Estos gases más escasos tienen una gran importancia para la vida, en especial el vapor de agua (que entra a formar parte importante del ciclo hidrológico) y el CO2 (dióxido de carbono) que apenas llega a formar el 0,03 % del volumen total de la atmósfera, aunque constituye la "materia prima" con la que están formados todos los seres vivos.
[1] La atmósfera está dividida en varias capas concéntricas que son, a partir de la superficie terrestre hacia arriba, la troposfera, la estratosfera, la mesosfera, la termosfera o ionosfera y la exosfera.
La tropopausa alcanza una mayor altura de la zona ecuatorial (casi 20 km) y una mínima en las zonas polares (5-8 km) y esta diferencia se debe al abultamiento ecuatorial de la atmósfera producido por la fuerza centrífuga del movimiento de rotación terrestre, el cual tiene como contrapartida un achatamiento polar por la misma razón, es decir, por la menor fuerza centrífuga (y la mayor fuerza centrípeta por su menor distancia al centro de la Tierra) existente en las zonas polares.
Como corolario obvio, la altura de la troposfera disminuye desde el ecuador hasta los polos, es decir, a mayor latitud, menor espesor y viceversa.
El aire forma en la troposfera una mezcla de gases bastante homogénea a una temperatura y presión determinadas, hasta el punto de que su comportamiento es el equivalente al que tendría si estuviera compuesto por un solo gas ([2]).
La densidad del aire es una de las limitaciones más serias de la adaptabilidad del hombre en la superficie terrestre: así, el hábitat permanente del hombre localizado a mayor altura viene a estar en los Andes peruanos, a unos 5000 m s. n. m., como señala Eugene Schreider[3] y ello es consistente con lo que se ha señalado con respecto al espesor de la atmósfera según la latitud ya que a esa altura de 5 km sería impensable la vida en las zonas templadas y, más aún, en las polares.
Por una parte se encarga de obtener información cuantitativa de fenómenos meteorológicos y, sobre la base de los mismos, explicar los procesos que ocurren en la atmósfera con los fines de estudiar no sólo los parámetros o elementos del clima en condiciones normales sino también en lo que se refiere a los extremos que se presenten a lo largo del tiempo y, en suma, a los valores estadísticos que definen los distintos tipos climáticos.
Existen ciertos patrones que relacionan ambas escalas (tiempo y espacio), generalmente, en forma proporcional: un fenómeno atmosférico, como puede ser una tormenta, suele tener una duración proporcional al tamaño o dimensión espacial de la misma.
Por ejemplo, un tornado tendrá una duración mucho más corta (cuestión de minutos u horas) que un huracán (días o semanas).
Así pues, este calentamiento es, en su mayor parte, indirecto, porque gran parte de la radiación solar atraviesa el aire sin calentarlo hasta llegar a las capas inferiores en contacto con la superficie terrestre las cuales se calientan debido al calor reflejado por la superficie terrestre y, especialmente, marina.
Dicho en otros términos, los rayos solares atraviesan casi toda la atmósfera sin calentarla significativamente, debido al fenómeno llamado diatermancia, que implica que el aire casi no absorbe el calor de los rayos solares incidentes, es decir, los procedentes directamente del Sol.
Pero la superficie terrestre y oceánica reenvían hacia la atmósfera una radiación infrarroja, lo que se conoce como calor oscuro (rayos infrarrojos o rayos de calor, que son invisibles por el ojo humano).
Se denomina diatermancia a la propiedad del aire de ser atravesado por los rayos solares casi sin calentarse por la radiación solar.
El efecto protector de la atmósfera es similar al del techo transparente de un invernadero, que deja pasar la luz, pero no otros efectos nocivos para las plantas, cuyo crecimiento (agua, luz y nutrientes) siempre está controlado para poder tener resultados óptimos.
Como ya se ha dicho, la radiación solar es el motor inicial de todos los procesos atmosféricos.
Pero como esta radiación no es uniforme ni en el espacio ni en el tiempo, se originan áreas que se calientan o enfrían más que otras y estas diferencias se traducen en diferencias en el calentamiento desigual de la atmósfera terrestre, que tienen una importancia fundamental en el estudio de la geografía y en las condiciones de habitabilidad para las plantas, animales y seres humanos.
El calentamiento solar de la atmósfera no es uniforme, por lo que existen zonas más frías y por lo tanto, de mayor presión (anticiclones) y zonas más cálidas donde la presión es menor (ciclones o depresiones).
Los procesos involucrados en el ciclo hidrológico son: En resumen, las lluvias dan origen a un reparto más equitativo (temporal y espacialmente) del calor previamente recibido por la superficie terrestre a partir de la radiación solar.