stringtranslate.com

1000 (número)

1000 o mil es el número natural que sigue a 999 y precede a 1001. En la mayoría de los países de habla inglesa , se puede escribir con o sin coma o, a veces, con un punto que separa el dígito de los millares: 1.000 .

Un grupo de mil cosas se conoce a veces, del griego antiguo , como quiliada . [1] Un período de mil años puede conocerse como quiliada o, más a menudo del latín , como milenio . El número 1000 también se describe a veces como un millar corto en contextos medievales donde es necesario distinguir el concepto germánico de 1200 como un millar largo . Es el primer número entero de 4 dígitos .

Notación

Propiedades

1000 es el décimo número icositetragonal , o número 24-gonal . [2] También es el decimosexto número 30-gonal generalizado. [3]

1000 es el índice de Wiener de la longitud del ciclo 20 , también la suma de las cajas etiquetadas dispuestas como una pirámide con base 1 – 20. [4] [5] [6] [a]

1000 es el elemento de multiplicidad en un tablero toroidal en el problema de n -Reinas , [8] con indicador respectivo de 25 [9] y conteo de 51. [10] [11 ]

1000 es el número de particiones estrictas de 50 que no contienen la suma de ningún subconjunto de las partes . [12]

El poligrama regular {1000/499} del quiliágono , donde sus diagonales no pasan por el centro , pero son las más cercanas a él (de manera indistinguible, a menos que uno haga zoom)

Un quiliágono es un polígono de 1000 lados , [13] [14] de orden 2000 en su forma regular . [b]

Valores de Totient

1000 tiene un valor totient reducido de 100 , [20] y un totient de Euler de 400. [16 ]

11 números enteros tienen un valor total de 1000 (1111, 1255, ..., 3750). [16]

Mil también es igual a la suma de la función sumatoria totient de Euler sobre los primeros 57 números enteros. [21]

Dígitos de reputación

En decimal , los múltiplos de mil son valores totales de repdigits de cuatro dígitos : [16]

En la lista de números compuestos , 7777 es casi el índice compuesto de 8888: 8886 es el número compuesto 7779. [22] Además, [16]

1600 = 40 2 es el valor total de 4000, así como 6000, cuya suma colectiva es 10000, donde 6000 es el valor total de 9999, uno menos que 10 4 . [16] [c]

La suma de los primeros nueve números primos hasta 23 es 100, con , donde es el número de particiones enteras de 23. [28]

Valores primos

Usando también la representación decimal,

Por otra parte, el mayor número primo menor que 10000 es el 1229.º número primo, 9973. [25] [d ]

1000 es también el número más pequeño en base diez que genera tres primos de la forma más rápida posible mediante concatenación con números decrementados: [37]

todos representan números primos. [38] [39]

Sumando el primo 853 con su índice primo de 147 [25] obtenemos 1000.

Grupos esporádicos

El número primo unmilésimo es 7919. Es una diferencia de 1 con respecto al orden del grupo esporádico más pequeño : . [40] [41]

Números en el rango 1001–1999

1001 a 1099

1100 a 1199

1200 a 1299

1300 a 1399

1400 a 1499

1500 a 1599

1600 a 1699

1700 a 1799

1800 a 1899

1900 a 1999

Números primos

Hay 135 números primos entre 1000 y 2000: [544] [545]

1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 29, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 47, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 33, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999

Notas

  1. ^ 1000 es el cuarto índice de Wiener de la cuadrícula donde es el gráfico de ruta en cuatro vértices. [7] Un gráfico conexo con un índice de Wiener dado representa la suma de las distancias entre todos los pares de vértices no ordenados en dicho gráfico.
  2. ^ En la secuencia de números regulares 1000 -gonales de la forma , la primera solución no trivial es 2997. [13] En la función de Chowla, que cuenta la suma de divisores excepto y , 2997 es el primer número que tiene un valor de 1600 , [15] que es el total de Euler de 4000 y 6000 , [16] mientras que el quinto miembro de la secuencia 9985 (que sigue a 0, 1, 1000, 2997 y 5992) [13] tiene un promedio de divisores que es 2997; [17] [18] con 5992 ÷ 2 = 2996, y 1000 + 2997 + 5992 = 9989 (una diferencia de 4 con respecto al cuarto miembro, después de 1). Hay 499 poligramas en estrella regulares en el quiliágono regular: 300 son formas de estrella compuestas regulares (un recuento que representa el vigésimo cuarto número triangular [19] ) y las 199 formas restantes están representadas por polígonos en estrella regulares simples .
  3. ^ 1600 , un repdigit en septenario (4444 7 ), [23] es el índice compuesto de 1891, a su vez el índice similar de 2223. [22]
    2222 y 8888 son ambos números n tales que n − 1 es primo (como con 4, 44, 444 y 888), [24] produciendo respectivamente los números primos 331 y 1107, [25] donde el primero (2221) es también el 64 superprimo . [26] Estos dos índices primos colectivamente tienen un rango de 777 enteros (1107  :  331), que como número es también un repdigit en senario . [27]
  4. ^ La suma ( 2 + 3 + 5 + ... + 29 ) de los primeros 10 números primos es 129 , que es el 97.º número compuesto indexado . [29] [22] 9973 es también el 201.º superprimo , [26] donde 1000 − 201 = 799 , que es el número decimal más pequeño que tiene una suma de dígitos de 25, [30] y la permutación especular de dígitos de 997.
    Al dividir 9973 de cuatro dígitos en dos números de dos dígitos, 99 y 73 , el último es el índice compuesto de 99, que, cuando se suman, es 172 , el ciento treinta y dos compuesto, con 132 en sí mismo el 99.º compuesto; [22] 73 es el vigésimo primer número primo. [25]
    1601 es el 252.º primo, [25] en sí mismo un valor con un índice compuesto de 197 , [22] donde 1601 es el 40.º y mayor número primo consecutivo de la suerte de Euler de la forma n 2 + n + 41 . [31] [32] El número de números primos de 4 dígitos, en decimal, es su permutación especular de los dígitos 1061 , el 172.º primo. [33]
    Además, 7, 97 y 997 son los tres respectivamente con una diferencia de 3 con respecto a 10, 100 y 1000, donde, por otro lado, 9973 está a 27 = 3 3 de 10000.
    8 como número binario es "1000", [34] y esta representación, cuando se escribe en base factorial , es equivalente a 24 10 . [35] En base primordial , es igual a 30 10 . [36]

Referencias

  1. ^ "chiliad". Merriam-Webster . Archivado desde el original el 25 de marzo de 2022.
  2. ^ Sloane, N. J. A. (ed.). "Secuencia A051876 (números de 24 gonales)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  3. ^ Sloane, N. J. A. (ed.). "Secuencia A316729 (Números triagonales generalizados: m*(14*m - 13) con m igual a 0, +1, -1, +2, -2, +3, -3, ...)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  4. ^ Sloane, N. J. A. (ed.). "Secuencia A034828 (a(n) igual a floor(n^2/4)*(n/2))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  5. ^ Ngaokrajang, Kival. Sloane, NJA (ed.). "Ilustración para n igual a 1..10 [A034828]". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  6. ^ Janjic, M.; Petkovic, B. (2013). "Una función de conteo". págs. 14, 15. arXiv : 1301.4550 [math.CO]. Código Bibliográfico :2013arXiv1301.4550J
  7. ^ Sloane, N. J. A. (ed.). "Secuencia A143945 (índice de Wiener de la cuadrícula P_n x P_n, donde P_n es el grafo de trayectoria en n vértices)". La enciclopedia en línea de secuencias de enteros . Fundación OEIS.
  8. ^ Sloane, N. J. A. (ed.). "Secuencia A054501 (Secuencia de multiplicidad para la clasificación de reinas no atacantes en un tablero toroidal n X n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  9. ^ Sloane, N. J. A. (ed.). "Secuencia A054500 (Secuencia indicadora para la clasificación de reinas no atacantes en un tablero toroidal n X n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  10. ^ Sloane, N. J. A. (ed.). "Secuencia A054502 (Secuencia de conteo para la clasificación de reinas no atacantes en un tablero toroidal n X n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  11. ^ I. Rivin, I. Vardi y P. Zimmermann (1994). El problema de las n reinas. American Mathematical Monthly . Washington, DC: Mathematical Association of America . 101 (7): 629–639. doi :10.1080/00029890.1994.11997004 JSTOR  2974691
  12. ^ Sloane, N. J. A. (ed.). "Secuencia A364349 (Número de particiones enteras estrictas de n que contienen la suma de ningún subconjunto de las partes)". La enciclopedia en línea de secuencias enteras . Fundación OEIS.
  13. ^ abc Sloane, N. J. A. (ed.). "Secuencia A195163 (números 1000-gonales: a(n) igual a n*(499*n - 498))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  14. ^ Aṣiru, Muniru A. (2016). "Todos los números cuadrados quiliagonales". Revista Internacional de Educación Matemática en Ciencia y Tecnología . 47 (7). Oxfordshire: Taylor & Francis : 1123–1134. Bibcode :2016IJMES..47.1123A. doi :10.1080/0020739X.2016.1164346. MR  3528540. S2CID  123953958. Zbl  1396.97005.
  15. ^ Sloane, N. J. A. (ed.). "Secuencia A048050 (función de Chowla: suma de divisores de n excepto 1 y n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  16. ^ abcdef Sloane, N. J. A. (ed.). "Secuencia A000010 (función de Euler totient phi(n): cuenta números <= n y primos en n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  17. ^ Sloane, N. J. A. (ed.). "Secuencia A003601 (Números n tales que el promedio de los divisores de n es un entero: sigma_0(n) divide a sigma_1(n))". La enciclopedia en línea de secuencias de enteros . Fundación OEIS.
  18. ^ Sloane, N. J. A. (ed.). "Secuencia A102187 (Medias aritméticas de divisores de números aritméticos (los números aritméticos, A003601, son aquellos para los cuales la media de los divisores es un entero))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  19. ^ Sloane, N. J. A. (ed.). "Secuencia A000217 (Números triangulares: a(n) es el binomio (n+1,2): n*(n+1)/2 igual a 0 + 1 + 2 + ... + n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  20. ^ Sloane, N. J. A. (ed.). "Secuencia A002322 (Función total reducida psi(n): menor k tal que x^k es congruente 1 (mod n) para todo x primo a n; también conocida como función lambda de Carmichael (exponente del grupo unitario mod n); también llamada exponente universal de n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  21. ^ Sloane, N. J. A. (ed.). "Secuencia A002088 (Suma de la función totient: a(n) es Sum_{k igual a 1..n} phi(k), cf. A000010)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  22. ^ abcdef Sloane, N. J. A. (ed.). "Secuencia A002808 (Los números compuestos: números n de la forma x*y para x > 1 e y > 1.)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS . Consultado el 18 de diciembre de 2023 .
  23. ^ Sloane, N. J. A. (ed.). "Secuencia A048332 (Números que son repdigits en base 7)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  24. ^ Sloane, N. J. A. (ed.). "Secuencia A028987 (Repdigit - 1 es primo)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  25. ^ abcdefg Sloane, N. J. A. (ed.). "Secuencia A000040 (Los números primos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  26. ^ ab Sloane, N. J. A. (ed.). "Secuencia A006450 (Primos indexados en primos: primos con subíndices en primos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  27. ^ Sloane, N. J. A. (ed.). "Secuencia A048331 (Números que son repdigits en base 6)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  28. ^ Sloane, N. J. A. (ed.). "Secuencia A366581 (a(n) = phi(p(n)), donde phi es la función totiente de Euler (A000010) y p(n) es el número de particiones de n (A000041))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  29. ^ ab Sloane, N. J. A. (ed.). "Secuencia A127337 (Números que son la suma de 10 primos consecutivos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  30. ^ Sloane, N. J. A. (ed.). "Secuencia A051885 (Número más pequeño cuya suma de dígitos es n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  31. ^ Sloane, N. J. A. (ed.). "Secuencia A202018 (a(n) igual a n^2 + n + 41)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  32. ^ Sloane, N. J. A. (ed.). "Secuencia A005846 (Números primos de la forma n^2 + n + 41)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  33. ^ Sloane, N. J. A. (ed.). "Secuencia A006879 (Número de primos con n dígitos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  34. ^ Sloane, N. J. A. (ed.). "Secuencia A007088 (Los números binarios (o palabras binarias, o vectores binarios, o expansión binaria de n): números escritos en base 2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  35. ^ Sloane, N. J. A. (ed.). "Secuencia A007623 (números enteros escritos en base factorial)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  36. ^ Sloane, N. J. A. (ed.). "Secuencia A049345 (n escrita en base primordial)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  37. ^ "1000". ¡Primer curioso!. Archivado desde el original el 25 de marzo de 2022.
  38. ^ Sloane, N. J. A. (ed.). "Secuencia A152396 (Sea f(M,k) la concatenación decimal de k números que comienzan con M: M | M-1 | M-2 | ... | M-k+1, k mayor que 1. Entonces a(n) es el M más pequeño tal que para todo m en {1,..,n} un primo m-ésimo ocurre como f(M,k) para el k más pequeño posible, orden priorizado m igual a 1 a través de n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  39. ^ Sloane, N. J. A. (ed.). "Secuencia A227949 (Primos obtenidos concatenando números decrementados comenzando en una potencia de 10)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  40. ^ Ronan, Mark (2006). La simetría y el monstruo: una de las mayores búsquedas de las matemáticas . Nueva York: Oxford University Press . pp. vii, 1–255. doi : 10.1007/s00283-008-9007-9 . ISBN . 978-0-19-280722-9. SEÑOR  2215662. OCLC  180766312. Zbl  1113.00002.
  41. ^ Sloane, N. J. A. (ed.). "Secuencia A001228 (Órdenes de grupos simples esporádicos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  42. ^ Sloane, N. J. A. (ed.). "Secuencia A122189 (números de Heptanacci)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  43. ^ abc Sloane, N. J. A. (ed.). "Secuencia A007585 (números piramidales 10-gonales (o decagonales))". La enciclopedia en línea de secuencias enteras . Fundación OEIS.
  44. ^ Sloane, N. J. A. (ed.). "Secuencia A332307 (Matriz leída por antidiagonales: T(m,n) es el número de caminos hamiltonianos (no dirigidos) en el gráfico de cuadrícula m X n)". La enciclopedia en línea de secuencias de enteros . Fundación OEIS . Consultado el 8 de enero de 2023 .
  45. ^ Sloane, N. J. A. (ed.). "Secuencia A036063 (aumento de los espacios entre primos gemelos: tamaño)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  46. ^ ab Sloane, N. J. A. (ed.). "Secuencia A003352 (Números que son la suma de 7 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  47. ^ Sloane, N. J. A. (ed.). "Secuencia A061341 (Números A061341 que no terminan en 0 cuyos cubos son concatenaciones de otros cubos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  48. ^ Sloane, N. J. A. (ed.). "Secuencia A003353 (Números que son la suma de 8 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  49. ^ Sloane, N. J. A. (ed.). "Secuencia A034262 (a(n) = n^3 + n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  50. ^ ab Sloane, N. J. A. (ed.). "Secuencia A020473 (Fracciones egipcias: número de particiones de 1 en recíprocos de números enteros positivos <= n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  51. ^ Sloane, N. J. A. (ed.). "Secuencia A046092 (4 veces números triangulares: a(n) = 2*n*(n+1))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS . Consultado el 10 de octubre de 2023 .
  52. ^ abcdefghijklmno Sloane, N. J. A. (ed.). "Secuencia A005384 (Sophie Germain hace primos a p: 2p+1 también es primo)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  53. ^ abcdefghij Sloane, N. J. A. (ed.). "Secuencia A001844 (Números cuadrados centrados)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  54. ^ Sloane, N. J. A. (ed.). "Secuencia A000325 (a(n) = 2^n - n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  55. ^ Sloane, N. J. A. (ed.). "Secuencia A006002 (a(n) = n*(n+1)^2/2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  56. ^ abcd Sloane, N. J. A. (ed.). "Secuencia A000330 (Números piramidales cuadrados)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  57. ^ abcdefgh Sloane, N. J. A. (ed.). "Secuencia A005282 (secuencia de Mian-Chowla)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  58. ^ abcdef Sloane, N. J. A. (ed.). "Secuencia A005897 (6*n^2 + 2 para n > 0)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  59. ^ Sloane, N. J. A. (ed.). "Secuencia A316729 (Números triagonales generalizados: m*(14*m - 13) con m = 0, +1, -1, +2, -2, +3, -3)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  60. ^ Sloane, N. J. A. (ed.). "Secuencia A006313 (Números n tales que n^16 + 1 es primo)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  61. ^ abcdefghijkl Sloane, N. J. A. (ed.). "Secuencia A005385 (Primos seguros p: (p-1)/2 también es primo)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  62. ^ Sloane, N. J. A. (ed.). "Secuencia A034964 (Sumas de cinco primos consecutivos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  63. ^ Sloane, N. J. A. (ed.). "Secuencia A000162 (Número de poliominós (o policubos) tridimensionales con n celdas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  64. ^ ab Sloane, N. J. A. (ed.). "Secuencia A007053 (Número de primos <= 2^n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  65. ^ Sloane, N. J. A. (ed.). "Secuencia A004023 (Índices de números primos: números n tales que 11...111 (con n 1)... es primo)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  66. ^ Sloane, N. J. A. (ed.). "Secuencia A004801 (Suma de 12 potencias positivas de novena)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  67. ^ abcdefgh Sloane, N. J. A. (ed.). "Secuencia A000217 (Números triangulares)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  68. ^ abcdefghi Sloane, N. J. A. (ed.). "Secuencia A000384 (Números hexagonales)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  69. ^ ab Sloane, N. J. A. (ed.). "Secuencia A000124 (Números poligonales centrales (secuencia del Lazy Caterer): n(n+1)/2 + 1; o, número máximo de piezas formadas al cortar un panqueque con n cortes)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  70. ^ Sloane, N. J. A. (ed.). "Secuencia A161328 (secuencia del palillo E (ver líneas de comentarios para la definición))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  71. ^ Sloane, N. J. A. (ed.). "Secuencia A023036 (el entero par positivo más pequeño que es una suma desordenada de dos primos exactamente de n maneras)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  72. ^ Sloane, N. J. A. (ed.). «Secuencia A007522 (primos de la forma 8n+7, es decir, primos congruentes con -1 módulo 8)». La enciclopedia en línea de secuencias de números enteros . Fundación OEIS . Consultado el 10 de octubre de 2023 .
  73. ^ abcd Sloane, N. J. A. (ed.). "Secuencia A002865 (Número de particiones de n que no contienen 1 como parte)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  74. ^ ab Sloane, N. J. A. (ed.). "Secuencia A000695 (secuencia de Moser-de Bruijn: sumas de potencias distintas de 4)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  75. ^ Sloane, N. J. A. (ed.). "Secuencia A003356 (Números que son la suma de 11 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  76. ^ ab Sloane, N. J. A. (ed.). "Secuencia A003357 (Números que son la suma de 12 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  77. ^ Sloane, N. J. A. (ed.). "Secuencia A036301 (Números cuya suma de dígitos pares y la suma de dígitos impares son iguales)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  78. ^ Sloane, N. J. A. (ed.). "Secuencia A000567 (Números octagonales: n*(3*n-2). También llamados números de estrella)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  79. ^ Sloane, N. J. A. (ed.). "Secuencia A000025 (Coeficientes de la función theta simulada de tercer orden f(q))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  80. ^ Sloane, N. J. A. (ed.). "Secuencia A336130 (Número de formas de dividir una composición estricta de n en subsecuencias contiguas que tengan todas la misma suma)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  81. ^ Sloane, N. J. A. (ed.). "Secuencia A073576 (Número de particiones de n en partes sin cuadrados)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  82. ^ abcdefg Sloane, N. J. A. (ed.). "Secuencia A100827 (Números altamente co-contientes: registros para a(n) en A063741)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  83. ^ "Convertidor de base | conversión de números".
  84. ^ abcde Sloane, N. J. A. (ed.). "Secuencia A015723 (Número de partes en todas las particiones de n en partes distintas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  85. ^ abcdefghi Sloane, N. J. A. (ed.). "Secuencia A005891 (Números pentagonales centrados)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  86. ^ Sloane, N. J. A. (ed.). "Secuencia A003365 (Números que son la suma de 9 potencias sextas positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  87. ^ abcdefghijk Sloane, N. J. A. (ed.). "Secuencia A045943 (Números triangulares de cerillas: 3*n*(n+1)/2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS . Consultado el 2 de junio de 2022 .
  88. ^ Sloane, N. J. A. (ed.). "Secuencia A005448 (Números triangulares centrados: a(n) = 3*n*(n-1)/2 + 1)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  89. ^ Sloane, N. J. A. (ed.). "Secuencia A003368 (Números que son la suma de 12 potencias sextas positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  90. ^ abcdefghijklm Sloane, N. J. A. (ed.). "Secuencia A002378 (Números oblongos (o prómicos, prónicos o heteromécicos))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  91. ^ Sloane, N. J. A. (ed.). "Secuencia A002061 (Números poligonales centrales: a(n) = n^2 - n + 1)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  92. ^ Sloane, N. J. A. (ed.). "Secuencia A003349 (Números que son la suma de 4 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  93. ^ abcd Sloane, N. J. A. (ed.). "Secuencia A001105 (a(n) = 2*n^2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  94. ^ Sloane, N. J. A. (ed.). "Secuencia A003294 (Números k tales que k^4 puede escribirse como una suma de cuatro potencias 4 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  95. ^ Sloane, N. J. A. (ed.). "Secuencia A007504 (Suma de los primeros n primos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  96. ^ Sloane, N. J. A. (ed.). "Secuencia A006879 (Número de primos con n dígitos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  97. ^ abc Sloane, N. J. A. (ed.). "Secuencia A035137 (Números que no son la suma de 2 palíndromos (donde 0 se considera un palíndromo))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  98. ^ Sloane, N. J. A. (ed.). "Secuencia A347565 (primos p tales que A241014(A000720(p)) es +1 o -1)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  99. ^ Sloane, N. J. A. (ed.). "Secuencia A003325 (Números que son la suma de 2 cubos positivos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  100. ^ Sloane, N. J. A. (ed.). "Secuencia A195162 (Números 12-gonales generalizados: k*(5*k-4) para k = 0, +-1, +-2, ...)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  101. ^ Sloane, N. J. A. (ed.). "Secuencia A006532 (Números cuya suma de divisores es un cuadrado)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  102. ^ Sloane, N. J. A. (ed.). "Secuencia A341450 (Número de particiones enteras estrictas de n que están vacías o tienen la parte más pequeña que no divide a todas las demás)". La enciclopedia en línea de secuencias enteras . Fundación OEIS.
  103. ^ abc Sloane, N. J. A. (ed.). "Secuencia A006128 (Número total de partes en todas las particiones de n. Además, suma de las partes más grandes de todas las particiones de n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  104. ^ ab Sloane, N. J. A. (ed.). "Secuencia A006567 (Emirps (primos cuya inversión es un primo diferente))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  105. ^ ab Sloane, N. J. A. (ed.). "Secuencia A003354 (Números que son la suma de 9 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  106. ^ abcdefgh Sloane, N. J. A. (ed.). "Secuencia A000566 (Números heptagonales (o números 7-gonales): n*(5*n-3)/2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  107. ^ abcdefg Sloane, N. J. A. (ed.). "Secuencia A069099 (Números heptagonales centrados)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  108. ^ Sloane, N. J. A. (ed.). "Secuencia A273873 (Número de árboles estrictos de peso n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  109. ^ Sloane, N. J. A. (ed.). "Secuencia A292457 (Números donde 7 supera a cualquier otro dígito)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  110. ^ Sloane, N. J. A. (ed.). "Secuencia A073592 (transformada de Euler de números enteros negativos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  111. ^ abcdefghij Sloane, N. J. A. (ed.). "Secuencia A000326 (Números pentagonales)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  112. ^ ab Sloane, N. J. A. (ed.). "Secuencia A067128 (números compuestos en gran medida de Ramanujan)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  113. ^ abc Sloane, N. J. A. (ed.). "Secuencia A000931 (secuencia de Padovan)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  114. ^ Sloane, N. J. A. (ed.). "Secuencia A077043 ("Cuadrados de tres cuartos": a(n) = n^2 - A002620(n))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  115. ^ Sloane, N. J. A. (ed.). "Secuencia A000607 (Número de particiones de n en partes primos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  116. ^ Sloane, N. J. A. (ed.). "Secuencia A056107 (Tercer radio de una espiral hexagonal)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  117. ^ Sloane, N. J. A. (ed.). "Secuencia A025147 (Número de particiones de n en partes distintas >= 2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  118. ^ Sloane, N. J. A. (ed.). "Secuencia A006753 (números de Smith)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  119. ^ Sloane, N. J. A. (ed.). "Secuencia A031157 (Números que son a la vez afortunados y primos)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  120. ^ Sloane, N. J. A. (ed.). "Secuencia A033996 (8 veces números triangulares: a(n) = 4*n*(n+1))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  121. ^ Sloane, N. J. A. (ed.). "Secuencia A018900 (Sumas de dos potencias distintas de 2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  122. ^ Sloane, N. J. A. (ed.). "Secuencia A046308 (Números que son divisibles por exactamente 7 primos contando la multiplicidad)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  123. ^ Sloane, N. J. A. (ed.). "Secuencia A001232 (Números n tales que 9*n = (n escrito al revés))". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  124. ^ Sloane, N. J. A. (ed.). "Secuencia A003350 (Números que son la suma de 5 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  125. ^ Wells, D. Diccionario Penguin de números curiosos e interesantes. Londres: Penguin Group. (1987): 163
  126. ^ abcde Sloane, N. J. A. (ed.). "Secuencia A003154 (Números 12-gonales centrados. También números de estrella)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  127. ^ Sloane, N. J. A. (ed.). "Secuencia A003355 (Números que son la suma de 10 potencias 5 positivas)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  128. ^ Sloane, N. J. A. (ed.). "Secuencia A051682 (números 11-gonales (o endecagonales): a(n) = n*(9*n-7)/2)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  129. ^ abc Sloane, N. J. A. (ed.). "Secuencia A323657 (Número de particiones sólidas estrictas de n)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  130. ^ Sloane, N. J. A. (ed.). "Secuencia A121029 (múltiplos de 9 que contienen un 9 en su representación decimal)". La enciclopedia en línea de secuencias de números enteros . Fundación OEIS.
  131. ^ Sloane, N. J. A. (ed.). "Sequence A292449 (Numbers where 9 outnumbers any other digit)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  132. ^ Sloane, N. J. A. (ed.). "Sequence A087188 (number of partitions of n into distinct squarefree parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  133. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A059993 (Pinwheel numbers: 2*n^2 + 6*n + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  134. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  135. ^ a b Sloane, N. J. A. (ed.). "Sequence A007629 (Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  136. ^ "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  137. ^ a b c d e "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  138. ^ a b Sloane, N. J. A. (ed.). "Sequence A001567 (Fermat pseudoprimes to base 2, also called Sarrus numbers or Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  139. ^ a b c Sloane, N. J. A. (ed.). "Sequence A051890 (2*(n^2 - n + 1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  140. ^ Sloane, N. J. A. (ed.). "Sequence A319560 (Number of non-isomorphic strict T_0 multiset partitions of weight n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  141. ^ a b c Sloane, N. J. A. (ed.). "Sequence A028916 (Friedlander-Iwaniec primes: Primes of form a^2 + b^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  142. ^ Sloane, N. J. A. (ed.). "Sequence A057732 (Numbers k such that 2^k + 3 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  143. ^ a b Sloane, N. J. A. (ed.). "Sequence A046376 (Palindromes with exactly 2 palindromic prime factors (counted with multiplicity), and no other prime factors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  144. ^ "A002275 - OEIS". oeis.org. Retrieved 8 March 2024.
  145. ^ Sloane, N. J. A. (ed.). "Sequence A128455 (Numbers k such that 9^k - 2 is a prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  146. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A000009 (Expansion of Product_{m > 0} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  147. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A318949 (Number of ways to write n as an orderless product of orderless sums)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  148. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A038499 (Number of partitions of n into a prime number of parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  149. ^ a b Sloane, N. J. A. (ed.). "Sequence A006748 (Number of diagonally symmetric polyominoes with n cells)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  150. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A210000 (Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  151. ^ Sloane, N. J. A. (ed.). "Sequence A033995 (Number of bipartite graphs with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  152. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A028387 (n + (n+1)^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  153. ^ a b Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  154. ^ Sloane, N. J. A. (ed.). "Sequence A062801 (Number of 2 X 2 non-singular integer matrices with entries from {0,...,n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  155. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A000096 (n*(n+3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  156. ^ Sloane, N. J. A. (ed.). "Sequence A057809 (Numbers n such that pi(n) divides n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 23 May 2024.
  157. ^ Van Ekeren, Jethro; Lam, Ching Hung; Möller, Sven; Shimakura, Hiroki (2021). "Schellekens' list and the very strange formula". Advances in Mathematics. 380. Amsterdam: Elsevier: 1–34 (107567). arXiv:2005.12248. doi:10.1016/j.aim.2021.107567. MR 4200469. S2CID 218870375. Zbl 1492.17027.
  158. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A000328". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  159. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001608 (Perrin sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  160. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A140091 (3*n*(n + 3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  161. ^ Sloane, N. J. A. (ed.). "Sequence A005380". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  162. ^ Sloane, N. J. A. (ed.). "Sequence A051026 (Number of primitive subsequences of 1, 2, ..., n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  163. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers: 3n(n-1)/2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  164. ^ Sloane, N. J. A. (ed.). "Sequence A080040 (2*a(n-1) + 2*a(n-2) for n > 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  165. ^ Sloane, N. J. A. (ed.). "Sequence A264237 (Sum of values of vertices at level n of the hyperbolic Pascal pyramid)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  166. ^ a b Sloane, N. J. A. (ed.). "Sequence A033991 (n*(4*n-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  167. ^ a b c d "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  168. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A208155 (7-Knödel numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  169. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A006315 (Numbers n such that n^32 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  170. ^ Sloane, N. J. A. (ed.). "Sequence A185982 (Triangle read by rows: number of set partitions of n elements with k connectors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  171. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A007534 (Even numbers that are not the sum of a pair of twin primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  172. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A050993 (5-Knödel numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  173. ^ Sloane, N. J. A. (ed.). "Sequence A006094 (Products of 2 successive primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  174. ^ Sloane, N. J. A. (ed.). "Sequence A046368 (Products of two palindromic primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  175. ^ "1150 (number)". The encyclopedia of numbers.
  176. ^ a b "Sloane's A000101 : Increasing gaps between primes (upper end)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 10 July 2016.
  177. ^ a b "Sloane's A097942 : Highly totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  178. ^ a b c d "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  179. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  180. ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence n*(n+2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  181. ^ a b c "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  182. ^ "Sloane's A069125 : a(n) = (11*n^2 - 11*n + 2)/2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  183. ^ "1157 (number)". The encyclopedia of numbers.
  184. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A005899 (Number of points on surface of octahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  185. ^ a b Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2 June 2022.
  186. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A000567 (Octagonal numbers: n*(3*n-2). Also called star numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  187. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A007491 (Smallest prime > n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  188. ^ Sloane, N. J. A. (ed.). "Sequence A055887 (Number of ordered partitions of partitions)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  189. ^ a b c Sloane, N. J. A. (ed.). "Sequence A002413 (Heptagonal (or 7-gonal) pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  190. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A018805". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  191. ^ Sloane, N. J. A. (ed.). "Sequence A024816 (Antisigma(n): Sum of the numbers less than n that do not divide n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  192. ^ "A063776 - OEIS". oeis.org.
  193. ^ "A000256 - OEIS". oeis.org.
  194. ^ "1179 (number)". The encyclopedia of numbers.
  195. ^ "A000339 - OEIS". oeis.org.
  196. ^ "A271269 - OEIS". oeis.org.
  197. ^ "A000031 - OEIS". oeis.org.
  198. ^ Higgins, Peter (2008). Number Story: From Counting to Cryptography. New York: Copernicus. p. 61. ISBN 978-1-84800-000-1.
  199. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A051424 (Number of partitions of n into pairwise relatively prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  200. ^ a b "Sloane's A042978 : Stern primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  201. ^ "A121038 - OEIS". oeis.org.
  202. ^ a b Sloane, N. J. A. (ed.). "Sequence A005449 (Second pentagonal numbers: n*(3*n + 1)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  203. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A002061 (Central polygonal numbers: n^2 - n + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  204. ^ "A175654 - OEIS". oeis.org.
  205. ^ oeis.org/A062092
  206. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A024916 (Sum_1^n sigma(k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  207. ^ a b c d e >Sloane, N. J. A. (ed.). "Sequence A080663 (3*n^2 - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  208. ^ Meehan, Eileen R., Why TV is not our fault: television programming, viewers, and who's really in control Lanham, MD: Rowman & Littlefield, 2005
  209. ^ "A265070 - OEIS". oeis.org.
  210. ^ "1204 (number)". The encyclopedia of numbers.
  211. ^ a b Sloane, N. J. A. (ed.). "Sequence A240574 (Number of partitions of n such that the number of odd parts is a part)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  212. ^ "A303815 - OEIS". oeis.org.
  213. ^ a b c d e f g h Sloane, N. J. A. (ed.). "Sequence A098237 (Composite de Polignac numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  214. ^ Sloane, N. J. A. (ed.). "Sequence A337070 (Number of strict chains of divisors starting with the superprimorial A006939(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  215. ^ Higgins, ibid.
  216. ^ Sloane, N. J. A. (ed.). "Sequence A000070 (Sum_{0..n} A000041(k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  217. ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A053767 (Sum of first n composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  218. ^ a b c d e f "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  219. ^ a b Sloane, N. J. A. (ed.). "Sequence A006355 (Number of binary vectors of length n containing no singletons)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  220. ^ "Sloane's A001110 : Square triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  221. ^ a b c d e "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  222. ^ Sloane, N. J. A. (ed.). "Sequence A303815 (Generalized 29-gonal (or icosienneagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  223. ^ Sloane, N. J. A. (ed.). "Sequence A249911 (60-gonal (hexacontagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  224. ^ "A004111 - OEIS". oeis.org.
  225. ^ "A061262 - OEIS". oeis.org.
  226. ^ a b c Sloane, N. J. A. (ed.). "Sequence A008302 (Triangle of Mahonian numbers T(n,k): coefficients in expansion of Product{0..n-1} (1 + x + ... + x^i), where k ranges from 0 to A000217(n-1). Also enumerates permutations by their major index)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  227. ^ "A006154 - OEIS". oeis.org.
  228. ^ "A000045 - OEIS". oeis.org.
  229. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A054735 (Sums of twin prime pairs)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  230. ^ "A160160 - OEIS". oeis.org.
  231. ^ "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  232. ^ Sloane, N. J. A. (ed.). "Sequence A126796 (Number of complete partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  233. ^ oeis.org/A305843
  234. ^ "A007690 - OEIS". oeis.org.
  235. ^ "Sloane's A033819 : Trimorphic numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  236. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A058331 (2*n^2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  237. ^ a b c Sloane, N. J. A. (ed.). "Sequence A144300 (Number of partitions of n minus number of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  238. ^ Sloane, N. J. A. (ed.). "Sequence A000837 (Number of partitions of n into relatively prime parts. Also aperiodic partitions.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  239. ^ a b c Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) is the number of partitions of n (the partition numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  240. ^ a b Sloane, N. J. A. (ed.). "Sequence A193757 (Numbers which can be written with their digits in order and using only a plus and a squaring operator)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  241. ^ a b "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  242. ^ a b c d e "Sloane's A014575 : Vampire numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  243. ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A014206 (n^2 + n + 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  244. ^ a b Sloane, N. J. A. (ed.). "Sequence A070169 (Rounded total surface area of a regular tetrahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  245. ^ a b c Sloane, N. J. A. (ed.). "Sequence A003238 (Number of rooted trees with n vertices in which vertices at the same level have the same degree)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  246. ^ a b c Sloane, N. J. A. (ed.). "Sequence A023894 (Number of partitions of n into prime power parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  247. ^ a b c Sloane, N. J. A. (ed.). "Sequence A072895 (Least k for the Theodorus spiral to complete n revolutions)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  248. ^ Sloane, N. J. A. (ed.). "Sequence A100040 (2*n^2 + n - 5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  249. ^ a b Sloane, N. J. A. (ed.). "Sequence A051349 (Sum of first n nonprimes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  250. ^ a b Sloane, N. J. A. (ed.). "Sequence A033286 (n * prime(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  251. ^ a b Sloane, N. J. A. (ed.). "Sequence A084849 (1 + n + 2*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  252. ^ a b Sloane, N. J. A. (ed.). "Sequence A000930 (Narayana's cows sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  253. ^ Sloane, N. J. A. (ed.). "Sequence A001792 ((n+2)*2^(n-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  254. ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  255. ^ Sloane, N. J. A. (ed.). "Sequence A216492 (Number of inequivalent connected planar figures that can be formed from n 1 X 2 rectangles (or dominoes) such that each pair of touching rectangles shares exactly one edge, of length 1, and the adjacency graph of the rectangles is a tree)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  256. ^ Sloane, N. J. A. (ed.). "Sequence A007318 (Pascal's triangle read by rows)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  257. ^ Sloane, N. J. A. (ed.). "Sequence A014574 (Average of twin prime pairs)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  258. ^ Sloane, N. J. A. (ed.). "Sequence A173831 (Largest prime < n^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  259. ^ Sloane, N. J. A. (ed.). "Sequence A006872 (Numbers k such that phi(k) equals phi(sigma(k)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  260. ^ Sloane, N. J. A. (ed.). "Sequence A014285 (Sum_{1..n} j*prime(j))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  261. ^ a b Sloane, N. J. A. (ed.). "Sequence A071400 (Rounded volume of a regular octahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  262. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A003114 (Number of partitions of n into parts 5k+1 or 5k+4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  263. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A033548 (Honaker primes: primes P(k) such that sum of digits of P(k) equals sum of digits of k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  264. ^ Sloane, N. J. A. (ed.). "Sequence A000055 (Number of trees with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  265. ^ "A124826 - OEIS". oeis.org.
  266. ^ "A142005 - OEIS". oeis.org.
  267. ^ a b Sloane, N. J. A. (ed.). "Sequence A338470 (Number of integer partitions of n with no part dividing all the others)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  268. ^ "A066186 - OEIS". oeis.org.
  269. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A304716 (Number of integer partitions of n whose distinct parts are connected)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  270. ^ "A115073 - OEIS". oeis.org.
  271. ^ "A061256 - OEIS". oeis.org.
  272. ^ "A061954 - OEIS". oeis.org.
  273. ^ Sloane, N. J. A. (ed.). "Sequence A057465 (Numbers k such that k^512 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  274. ^ "A030299 - OEIS". oeis.org.
  275. ^ a b "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  276. ^ a b Sloane, N. J. A. (ed.). "Sequence A005894 (Centered tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  277. ^ Sloane, N. J. A. (ed.). "Sequence A018806 (Sum of gcd(x, y))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  278. ^ Sloane, N. J. A. (ed.). "Sequence A018227 (Magic numbers: atoms with full shells containing any of these numbers of electrons are considered electronically stable)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  279. ^ "A005064 - OEIS". oeis.org.
  280. ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A001770 (Numbers k such that 5*2^k - 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  281. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A144391 (3*n^2 + n - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  282. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A090781 (Numbers that can be expressed as the difference of the squares of primes in just one distinct way)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  283. ^ a b Sloane, N. J. A. (ed.). "Sequence A056809 (Numbers k such that k, k+1 and k+2 are products of two primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  284. ^ "A316473 - OEIS". oeis.org.
  285. ^ "A000032 - OEIS". oeis.org.
  286. ^ "1348 (number)". The encyclopedia of numbers.
  287. ^ a b Sloane, N. J. A. (ed.). "Sequence A101624 (Stern-Jacobsthal number)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  288. ^ Sloane, N. J. A. (ed.). "Sequence A064228 (From Recamán's sequence (A005132): values of n achieving records in A057167)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  289. ^ Sloane, N. J. A. (ed.). "Sequence A057167 (Term in Recamán's sequence A005132 where n appears for first time, or -1 if n never appears)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  290. ^ Sloane, N. J. A. (ed.). "Sequence A064227 (From Recamán's sequence (A005132): record values in A057167)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  291. ^ a b c Sloane, N. J. A. (ed.). "Sequence A000603". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  292. ^ Sloane, N. J. A. (ed.). "Sequence A000960 (Flavius Josephus's sieve: Start with the natural numbers; at the k-th sieving step, remove every (k+1)-st term of the sequence remaining after the (k-1)-st sieving step; iterate)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  293. ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A330224 (Number of achiral integer partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  294. ^ Sloane, N. J. A. (ed.). "Sequence A001610 (a(n-1) + a(n-2) + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  295. ^ Sloane, N. J. A. (ed.). "Sequence A000032 (Lucas numbers: L(n-1) + L(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  296. ^ a b "Sloane's A000332 : Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  297. ^ Sloane, N. J. A. (ed.). "Sequence A005578 (Arima sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  298. ^ a b c Sloane, N. J. A. (ed.). "Sequence A001157 (sigma_2(n): sum of squares of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  299. ^ a b c Sloane, N. J. A. (ed.). "Sequence A071395 (Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  300. ^ a b Sloane, N. J. A. (ed.). "Sequence A005945 (Number of n-step mappings with 4 inputs)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  301. ^ "A001631 - OEIS". oeis.org. Retrieved 25 June 2023.
  302. ^ Sloane, N. J. A. (ed.). "Sequence A088274 (Numbers k such that 10^k + 7 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  303. ^ Sloane, N. J. A. (ed.). "Sequence A000111 (Euler or up/down numbers: e.g.f. sec(x) + tan(x))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  304. ^ Sloane, N. J. A. (ed.). "Sequence A002414 (Octagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  305. ^ "Sloane's A001567 : Fermat pseudoprimes to base 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  306. ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  307. ^ Sloane, N. J. A. (ed.). "Sequence A054552 (4*n^2 - 3*n + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  308. ^ Sloane, N. J. A. (ed.). "Sequence A017919 (Powers of sqrt(5) rounded down)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  309. ^ Sloane, N. J. A. (ed.). "Sequence A109308 (Lesser emirps (primes whose digit reversal is a larger prime))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  310. ^ a b Sloane, N. J. A. (ed.). "Sequence A007865 (Number of sum-free subsets of {1, ..., n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  311. ^ a b Sloane, N. J. A. (ed.). "Sequence A325349 (Number of integer partitions of n whose augmented differences are distinct)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  312. ^ Sloane, N. J. A. (ed.). "Sequence A000060 (Number of signed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  313. ^ a b Sloane, N. J. A. (ed.). "Sequence A051400 (Smallest value of x such that M(x) equals n, where M() is Mertens's function A002321)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  314. ^ "Sloane's A000682 : Semimeanders". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  315. ^ Sloane, N. J. A. (ed.). "Sequence A002445 (Denominators of Bernoulli numbers B_{2n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  316. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A045918 (Describe n. Also called the "Say What You See" or "Look and Say" sequence LS(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  317. ^ a b Sloane, N. J. A. (ed.). "Sequence A050710 (Smallest composite that when added to sum of prime factors reaches a prime after n iterations)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  318. ^ a b Sloane, N. J. A. (ed.). "Sequence A067538 (Number of partitions of n in which the number of parts divides n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  319. ^ a b "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  320. ^ a b c Sloane, N. J. A. (ed.). "Sequence A059845 (n*(3*n + 11)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  321. ^ Sloane, N. J. A. (ed.). "Sequence A000097 (Number of partitions of n if there are two kinds of 1's and two kinds of 2's)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  322. ^ a b Sloane, N. J. A. (ed.). "Sequence A061068 (Primes which are the sum of a prime and its subscript)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  323. ^ Sloane, N. J. A. (ed.). "Sequence A001359 (Lesser of twin primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  324. ^ Sloane, N. J. A. (ed.). "Sequence A001764 (binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  325. ^ "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  326. ^ a b Sloane, N. J. A. (ed.). "Sequence A071399 (Rounded volume of a regular tetrahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  327. ^ a b c Sloane, N. J. A. (ed.). "Sequence A006832 (Discriminants of totally real cubic fields)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  328. ^ a b Sloane, N. J. A. (ed.). "Sequence A003037 (Smallest number of complexity n: smallest number requiring n 1's to build using +, * and ^)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  329. ^ Sloane, N. J. A. (ed.). "Sequence A005259 (Apery (Apéry) numbers: Sum_0^n (binomial(n,k)*binomial(n+k,k))^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  330. ^ a b Sloane, N. J. A. (ed.). "Sequence A062325 (Numbers k for which phi(prime(k)) is a square)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  331. ^ a b Sloane, N. J. A. (ed.). "Sequence A011379 (n^2*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  332. ^ a b Sloane, N. J. A. (ed.). "Sequence A005918 (Number of points on surface of square pyramid: 3*n^2 + 2 (n>0))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  333. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A011257 (Geometric mean of phi(n) and sigma(n) is an integer)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  334. ^ Sloane, N. J. A. (ed.). "Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  335. ^ a b Sloane, N. J. A. (ed.). "Sequence A056220 (2*n^2 - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  336. ^ Sloane, N. J. A. (ed.). "Sequence A028569 (n*(n + 9))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  337. ^ Sloane, N. J. A. (ed.). "Sequence A071398 (Rounded total surface area of a regular icosahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  338. ^ Sloane, N. J. A. (ed.). "Sequence A085831 (Sum_1^{2^n} d(k) where d(k) is the number of divisors of k (A000005))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  339. ^ Sloane, N. J. A. (ed.). "Sequence A064410 (Number of partitions of n with zero crank)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  340. ^ Sloane, N. J. A. (ed.). "Sequence A075207 (Number of polyhexes with n cells that tile the plane by translation)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  341. ^ a b "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  342. ^ Sloane, N. J. A. (ed.). "Sequence A015128 (Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  343. ^ Sloane, N. J. A. (ed.). "Sequence A006578 (Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  344. ^ a b Sloane, N. J. A. (ed.). "Sequence A098859 (Number of partitions of n into parts each of which is used a different number of times)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  345. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A307958 (Coreful perfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  346. ^ Sloane, N. J. A. (ed.). "Sequence A097979 (Total number of largest parts in all compositions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  347. ^ Sloane, N. J. A. (ed.). "Sequence A000219 (Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  348. ^ Sloane, N. J. A. (ed.). "Sequence A006330 (Number of corners, or planar partitions of n with only one row and one column)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  349. ^ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  350. ^ Sloane, N. J. A. (ed.). "Sequence A114411 (Triple primorial n###)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  351. ^ a b Sloane, N. J. A. (ed.). "Sequence A034296 (Number of flat partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  352. ^ a b Sloane, N. J. A. (ed.). "Sequence A084647 (Hypotenuses for which there exist exactly 3 distinct integer triangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  353. ^ a b Sloane, N. J. A. (ed.). "Sequence A002071 (Number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most the n-th prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  354. ^ Sloane, N. J. A. (ed.). "Sequence A325325 (Number of integer partitions of n with distinct differences between successive parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  355. ^ Sloane, N. J. A. (ed.). "Sequence A325858 (Number of Golomb partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  356. ^ Sloane, N. J. A. (ed.). "Sequence A018000 (Powers of cube root of 9 rounded down)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  357. ^ Sloane, N. J. A. (ed.). "Sequence A062198 (Sum of first n semiprimes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  358. ^ Sloane, N. J. A. (ed.). "Sequence A038147 (Number of polyhexes with n cells)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  359. ^ a b Sloane, N. J. A. (ed.). "Sequence A000702 (number of conjugacy classes in the alternating group A_n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  360. ^ Sloane, N. J. A. (ed.). "Sequence A001970 (Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  361. ^ Sloane, N. J. A. (ed.). "Sequence A071396 (Rounded total surface area of a regular octahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  362. ^ Sloane, N. J. A. (ed.). "Sequence A000084 (Number of series-parallel networks with n unlabeled edges. Also called yoke-chains by Cayley and MacMahon)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  363. ^ Sloane, N. J. A. (ed.). "Sequence A000615 (Threshold functions of exactly n variables)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  364. ^ Sloane, N. J. A. (ed.). "Sequence A100129 (Numbers k such that 2^k starts with k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  365. ^ Sloane, N. J. A. (ed.). "Sequence A000057 (Primes dividing all Fibonacci sequences)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  366. ^ Sloane, N. J. A. (ed.). "Sequence A319066 (Number of partitions of integer partitions of n where all parts have the same length)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  367. ^ Sloane, N. J. A. (ed.). "Sequence A056327 (Number of reversible string structures with n beads using exactly three different colors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  368. ^ Sloane, N. J. A. (ed.). "Sequence A002720 (Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  369. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A065381 (Primes not of the form p + 2^k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  370. ^ Sloane, N. J. A. (ed.). "Sequence A140090 (n*(3*n + 7)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  371. ^ Sloane, N. J. A. (ed.). "Sequence A169942 (Number of Golomb rulers of length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  372. ^ Sloane, N. J. A. (ed.). "Sequence A169952 (Second entry in row n of triangle in A169950)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  373. ^ Sloane, N. J. A. (ed.). "Sequence A034962 (Primes that are the sum of three consecutive primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  374. ^ Sloane, N. J. A. (ed.). "Sequence A046386 (Products of four distinct primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  375. ^ Sloane, N. J. A. (ed.). "Sequence A127106 (Numbers n such that n^2 divides 6^n-1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  376. ^ a b Sloane, N. J. A. (ed.). "Sequence A008406 (Triangle T(n,k) read by rows, giving number of graphs with n nodes and k edges))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  377. ^ Sloane, N. J. A. (ed.). "Sequence A000014 (Number of series-reduced trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  378. ^ Sloane, N. J. A. (ed.). "Sequence A057660 (Sum_{1..n} n/gcd(n,k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  379. ^ Sloane, N. J. A. (ed.). "Sequence A088319 (Ordered hypotenuses of primitive Pythagorean triangles having legs that add up to a square)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  380. ^ a b Sloane, N. J. A. (ed.). "Sequence A052486 (Achilles numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  381. ^ Sloane, N. J. A. (ed.). "Sequence A056995 (Numbers k such that k^256 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  382. ^ "Sloane's A005231 : Odd abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  383. ^ Sloane, N. J. A. (ed.). "Sequence A056026 (Numbers k such that k^14 is congruent with 1 (mod 15^2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  384. ^ Sloane, N. J. A. (ed.). "Sequence A076409 (Sum of the quadratic residues of prime(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  385. ^ Sloane, N. J. A. (ed.). "Sequence A070142 (Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer area)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  386. ^ Sloane, N. J. A. (ed.). "Sequence A033428 (3*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  387. ^ Sloane, N. J. A. (ed.). "Sequence A071402 (Rounded volume of a regular icosahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  388. ^ Sloane, N. J. A. (ed.). "Sequence A326123 (a(n) is the sum of all divisors of the first n odd numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  389. ^ Sloane, N. J. A. (ed.). "Sequence A006327 (Fibonacci(n) - 3. Number of total preorders)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  390. ^ "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  391. ^ Sloane, N. J. A. (ed.). "Sequence A100145 (Structured great rhombicosidodecahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  392. ^ a b Sloane, N. J. A. (ed.). "Sequence A064174 (Number of partitions of n with nonnegative rank)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  393. ^ Sloane, N. J. A. (ed.). "Sequence A023360 (Number of compositions of n into prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  394. ^ Sloane, N. J. A. (ed.). "Sequence A103473 (Number of polyominoes consisting of 7 regular unit n-gons)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  395. ^ Sloane, N. J. A. (ed.). "Sequence A007584 (9-gonal (or enneagonal) pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  396. ^ Sloane, N. J. A. (ed.). "Sequence A022004 (Initial members of prime triples (p, p+2, p+6))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  397. ^ Sloane, N. J. A. (ed.). "Sequence A006489 (Numbers k such that k-6, k, and k+6 are primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  398. ^ Sloane, N. J. A. (ed.). "Sequence A213427 (Number of ways of refining the partition n^1 to get 1^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  399. ^ Sloane, N. J. A. (ed.). "Sequence A134602 (Composite numbers such that the square mean of their prime factors is a nonprime integer (where the prime factors are taken with multiplicity and the square mean of c and d is sqrt((c^2+d^2)/2)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  400. ^ Sloane, N. J. A. (ed.). "Sequence A084990 (n*(n^2+3*n-1)/3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  401. ^ Sloane, N. J. A. (ed.). "Sequence A077068 (Semiprimes of the form prime + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  402. ^ Sloane, N. J. A. (ed.). "Sequence A115160 (Numbers that are not the sum of two triangular numbers and a fourth power)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  403. ^ a b Sloane, N. J. A. (ed.). "Sequence A046092 (4 times triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  404. ^ Sloane, N. J. A. (ed.). "Sequence A005382 (Primes p such that 2p-1 is also prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  405. ^ Sloane, N. J. A. (ed.). "Sequence A001339 (Sum_{0..n} (k+1)! binomial(n,k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  406. ^ Sloane, N. J. A. (ed.). "Sequence A007290 (2*binomial(n,3))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  407. ^ Sloane, N. J. A. (ed.). "Sequence A058360 (Number of partitions of n whose reciprocal sum is an integer)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  408. ^ Sloane, N. J. A. (ed.). "Sequence A046931 (Prime islands: least prime whose adjacent primes are exactly 2n apart)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  409. ^ "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  410. ^ Sloane, N. J. A. (ed.). "Sequence A056613 (Number of n-celled pseudo still lifes in Conway's Game of Life, up to rotation and reflection)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  411. ^ Sloane, N. J. A. (ed.). "Sequence A068140 (Smaller of two consecutive numbers each divisible by a cube greater than one)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  412. ^ Sloane, N. J. A. (ed.). "Sequence A030272 (Number of partitions of n^3 into distinct cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  413. ^ Sloane, N. J. A. (ed.). "Sequence A018818 (Number of partitions of n into divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  414. ^ Sloane, N. J. A. (ed.). "Sequence A071401 (Rounded volume of a regular dodecahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  415. ^ a b c "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  416. ^ Sloane, N. J. A. (ed.). "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  417. ^ a b Sloane, N. J. A. (ed.). "Sequence A082982 (Numbers k such that k, k+1 and k+2 are sums of 2 squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  418. ^ Sloane, N. J. A. (ed.). "Sequence A057562 (Number of partitions of n into parts all relatively prime to n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  419. ^ Sloane, N. J. A. (ed.). "Sequence A000230 (smallest prime p such that there is a gap of exactly 2n between p and next prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  420. ^ Sloane, N. J. A. (ed.). "Sequence A261983 (Number of compositions of n such that at least two adjacent parts are equal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  421. ^ Sloane, N. J. A. (ed.). "Sequence A053781 (Numbers k that divide the sum of the first k composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  422. ^ Sloane, N. J. A. (ed.). "Sequence A140480 (RMS numbers: numbers n such that root mean square of divisors of n is an integer)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  423. ^ Sloane, N. J. A. (ed.). "Sequence A023108 (Positive integers which apparently never result in a palindrome under repeated applications of the function A056964(x))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  424. ^ Sloane, N. J. A. (ed.). "Sequence A286518 (Number of finite connected sets of positive integers greater than one with least common multiple n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  425. ^ Sloane, N. J. A. (ed.). "Sequence A004041 (Scaled sums of odd reciprocals: (2*n + 1)!!*(Sum_{0..n} 1/(2*k + 1)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  426. ^ Sloane, N. J. A. (ed.). "Sequence A023359 (Number of compositions (ordered partitions) of n into powers of 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  427. ^ Sloane, N. J. A. (ed.). "Sequence A000787 (Strobogrammatic numbers: the same upside down)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  428. ^ Sloane, N. J. A. (ed.). "Sequence A224930 (Numbers n such that n divides the concatenation of all divisors in descending order)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  429. ^ Sloane, N. J. A. (ed.). "Sequence A294286 (Sum of the squares of the parts in the partitions of n into two distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  430. ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  431. ^ Sloane, N. J. A. (ed.). "Sequence A020989 ((5*4^n - 2)/3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  432. ^ Sloane, N. J. A. (ed.). "Sequence A331378 (Numbers whose product of prime indices is divisible by their sum of prime factors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  433. ^ Sloane, N. J. A. (ed.). "Sequence A301700 (Number of aperiodic rooted trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  434. ^ Sloane, N. J. A. (ed.). "Sequence A331452 (number of regions (or cells) formed by drawing the line segments connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  435. ^ Sloane, N. J. A. (ed.). "Sequence A056045 ("Sum_{d divides n}(binomial(n,d))")". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  436. ^ "Sloane's A007850 : Giuga numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  437. ^ Sloane, N. J. A. (ed.). "Sequence A161757 ((prime(n))^2 - (nonprime(n))^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  438. ^ Sloane, N. J. A. (ed.). "Sequence A078374 (Number of partitions of n into distinct and relatively prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  439. ^ Sloane, N. J. A. (ed.). "Sequence A167008 (Sum_{0..n} C(n,k)^k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  440. ^ Sloane, N. J. A. (ed.). "Sequence A033581 (6*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  441. ^ Sloane, N. J. A. (ed.). "Sequence A036469 (Partial sums of A000009 (partitions into distinct parts))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  442. ^ Sloane, N. J. A. (ed.). "Sequence A350507 (Number of (not necessarily connected) unit-distance graphs on n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  443. ^ Sloane, N. J. A. (ed.). "Sequence A102627 (Number of partitions of n into distinct parts in which the number of parts divides n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  444. ^ Sloane, N. J. A. (ed.). "Sequence A216955 (number of binary sequences of length n and curling number k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  445. ^ Sloane, N. J. A. (ed.). "Sequence A001523 (Number of stacks, or planar partitions of n; also weakly unimodal compositions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  446. ^ Sloane, N. J. A. (ed.). "Sequence A065764 (Sum of divisors of square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  447. ^ Sloane, N. J. A. (ed.). "Sequence A220881 (Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  448. ^ Sloane, N. J. A. (ed.). "Sequence A154964 (3*a(n-1) + 6*a(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  449. ^ Sloane, N. J. A. (ed.). "Sequence A055327 (Triangle of rooted identity trees with n nodes and k leaves)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  450. ^ Sloane, N. J. A. (ed.). "Sequence A316322 (Sum of piles of first n primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  451. ^ Sloane, N. J. A. (ed.). "Sequence A045944 (Rhombic matchstick numbers: n*(3*n+2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  452. ^ Sloane, N. J. A. (ed.). "Sequence A127816 (least k such that the remainder when 6^k is divided by k is n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  453. ^ Sloane, N. J. A. (ed.). "Sequence A005317 ((2^n + C(2*n,n))/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  454. ^ Sloane, N. J. A. (ed.). "Sequence A064118 (Numbers k such that the first k digits of e form a prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  455. ^ Sloane, N. J. A. (ed.). "Sequence A325860 (Number of subsets of {1..n} such that every pair of distinct elements has a different quotient)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  456. ^ Sloane, N. J. A. (ed.). "Sequence A073592 (Euler transform of negative integers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  457. ^ Sloane, N. J. A. (ed.). "Sequence A025047 (Alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  458. ^ Sloane, N. J. A. (ed.). "Sequence A288253 (Number of heptagons that can be formed with perimeter n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  459. ^ Sloane, N. J. A. (ed.). "Sequence A235488 (Squarefree numbers which yield zero when their prime factors are xored together)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  460. ^ Sloane, N. J. A. (ed.). "Sequence A075213 (Number of polyhexes with n cells that tile the plane isohedrally but not by translation or by 180-degree rotation (Conway criterion))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  461. ^ "Sloane's A054377 : Primary pseudoperfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  462. ^ Kellner, Bernard C.; 'The equation denom(Bn) = n has only one solution'
  463. ^ Sloane, N. J. A. (ed.). "Sequence A006318 (Large Schröder numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 22 May 2016.
  464. ^ "Sloane's A000058 : Sylvester's sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  465. ^ Sloane, N. J. A. (ed.). "Sequence A083186 (Sum of first n primes whose indices are primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  466. ^ Sloane, N. J. A. (ed.). "Sequence A005260 (Sum_{0..n} binomial(n,k)^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  467. ^ Sloane, N. J. A. (ed.). "Sequence A056877 (Number of polyominoes with n cells, symmetric about two orthogonal axes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  468. ^ Sloane, N. J. A. (ed.). "Sequence A061801 ((7*6^n - 2)/5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  469. ^ Sloane, N. J. A. (ed.). "Sequence A152927 (Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 4-gonal polygonal components chained with string components of length 1 as k varies)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  470. ^ Sloane, N. J. A. (ed.). "Sequence A037032 (Total number of prime parts in all partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  471. ^ Sloane, N. J. A. (ed.). "Sequence A101301 (The sum of the first n primes, minus n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  472. ^ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2 June 2022.
  473. ^ Sloane, N. J. A. (ed.). "Sequence A000230 (smallest prime p such that there is a gap of exactly 2n between p and next prime, or -1 if no such prime exists)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  474. ^ Sloane, N. J. A. (ed.). "Sequence A004068 (Number of atoms in a decahedron with n shells)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  475. ^ Sloane, N. J. A. (ed.). "Sequence A001905 (From higher-order Bernoulli numbers: absolute value of numerator of D-number D2n(2n-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  476. ^ Sloane, N. J. A. (ed.). "Sequence A214083 (floor(n!^(1/3)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  477. ^ Sloane, N. J. A. (ed.). "Sequence A001208 (solution to the postage stamp problem with 3 denominations and n stamps)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  478. ^ Sloane, N. J. A. (ed.). "Sequence A000081 (Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  479. ^ Sloane, N. J. A. (ed.). "Sequence A039771 (Numbers k such that phi(k) is a perfect cube)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  480. ^ Sloane, N. J. A. (ed.). "Sequence A024026 (3^n - n^3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  481. ^ Sloane, N. J. A. (ed.). "Sequence A235945 (Number of partitions of n containing at least one prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  482. ^ Sloane, N. J. A. (ed.). "Sequence A354493 (Number of quantales on n elements, up to isomorphism)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  483. ^ Sloane, N. J. A. (ed.). "Sequence A088144 (Sum of primitive roots of n-th prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  484. ^ Sloane, N. J. A. (ed.). "Sequence A000166 (Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  485. ^ Sloane, N. J. A. (ed.). "Sequence A000240 (Rencontres numbers: number of permutations of [n] with exactly one fixed point)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  486. ^ Sloane, N. J. A. (ed.). "Sequence A000602 (Number of n-node unrooted quartic trees; number of n-carbon alkanes C(n)H(2n+2) ignoring stereoisomers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  487. ^ ""Aztec Diamond"". Retrieved 20 September 2022.
  488. ^ Sloane, N. J. A. (ed.). "Sequence A082671 (Numbers n such that (n!-2)/2 is a prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  489. ^ Sloane, N. J. A. (ed.). "Sequence A023811 (Largest metadrome (number with digits in strict ascending order) in base n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  490. ^ Sloane, N. J. A. (ed.). "Sequence A000990 (Number of plane partitions of n with at most two rows)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  491. ^ Sloane, N. J. A. (ed.). "Sequence A164652 (Hultman numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  492. ^ Sloane, N. J. A. (ed.). "Sequence A007530 (Prime quadruples: numbers k such that k, k+2, k+6, k+8 are all prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  493. ^ Sloane, N. J. A. (ed.). "Sequence A057568 (Number of partitions of n where n divides the product of the parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  494. ^ Sloane, N. J. A. (ed.). "Sequence A011757 (prime(n^2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  495. ^ Sloane, N. J. A. (ed.). "Sequence A004799 (Self convolution of Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  496. ^ Sloane, N. J. A. (ed.). "Sequence A005920 (Tricapped prism numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  497. ^ Sloane, N. J. A. (ed.). "Sequence A000609 (Number of threshold functions of n or fewer variables)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  498. ^ Sloane, N. J. A. (ed.). "Sequence A259793 (Number of partitions of n^4 into fourth powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  499. ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  500. ^ Sloane, N. J. A. (ed.). "Sequence A002998 (Smallest multiple of n whose digits sum to n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  501. ^ Sloane, N. J. A. (ed.). "Sequence A005987 (Number of symmetric plane partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  502. ^ Sloane, N. J. A. (ed.). "Sequence A023431 (Generalized Catalan Numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  503. ^ Sloane, N. J. A. (ed.). "Sequence A217135 (Numbers n such that 3^n - 8 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  504. ^ "Sloane's A034897 : Hyperperfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  505. ^ Sloane, N. J. A. (ed.). "Sequence A240736 (Number of compositions of n having exactly one fixed point)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  506. ^ Sloane, N. J. A. (ed.). "Sequence A007070 (4*a(n-1) - 2*a(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  507. ^ Sloane, N. J. A. (ed.). "Sequence A000412 (Number of bipartite partitions of n white objects and 3 black ones)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  508. ^ Sloane, N. J. A. (ed.). "Sequence A027851 (Number of nonisomorphic semigroups of order n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  509. ^ Sloane, N. J. A. (ed.). "Sequence A003060 (Smallest number with reciprocal of period length n in decimal (base 10))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  510. ^ Sloane, N. J. A. (ed.). "Sequence A008514 (4-dimensional centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  511. ^ Sloane, N. J. A. (ed.). "Sequence A024012 (2^n - n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  512. ^ Sloane, N. J. A. (ed.). "Sequence A002845 (Number of distinct values taken by 2^2^...^2 (with n 2's and parentheses inserted in all possible ways))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  513. ^ "Sloane's A051870 : 18-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
  514. ^ Sloane, N. J. A. (ed.). "Sequence A045648 (Number of chiral n-ominoes in (n-1)-space, one cell labeled)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  515. ^ Sloane, N. J. A. (ed.). "Sequence A000127 (Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  516. ^ Sloane, N. J. A. (ed.). "Sequence A178084 (Numbers k for which 10k + 1, 10k + 3, 10k + 7, 10k + 9 and 10k + 13 are primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  517. ^ a b Sloane, N. J. A. (ed.). "Sequence A007419 (Largest number not the sum of distinct n-th-order polygonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  518. ^ Sloane, N. J. A. (ed.). "Sequence A100953 (Number of partitions of n into relatively prime parts such that multiplicities of parts are also relatively prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  519. ^ Sloane, N. J. A. (ed.). "Sequence A226366 (Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  520. ^ Sloane, N. J. A. (ed.). "Sequence A319014 (1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + ... + (up to n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  521. ^ Sloane, N. J. A. (ed.). "Sequence A055621 (Number of covers of an unlabeled n-set)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  522. ^ Sloane, N. J. A. (ed.). "Sequence A000522 (Total number of ordered k-tuples of distinct elements from an n-element set)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  523. ^ Sloane, N. J. A. (ed.). "Sequence A104621 (Heptanacci-Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  524. ^ Sloane, N. J. A. (ed.). "Sequence A005449 (Second pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  525. ^ Sloane, N. J. A. (ed.). "Sequence A002982 (Numbers n such that n! - 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  526. ^ Sloane, N. J. A. (ed.). "Sequence A030238 (Backwards shallow diagonal sums of Catalan triangle A009766)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  527. ^ Sloane, N. J. A. (ed.). "Sequence A089046 (Least edge-length of a square dissectable into at least n squares in the Mrs. Perkins's quilt problem)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  528. ^ Sloane, N. J. A. (ed.). "Sequence A065900 (Numbers n such that sigma(n) equals sigma(n-1) + sigma(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  529. ^ Jon Froemke & Jerrold W. Grossman (February 1993). "A Mod-n Ackermann Function, or What's So Special About 1969?". The American Mathematical Monthly. 100 (2). Mathematical Association of America: 180–183. doi:10.2307/2323780. JSTOR 2323780.
  530. ^ Sloane, N. J. A. (ed.). "Sequence A052542 (2*a(n-1) + a(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  531. ^ Sloane, N. J. A. (ed.). "Sequence A024069 (6^n - n^7)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  532. ^ Sloane, N. J. A. (ed.). "Sequence A217076 (Numbers n such that (n^37-1)/(n-1) is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  533. ^ Sloane, N. J. A. (ed.). "Sequence A302545 (Number of non-isomorphic multiset partitions of weight n with no singletons)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  534. ^ Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n divides (3^n + 5))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  535. ^ Sloane, N. J. A. (ed.). "Sequence A187220 (Gullwing sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  536. ^ Sloane, N. J. A. (ed.). "Sequence A046351 (Palindromic composite numbers with only palindromic prime factors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  537. ^ Sloane, N. J. A. (ed.). "Sequence A000612 (Number of P-equivalence classes of switching functions of n or fewer variables, divided by 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  538. ^ OEIS: A059801
  539. ^ Sloane, N. J. A. (ed.). "Sequence A002470 (Glaisher's function W(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  540. ^ Sloane, N. J. A. (ed.). "Sequence A263341 (Triangle read by rows: T(n,k) is the number of unlabeled graphs on n vertices with independence number k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  541. ^ Sloane, N. J. A. (ed.). "Sequence A089085 (Numbers k such that (k! + 3)/3 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  542. ^ Sloane, N. J. A. (ed.). "Sequence A011755 (Sum_{1..n} k*phi(k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  543. ^ Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers: 3n(n-1)/2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.,
  544. ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  545. ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.