La biología es el estudio científico de la vida . [1] [2] [3] Es una ciencia natural con un amplio alcance pero que tiene varios temas unificadores que la unen como un campo único y coherente. [1] [2] [3] Por ejemplo, todos los organismos están formados por células que procesan información hereditaria codificada en genes , que puede transmitirse a futuras generaciones. Otro tema importante es la evolución , que explica la unidad y diversidad de la vida. [1] [2] [3] El procesamiento de energía también es importante para la vida, ya que permite a los organismos moverse , crecer y reproducirse . [1] [2] [3] Finalmente, todos los organismos pueden regular sus propios entornos internos . [1] [2] [3] [4] [5]
Los biólogos pueden estudiar la vida en múltiples niveles de organización , [1] desde la biología molecular de una célula hasta la anatomía y fisiología de plantas y animales, y la evolución de poblaciones. [1] [6] Por lo tanto, existen múltiples subdisciplinas dentro de la biología , cada una definida por la naturaleza de sus preguntas de investigación y las herramientas que utilizan. [7] [8] [9] Al igual que otros científicos, los biólogos utilizan el método científico para hacer observaciones , plantear preguntas, generar hipótesis , realizar experimentos y formular conclusiones sobre el mundo que los rodea. [1]
La vida en la Tierra, que surgió hace más de 3.700 millones de años, [10] es inmensamente diversa. Los biólogos han buscado estudiar y clasificar las diversas formas de vida, desde organismos procariotas como las arqueas y las bacterias hasta organismos eucariotas como los protistas , los hongos, las plantas y los animales. Estos diversos organismos contribuyen a la biodiversidad de un ecosistema , donde desempeñan funciones especializadas en el ciclo de nutrientes y energía a través de su entorno biofísico .
Las primeras raíces de la ciencia, que incluía la medicina, se pueden rastrear hasta el antiguo Egipto y Mesopotamia alrededor de 3000 a 1200 a . C. [11] [12] Sus contribuciones dieron forma a la filosofía natural griega antigua . [13] [11] [12] [14] [15] Los filósofos griegos antiguos como Aristóteles (384-322 a. C.) contribuyeron ampliamente al desarrollo del conocimiento biológico. [16] Exploró la causalidad biológica y la diversidad de la vida. Su sucesor, Teofrasto , comenzó el estudio científico de las plantas. [17] Los eruditos del mundo islámico medieval que escribieron sobre biología incluyeron a al-Jahiz (781-869), Al-Dīnawarī (828-896), quien escribió sobre botánica, [18] y Rhazes (865-925) quien escribió sobre anatomía y fisiología . La medicina fue especialmente estudiada por los eruditos islámicos que trabajaban en las tradiciones de los filósofos griegos, mientras que la historia natural se basó en gran medida en el pensamiento aristotélico.
La biología comenzó a desarrollarse rápidamente con la espectacular mejora del microscopio por parte de Anton van Leeuwenhoek . Fue entonces cuando los estudiosos descubrieron los espermatozoides , las bacterias, los infusorios y la diversidad de la vida microscópica. Las investigaciones de Jan Swammerdam condujeron a un nuevo interés por la entomología y ayudaron a desarrollar técnicas de disección y tinción microscópicas . [19] Los avances en microscopía tuvieron un profundo impacto en el pensamiento biológico. A principios del siglo XIX, los biólogos señalaron la importancia central de la célula . En 1838, Schleiden y Schwann comenzaron a promover las ideas ahora universales de que (1) la unidad básica de los organismos es la célula y (2) que las células individuales tienen todas las características de la vida, aunque se opusieron a la idea de que (3) todas las células provienen de la división de otras células, continuando apoyando la generación espontánea . Sin embargo, Robert Remak y Rudolf Virchow pudieron concretar el tercer principio, y en la década de 1860 la mayoría de los biólogos aceptaron los tres principios que se consolidaron en la teoría celular . [20] [21]
Mientras tanto, la taxonomía y la clasificación se convirtieron en el foco de atención de los historiadores naturales. Carl Linnaeus publicó una taxonomía básica para el mundo natural en 1735, y en la década de 1750 introdujo nombres científicos para todas sus especies. [22] Georges-Louis Leclerc, conde de Buffon , trató las especies como categorías artificiales y las formas vivas como maleables, sugiriendo incluso la posibilidad de una descendencia común . [23]
El pensamiento evolutivo serio se originó con los trabajos de Jean-Baptiste Lamarck , quien presentó una teoría coherente de la evolución. [25] El naturalista británico Charles Darwin , combinando el enfoque biogeográfico de Humboldt , la geología uniformista de Lyell , los escritos de Malthus sobre el crecimiento de la población y su propia experiencia morfológica y extensas observaciones naturales, forjó una teoría evolutiva más exitosa basada en la selección natural ; un razonamiento y evidencia similares llevaron a Alfred Russel Wallace a llegar de forma independiente a las mismas conclusiones. [26] [27]
La base de la genética moderna comenzó con el trabajo de Gregor Mendel en 1865. [28] Este esbozó los principios de la herencia biológica. [29] Sin embargo, la importancia de su trabajo no se comprendió hasta principios del siglo XX, cuando la evolución se convirtió en una teoría unificada a medida que la síntesis moderna reconciliaba la evolución darwiniana con la genética clásica . [30] En la década de 1940 y principios de la de 1950, una serie de experimentos de Alfred Hershey y Martha Chase señalaron al ADN como el componente de los cromosomas que contenían las unidades portadoras de rasgos que se habían conocido como genes . Un enfoque en nuevos tipos de organismos modelo como virus y bacterias, junto con el descubrimiento de la estructura de doble hélice del ADN por James Watson y Francis Crick en 1953, marcó la transición a la era de la genética molecular . A partir de la década de 1950, la biología se ha extendido enormemente en el dominio molecular . El código genético fue descifrado por Har Gobind Khorana , Robert W. Holley y Marshall Warren Nirenberg después de que se supiera que el ADN contenía codones . El Proyecto Genoma Humano se lanzó en 1990 para mapear el genoma humano . [31]
Todos los organismos están formados por elementos químicos ; [32] el oxígeno , el carbono , el hidrógeno y el nitrógeno representan la mayor parte (96%) de la masa de todos los organismos, mientras que el calcio , el fósforo , el azufre , el sodio , el cloro y el magnesio constituyen esencialmente todo el resto. Diferentes elementos pueden combinarse para formar compuestos como el agua, que es fundamental para la vida. [32] La bioquímica es el estudio de los procesos químicos dentro de los organismos vivos y relacionados con ellos . La biología molecular es la rama de la biología que busca comprender la base molecular de la actividad biológica en las células y entre ellas, incluida la síntesis, modificación, mecanismos e interacciones moleculares .
La vida surgió del primer océano de la Tierra, que se formó hace unos 3.800 millones de años. [33] Desde entonces, el agua sigue siendo la molécula más abundante en todos los organismos. El agua es importante para la vida porque es un disolvente eficaz , capaz de disolver solutos como iones de sodio y cloruro u otras moléculas pequeñas para formar una solución acuosa . Una vez disueltos en agua, estos solutos tienen más probabilidades de entrar en contacto entre sí y, por lo tanto, participar en las reacciones químicas que sustentan la vida. [33] En términos de su estructura molecular , el agua es una pequeña molécula polar con una forma doblada formada por los enlaces covalentes polares de dos átomos de hidrógeno (H) a un átomo de oxígeno (O) (H 2 O). [33] Debido a que los enlaces O–H son polares, el átomo de oxígeno tiene una ligera carga negativa y los dos átomos de hidrógeno tienen una ligera carga positiva. [33] Esta propiedad polar del agua le permite atraer otras moléculas de agua a través de enlaces de hidrógeno, lo que hace que el agua sea cohesiva . [33] La tensión superficial resulta de la fuerza de cohesión debida a la atracción entre moléculas en la superficie del líquido. [33] El agua también es adhesiva , ya que puede adherirse a la superficie de cualquier molécula polar o cargada que no sea agua. [33] El agua es más densa como líquido que como sólido (o hielo). [33] Esta propiedad única del agua permite que el hielo flote sobre el agua líquida, como estanques, lagos y océanos, aislando así el líquido de abajo del aire frío de arriba. [33] El agua tiene la capacidad de absorber energía, lo que le da una capacidad calorífica específica más alta que otros solventes como el etanol . [33] Por lo tanto, se necesita una gran cantidad de energía para romper los enlaces de hidrógeno entre las moléculas de agua para convertir el agua líquida en vapor de agua . [33] Como molécula, el agua no es completamente estable, ya que cada molécula de agua se disocia continuamente en iones de hidrógeno e hidroxilo antes de reformarse nuevamente en una molécula de agua. [33] En agua pura , la cantidad de iones de hidrógeno equilibra (o iguala) la cantidad de iones de hidroxilo, lo que da como resultado un pH neutro.
Los compuestos orgánicos son moléculas que contienen carbono unido a otro elemento como el hidrógeno. [33] Con excepción del agua, casi todas las moléculas que forman cada organismo contienen carbono. [33] [34] El carbono puede formar enlaces covalentes con hasta otros cuatro átomos, lo que le permite formar moléculas diversas, grandes y complejas. [33] [34] Por ejemplo, un solo átomo de carbono puede formar cuatro enlaces covalentes simples como en el metano , dos enlaces covalentes dobles como en el dióxido de carbono (CO 2 ), o un enlace covalente triple como en el monóxido de carbono (CO). Además, el carbono puede formar cadenas muy largas de enlaces carbono-carbono interconectados como el octano o estructuras similares a anillos como la glucosa .
La forma más simple de una molécula orgánica es el hidrocarburo , que es una gran familia de compuestos orgánicos que se componen de átomos de hidrógeno unidos a una cadena de átomos de carbono. Una cadena principal de hidrocarburos puede sustituirse por otros elementos como el oxígeno (O), el hidrógeno (H), el fósforo (P) y el azufre (S), que pueden cambiar el comportamiento químico de ese compuesto. [33] Los grupos de átomos que contienen estos elementos (O-, H-, P- y S-) y están unidos a un átomo o esqueleto de carbono central se denominan grupos funcionales . [33] Hay seis grupos funcionales destacados que se pueden encontrar en los organismos: grupo amino , grupo carboxilo , grupo carbonilo , grupo hidroxilo , grupo fosfato y grupo sulfhidrilo . [33]
En 1953, el experimento de Miller-Urey demostró que los compuestos orgánicos podían sintetizarse abióticamente dentro de un sistema cerrado que imitaba las condiciones de la Tierra primitiva , lo que sugiere que las moléculas orgánicas complejas podrían haber surgido espontáneamente en la Tierra primitiva (véase abiogénesis ). [35] [33]
Las macromoléculas son moléculas grandes formadas por subunidades más pequeñas o monómeros . [36] Los monómeros incluyen azúcares, aminoácidos y nucleótidos. [37] Los carbohidratos incluyen monómeros y polímeros de azúcares. [38] Los lípidos son la única clase de macromoléculas que no están formadas por polímeros. Incluyen esteroides , fosfolípidos y grasas, [37] sustancias en gran parte no polares e hidrófobas (que repelen el agua). [39] Las proteínas son las más diversas de las macromoléculas. Incluyen enzimas , proteínas de transporte , grandes moléculas de señalización , anticuerpos y proteínas estructurales . La unidad básica (o monómero) de una proteína es un aminoácido . [36] Se utilizan veinte aminoácidos en las proteínas. [36] Los ácidos nucleicos son polímeros de nucleótidos . [40] Su función es almacenar, transmitir y expresar información hereditaria. [37]
La teoría celular afirma que las células son las unidades fundamentales de la vida, que todos los seres vivos están compuestos de una o más células y que todas las células surgen de células preexistentes a través de la división celular . [41] La mayoría de las células son muy pequeñas, con diámetros que van desde 1 a 100 micrómetros y, por lo tanto, solo son visibles bajo un microscopio óptico o electrónico . [42] En general, existen dos tipos de células: las células eucariotas , que contienen un núcleo , y las células procariotas , que no lo tienen. Los procariotas son organismos unicelulares como las bacterias , mientras que los eucariotas pueden ser unicelulares o multicelulares. En los organismos multicelulares , cada célula del cuerpo del organismo se deriva en última instancia de una sola célula en un óvulo fertilizado .
Cada célula está encerrada dentro de una membrana celular que separa su citoplasma del espacio extracelular . [43] Una membrana celular consta de una bicapa lipídica , que incluye colesteroles que se encuentran entre los fosfolípidos para mantener su fluidez a diversas temperaturas. Las membranas celulares son semipermeables , lo que permite que pequeñas moléculas como el oxígeno, el dióxido de carbono y el agua pasen a través de ellas, al tiempo que restringen el movimiento de moléculas más grandes y partículas cargadas como los iones . [44] Las membranas celulares también contienen proteínas de membrana , incluidas las proteínas integrales de membrana que atraviesan la membrana y sirven como transportadores de membrana , y proteínas periféricas que se adhieren de forma flexible al lado externo de la membrana celular, actuando como enzimas que dan forma a la célula. [45] Las membranas celulares participan en varios procesos celulares, como la adhesión celular , el almacenamiento de energía eléctrica y la señalización celular , y sirven como superficie de unión para varias estructuras extracelulares, como la pared celular , el glicocáliz y el citoesqueleto .
Dentro del citoplasma de una célula, hay muchas biomoléculas como proteínas y ácidos nucleicos . [46] Además de las biomoléculas, las células eucariotas tienen estructuras especializadas llamadas orgánulos que tienen sus propias bicapas lipídicas o son unidades espaciales. [47] Estos orgánulos incluyen el núcleo celular , que contiene la mayor parte del ADN de la célula, o las mitocondrias , que generan trifosfato de adenosina (ATP) para impulsar los procesos celulares. Otros orgánulos como el retículo endoplasmático y el aparato de Golgi juegan un papel en la síntesis y el empaquetamiento de proteínas, respectivamente. Las biomoléculas como las proteínas pueden ser engullidas por lisosomas , otro orgánulo especializado. Las células vegetales tienen orgánulos adicionales que las distinguen de las células animales , como una pared celular que brinda soporte a la célula vegetal, cloroplastos que recolectan energía de la luz solar para producir azúcar y vacuolas que brindan almacenamiento y soporte estructural, además de estar involucradas en la reproducción y descomposición de las semillas de las plantas. [47] Las células eucariotas también tienen un citoesqueleto que está formado por microtúbulos , filamentos intermedios y microfilamentos , todos los cuales proporcionan soporte a la célula y están involucrados en el movimiento de la célula y sus orgánulos. [47] En términos de su composición estructural, los microtúbulos están formados por tubulina (por ejemplo, α-tubulina y β-tubulina ), mientras que los filamentos intermedios están formados por proteínas fibrosas. [47] Los microfilamentos están formados por moléculas de actina que interactúan con otras hebras de proteínas. [47]
Todas las células necesitan energía para mantener los procesos celulares. El metabolismo es el conjunto de reacciones químicas en un organismo. Los tres propósitos principales del metabolismo son: la conversión de alimentos en energía para ejecutar los procesos celulares; la conversión de alimentos/combustibles en bloques de construcción de monómeros; y la eliminación de desechos metabólicos . Estas reacciones catalizadas por enzimas permiten a los organismos crecer y reproducirse, mantener sus estructuras y responder a sus entornos. Las reacciones metabólicas pueden clasificarse como catabólicas : la descomposición de compuestos (por ejemplo, la descomposición de la glucosa en piruvato por la respiración celular ); o anabólicas : la acumulación ( síntesis ) de compuestos (como proteínas, carbohidratos, lípidos y ácidos nucleicos). Por lo general, el catabolismo libera energía y el anabolismo consume energía. Las reacciones químicas del metabolismo se organizan en vías metabólicas , en las que una sustancia química se transforma a través de una serie de pasos en otra sustancia química, cada paso es facilitado por una enzima específica. Las enzimas son fundamentales para el metabolismo porque permiten a los organismos impulsar reacciones deseables que requieren energía que no se produciría por sí sola, al acoplarlas a reacciones espontáneas que liberan energía. Las enzimas actúan como catalizadores (permiten que una reacción se lleve a cabo más rápidamente sin ser consumidas por ella) al reducir la cantidad de energía de activación necesaria para convertir los reactivos en productos . Las enzimas también permiten regular la velocidad de una reacción metabólica, por ejemplo, en respuesta a cambios en el entorno de la célula o a señales de otras células.
La respiración celular es un conjunto de reacciones y procesos metabólicos que tienen lugar en las células para convertir la energía química de los nutrientes en trifosfato de adenosina (ATP) y luego liberar los productos de desecho. [48] Las reacciones involucradas en la respiración son reacciones catabólicas , que rompen moléculas grandes en otras más pequeñas, liberando energía. La respiración es una de las formas clave en que una célula libera energía química para impulsar la actividad celular. La reacción general ocurre en una serie de pasos bioquímicos, algunos de los cuales son reacciones redox . Aunque la respiración celular es técnicamente una reacción de combustión , claramente no se parece a una cuando ocurre en una célula debido a la liberación lenta y controlada de energía de la serie de reacciones.
El azúcar en forma de glucosa es el principal nutriente utilizado por las células animales y vegetales en la respiración. La respiración celular que involucra oxígeno se llama respiración aeróbica, que tiene cuatro etapas: glucólisis , ciclo del ácido cítrico (o ciclo de Krebs), cadena de transporte de electrones y fosforilación oxidativa . [49] La glucólisis es un proceso metabólico que ocurre en el citoplasma mediante el cual la glucosa se convierte en dos piruvatos , produciéndose dos moléculas netas de ATP al mismo tiempo. [49] Luego, cada piruvato se oxida en acetil-CoA por el complejo piruvato deshidrogenasa , que también genera NADH y dióxido de carbono. El acetil-CoA ingresa al ciclo del ácido cítrico, que tiene lugar dentro de la matriz mitocondrial. Al final del ciclo, el rendimiento total de 1 glucosa (o 2 piruvatos) es de 6 moléculas de NADH, 2 de FADH 2 y 2 de ATP. Finalmente, la siguiente etapa es la fosforilación oxidativa, que en eucariotas, ocurre en las crestas mitocondriales . La fosforilación oxidativa comprende la cadena de transporte de electrones, que es una serie de cuatro complejos proteicos que transfieren electrones de un complejo a otro, liberando así energía de NADH y FADH 2 que está acoplada al bombeo de protones (iones de hidrógeno) a través de la membrana mitocondrial interna ( quimiosmosis ), que genera una fuerza motriz de protones . [49] La energía de la fuerza motriz de protones impulsa a la enzima ATP sintasa a sintetizar más ATP mediante la fosforilación de ADP . La transferencia de electrones termina con el oxígeno molecular siendo el aceptor final de electrones .
Si no hubiera oxígeno, el piruvato no sería metabolizado por la respiración celular, sino que sufriría un proceso de fermentación . El piruvato no es transportado a la mitocondria, sino que permanece en el citoplasma, donde se convierte en productos de desecho que pueden ser eliminados de la célula. Esto sirve para oxidar los transportadores de electrones para que puedan realizar la glucólisis nuevamente y eliminar el exceso de piruvato. La fermentación oxida el NADH a NAD + para que pueda reutilizarse en la glucólisis. En ausencia de oxígeno, la fermentación evita la acumulación de NADH en el citoplasma y proporciona NAD + para la glucólisis. Este producto de desecho varía según el organismo. En los músculos esqueléticos, el producto de desecho es el ácido láctico . Este tipo de fermentación se llama fermentación láctica . En el ejercicio extenuante, cuando las demandas de energía exceden el suministro de energía, la cadena respiratoria no puede procesar todos los átomos de hidrógeno unidos por el NADH. Durante la glucólisis anaeróbica, el NAD + se regenera cuando pares de hidrógeno se combinan con el piruvato para formar lactato. La formación de lactato es catalizada por la lactato deshidrogenasa en una reacción reversible. El lactato también se puede utilizar como precursor indirecto del glucógeno hepático. Durante la recuperación, cuando el oxígeno está disponible, el NAD + se une al hidrógeno del lactato para formar ATP. En la levadura, los productos de desecho son etanol y dióxido de carbono. Este tipo de fermentación se conoce como fermentación alcohólica o etanólica . El ATP generado en este proceso se realiza mediante fosforilación a nivel de sustrato , que no requiere oxígeno.
La fotosíntesis es un proceso que utilizan las plantas y otros organismos para convertir la energía luminosa en energía química que luego puede liberarse para alimentar las actividades metabólicas del organismo a través de la respiración celular. Esta energía química se almacena en moléculas de carbohidratos, como los azúcares, que se sintetizan a partir del dióxido de carbono y el agua. [50] [51] [52] En la mayoría de los casos, el oxígeno se libera como producto de desecho. La mayoría de las plantas, algas y cianobacterias realizan la fotosíntesis, que es en gran parte responsable de producir y mantener el contenido de oxígeno de la atmósfera de la Tierra, y suministra la mayor parte de la energía necesaria para la vida en la Tierra. [53]
La fotosíntesis tiene cuatro etapas: absorción de luz , transporte de electrones, síntesis de ATP y fijación de carbono . [49] La absorción de luz es el paso inicial de la fotosíntesis mediante el cual la energía de la luz es absorbida por los pigmentos de clorofila unidos a las proteínas en las membranas tilacoides . La energía de la luz absorbida se utiliza para retirar electrones de un donante (agua) a un aceptor primario de electrones, una quinona designada como Q. En la segunda etapa, los electrones se mueven desde el aceptor primario de electrones quinona a través de una serie de portadores de electrones hasta que alcanzan un aceptor final de electrones, que suele ser la forma oxidada de NADP + , que se reduce a NADPH, un proceso que tiene lugar en un complejo proteico llamado fotosistema I (PSI). El transporte de electrones está acoplado al movimiento de protones (o hidrógeno) desde el estroma a la membrana tilacoide, que forma un gradiente de pH a través de la membrana a medida que el hidrógeno se concentra más en el lumen que en el estroma. Esto es análogo a la fuerza protónica generada a través de la membrana mitocondrial interna durante la respiración aeróbica. [49]
Durante la tercera etapa de la fotosíntesis, el movimiento de protones a lo largo de sus gradientes de concentración desde el lumen del tilacoide hasta el estroma a través de la ATP sintasa está acoplado a la síntesis de ATP por esa misma ATP sintasa. [49] El NADPH y los ATP generados por las reacciones dependientes de la luz en la segunda y tercera etapa, respectivamente, proporcionan la energía y los electrones para impulsar la síntesis de glucosa mediante la fijación del dióxido de carbono atmosférico en compuestos de carbono orgánico existentes, como el bisfosfato de ribulosa (RuBP) en una secuencia de reacciones independientes de la luz (u oscuras) llamadas ciclo de Calvin . [54]
La señalización celular (o comunicación) es la capacidad de las células de recibir, procesar y transmitir señales con su entorno y consigo mismas. [55] [56] Las señales pueden ser no químicas como la luz, los impulsos eléctricos y el calor, o señales químicas (o ligandos ) que interactúan con los receptores , que pueden encontrarse incrustados en la membrana celular de otra célula o ubicados en lo profundo de una célula. [57] [56] Generalmente hay cuatro tipos de señales químicas: autocrinas , paracrinas , yuxtacrinas y hormonas . [57] En la señalización autocrina, el ligando afecta a la misma célula que lo libera. Las células tumorales , por ejemplo, pueden reproducirse sin control porque liberan señales que inician su propia autodivisión. En la señalización paracrina, el ligando se difunde a las células cercanas y las afecta. Por ejemplo, las células cerebrales llamadas neuronas liberan ligandos llamados neurotransmisores que se difunden a través de una hendidura sináptica para unirse con un receptor en una célula adyacente como otra neurona o célula muscular . En la señalización yuxtacrina, existe un contacto directo entre la célula que envía la señal y la que responde. Por último, las hormonas son ligandos que viajan a través de los sistemas circulatorios de los animales o los sistemas vasculares de las plantas para llegar a sus células diana. Una vez que un ligando se une a un receptor, puede influir en el comportamiento de otra célula, dependiendo del tipo de receptor. Por ejemplo, los neurotransmisores que se unen a un receptor inotrópico pueden alterar la excitabilidad de una célula diana. Otros tipos de receptores incluyen los receptores de proteína quinasa (p. ej., el receptor de la hormona insulina ) y los receptores acoplados a la proteína G. La activación de los receptores acoplados a la proteína G puede iniciar cascadas de segundos mensajeros . El proceso por el cual una señal química o física se transmite a través de una célula como una serie de eventos moleculares se denomina transducción de señales .
El ciclo celular es una serie de eventos que tienen lugar en una célula que hacen que se divida en dos células hijas. Estos eventos incluyen la duplicación de su ADN y algunos de sus orgánulos , y la posterior partición de su citoplasma en dos células hijas en un proceso llamado división celular . [58] En eucariotas (es decir, células animales, vegetales, fúngicas y protistas ), existen dos tipos distintos de división celular: mitosis y meiosis . [59] La mitosis es parte del ciclo celular, en el que los cromosomas replicados se separan en dos nuevos núcleos. La división celular da lugar a células genéticamente idénticas en las que se mantiene el número total de cromosomas. En general, la mitosis (división del núcleo) está precedida por la etapa S de la interfase (durante la cual se replica el ADN) y a menudo es seguida por la telofase y la citocinesis ; que divide el citoplasma , los orgánulos y la membrana celular de una célula en dos nuevas células que contienen partes aproximadamente iguales de estos componentes celulares. Las diferentes etapas de la mitosis definen en conjunto la fase mitótica del ciclo celular de un animal: la división de la célula madre en dos células hijas genéticamente idénticas. [60] El ciclo celular es un proceso vital por el cual un óvulo fertilizado unicelular se desarrolla hasta convertirse en un organismo maduro, así como el proceso por el cual se renuevan el cabello, la piel, las células sanguíneas y algunos órganos internos . Después de la división celular, cada una de las células hijas comienza la interfase de un nuevo ciclo. A diferencia de la mitosis, la meiosis da como resultado cuatro células hijas haploides al experimentar una ronda de replicación de ADN seguida de dos divisiones. [61] Los cromosomas homólogos se separan en la primera división ( meiosis I ), y las cromátidas hermanas se separan en la segunda división ( meiosis II ). Ambos ciclos de división celular se utilizan en el proceso de reproducción sexual en algún momento de su ciclo de vida. Se cree que ambos están presentes en el último ancestro común eucariota.
Los procariotas (es decir, arqueas y bacterias) también pueden experimentar división celular (o fisión binaria ). A diferencia de los procesos de mitosis y meiosis en eucariotas, la fisión binaria en procariotas tiene lugar sin la formación de un aparato de huso en la célula. Antes de la fisión binaria, el ADN en la bacteria está fuertemente enrollado. Después de que se ha desenrollado y duplicado, es tirado hacia los polos separados de la bacteria a medida que aumenta el tamaño para prepararse para la división. El crecimiento de una nueva pared celular comienza a separar la bacteria (desencadenado por la polimerización de FtsZ y la formación del "anillo Z"). [62] La nueva pared celular ( septo ) se desarrolla completamente, lo que resulta en la división completa de la bacteria. Las nuevas células hijas tienen varillas de ADN, ribosomas y plásmidos fuertemente enrollados .
La meiosis es una característica central de la reproducción sexual en eucariotas, y la función más fundamental de la meiosis parece ser la conservación de la integridad del genoma que se transmite a la progenie por los padres. [63] [64] Es probable que dos aspectos de la reproducción sexual , la recombinación meiótica y el cruzamiento cruzado , se mantengan respectivamente por las ventajas adaptativas de la reparación recombinacional del daño del ADN genómico y la complementación genética que enmascara la expresión de mutaciones recesivas deletéreas . [65]
El efecto beneficioso de la complementación genética, derivado del cruzamiento externo (fecundación cruzada), también se conoce como vigor híbrido o heterosis. Charles Darwin en su libro de 1878 Los efectos de la fecundación cruzada y la autofecundación en el reino vegetal [66] al comienzo del capítulo XII señaló: “La primera y más importante de las conclusiones que se pueden extraer de las observaciones dadas en este volumen, es que generalmente la fecundación cruzada es beneficiosa y la autofecundación a menudo perjudicial, al menos con las plantas en las que experimenté”. La variación genética , a menudo producida como un subproducto de la reproducción sexual, puede proporcionar ventajas a largo plazo a aquellos linajes sexuales que participan en el cruzamiento externo . [65]
La genética es el estudio científico de la herencia. [67] [68] [69] La herencia mendeliana , específicamente, es el proceso por el cual los genes y rasgos se transmiten de padres a hijos. [29] Tiene varios principios. El primero es que las características genéticas, los alelos , son discretos y tienen formas alternas (por ejemplo, púrpura vs. blanco o alto vs. enano), cada una heredada de uno de dos padres. Con base en la ley de dominancia y uniformidad , que establece que algunos alelos son dominantes mientras que otros son recesivos ; un organismo con al menos un alelo dominante mostrará el fenotipo de ese alelo dominante. Durante la formación de gametos, los alelos para cada gen se segregan, de modo que cada gameto lleva solo un alelo para cada gen. Los individuos heterocigóticos producen gametos con una frecuencia igual de dos alelos. Finalmente, la ley de surtido independiente , establece que los genes de diferentes rasgos pueden segregarse independientemente durante la formación de gametos, es decir, los genes están desvinculados. Una excepción a esta regla incluiría los rasgos que están ligados al sexo . Se pueden realizar cruces de prueba para determinar experimentalmente el genotipo subyacente de un organismo con un fenotipo dominante. [70] Se puede utilizar un cuadro de Punnett para predecir los resultados de un cruce de prueba. La teoría cromosómica de la herencia , que establece que los genes se encuentran en los cromosomas, fue apoyada por los experimentos de Thomas Morgans con moscas de la fruta , que establecieron el vínculo sexual entre el color de los ojos y el sexo en estos insectos. [71]
Un gen es una unidad de herencia que corresponde a una región de ácido desoxirribonucleico (ADN) que lleva información genética que controla la forma o función de un organismo. El ADN se compone de dos cadenas de polinucleótidos que se enrollan una alrededor de la otra para formar una doble hélice . [72] Se encuentra como cromosomas lineales en eucariotas y cromosomas circulares en procariotas . El conjunto de cromosomas en una célula se conoce colectivamente como su genoma . En eucariotas, el ADN se encuentra principalmente en el núcleo celular . [73] En procariotas, el ADN se mantiene dentro del nucleoide . [74] La información genética se mantiene dentro de los genes, y el ensamblaje completo en un organismo se llama su genotipo . [75] La replicación del ADN es un proceso semiconservativo por el cual cada hebra sirve como plantilla para una nueva hebra de ADN. [72] Las mutaciones son cambios hereditarios en el ADN. [72] Pueden surgir espontáneamente como resultado de errores de replicación que no se corrigieron mediante la corrección de pruebas o pueden ser inducidos por un mutágeno ambiental como un químico (p. ej., ácido nitroso , benzopireno ) o radiación (p. ej., rayos X , rayos gamma , radiación ultravioleta , partículas emitidas por isótopos inestables). [72] Las mutaciones pueden provocar efectos fenotípicos como pérdida de función, ganancia de función y mutaciones condicionales. [72] Algunas mutaciones son beneficiosas, ya que son una fuente de variación genética para la evolución. [72] Otras son dañinas si resultaran en una pérdida de función de los genes necesarios para la supervivencia. [72]
La expresión génica es el proceso molecular por el cual un genotipo codificado en el ADN da lugar a un fenotipo observable en las proteínas del cuerpo de un organismo. Este proceso se resume en el dogma central de la biología molecular , que fue formulado por Francis Crick en 1958. [76] [77] [78] Según el dogma central, la información genética fluye del ADN al ARN y a la proteína. Existen dos procesos de expresión génica: transcripción (ADN a ARN) y traducción (ARN a proteína). [79]
La regulación de la expresión génica por factores ambientales y durante diferentes etapas del desarrollo puede ocurrir en cada paso del proceso, como la transcripción , el empalme de ARN , la traducción y la modificación postraduccional de una proteína. [80] La expresión génica puede verse influenciada por la regulación positiva o negativa, dependiendo de cuál de los dos tipos de proteínas reguladoras llamadas factores de transcripción se unan a la secuencia de ADN cerca o en un promotor. [80] Un grupo de genes que comparten el mismo promotor se llama operón , que se encuentra principalmente en procariotas y algunos eucariotas inferiores (p. ej., Caenorhabditis elegans ). [80] [81] En la regulación positiva de la expresión génica, el activador es el factor de transcripción que estimula la transcripción cuando se une a la secuencia cerca o en el promotor. La regulación negativa ocurre cuando otro factor de transcripción llamado represor se une a una secuencia de ADN llamada operador , que es parte de un operón, para evitar la transcripción. Los represores pueden ser inhibidos por compuestos llamados inductores (por ejemplo, alolactosa ), lo que permite que se produzca la transcripción. [80] Los genes específicos que pueden ser activados por inductores se denominan genes inducibles , en contraste con los genes constitutivos que están casi constantemente activos. [80] A diferencia de ambos, los genes estructurales codifican proteínas que no están involucradas en la regulación genética. [80] Además de los eventos reguladores que involucran al promotor, la expresión genética también puede ser regulada por cambios epigenéticos en la cromatina , que es un complejo de ADN y proteína que se encuentra en las células eucariotas. [80]
El desarrollo es el proceso por el cual un organismo multicelular (planta o animal) pasa por una serie de cambios, comenzando desde una sola célula, y tomando varias formas que son características de su ciclo de vida. [82] Hay cuatro procesos clave que subyacen al desarrollo: Determinación , diferenciación , morfogénesis y crecimiento. La determinación establece el destino de desarrollo de una célula, que se vuelve más restrictivo durante el desarrollo. La diferenciación es el proceso por el cual las células especializadas surgen de células menos especializadas como las células madre . [83] [84] Las células madre son células indiferenciadas o parcialmente diferenciadas que pueden diferenciarse en varios tipos de células y proliferar indefinidamente para producir más de la misma célula madre. [85] La diferenciación celular cambia drásticamente el tamaño, la forma, el potencial de membrana , la actividad metabólica y la capacidad de respuesta a las señales de una célula, que se deben en gran medida a modificaciones altamente controladas en la expresión genética y la epigenética . Con algunas excepciones, la diferenciación celular casi nunca implica un cambio en la secuencia de ADN en sí. [86] Por lo tanto, diferentes células pueden tener características físicas muy diferentes a pesar de tener el mismo genoma . La morfogénesis, o el desarrollo de la forma corporal, es el resultado de diferencias espaciales en la expresión genética. [82] Una pequeña fracción de los genes en el genoma de un organismo, llamada el conjunto de herramientas genéticas del desarrollo, controla el desarrollo de ese organismo. Estos genes del conjunto de herramientas están altamente conservados entre los filos , lo que significa que son antiguos y muy similares en grupos de animales ampliamente separados. Las diferencias en el despliegue de los genes del conjunto de herramientas afectan el plan corporal y el número, la identidad y el patrón de las partes del cuerpo. Entre los genes del conjunto de herramientas más importantes se encuentran los genes Hox . Los genes Hox determinan dónde crecerán las partes repetidas, como las muchas vértebras de las serpientes, en un embrión o larva en desarrollo. [87]
La evolución es un concepto central de organización en biología. Es el cambio en las características hereditarias de las poblaciones a lo largo de generaciones sucesivas . [88] [89] En la selección artificial , los animales fueron criados selectivamente para rasgos específicos. [90] Dado que los rasgos se heredan, las poblaciones contienen una mezcla variada de rasgos y la reproducción puede aumentar cualquier población, Darwin argumentó que en el mundo natural, era la naturaleza la que desempeñaba el papel de los humanos en la selección de rasgos específicos. [90] Darwin dedujo que los individuos que poseían rasgos hereditarios mejor adaptados a sus entornos tienen más probabilidades de sobrevivir y producir más descendencia que otros individuos. [90] Además, dedujo que esto conduciría a la acumulación de rasgos favorables a lo largo de generaciones sucesivas, aumentando así la correspondencia entre los organismos y su entorno. [91] [92] [93] [90] [94]
Una especie es un grupo de organismos que se aparean entre sí y la especiación es el proceso por el cual un linaje se divide en dos linajes como resultado de haber evolucionado independientemente uno del otro. [95] Para que ocurra la especiación, tiene que haber aislamiento reproductivo . [95] El aislamiento reproductivo puede resultar de incompatibilidades entre genes como lo describe el modelo de Bateson-Dobzhansky-Muller . El aislamiento reproductivo también tiende a aumentar con la divergencia genética . La especiación puede ocurrir cuando hay barreras físicas que dividen una especie ancestral, un proceso conocido como especiación alopátrica . [95]
Una filogenia es una historia evolutiva de un grupo específico de organismos o sus genes. [96] Se puede representar utilizando un árbol filogenético , un diagrama que muestra líneas de descendencia entre organismos o sus genes. Cada línea dibujada en el eje del tiempo de un árbol representa un linaje de descendientes de una especie o población particular. Cuando un linaje se divide en dos, se representa como una bifurcación o división en el árbol filogenético. [96] Los árboles filogenéticos son la base para comparar y agrupar diferentes especies. [96] Las diferentes especies que comparten una característica heredada de un ancestro común se describen como que tienen características homólogas (o sinapomorfía ). [97] [98] [96] La filogenia proporciona la base de la clasificación biológica. [96] Este sistema de clasificación se basa en rangos, siendo el rango más alto el dominio seguido de reino , filo , clase , orden , familia , género y especie . [96] Todos los organismos pueden clasificarse como pertenecientes a uno de tres dominios : Archaea (originalmente Archaebacteria), bacterias (originalmente eubacterias) o eukarya (incluye los reinos de los hongos, las plantas y los animales). [99]
La historia de la vida en la Tierra rastrea cómo los organismos han evolucionado desde el surgimiento más temprano de la vida hasta la actualidad. La Tierra se formó hace unos 4.500 millones de años y toda la vida en la Tierra, tanto viva como extinta, desciende de un último ancestro común universal que vivió hace unos 3.500 millones de años . [100] [101] Los geólogos han desarrollado una escala de tiempo geológico que divide la historia de la Tierra en divisiones principales, comenzando con cuatro eones ( Hádico , Arcaico , Proterozoico y Fanerozoico ), los primeros tres de los cuales se conocen colectivamente como el Precámbrico , que duró aproximadamente 4 mil millones de años. [102] Cada eón se puede dividir en eras, y el eón Fanerozoico que comenzó hace 539 millones de años [103] se subdivide en eras Paleozoica , Mesozoica y Cenozoica . [102] Estas tres eras juntas comprenden once períodos ( Cámbrico , Ordovícico , Silúrico , Devónico , Carbonífero , Pérmico , Triásico , Jurásico , Cretácico , Terciario y Cuaternario ). [102]
Las similitudes entre todas las especies conocidas en la actualidad indican que han divergido a través del proceso de evolución de su ancestro común. [104] Los biólogos consideran la ubicuidad del código genético como evidencia de una descendencia común universal para todas las bacterias , arqueas y eucariotas . [105] [10] [106] [107] Los tapetes microbianos de bacterias y arqueas coexistentes fueron la forma de vida dominante en el eón Arcaico temprano y se cree que muchos de los pasos principales en la evolución temprana tuvieron lugar en este entorno. [108] La evidencia más temprana de eucariotas data de hace 1.850 millones de años, [109] [110] y, si bien pueden haber estado presentes antes, su diversificación se aceleró cuando comenzaron a usar oxígeno en su metabolismo . Más tarde, hace alrededor de 1.700 millones de años, comenzaron a aparecer organismos multicelulares , con células diferenciadas que realizaban funciones especializadas. [111]
Las plantas terrestres multicelulares similares a las algas datan de hace aproximadamente mil millones de años, [112] aunque la evidencia sugiere que los microorganismos formaron los primeros ecosistemas terrestres , hace al menos 2.700 millones de años. [113] Se cree que los microorganismos allanaron el camino para el inicio de las plantas terrestres en el período Ordovícico . Las plantas terrestres tuvieron tanto éxito que se cree que contribuyeron al evento de extinción del Devónico tardío . [114]
La biota de Ediacara aparece durante el periodo Ediacárico , [115] mientras que los vertebrados , junto con la mayoría de los otros filos modernos , se originaron hace unos 525 millones de años durante la explosión cámbrica . [116] Durante el periodo Pérmico, los sinápsidos , incluidos los ancestros de los mamíferos , dominaron la tierra, [117] pero la mayor parte de este grupo se extinguió en el evento de extinción masiva del Pérmico-Triásico hace 252 millones de años. [118] Durante la recuperación de esta catástrofe, los arcosaurios se convirtieron en los vertebrados terrestres más abundantes; [119] un grupo de arcosaurios, los dinosaurios, dominó los periodos Jurásico y Cretácico. [120] Después de que el evento de extinción masiva del Cretácico-Paleógeno hace 66 millones de años acabara con los dinosaurios no aviares, [121] los mamíferos aumentaron rápidamente en tamaño y diversidad . [122] Estas extinciones masivas pueden haber acelerado la evolución al brindar oportunidades para que nuevos grupos de organismos se diversificaran. [123]
Las bacterias son un tipo de célula que constituye un gran dominio de microorganismos procariotas . Por lo general, miden unos pocos micrómetros de longitud y tienen varias formas , que van desde esferas hasta varillas y espirales . Las bacterias estuvieron entre las primeras formas de vida que aparecieron en la Tierra y están presentes en la mayoría de sus hábitats . Las bacterias habitan el suelo, el agua, las fuentes termales ácidas , los desechos radiactivos [124] y la biosfera profunda de la corteza terrestre . Las bacterias también viven en relaciones simbióticas y parasitarias con plantas y animales. La mayoría de las bacterias no han sido caracterizadas, y solo alrededor del 27 por ciento de los filos bacterianos tienen especies que se pueden cultivar en el laboratorio. [125]
Las arqueas constituyen el otro dominio de las células procariotas y fueron clasificadas inicialmente como bacterias, recibiendo el nombre de arqueobacterias (en el reino Archaebacteria ), un término que ha caído en desuso. [126] Las células arqueales tienen propiedades únicas que las separan de los otros dos dominios , Bacteria y Eukaryota . Las arqueas se dividen además en múltiples filos reconocidos . Las arqueas y las bacterias son generalmente similares en tamaño y forma, aunque algunas arqueas tienen formas muy diferentes, como las células planas y cuadradas de Haloquadratum walsbyi . [127] A pesar de esta similitud morfológica con las bacterias, las arqueas poseen genes y varias vías metabólicas que están más estrechamente relacionadas con las de los eucariotas, en particular para las enzimas involucradas en la transcripción y la traducción . Otros aspectos de la bioquímica de las arqueas son únicos, como su dependencia de los lípidos de éter en sus membranas celulares , [128] incluidos los arqueoles . Las arqueas utilizan más fuentes de energía que los eucariotas: estas van desde compuestos orgánicos , como azúcares, hasta amoníaco , iones metálicos o incluso gas hidrógeno . Las arqueas tolerantes a la sal ( Haloarchaea ) utilizan la luz solar como fuente de energía, y otras especies de arqueas fijan carbono , pero a diferencia de las plantas y las cianobacterias , ninguna especie conocida de arqueas hace ambas cosas. Las arqueas se reproducen asexualmente por fisión binaria , fragmentación o gemación ; a diferencia de las bacterias, ninguna especie conocida de arqueas forma endosporas .
Las primeras arqueas observadas eran extremófilas , que vivían en ambientes extremos, como aguas termales y lagos salados , sin otros organismos. Las herramientas de detección molecular mejoradas llevaron al descubrimiento de arqueas en casi todos los hábitats , incluidos el suelo, los océanos y las marismas . Las arqueas son particularmente numerosas en los océanos, y las arqueas en el plancton pueden ser uno de los grupos de organismos más abundantes del planeta.
Las arqueas son una parte importante de la vida en la Tierra . Forman parte de la microbiota de todos los organismos. En el microbioma humano , son importantes en el intestino , la boca y la piel. [129] Su diversidad morfológica, metabólica y geográfica les permite desempeñar múltiples funciones ecológicas: fijación de carbono; ciclo del nitrógeno; recambio de compuestos orgánicos; y mantenimiento de comunidades microbianas simbióticas y sintróficas , por ejemplo. [130]
Se plantea la hipótesis de que los eucariotas se separaron de las arqueas, a lo que siguió su endosimbiosis con bacterias (o simbiogénesis ) que dio lugar a las mitocondrias y los cloroplastos, ambos parte de las células eucariotas modernas. [131] Los principales linajes de eucariotas se diversificaron en el Precámbrico hace unos 1.500 millones de años y se pueden clasificar en ocho clados principales : alveolados , excavados , estramenopilos , plantas, rizarios , amebozoos , hongos y animales. [131] Cinco de estos clados se conocen colectivamente como protistas , que son en su mayoría organismos eucariotas microscópicos que no son plantas, hongos o animales. [131] Si bien es probable que los protistos compartan un ancestro común (el último ancestro común eucariota ), [132] los protistos por sí mismos no constituyen un clado separado ya que algunos protistos pueden estar más estrechamente relacionados con plantas, hongos o animales que con otros protistos. Al igual que agrupaciones como las algas , los invertebrados o los protozoos , la agrupación de protistos no es un grupo taxonómico formal, sino que se utiliza por conveniencia. [131] [133] La mayoría de los protistos son unicelulares; estos se denominan eucariotas microbianos. [131]
Las plantas son principalmente organismos multicelulares , predominantemente eucariotas fotosintéticos del reino Plantae, que excluiría a los hongos y algunas algas . Las células vegetales se derivaron por endosimbiosis de una cianobacteria en un eucariota temprano hace aproximadamente mil millones de años, lo que dio lugar a los cloroplastos. [134] Los primeros clados que surgieron después de la endosimbiosis primaria fueron acuáticos y la mayoría de los organismos eucariotas fotosintéticos acuáticos se describen colectivamente como algas, que es un término de conveniencia ya que no todas las algas están estrechamente relacionadas. [134] Las algas comprenden varios clados distintos como las glaucófitas , que son algas de agua dulce microscópicas que pueden haberse parecido en forma al ancestro unicelular temprano de Plantae. [134] A diferencia de las glaucófitas, los otros clados de algas como las algas rojas y verdes son multicelulares. Las algas verdes comprenden tres clados principales: clorofitas , coleoquetofitas y hierba de piedra . [134]
Los hongos son eucariotas que digieren los alimentos fuera de sus cuerpos, [135] secretando enzimas digestivas que descomponen las moléculas grandes de alimentos antes de absorberlas a través de sus membranas celulares. Muchos hongos también son saprobios y se alimentan de materia orgánica muerta, lo que los convierte en descomponedores importantes en los sistemas ecológicos. [135]
Los animales son eucariotas multicelulares. Con pocas excepciones, los animales consumen material orgánico , respiran oxígeno , pueden moverse , pueden reproducirse sexualmente y crecen a partir de una esfera hueca de células , la blástula , durante el desarrollo embrionario . Se han descrito más de 1,5 millones de especies animales vivas , de las cuales alrededor de 1 millón son insectos , pero se ha estimado que hay más de 7 millones de especies animales en total. Tienen interacciones complejas entre sí y con sus entornos, formando intrincadas redes alimentarias . [136]
Los virus son agentes infecciosos submicroscópicos que se replican dentro de las células de los organismos . [137] Los virus infectan todo tipo de formas de vida , desde animales y plantas hasta microorganismos , incluyendo bacterias y arqueas . [138] [139] Se han descrito en detalle más de 6.000 especies de virus . [140] Los virus se encuentran en casi todos los ecosistemas de la Tierra y son el tipo de entidad biológica más numeroso. [141] [142]
Los orígenes de los virus en la historia evolutiva de la vida no están claros: algunos pueden haber evolucionado a partir de plásmidos (fragmentos de ADN que pueden moverse entre células), mientras que otros pueden haber evolucionado a partir de bacterias. En la evolución, los virus son un medio importante de transferencia horizontal de genes , que aumenta la diversidad genética de una manera análoga a la reproducción sexual . [143] Debido a que los virus poseen algunas pero no todas las características de la vida, se los ha descrito como "organismos al borde de la vida", [144] y como autorreplicadores . [145]
La ecología es el estudio de la distribución y abundancia de la vida, la interacción entre los organismos y su entorno . [146]
La comunidad de organismos vivos ( bióticos ) en conjunción con los componentes no vivos ( abióticos ) (por ejemplo, agua, luz, radiación, temperatura, humedad , atmósfera , acidez y suelo) de su entorno se denomina ecosistema . [147] [148] [149] Estos componentes bióticos y abióticos están vinculados entre sí a través de ciclos de nutrientes y flujos de energía. [150] La energía del sol ingresa al sistema a través de la fotosíntesis y se incorpora al tejido vegetal. Al alimentarse de plantas y de otros animales, los animales mueven materia y energía a través del sistema. También influyen en la cantidad de biomasa vegetal y microbiana presente. Al descomponer la materia orgánica muerta , los descomponedores liberan carbono a la atmósfera y facilitan el ciclo de nutrientes al convertir los nutrientes almacenados en la biomasa muerta a una forma que las plantas y otros microbios pueden usar fácilmente. [151]
Una población es el grupo de organismos de la misma especie que ocupa un área y se reproduce de generación en generación. [152] [ 153] [154] [155] [156] El tamaño de la población se puede estimar multiplicando la densidad de población por el área o el volumen. La capacidad de carga de un entorno es el tamaño máximo de la población de una especie que puede ser sostenida por ese entorno específico, dados los alimentos, el hábitat , el agua y otros recursos disponibles. [157] La capacidad de carga de una población puede verse afectada por condiciones ambientales cambiantes, como cambios en la disponibilidad de recursos y el costo de mantenerlos. En las poblaciones humanas , las nuevas tecnologías como la revolución verde han ayudado a aumentar la capacidad de carga de la Tierra para los humanos a lo largo del tiempo, lo que ha frustrado los intentos de predicciones de un inminente declive de la población, el más famoso de los cuales fue el de Thomas Malthus en el siglo XVIII. [152]
Una comunidad es un grupo de poblaciones de especies que ocupan la misma área geográfica al mismo tiempo. [159] Una interacción biológica es el efecto que un par de organismos que viven juntos en una comunidad tienen entre sí. Pueden ser de la misma especie (interacciones intraespecíficas) o de especies diferentes (interacciones interespecíficas). Estos efectos pueden ser a corto plazo, como la polinización y la depredación , o a largo plazo; ambos a menudo influyen fuertemente en la evolución de las especies involucradas. Una interacción a largo plazo se llama simbiosis . Las simbiosis van desde el mutualismo , beneficioso para ambos socios, hasta la competencia , perjudicial para ambos socios. [160] Cada especie participa como consumidor, recurso o ambos en interacciones consumidor-recurso , que forman el núcleo de las cadenas alimentarias o redes alimentarias . [161] Existen diferentes niveles tróficos dentro de cualquier red alimentaria, siendo el nivel más bajo el de los productores primarios (o autótrofos ) como las plantas y las algas que convierten energía y material inorgánico en compuestos orgánicos , que luego pueden ser utilizados por el resto de la comunidad. [53] [162] [163] En el siguiente nivel están los heterótrofos , que son las especies que obtienen energía al descomponer los compuestos orgánicos de otros organismos. [161] Los heterótrofos que consumen plantas son consumidores primarios (o herbívoros ), mientras que los heterótrofos que consumen herbívoros son consumidores secundarios (o carnívoros ). Y los que comen consumidores secundarios son consumidores terciarios, y así sucesivamente. Los heterótrofos omnívoros pueden consumir en múltiples niveles. Finalmente, están los descomponedores que se alimentan de los productos de desecho o cadáveres de los organismos. [161] En promedio, la cantidad total de energía incorporada a la biomasa de un nivel trófico por unidad de tiempo es aproximadamente una décima parte de la energía del nivel trófico que consume. Los desechos y el material muerto utilizados por los descomponedores, así como el calor perdido por el metabolismo, constituyen el noventa por ciento restante de energía que no es consumida por el siguiente nivel trófico. [164]
En el ecosistema global o biosfera, la materia existe como diferentes compartimentos interactuantes, que pueden ser bióticos o abióticos, así como accesibles o inaccesibles, dependiendo de sus formas y ubicaciones. [166] Por ejemplo, la materia de los autótrofos terrestres es biótica y accesible a otros organismos, mientras que la materia en rocas y minerales es abiótica e inaccesible. Un ciclo biogeoquímico es una vía por la cual elementos específicos de la materia se rotan o se mueven a través de los compartimentos biótico ( biosfera ) y abiótico ( litosfera , atmósfera e hidrosfera ) de la Tierra. Hay ciclos biogeoquímicos para el nitrógeno , el carbono y el agua .
La biología de la conservación es el estudio de la conservación de la biodiversidad de la Tierra con el objetivo de proteger a las especies , sus hábitats y ecosistemas de tasas excesivas de extinción y la erosión de las interacciones bióticas. [167] [168] [169] Se ocupa de los factores que influyen en el mantenimiento, la pérdida y la restauración de la biodiversidad y la ciencia de sostener los procesos evolutivos que generan diversidad genética , poblacional, de especies y de ecosistemas. [170] [171] [172] [173] La preocupación surge de estimaciones que sugieren que hasta el 50% de todas las especies del planeta desaparecerán en los próximos 50 años, [174] lo que ha contribuido a la pobreza, el hambre y restablecerá el curso de la evolución en este planeta. [175] [176] La biodiversidad afecta el funcionamiento de los ecosistemas, que proporcionan una variedad de servicios de los que dependen las personas. Los biólogos de la conservación investigan y educan sobre las tendencias de pérdida de biodiversidad , extinción de especies y el efecto negativo que estas tienen sobre nuestra capacidad de sustentar el bienestar de la sociedad humana. Las organizaciones y los ciudadanos están respondiendo a la actual crisis de la biodiversidad mediante planes de acción de conservación que dirigen programas de investigación, monitoreo y educación que abordan preocupaciones a escala local y global. [177] [170] [171] [172]
{{cite web}}
: CS1 maint: unfit URL (link)se conoce como fijación de carbono.
Los biólogos podían decir, con confianza, que las formas cambian y que la selección natural es una fuerza importante para el cambio. Sin embargo, no podían decir nada sobre cómo se logra ese cambio. Cómo cambian los cuerpos o las partes del cuerpo, o cómo surgen nuevas estructuras, seguían siendo completos misterios.
una comunidad de animales, plantas o humanos entre cuyos miembros se produce el mestizaje
Fotosíntesis: la síntesis por parte de los organismos de compuestos químicos orgánicos, especialmente carbohidratos, a partir de dióxido de carbono utilizando energía obtenida de la luz en lugar de la oxidación de compuestos químicos.
Enlaces de revistas