. doi:10.1669/0883-1351(2001)016<0311:EROJAI>2.0.CO;2. S2CID 129982065. Retrieved 26 August 2023.
  305. ^ Iba, Yasuhiro; Sano, Shin-ichi; Mutterlose, Jörg (2014-05-02). Samonds, Karen E. (ed.). "The Early Evolutionary History of Belemnites: New Data from Japan". PLOS ONE. 9 (5): e95632. Bibcode:2014PLoSO...995632I. doi:10.1371/journal.pone.0095632. ISSN 1932-6203. PMC 4008418. PMID 24788872.
  306. ^ Hoffmann, René; Stevens, Kevin (February 2020). "The palaeobiology of belemnites – foundation for the interpretation of rostrum geochemistry". Biological Reviews. 95 (1): 94–123. doi:10.1111/brv.12557. ISSN 1464-7931. PMID 31729839. S2CID 208036104.
  307. ^ Fuchs, Dirk; Weis, Robert (2008-07-11). "Taxonomy, morphology and phylogeny of Lower Jurassic loligosepiid coleoids (Cephalopoda)". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 249 (1): 93–112. doi:10.1127/0077-7749/2008/0249-0093. ISSN 0077-7749.
  308. ^ a b c Fuchs, Dirk; Iba, Yasuhiro; Heyng, Alexander; Iijima, Masaya; Klug, Christian; Larson, Neal L.; Schweigert, Günter (February 2020). Brayard, Arnaud (ed.). "The Muensterelloidea: phylogeny and character evolution of Mesozoic stem octopods". Papers in Palaeontology. 6 (1): 31–92. Bibcode:2020PPal....6...31F. doi:10.1002/spp2.1254. ISSN 2056-2802. S2CID 198256507.
  309. ^ Fuchs, Dirk; Schweigert, Günter (June 2018). "First Middle–Late Jurassic gladius vestiges provide new evidence on the detailed origin of incirrate and cirrate octopuses (Coleoidea)". PalZ. 92 (2): 203–217. Bibcode:2018PalZ...92..203F. doi:10.1007/s12542-017-0399-8. ISSN 0031-0220. S2CID 135245479.
  310. ^ Kruta, Isabelle; Rouget, Isabelle; Charbonnier, Sylvain; Bardin, Jérémie; Fernandez, Vincent; Germain, Damien; Brayard, Arnaud; Landman, Neil (2016). "Proteroctopus ribeti in coleoid evolution". Palaeontology. 59 (6): 767–773. Bibcode:2016Palgy..59..767K. doi:10.1111/pala.12265. ISSN 1475-4983. S2CID 132420410.

External links