stringtranslate.com

Realidad virtual

Un operador que controla la estación de trabajo del entorno de interfaz virtual (VIEW) [1] en la NASA Ames alrededor de 1990

La realidad virtual ( RV ) es una experiencia simulada que emplea pantallas 3D cercanas a los ojos y seguimiento de poses para brindar al usuario una sensación inmersiva de un mundo virtual. Las aplicaciones de la realidad virtual incluyen entretenimiento (en particular videojuegos ), educación (como entrenamiento médico, de seguridad o militar) y negocios (como reuniones virtuales). La RV es una de las tecnologías clave en el continuo realidad-virtualidad . Como tal, es diferente de otras soluciones de visualización digital, como la virtualidad aumentada y la realidad aumentada . [2]

En la actualidad, los sistemas de realidad virtual estándar utilizan cascos de realidad virtual o entornos multiproyectados para generar algunas imágenes realistas, sonidos y otras sensaciones que simulan la presencia física de un usuario en un entorno virtual. Una persona que utiliza un equipo de realidad virtual puede mirar alrededor del mundo artificial, moverse en él e interactuar con características o elementos virtuales. El efecto se crea comúnmente mediante cascos de realidad virtual que consisten en una pantalla montada en la cabeza con una pequeña pantalla frente a los ojos, pero también se puede crear a través de salas especialmente diseñadas con múltiples pantallas grandes. La realidad virtual generalmente incorpora retroalimentación auditiva y de video , pero también puede permitir otros tipos de retroalimentación sensorial y de fuerza a través de tecnología háptica .

Etimología

" Virtual " ha tenido el significado de "ser algo en esencia o efecto, aunque no en realidad o de hecho" desde mediados del siglo XV. [3] El término "virtual" se ha utilizado en el sentido informático de "no existente físicamente pero hecho aparecer por software " desde 1959. [3]

En 1938, el dramaturgo vanguardista francés Antonin Artaud describió la naturaleza ilusoria de los personajes y objetos en el teatro como "la réalité virtuelle" en una colección de ensayos, Le Théâtre et son double . La traducción al inglés de este libro, publicado en 1958 como El teatro y su doble , [4] es el primer uso publicado del término "realidad virtual". El término " realidad artificial ", acuñado por Myron Krueger , se ha utilizado desde la década de 1970. El término "realidad virtual" se utilizó por primera vez en un contexto de ciencia ficción en The Judas Mandala , una novela de 1982 de Damien Broderick .

La adopción generalizada del término "realidad virtual" en los medios populares se atribuye a Jaron Lanier , quien a fines de la década de 1980 diseñó algunos de los primeros hardware de realidad virtual de nivel empresarial bajo su firma VPL Research , y la película Lawnmower Man de 1992 , que presenta el uso de sistemas de realidad virtual. [5]

Formas y métodos

Investigadores de la Agencia Espacial Europea en Darmstadt , Alemania, equipados con un casco de realidad virtual y controladores de movimiento , demuestran cómo los astronautas podrían usar la realidad virtual en el futuro para entrenarse para extinguir un incendio dentro de un hábitat lunar.

Un método para hacer realidad la realidad virtual es mediante la realidad virtual basada en simulación . Por ejemplo, los simuladores de conducción dan al conductor la impresión de estar conduciendo un vehículo de verdad, prediciendo el movimiento del vehículo en función de las indicaciones del conductor y proporcionando las correspondientes señales visuales, de movimiento y de audio.

Con la realidad virtual basada en imágenes de avatar , las personas pueden unirse al entorno virtual en forma de video real y también como avatar. Se puede participar en el entorno virtual distribuido en 3D en forma de avatar convencional o de video real. Los usuarios pueden seleccionar su propio tipo de participación en función de la capacidad del sistema.

En la realidad virtual basada en proyectores, el modelado del entorno real desempeña un papel fundamental en diversas aplicaciones de realidad virtual, como la navegación de robots, el modelado de la construcción y la simulación de aviones. Los sistemas de realidad virtual basados ​​en imágenes han ido ganando popularidad en las comunidades de gráficos por ordenador y visión artificial . Para generar modelos realistas, es esencial registrar con precisión los datos 3D adquiridos; normalmente, se utiliza una cámara para modelar objetos pequeños a corta distancia.

La realidad virtual basada en escritorio implica mostrar un mundo virtual en 3D en una pantalla de escritorio normal sin utilizar ningún equipo especializado de seguimiento de posición de VR . Muchos videojuegos modernos en primera persona se pueden utilizar como ejemplo, utilizando varios disparadores, personajes que responden y otros dispositivos interactivos similares para hacer que el usuario se sienta como si estuviera en un mundo virtual. Una crítica común a esta forma de inmersión es que no hay sensación de visión periférica , lo que limita la capacidad del usuario para saber lo que está sucediendo a su alrededor.

Una cinta de correr Omni en uso en una convención de realidad virtual
Un miembro de la Guardia Nacional de Missouri observa un visor de entrenamiento de realidad virtual en Fort Leonard Wood en 2015.

Un casco de realidad virtual (HMD, por sus siglas en inglés) sumerge al usuario de manera más completa en un mundo virtual. Un casco de realidad virtual generalmente incluye dos pequeños monitores OLED o LCD de alta resolución que brindan imágenes separadas para cada ojo para generar gráficos estereoscópicos que representan un mundo virtual en 3D, un sistema de audio binaural , seguimiento de la cabeza en tiempo real, tanto posicional como rotacional, para seis grados de movimiento. Las opciones incluyen controles de movimiento con retroalimentación háptica para interactuar físicamente dentro del mundo virtual de una manera intuitiva con poca o ninguna abstracción y una cinta de correr omnidireccional para una mayor libertad de movimiento físico que permite al usuario realizar movimientos de locomotora en cualquier dirección.

La realidad aumentada (RA) es un tipo de tecnología de realidad virtual que combina lo que el usuario ve en su entorno real con contenido digital generado por software informático. Las imágenes adicionales generadas por software con la escena virtual suelen mejorar de algún modo el aspecto del entorno real. Los sistemas de RA superponen información virtual sobre la señal en directo de una cámara en un auricular o unas gafas inteligentes o a través de un dispositivo móvil, lo que permite al usuario ver imágenes tridimensionales.

La realidad mixta (RM) es la fusión del mundo real y los mundos virtuales para producir nuevos entornos y visualizaciones donde los objetos físicos y digitales coexisten e interactúan en tiempo real.

A veces se define el ciberespacio como una realidad virtual en red. [6]

La realidad simulada es una realidad virtual hipotética tan inmersiva como la realidad real , que permite una experiencia realista avanzada o incluso una eternidad virtual.

Historia

View-Master , un simulador visual estereoscópico, se introdujo en 1939.

El desarrollo de la perspectiva en el arte europeo renacentista y el estereoscopio inventado por Sir Charles Wheatstone fueron ambos precursores de la realidad virtual. [7] [8] [9] Las primeras referencias al concepto más moderno de realidad virtual provienen de la ciencia ficción .

Siglo XX

Morton Heilig escribió en la década de 1950 sobre un "Teatro de Experiencia" que pudiera abarcar todos los sentidos de una manera efectiva, atrayendo así al espectador hacia la actividad en pantalla. En 1962 construyó un prototipo de su visión, bautizado como Sensorama , junto con cinco cortometrajes que se proyectarían en él mientras se involucraban múltiples sentidos (vista, oído, olfato y tacto). El Sensorama, anterior a la informática digital, era un dispositivo mecánico . Heilig también desarrolló lo que denominó la "Máscara Telesférica" ​​(patentada en 1960). La solicitud de patente describía el dispositivo como "un aparato de televisión telescópico para uso individual... Se le da al espectador una sensación completa de realidad, es decir, imágenes tridimensionales en movimiento que pueden ser en color, con visión periférica al 100%, sonido binaural, aromas y brisas de aire". [10]

En 1968, el profesor de Harvard Ivan Sutherland , con la ayuda de sus estudiantes, incluido Bob Sproull , creó lo que se consideró ampliamente como el primer sistema de visualización montado en la cabeza para su uso en aplicaciones de simulación inmersiva, llamado La espada de Damocles . Era primitivo tanto en términos de interfaz de usuario como de realismo visual, y el HMD que usaría el usuario era tan pesado que tenía que estar suspendido del techo, lo que le dio al dispositivo una apariencia formidable e inspiró su nombre. [11] Técnicamente, el dispositivo era un dispositivo de realidad aumentada debido al paso óptico. Los gráficos que componían el entorno virtual eran simples salas de modelos de estructura alámbrica .

1970–1990

La industria de la realidad virtual proporcionó dispositivos de VR principalmente para fines médicos, de simulación de vuelo, de diseño de la industria automotriz y de entrenamiento militar entre 1970 y 1990. [12]

David Em se convirtió en el primer artista en producir mundos virtuales navegables en el Laboratorio de Propulsión a Chorro (JPL) de la NASA entre 1977 y 1984. [13] El Aspen Movie Map , un rudimentario recorrido virtual en el que los usuarios podían pasear por las calles de Aspen en uno de los tres modos (verano, invierno y polígonos ), fue creado en el MIT en 1978.

Auriculares VIEW de la NASA Ames de 1985

En 1979, Eric Howlett desarrolló el sistema óptico Large Expanse, Extra Perspective (LEEP). El sistema combinado creó una imagen estereoscópica con un campo de visión lo suficientemente amplio como para crear una sensación convincente de espacio. Los usuarios del sistema quedaron impresionados por la sensación de profundidad ( campo de visión ) en la escena y el realismo correspondiente. El sistema LEEP original fue rediseñado para el Centro de Investigación Ames de la NASA en 1985 para su primera instalación de realidad virtual, la VIEW (Virtual Interactive Environment Workstation) [14] por Scott Fisher . El sistema LEEP proporciona la base para la mayoría de los cascos de realidad virtual modernos. [15]

Un traje de investigación de VPL , un equipo de cuerpo entero con sensores para medir el movimiento de brazos, piernas y tronco. Desarrollado en  1989 aproximadamente . Exhibido en la sala de exposiciones de Nissho Iwai en Tokio .

A finales de los años 1980, el término "realidad virtual" fue popularizado por Jaron Lanier , uno de los pioneros modernos de la disciplina. Lanier había fundado la empresa VPL Research en 1984. VPL Research ha desarrollado varios dispositivos de realidad virtual como DataGlove , EyePhone, Reality Built For Two (RB2) y AudioSphere. VPL licenció la tecnología DataGlove a Mattel , que la utilizó para fabricar Power Glove , uno de los primeros dispositivos de realidad virtual asequibles, lanzado en 1989. Ese mismo año se lanzó U-Force de Broderbund .

Atari, Inc. fundó un laboratorio de investigación para la realidad virtual en 1982, pero el laboratorio cerró después de dos años debido a la crisis de los videojuegos de 1983. Sin embargo, sus empleados contratados, como [16] Scott Fisher , Michael Naimark y Brenda Laurel , mantuvieron su investigación y desarrollo en tecnologías relacionadas con la realidad virtual.

En 1988, el Proyecto Ciberespacio de Autodesk fue el primero en implementar VR en una computadora personal de bajo costo. [17] [18] El líder del proyecto Eric Gullichsen se fue en 1990 para fundar Sense8 Corporation y desarrollar el SDK de realidad virtual WorldToolKit, [19] que ofrecía los primeros gráficos en tiempo real con mapeo de texturas en una PC, y fue ampliamente utilizado en la industria y la academia. [20] [21]

1990–2000

En la década de 1990 se produjeron los primeros lanzamientos comerciales generalizados de auriculares para el consumidor. En 1992, por ejemplo, Computer Gaming World predijo que "la realidad virtual sería asequible para 1994". [22]

En 1991, Sega anunció el auricular Sega VR para la consola doméstica Mega Drive . Utilizaba pantallas LCD en el visor, auriculares estéreo y sensores inerciales que permitían al sistema rastrear y reaccionar a los movimientos de la cabeza del usuario. [23] En el mismo año, se lanzó Virtuality y se convirtió en el primer sistema de entretenimiento de realidad virtual multijugador en red y producido en masa que se lanzó en muchos países, incluido un salón de juegos de realidad virtual dedicado en Embarcadero Center . Con un costo de hasta $ 73,000 por sistema Virtuality multipod, presentaban auriculares y guantes de exoesqueleto que brindaban una de las primeras experiencias de realidad virtual "inmersiva". [24]

Un sistema CAVE en el Centro de Estudios Avanzados de Energía del IDL en 2010

Ese mismo año, Carolina Cruz-Neira , Daniel J. Sandin y Thomas A. DeFanti, del Laboratorio de Visualización Electrónica, crearon la primera sala inmersiva cúbica, el entorno virtual automático Cave (CAVE). Desarrollado como tesis doctoral de Cruz-Neira, implicaba un entorno con múltiples proyecciones, similar a la sala holográfica , que permitía a las personas ver sus propios cuerpos en relación con los demás en la sala. [25] [26] Antonio Medina, un graduado del MIT y científico de la NASA, diseñó un sistema de realidad virtual para "conducir" los exploradores de Marte desde la Tierra en tiempo real aparente a pesar del retraso sustancial de las señales Marte-Tierra-Marte. [27]

Sistema de realidad aumentada inmersiva Virtual Accessory, desarrollado en 1992. La imagen muestra al Dr. Louis Rosenberg interactuando libremente en 3D con objetos virtuales superpuestos llamados "accessorios".

En 1992, Nicole Stenger creó Angels , la primera película inmersiva interactiva en tiempo real donde la interacción se facilitaba con un guante de datos y gafas de alta resolución. Ese mismo año, Louis Rosenberg creó el sistema de accesorios virtuales en los Laboratorios Armstrong de la Fuerza Aérea de los EE. UU . utilizando un exoesqueleto de cuerpo completo , lo que permitió una realidad mixta físicamente realista en 3D. El sistema permitió la superposición de objetos virtuales 3D físicamente reales registrados con la vista directa del mundo real de un usuario, produciendo la primera experiencia de realidad aumentada real que permite la vista, el sonido y el tacto. [28] [29]

En julio de 1994, Sega había lanzado la atracción de simulador de movimiento VR-1 en los parques temáticos interiores de Joypolis , [30] así como el juego arcade Dennou Senki Net Merc . Ambos usaban una pantalla avanzada montada en la cabeza denominada "Mega Visor Display" desarrollada en conjunto con Virtuality; [31] [32] era capaz de rastrear el movimiento de la cabeza en un entorno 3D estereoscópico de 360 ​​grados, y en su encarnación Net Merc estaba impulsada por la placa del sistema arcade Sega Model 1. [33] Apple lanzó QuickTime VR , que, a pesar de usar el término "VR", no podía representar la realidad virtual y, en su lugar, mostraba panoramas interactivos de 360 ​​grados .

La consola Virtual Boy de Nintendo se lanzó en 1995. [34] Un grupo en Seattle creó demostraciones públicas de una sala de proyección inmersiva de 270 grados "similar a CAVE" llamada Virtual Environment Theater, producida por los empresarios Chet Dagit y Bob Jacobson. [35] Forte lanzó el VFX1 , un casco de realidad virtual con tecnología de PC ese mismo año.

En 1999, el empresario Philip Rosedale fundó Linden Lab con un enfoque inicial en el desarrollo de hardware de realidad virtual. En sus inicios, la empresa tuvo dificultades para producir una versión comercial de "The Rig", que se materializó en forma de prototipo como un artilugio de acero tosco con varios monitores de computadora que los usuarios podían llevar sobre sus hombros. El concepto se adaptó más tarde al programa de mundo virtual en 3D basado en computadora personal Second Life . [36]

Siglo XXI

La década de 2000 fue un período de relativa indiferencia pública y de inversión hacia las tecnologías de realidad virtual disponibles comercialmente.

En 2001, SAS Cube (SAS3) se convirtió en la primera sala cúbica basada en PC, desarrollada por ZA Production ( Maurice Benayoun , David Nahon), Barco y Clarté. Se instaló en Laval , Francia. La biblioteca SAS dio origen a Virtools VRPack. En 2007, Google presentó Street View , un servicio que muestra vistas panorámicas de un número cada vez mayor de posiciones en todo el mundo, como carreteras, edificios interiores y áreas rurales. También cuenta con un modo 3D estereoscópico, presentado en 2010. [37]

2010-presente

Vista interior del prototipo de gafas Oculus Rift Crescent Bay

En 2010, Palmer Luckey diseñó el primer prototipo de Oculus Rift . Este prototipo, construido sobre una carcasa de otro casco de realidad virtual, solo era capaz de realizar un seguimiento rotatorio. Sin embargo, contaba con un campo de visión de 90 grados que nunca antes se había visto en el mercado de consumo en ese momento. Luckey eliminó los problemas de distorsión que surgían del tipo de lente utilizado para crear el amplio campo de visión utilizando un software que distorsionaba previamente la imagen renderizada en tiempo real. Este diseño inicial serviría más tarde como base de la que surgieron los diseños posteriores. [38] En 2012, John Carmack presenta el Rift por primera vez en la feria de videojuegos E3 . [39] [40] En 2014, Facebook (más tarde Meta) compró Oculus VR por lo que en ese momento se declaró como 2 mil millones de dólares [41], pero más tarde reveló que la cifra más precisa era de 3 mil millones de dólares. [40] Esta compra se produjo después de que los primeros kits de desarrollo pedidos a través del Kickstarter de Oculus en 2012 se enviaran en 2013, pero antes del envío de sus segundos kits de desarrollo en 2014. [42] ZeniMax , el antiguo empleador de Carmack, demandó a Oculus y Facebook por llevar secretos de la empresa a Facebook; [40] el veredicto fue a favor de ZeniMax, y se resolvió extrajudicialmente más tarde. [43]

Auriculares HTC Vive usados ​​en el Mobile World Congress 2018

En 2013, Valve descubrió y compartió libremente el avance de las pantallas de baja persistencia que hacen posible la visualización sin demoras y sin manchas de contenido de VR. [44] Esto fue adoptado por Oculus y se utilizó en todos sus auriculares futuros. A principios de 2014, Valve mostró su prototipo SteamSight, el precursor de ambos auriculares de consumo lanzados en 2016. Compartía características importantes con los auriculares de consumo, incluidas pantallas 1K separadas por ojo, baja persistencia, seguimiento posicional en un área grande y lentes Fresnel . [45] [46] HTC y Valve anunciaron el auricular de realidad virtual HTC Vive y los controladores en 2015. El conjunto incluía una tecnología de seguimiento llamada Lighthouse, que utilizaba "estaciones base" montadas en la pared para el seguimiento posicional mediante luz infrarroja . [47] [48] [49]

El casco Project Morpheus ( PlayStation VR ) utilizado en la Gamescom 2015

En 2014, Sony anunció Project Morpheus (su nombre en código para PlayStation VR ), un casco de realidad virtual para la consola de videojuegos PlayStation 4. [50] El casco chino AntVR se lanzó a finales de 2014; fue brevemente competitivo en el mercado chino, pero finalmente no pudo competir con las empresas de tecnología más grandes. [51] [52] En 2015, Google anunció Cardboard , un visor estereoscópico para hacer uno mismo: el usuario coloca su teléfono inteligente en el soporte de cartón, que usa en la cabeza. Michael Naimark fue designado el primer "artista residente" de Google en su nueva división de realidad virtual. La campaña de Kickstarter para Gloveone, un par de guantes que brindan seguimiento de movimiento y retroalimentación háptica, se financió con éxito, con más de $ 150,000 en contribuciones. [53] También en 2015, Razer presentó su proyecto de código abierto OSVR .

Auriculares Samsung Gear VR económicos basados ​​en smartphones en estado desmontado

En 2016, había al menos 230 empresas que desarrollaban productos relacionados con la realidad virtual. Amazon , Apple, Facebook, Google, Microsoft , Sony y Samsung tenían grupos dedicados a la realidad aumentada y la realidad virtual. El audio binaural dinámico era común en la mayoría de los auriculares lanzados ese año. Sin embargo, las interfaces hápticas no estaban bien desarrolladas y la mayoría de los paquetes de hardware incorporaban teléfonos operados con botones para una interactividad basada en el tacto. Visualmente, las pantallas todavía tenían una resolución y una velocidad de cuadros lo suficientemente bajas como para que las imágenes aún pudieran identificarse como virtuales. [54]

En 2016, HTC envió sus primeras unidades del auricular HTC Vive SteamVR. [55] Esto marcó el primer lanzamiento comercial importante de seguimiento basado en sensores, lo que permite el libre movimiento de los usuarios dentro de un espacio definido. [56] Una patente presentada por Sony en 2017 mostró que estaban desarrollando una tecnología de seguimiento de ubicación similar a Vive para PlayStation VR, con el potencial para el desarrollo de un auricular inalámbrico. [57]

En 2019, Oculus lanzó el Oculus Rift S y un dispositivo independiente, el Oculus Quest . Estos dispositivos utilizaban un seguimiento de adentro hacia afuera en comparación con el seguimiento externo de afuera hacia adentro que se observaba en generaciones anteriores de dispositivos. [58]

Más tarde, en 2019, Valve lanzó el Valve Index . Entre sus características más destacadas se incluyen un campo de visión de 130°, auriculares supraaurales para una mayor inmersión y comodidad, controladores de mano abierta que permiten el seguimiento individual de los dedos, cámaras frontales y una ranura de expansión frontal diseñada para la extensibilidad. [59]

En 2020, Oculus lanzó Oculus Quest 2 , que luego pasó a llamarse Meta Quest 2. Algunas de las nuevas características incluyen una pantalla más nítida, un precio reducido y un mayor rendimiento. Facebook (que se convirtió en Meta un año después) inicialmente requería que los usuarios iniciaran sesión con una cuenta de Facebook para poder usar el nuevo auricular. [60] En 2021, Oculus Quest 2 representó el 80% de todos los auriculares VR vendidos. [61]

Dispositivo de entrenamiento de realidad virtual Robinson R22 desarrollado por Loft Dynamics [62]

En 2021, la EASA aprobó el primer dispositivo de entrenamiento de simulación de vuelo basado en realidad virtual. El dispositivo, fabricado por Loft Dynamics para pilotos de helicópteros, mejora la seguridad al abrir la posibilidad de practicar maniobras arriesgadas en un entorno virtual. Esto aborda un área de riesgo clave en las operaciones de helicópteros, [63] donde las estadísticas muestran que alrededor del 20% de los accidentes ocurren durante los vuelos de entrenamiento.

En 2022, Meta lanzó Meta Quest Pro . Este dispositivo utilizó un diseño más delgado, similar a una visera que no estaba completamente cerrado, y fue el primer auricular de Meta destinado a aplicaciones de realidad mixta utilizando transmisión de video en color de alta resolución. También incluía seguimiento facial y ocular integrado , lentes tipo panqueque y controladores Touch Pro actualizados con seguimiento de movimiento integrado. [64] [65]

En 2023, Sony lanzó PlayStation VR2 , una continuación de sus auriculares de 2016. El dispositivo incluye seguimiento de adentro hacia afuera, renderizado foveado con seguimiento ocular , pantallas OLED de mayor resolución, controladores con disparadores adaptativos y retroalimentación háptica, audio 3D y un campo de visión más amplio. [66] Si bien inicialmente es exclusivo para su uso con la consola PlayStation 5 , un adaptador para PC está programado para agosto de 2024. [67]

Más tarde, en 2023, Meta lanzó Meta Quest 3 , el sucesor de Quest 2. Cuenta con las lentes panqueque y las funciones de realidad mixta de Quest Pro, así como un mayor campo de visión y resolución en comparación con Quest 2. [68]

En 2024, Apple lanzó Apple Vision Pro . El dispositivo es un casco de realidad mixta completamente cerrado que utiliza en gran medida el paso de video. Si bien algunas experiencias de realidad virtual están disponibles en el dispositivo, carece de las funciones estándar de los cascos de realidad virtual, como controladores externos o compatibilidad con OpenXR , y en cambio se lo comercializa como una " computadora espacial ". [69] [70]

En 2024, la Administración Federal de Aviación aprobó su primer dispositivo de entrenamiento de simulación de vuelo de realidad virtual: el Airbus Helicopters H125 FSTD de realidad virtual de Loft Dynamics , el mismo dispositivo que fue calificado por la EASA. A partir de septiembre de 2024, Loft Dynamics sigue siendo el único FSTD de realidad virtual calificado por la EASA y la FAA. [71]

Tecnología

Hardware

Para la sensación de inmersión en la realidad virtual lo más importante es una alta velocidad de cuadros y una baja latencia .

Las pantallas de los cascos de realidad virtual modernos se basan en tecnología desarrollada para teléfonos inteligentes, que incluye: giroscopios y sensores de movimiento para rastrear las posiciones de la cabeza, el cuerpo y las manos ; pequeñas pantallas HD para visualizaciones estereoscópicas; y procesadores informáticos pequeños, ligeros y rápidos. Estos componentes hicieron que los desarrolladores independientes de realidad virtual tuvieran una asequibilidad relativa y llevaron a la campaña Kickstarter de Oculus Rift de 2012, que ofrecía el primer casco de realidad virtual desarrollado de forma independiente. [54]

La producción independiente de imágenes y vídeos de realidad virtual ha aumentado junto con el desarrollo de cámaras omnidireccionales asequibles , también conocidas como cámaras de 360 ​​grados o cámaras de realidad virtual, que tienen la capacidad de grabar fotografías interactivas de 360 ​​grados , aunque a resoluciones relativamente bajas o en formatos altamente comprimidos para la transmisión en línea de vídeos de 360 ​​grados . [72] Por el contrario, la fotogrametría se utiliza cada vez más para combinar varias fotografías de alta resolución para la creación de objetos y entornos 3D detallados en aplicaciones de realidad virtual. [73] [74]

Para crear una sensación de inmersión, se necesitan dispositivos de salida especiales para mostrar mundos virtuales. Los formatos más conocidos son los visores montados en la cabeza o el CAVE. Para transmitir una impresión espacial, se generan dos imágenes y se muestran desde diferentes perspectivas (proyección estéreo). Existen diferentes tecnologías disponibles para llevar la imagen respectiva al ojo derecho. Se hace una distinción entre tecnologías activas (por ejemplo, gafas con obturador ) y pasivas (por ejemplo, filtros polarizadores o Infitec ). [75]

Para mejorar la sensación de inmersión, los cables multicuerda portátiles ofrecen hápticos a geometrías complejas en la realidad virtual. Estas cuerdas ofrecen un control preciso de cada articulación de los dedos para simular los hápticos involucrados al tocar estas geometrías virtuales. [76]

Para interactuar con el mundo virtual se necesitan dispositivos de entrada especiales. Algunos de los dispositivos de entrada más comunes son los controladores de movimiento y los sensores de seguimiento óptico . En algunos casos, se utilizan guantes con cable . Los controladores suelen utilizar sistemas de seguimiento óptico (principalmente cámaras infrarrojas ) para la ubicación y la navegación, de modo que el usuario puede moverse libremente sin cables. Algunos dispositivos de entrada proporcionan al usuario retroalimentación de fuerza en las manos u otras partes del cuerpo, de modo que el usuario puede orientarse en el mundo tridimensional a través de la tecnología háptica y de sensores como una sensación sensorial adicional y realizar simulaciones realistas. Esto permite que el espectador tenga una sensación de dirección en el paisaje artificial. Se puede obtener retroalimentación háptica adicional a partir de cintas de correr omnidireccionales (con las que caminar en el espacio virtual se controla mediante movimientos de caminata reales) y guantes y trajes con vibración.

Las cámaras de realidad virtual se pueden utilizar para crear fotografías de realidad virtual mediante vídeos panorámicos de 360 ​​grados . Las cámaras de realidad virtual están disponibles en varios formatos, con diferentes cantidades de lentes instaladas en la cámara. [77]

Software

El lenguaje de modelado de realidad virtual (VRML), introducido por primera vez en 1994, fue pensado para el desarrollo de "mundos virtuales" sin dependencia de auriculares. [78] El consorcio Web3D fue fundado posteriormente en 1997 para el desarrollo de estándares industriales para gráficos 3D basados ​​en la web. El consorcio desarrolló posteriormente X3D a partir del marco VRML como un estándar de código abierto de archivo para la distribución basada en la web de contenido de realidad virtual. [79] WebVR es una interfaz de programación de aplicaciones (API) experimental de JavaScript que proporciona soporte para varios dispositivos de realidad virtual, como HTC Vive, Oculus Rift, Google Cardboard u OSVR, en un navegador web . [80]

Experiencia de inmersión visual

Resolución de pantalla

El ángulo mínimo de resolución (MAR) se refiere a la distancia mínima entre dos píxeles de la pantalla. A esta distancia, el espectador puede distinguir claramente los píxeles independientes. El MAR entre dos píxeles, que suele medirse en segundos de arco, tiene que ver con la distancia de visualización. Para el público en general, la resolución es de unos 30 a 65 segundos de arco, lo que se denomina resolución espacial cuando se combina con la distancia. Dada la distancia de visualización de 1 m y 2 m respectivamente, los espectadores habituales no podrán percibir dos píxeles como separados si están separados por menos de 0,29 mm a 1 m y por menos de 0,58 mm a 2 m. [81]

Latencia de la imagen y frecuencia de actualización de la pantalla

La mayoría de las pantallas de tamaño pequeño tienen una frecuencia de actualización de 60 Hz, lo que agrega alrededor de 15 ms de latencia adicional. El número se reduce a menos de 7 ms si la frecuencia de actualización se aumenta a 120 Hz o incluso a 240 Hz y más. [82] Los participantes generalmente sienten que la experiencia es más inmersiva con frecuencias de actualización más altas como resultado. Sin embargo, las frecuencias de actualización más altas requieren una unidad de procesamiento de gráficos más potente .

Relación entre la pantalla y el campo de visión

En teoría, la realidad virtual representa el campo de visión de un participante (área amarilla).

Al evaluar la inmersión lograda por un dispositivo de VR, debemos considerar nuestro campo de visión ( FOV ) además de la calidad de la imagen. Nuestros ojos tienen un FOV horizontal de aproximadamente 107 o 110 grados hacia el lado temporal a aproximadamente 60 o 70 grados hacia la nariz, y un FOV vertical de aproximadamente 95 grados hacia abajo a 85 grados hacia arriba, [83] y los movimientos oculares se estiman en aproximadamente 30 grados a cada lado horizontalmente y 20 verticalmente. La visión binocular está limitada a los 120 o 140 grados donde se superponen los campos visuales derecho e izquierdo. Con los movimientos oculares, tenemos un FOV de aproximadamente 300 grados x 175 grados con dos ojos, es decir, aproximadamente un tercio de la esfera completa de 360 ​​grados.

Aplicaciones

La realidad virtual se utiliza con mayor frecuencia en aplicaciones de entretenimiento como videojuegos , cine en 3D , juegos mecánicos en parques de diversiones, incluidas las atracciones oscuras , y mundos virtuales sociales . Los cascos de realidad virtual para consumidores fueron lanzados por primera vez por empresas de videojuegos a principios y mediados de la década de 1990. A principios de la década de 2010, Oculus (Rift), HTC (Vive) y Sony (PlayStation VR) lanzaron cascos atados comerciales de próxima generación, lo que desencadenó una nueva ola de desarrollo de aplicaciones. [84] El cine en 3D se ha utilizado para eventos deportivos, pornografía, bellas artes, videos musicales y cortometrajes. Desde 2015, las montañas rusas y los parques temáticos han incorporado la realidad virtual para combinar los efectos visuales con la retroalimentación háptica. [54] La realidad virtual no solo se ajusta a la tendencia de la industria digital, sino que también mejora el efecto visual de la película. La película ofrece a la audiencia más formas de interactuar a través de la tecnología de realidad virtual. [85]

En las ciencias sociales y la psicología, la realidad virtual ofrece una herramienta rentable para estudiar y replicar interacciones en un entorno controlado. [86] Puede utilizarse como una forma de intervención terapéutica. [87] Por ejemplo, está el caso de la terapia de exposición a la realidad virtual (VRET), una forma de terapia de exposición para tratar trastornos de ansiedad como el trastorno de estrés postraumático ( TEPT ) y las fobias. [88] [89] [90]

Se ha diseñado una terapia de realidad virtual para ayudar a las personas con psicosis y agorafobia a gestionar su evitación de entornos externos. En la terapia, el usuario lleva un casco y un personaje virtual le proporciona asesoramiento psicológico y le guía mientras explora entornos simulados (como una cafetería o una calle concurrida). El NICE está evaluando la terapia para ver si debería recomendarse en el NHS . [91] [92]

Durante la pandemia de COVID-19, la realidad virtual social también se ha utilizado como herramienta de salud mental en una forma de terapia cognitivo-conductual no tradicional autoadministrada . [93]

Los programas de realidad virtual se están utilizando en los procesos de rehabilitación de personas mayores a las que se les ha diagnosticado la enfermedad de Alzheimer . Esto les da a estos pacientes mayores la oportunidad de simular experiencias reales que de otra manera no podrían experimentar debido a su estado actual. 17 Estudios recientes con ensayos controlados aleatorios han demostrado que las aplicaciones de realidad virtual son efectivas en el tratamiento de déficits cognitivos con diagnósticos neurológicos. [94] La pérdida de movilidad en pacientes mayores puede provocar una sensación de soledad y depresión. La realidad virtual puede ayudar a hacer del envejecimiento en el lugar una conexión con un mundo exterior en el que no pueden navegar fácilmente. La realidad virtual permite que la terapia de exposición se lleve a cabo en un entorno seguro. [95]

En medicina, los entornos quirúrgicos simulados de realidad virtual se desarrollaron por primera vez en la década de 1990. [96] [97] [98] Bajo la supervisión de expertos, la realidad virtual puede proporcionar una capacitación efectiva y repetible [99] a un bajo costo, lo que permite a los alumnos reconocer y corregir errores a medida que ocurren. [100]

La realidad virtual se ha utilizado en rehabilitación física desde la década de 2000. A pesar de los numerosos estudios realizados, falta evidencia de buena calidad de su eficacia en comparación con otros métodos de rehabilitación sin equipos sofisticados y costosos para el tratamiento de la enfermedad de Parkinson . [101] Una revisión de 2018 sobre la efectividad de la terapia del espejo mediante realidad virtual y robótica para cualquier tipo de patología concluyó de manera similar. [102] Se realizó otro estudio que mostró el potencial de la realidad virtual para promover el mimetismo y reveló la diferencia entre individuos neurotípicos y con trastorno del espectro autista en su respuesta a un avatar bidimensional. [103] [104]

La tecnología de realidad virtual inmersiva con control mioeléctrico y de seguimiento del movimiento puede representar una posible opción terapéutica para el dolor de miembro fantasma resistente al tratamiento. Se tomaron en cuenta las mediciones de la escala de dolor y se desarrolló un entorno de cocina tridimensional interactivo basado en los principios de la terapia del espejo para permitir el control de las manos virtuales mientras se usa un casco de realidad virtual con seguimiento del movimiento. [105] Se realizó una búsqueda sistemática en Pubmed y Embase para determinar los resultados que se agruparon en dos metanálisis. El metanálisis mostró un resultado significativo a favor de la VRT para el equilibrio. [106]

In the fast-paced and globalised business world, meetings in VR are used to create an environment in which interactions with other people (e.g. colleagues, customers, partners) can feel more natural than a phone call or video chat. In the customisable meeting rooms all parties can join using the VR headset and interact as if they are in the same physical room. Presentations, videos or 3D models (of e.g. products or prototypes) can be uploaded and interacted with.[107] Compared to traditional text-based CMC, Avatar-based interactions in 3D virtual environment lead to higher levels of consensus, satisfaction, and cohesion among group members.[108]

U.S. Navy Hospital Corpsman demonstrating a VR parachute simulator at the Naval Survival Training Institute in 2006

VR can simulate real workspaces for workplace occupational safety and health purposes, educational purposes, and training purposes. It can be used to provide learners with a virtual environment where they can develop their skills without the real-world consequences of failing. It has been used and studied in primary education,[109] anatomy teaching,[110][111] military,[112][113] astronaut training,[114][115][116] flight simulators,[117] miner training,[118] medical education,[119] geography education,[120] architectural design,[citation needed] driver training,[121] and bridge inspection.[122] Immersive VR engineering systems enable engineers to see virtual prototypes prior to the availability of any physical prototypes.[123] Supplementing training with virtual training environments has been claimed to offer avenues of realism in military[124] and healthcare[125] training while minimizing cost.[126] It also has been claimed to reduce military training costs by minimizing the amounts of ammunition expended during training periods.[124] VR can be used for the healthcare training and education for medical practitioners.[127][128] Further, several application have been developed for multiple types of safety training.[129][130] The latest results indicates that virtual reality safety training is more effective than traditional training in terms of knowledge acquisition and knowledge retention.[131]

In the engineering field, VR has proved very useful for both engineering educators and the students. A previously expensive cost in the educational department now being much more accessible due to lowered overall costs, has proven to be a very useful tool in educating future engineers. The most significant element lies in the ability for the students to be able to interact with 3-D models that accurately respond based on real world possibilities. This added tool of education provides many the immersion needed to grasp complex topics and be able to apply them.[132] As noted, the future architects and engineers benefit greatly by being able to form understandings between spatial relationships and providing solutions based on real-world future applications.[133]

The first fine art virtual world was created in the 1970s.[134] As the technology developed, more artistic programs were produced throughout the 1990s, including feature films. When commercially available technology became more widespread, VR festivals began to emerge in the mid-2010s. The first uses of VR in museum settings began in the 1990s, seeing a significant increase in the mid-2010s. Additionally, museums have begun making some of their content virtual reality accessible.[135][136]

Virtual reality's growing market presents an opportunity and an alternative channel for digital marketing.[137] It is also seen as a new platform for e-commerce, particularly in the bid to challenge traditional "brick and mortar" retailers. However, a 2018 study revealed that the majority of goods are still purchased in physical stores.[138]

In the case of education, the uses of virtual reality have demonstrated being capable of promoting higher order thinking,[139] promoting the interest and commitment of students, the acquisition of knowledge, promoting mental habits and understanding that are generally useful within an academic context.[140]

A case has also been made for including virtual reality technology in the context of public libraries. This would give library users access to cutting-edge technology and unique educational experiences.[141] This could include giving users access to virtual, interactive copies of rare texts and artifacts and to tours of famous landmarks and archeological digs (as in the case with the Virtual Ganjali Khan Project).[142]

Starting in the early 2020s, virtual reality has also been discussed as a technological setting that may support people's grieving process, based on digital recreations of deceased individuals. In 2021, this practice received substantial media attention following a South Korean TV documentary, which invited a grieving mother to interact with a virtual replica of her deceased daughter.[143] Subsequently, scientists have summarized several potential implications of such endeavours, including its potential to facilitate adaptive mourning, but also many ethical challenges.[144][145]

Growing interest in the metaverse has resulted in organizational efforts to incorporate the many diverse applications of virtual reality into ecosystems like VIVERSE, reportedly offering connectivity between platforms for a wide range of uses.[146]

Concerts

In June of 2020, Jean Michel Jarre performed in VRChat.[147] In July, Brendan Bradley released the free FutureStages web-based virtual reality venue for live events and concerts throughout the 2020 shutdown,[148] Justin Bieber performed on November 18, 2021 in WaveXR.[149] On December 2, 2021, non-player characters performed at the Mugar Omni Theater with audiences interacting with a live performer in both virtual reality and projected on the IMAX dome screen.[150][151] Meta's Foo Fighters Super Bowl VR concert performed on Venues.[152] Post Malone performed in Venues starting July 15, 2022.[153] Megan Thee Stallion performed on AmazeVR at AMC Theaters throughout 2022.[154]

On October 24, 2021, Billie Eilish performed on Oculus Venues. Pop group Imagine Dragons performed on June 15, 2022.

Concerns and challenges

Health and safety

There are many health and safety considerations of virtual reality. A number of unwanted symptoms have been caused by prolonged use of virtual reality,[155] and these may have slowed proliferation of the technology. Most virtual reality systems come with consumer warnings, including: seizures; developmental issues in children; trip-and-fall and collision warnings; discomfort; repetitive stress injury; and interference with medical devices.[156] Some users may experience twitches, seizures or blackouts while using VR headsets, even if they do not have a history of epilepsy and have never had blackouts or seizures before. One in 4,000 people, or .025%, may experience these symptoms. Motion sickness, eyestrain, headaches, and discomfort are the most prevalent short-term adverse effects. In addition, because of the virtual reality headsets' heavy weight, discomfort may be more likely among children. Therefore, children are advised against using VR headsets.[157] Other problems may occur in physical interactions with one's environment. While wearing VR headsets, people quickly lose awareness of their real-world surroundings and may injure themselves by tripping over, or colliding with real-world objects.[158]

VR headsets may regularly cause eye fatigue, as does all screened technology, because people tend to blink less when watching screens, causing their eyes to become more dried out.[159] There have been some concerns about VR headsets contributing to myopia, but although VR headsets sit close to the eyes, they may not necessarily contribute to nearsightedness if the focal length of the image being displayed is sufficiently far away.[160]

Virtual reality sickness (also known as cybersickness) occurs when a person's exposure to a virtual environment causes symptoms that are similar to motion sickness symptoms.[161] Women are significantly more affected than men by headset-induced symptoms, at rates of around 77% and 33% respectively.[162][163] The most common symptoms are general discomfort, headache, stomach awareness, nausea, vomiting, pallor, sweating, fatigue, drowsiness, disorientation, and apathy.[164] For example, Nintendo's Virtual Boy received much criticism for its negative physical effects, including "dizziness, nausea, and headaches".[165] These motion sickness symptoms are caused by a disconnect between what is being seen and what the rest of the body perceives. When the vestibular system, the body's internal balancing system, does not experience the motion that it expects from visual input through the eyes, the user may experience VR sickness. This can also happen if the VR system does not have a high enough frame rate, or if there is a lag between the body's movement and the onscreen visual reaction to it.[166] Because approximately 25–40% of people experience some kind of VR sickness when using VR machines, companies are actively looking for ways to reduce VR sickness.[167]

Vergence-accommodation conflict (VAC) is one of the main causes of virtual reality sickness.[168]

In January 2022 The Wall Street Journal found that VR usage could lead to physical injuries including leg, hand, arm and shoulder injuries.[169] VR usage has also been tied to incidents that resulted in neck injuries (especially injures to the cervical vertebrae).[170]

Children and teenagers in virtual reality

Children are becoming increasingly aware of VR, with the number in the USA having never heard of it dropping by half from Autumn 2016 (40%) to Spring 2017 (19%).[171]

A 2022 research report by Piper Sandler revealed that only 26% of U.S. teens own a VR device, 5% use it daily, while 48% of teen headset owners "seldom" use it. Of the teens who don't own a VR headset, 9% plan to buy one. 50% of surveyed teens are unsure about the metaverse or don't have any interest, and don't have any plans to purchase a VR headset.[172]

Studies show that young children, compared to adults, may respond cognitively and behaviorally to immersive VR in ways that differ from adults. VR places users directly into the media content, potentially making the experience very vivid and real for children. For example, children of 6–18 years of age reported higher levels of presence and "realness" of a virtual environment compared with adults 19–65 years of age.[173]

Studies on VR consumer behavior or its effect on children and a code of ethical conduct involving underage users are especially needed, given the availability of VR porn and violent content. Related research on violence in video games suggests that exposure to media violence may affect attitudes, behavior, and even self-concept. Self-concept is a key indicator of core attitudes and coping abilities, particularly in adolescents.[174] Early studies conducted on observing versus participating in violent VR games suggest that physiological arousal and aggressive thoughts, but not hostile feelings, are higher for participants than for observers of the virtual reality game.[175]

Experiencing VR by children may further involve simultaneously holding the idea of the virtual world in mind while experiencing the physical world. Excessive usage of immersive technology that has very salient sensory features may compromise children's ability to maintain the rules of the physical world, particularly when wearing a VR headset that blocks out the location of objects in the physical world. Immersive VR can provide users with multisensory experiences that replicate reality or create scenarios that are impossible or dangerous in the physical world. Observations of 10 children experiencing VR for the first time suggested that 8-12-years-old kids were more confident to explore VR content when it was in a familiar situation, e.g. the children enjoyed playing in the kitchen context of Job Simulator, and enjoyed breaking rules by engaging in activities they are not allowed to do in reality, such as setting things on fire.[171]

Privacy

Digital privacy concerns have been associated with VR platforms;[176][177] the persistent tracking required by all VR systems makes the technology particularly useful for, and vulnerable to, mass surveillance, including information gathering of personal actions, movements and responses.[54] Data from eye tracking sensors, which are projected to become a standard feature in virtual reality headsets,[178][179] may indirectly reveal information about a user's ethnicity, personality traits, fears, emotions, interests, skills, and physical and mental health conditions.[180]

The nature of VR technology means that it can gather a wide range of data about its users. This can include obvious information such as usernames and account information, but also extends to more personal data like physical movements, interaction habits, and responses to virtual environments. In addition, advanced VR systems can capture biometric data like voice patterns, eye movements, and physiological responses to VR experiences.[181][182] Virtual reality technology has grown substantially since its inception, moving from a niche technology to a mainstream consumer product. As the user base has grown, so too has the amount of personal data collected by these systems.[183] This data can be used to improve VR systems, to provide personalized experiences, or to collect demographic information for marketing purposes. However, it also raises significant privacy concerns, especially when this data is stored, shared, or sold without the user's explicit consent.[184]

Existing data protection and privacy laws like the General Data Protection Regulation (GDPR) in the EU, and the California Consumer Privacy Act (CCPA) in the United States, can be applied to VR. These regulations require companies to disclose how they collect and use data, and give users a degree of control over their personal information.[185] Despite these regulations, enforcing privacy laws in VR can be challenging due to the global nature of the technology and the vast amounts of data collected.[186]

Due to its history of privacy issues, the involvement of Meta Platforms (formerly Facebook, Inc.) in the VR market has led to privacy concerns specific to its platforms. In August 2020, Facebook announced that Oculus products would become subject to the terms of use and privacy policy of the Facebook social network, and that a Facebook account would be required to use future Oculus headset models, and all existing models (via deprecation of the separate Oculus account system) beginning January 2023. The announcement was criticized for the mandatory integration of Oculus headsets with Facebook data collection and policies (including the Facebook real-name policy), and preventing use of the hardware if the user's account is suspended.[187][188][189] The following month, Facebook halted the sale of Oculus products in Germany due to concerns from regulators that the new policy was a violation of GDPR.[190] In 2022, the company would later establish a separate "Meta account" system.[191]

In 2024, researchers from the University of Chicago demonstrated a security vulnerability in Meta Quest's Android-based system software (leveraging "Developer Mode" to inject an infected app), allowing them to obtain users' login credentials and inject false details during online banking sessions. This attack was considered to be difficult to execute outside of research settings but would make its target vulnerable to risks such as phishing, Internet fraud, and grooming.[192]

Virtual reality in fiction

See also

References

  1. ^ Rosson, Lois (15 April 2014). "The Virtual Interface Environment Workstation (VIEW), 1990". NASA. Archived from the original on 1 November 2016. Retrieved 26 March 2024.
  2. ^ Milgram, Paul; Takemura, Haruo; Utsumi, Akira; Kishino, Fumio (21 December 1995). "Augmented reality: a class of displays on the reality-virtuality continuum". Telemanipulator and Telepresence Technologies. 2351. SPIE: 282–292. doi:10.1117/12.197321. ISSN 0277-786X.
  3. ^ a b "virtual | Search Online Etymology Dictionary". www.etymonline.com.
  4. ^ Antonin Artaud, The Theatre and its Double Trans. Mary Caroline Richards. (New York: Grove Weidenfeld, 1958).
  5. ^ Faisal, Aldo (2017). "Computer science: Visionary of virtual reality". Nature. 551 (7680): 298–299. Bibcode:2017Natur.551..298F. doi:10.1038/551298a.
  6. ^ "Definition of cyberspace | Dictionary.com". www.dictionary.com.
  7. ^ Baltrušaitis, Jurgis; Strachan, W.J. (1977). Anamorphic art. New York: Harry N. Abrams. p. 4. ISBN 9780810906624.
  8. ^ "Virtual Reality Society". Virtual Reality Society. 2 January 2020. Retrieved 19 January 2023.
  9. ^ "Charles Wheatstone: the father of 3D and virtual reality technology". Feature from King's College London. 28 October 2016. Retrieved 19 January 2023.
  10. ^ Holly Brockwell (3 April 2016). "Forgotten genius: the man who made a working VR machine in 1957". Tech Radar. Retrieved 7 March 2017.
  11. ^ Watkins, Christopher; Marenka, Stephen (1994). Virtual Reality Excursions with Programs in C. Academic Press Inc. p. 58. ISBN 0-12-737865-0.
  12. ^ "National Center for Supercomputing Applications: History". The Board of Trustees of the University of Illinois. Archived from the original on 21 August 2015.
  13. ^ Nelson, Ted (March 1982). "Report on Siggraph '81". Creative Computing.
  14. ^ Scott S. Fisher; The NASA Ames VIEWlab Project—A Brief History. Presence: Teleoperators and Virtual Environments 2016; 25 (4): 339–348. doi: https://doi.org/10.1162/PRES_a_00277
  15. ^ Thomas, Wayne (December 2005). "Section 17". "Virtual Reality and Artificial Environments", A Critical History of Computer Graphics and Animation.
  16. ^ "Zimmerman & Lanier Develop the DataGlove, a Hand Gesture Interface Device : History of Information". www.historyofinformation.com.
  17. ^ Barlow, John Perry (1990). "Being in Nothingness". Wired.
  18. ^ "Cyberspace – The New Explorers". 1989. Retrieved 8 August 2019 – via Internet Archive.
  19. ^ Delaney, Ben (2017). Virtual Reality 1.0 -- The 90s: The Birth of VR. CyberEdge Information Services. p. 40. ISBN 978-1513617039.
  20. ^ Stoker, Carol. "MARSMAP: AN INTERACTIVE VIRTUAL REALITY MODEL OF THE PATHFINDER LANDING SITE" (PDF). NASA JPL. NASA. Retrieved 7 August 2019.
  21. ^ Cullen, Chris (13 April 2017). "Pioneering VR Stories Part 1: Idaho National Laboratory In The '90s". Idaho Virtual Reality Council. Retrieved 7 August 2019.
  22. ^ Engler, Craig E. (November 1992). "Affordable VR by 1994". Computer Gaming World. p. 80. Retrieved 4 July 2014.
  23. ^ Horowitz, Ken (28 December 2004). "Sega VR: Great Idea or Wishful Thinking?". Sega-16. Archived from the original on 14 January 2010. Retrieved 21 August 2010.
  24. ^ "Virtuality". YouTube. Archived from the original on 11 December 2021. Retrieved 21 September 2014.
  25. ^ Goad, Angela. "Carolina Cruz-Neira | Introductions Necessary". Introductions Necessary. Retrieved 28 March 2017.
  26. ^ Smith, David (24 November 2014). "Engineer envisions sci-fi as reality". Arkansas Online. Retrieved 28 March 2017.
  27. ^ Gonzales, D.; Criswell, D.; Heer, E (1991). Gonzales, D. (ed.). "Automation and Robotics for the Space Exploration Initiative: Results from Project Outreach" (PDF). NASA STI/Recon Technical Report N. 92 (17897): 35. Bibcode:1991STIN...9225258G.
  28. ^ Rosenberg, Louis (1992). "The Use of Virtual Fixtures As Perceptual Overlays to Enhance Operator Performance in Remote Environments.". Technical Report AL-TR-0089, USAF Armstrong Laboratory, Wright-Patterson AFB OH, 1992.
  29. ^ Rosenberg, L.B. (1993). "Virtual Fixtures: Perceptual Overlays for Telerobotic Manipulation". In Proc. of the IEEE Annual Int. Symposium on Virtual Reality (1993): pp. 76–82.
  30. ^ "News & Information". Beep! Mega Drive. No. 1994–08. July 1994. p. [1].
  31. ^ Kevin Williams. "The Virtual Arena – Blast From The Past: The VR-1". VR Focus.
  32. ^ "Sega Teams Up With W. Industries For Its VR Game". Game Machine. No. 455. August 1993. p. [2].
  33. ^ NEXT Generation. June 1995. Retrieved 20 October 2015 – via archive.org.
  34. ^ "Nintendo Virtual Boy on theverge.com". Archived from the original on 1 April 2014.
  35. ^ Dye, Lee (22 February 1995). "Virtual Reality Applications Expand : Imaging: Technology is finding important places in medicine, engineering and many other realms". Los Angeles Times.
  36. ^ Au, Wagner James. The Making of Second Life, pg. 19. New York: Collins. ISBN 978-0-06-135320-8.
  37. ^ "Google Street View in 3D: More Than Just an April Fool's Joke". 6 April 2010.
  38. ^ Rubin, Peter (2014). "Oculus Rift". Wired. Vol. 22, no. 6. p. 78.
  39. ^ "E3 12: John Carmack's VR Presentation". Gamereactor. 27 July 2012. Archived from the original on 11 December 2021. Retrieved 20 February 2019.
  40. ^ a b c Gilbert, Ben (12 December 2018). "Facebook just settled a $500 million lawsuit over virtual reality after a years-long battle — here's what's going on". Business Insider. Retrieved 20 February 2019.
  41. ^ "Facebook to buy Oculus virtual reality firm for $2B". Associated Press. 25 March 2014. Retrieved 27 March 2014.
  42. ^ Metz, Cade (25 March 2014). "Facebook Buys VR Startup Oculus for $2 Billion". WIRED. Retrieved 13 March 2017.
  43. ^ Spangler, Todd (12 December 2018). "ZeniMax Agrees to Settle Facebook VR Lawsuit". Variety. Retrieved 20 February 2019.
  44. ^ "Not-quite-live bloga : panel discussion with John Carmack, Tim Sweeney, Johan Andersson". The Tech Report. Retrieved 14 December 2016.
  45. ^ James, Paul (30 January 2014). "30 Minutes Inside Valve's Prototype Virtual Reality Headset: Owlchemy Labs Share Their Steam Dev Days Experience – Road to VR". Road to VR. Retrieved 14 December 2016.
  46. ^ James, Paul (18 November 2013). "Valve to Demonstrate Prototype VR HMD and Talk Changes to Steam to "Support and Promote VR Games" – Road to VR". Road to VR. Retrieved 14 December 2016.
  47. ^ "Valve showing off new virtual reality hardware and updated Steam controller next week". The Verge. 24 February 2015. Retrieved 1 March 2015.
  48. ^ "Valve's VR headset revealed with Oculus-like features". The Verge. 3 June 2014. Retrieved 1 March 2015.
  49. ^ "HTC Vive: Everything you need to know about the SteamVR headset". Wareable. 5 April 2016. Retrieved 19 June 2016.
  50. ^ "Sony Announces 'Project Morpheus:' Virtual Reality Headset For PS4". Forbes.
  51. ^ "Pioneers Pushing Boundaries". China Pictorial. 823: 46–55. January 2017.
  52. ^ Agam, Shah (13 December 2016). "Sony's PlayStation VR tops HTC Vive in headset shipment battle". PC World.
  53. ^ "Gloveone: Feel Virtual Reality". Kickstarter. Retrieved 15 May 2016.
  54. ^ a b c d Kelly, Kevin (April 2016). "The Untold Story of Magic Leap, the World's Most Secretive Startup". WIRED. Retrieved 13 March 2017.
  55. ^ "Vive Shipment Updates – VIVE Blog". VIVE Blog. 7 April 2016. Archived from the original on 30 June 2016. Retrieved 19 June 2016.
  56. ^ Prasuethsut, Lily (2 August 2016). "HTC Vive: Everything you need to know about the SteamVR headset". Wareable. Retrieved 13 March 2017.
  57. ^ Martindale, Jon (15 February 2017). "Vive-like sensor spotted in new Sony patent could make its way to PlayStation VR". Digital Trends. Retrieved 13 March 2017.
  58. ^ "From the lab to the living room: The story behind Facebook's Oculus Insight technology and a new era of consumer VR". tech.fb.com. 22 August 2019. Retrieved 1 September 2020.
  59. ^ "Headset - Valve Index® - Upgrade your experience - Valve Corporation". www.valvesoftware.com. 9 May 2019. Retrieved 28 February 2021.
  60. ^ Robertson, Adi (16 September 2020). "Oculus Quest 2 Review: Better, Cheaper VR". theverge.com. Retrieved 16 December 2020.
  61. ^ Ochanji, Sam (27 March 2022). "Survey: Quest 2 Accounted for 80% of Headset Sales in 2021". Virtual Reality Times. Retrieved 29 March 2022.
  62. ^ "VRM Switzerland – Professional Flight Training Solutions". Retrieved 10 May 2021.
  63. ^ "EASA approves the first Virtual Reality (VR) based Flight Simulation Training Device". EASA. 26 April 2021. Retrieved 10 May 2021.
  64. ^ Orland, Kyle (28 October 2022). "Meta Quest Pro review: For those with more money than sense". Ars Technica. Retrieved 18 July 2024.
  65. ^ Robertson, Adi (11 November 2022). "Meta Quest Pro review: get me out of here". The Verge. Retrieved 18 July 2024.
  66. ^ "PS VR2 Tech Specs | PlayStation VR2 display, setup and compatibility". PlayStation. Retrieved 26 March 2023.
  67. ^ Webster, Andrew (3 June 2024). "Sony's PSVR 2 PC adapter launches in August". The Verge. Retrieved 18 July 2024.
  68. ^ Pierce, David (9 October 2023). "Meta Quest 3 review: almost the one we've been waiting for". The Verge. Retrieved 18 July 2024.
  69. ^ Patel, Nilay (30 January 2024). "Apple Vision Pro review: magic, until it's not". The Verge. Retrieved 18 July 2024.
  70. ^ Axon, Samuel (6 June 2023). "Hands-on with Apple Vision Pro: This is not a VR headset". Ars Technica. Retrieved 18 July 2024.
  71. ^ "Pilots Are Learning To Fly Helicopters In VR, Thanks To This Swiss Startup". Forbes. 2 September 2024. Retrieved 25 September 2024.
  72. ^ Orellana, Vanessa Hand (31 May 2016). "10 things I wish I knew before shooting 360 video". CNET. Retrieved 20 March 2017.
  73. ^ "Resident Evil 7: The Use of Photogrammetry for VR". 80.lv. 28 August 2016. Retrieved 20 March 2017.
  74. ^ Johnson, Leif (13 March 2016). "Forget 360 Videos, Photogrammetric Virtual Reality Is Where It's At – Motherboard". Motherboard. Retrieved 20 March 2017.
  75. ^ "Stereoscopic Display - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 19 October 2022.
  76. ^ Fang, Cathy; Zhang, Yang; Dworman, Matthew; Harrison, Chris (21 April 2020). "Wireality: Enabling Complex Tangible Geometries in Virtual Reality with Worn Multi-String Haptics". Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. CHI '20. Honolulu, HI, USA: Association for Computing Machinery. pp. 1–10. doi:10.1145/3313831.3376470. ISBN 978-1-4503-6708-0. S2CID 218483027.
  77. ^ Kuhn, Thomas. "Wie Virtual-Reality-Brillen die Arbeit verändern". WirtschaftsWoche. Retrieved 18 November 2020.
  78. ^ "VRML Virtual Reality Modeling Language". www.w3.org. Retrieved 20 March 2017.
  79. ^ Brutzman, Don (October 2016). "X3D Graphics and VR" (PDF). web3D.org. Web3D Consortium. Archived (PDF) from the original on 21 March 2017. Retrieved 20 March 2017.
  80. ^ "WebVR API". Mozilla Developer Network. Retrieved 4 November 2015.
  81. ^ Davson, Hugh (1972). The Physiology of The Eye. Burlington: Elsevier Science. ISBN 978-0-323-14394-3. OCLC 841909276.
  82. ^ Leclair, Dave (21 September 2022). "From 60Hz to 240Hz: Refresh Rates on Phones Explained". PCMag UK. Retrieved 19 October 2022.
  83. ^ Strasburger, Hans (2020). "Seven myths on crowding and peripheral vision". i-Perception. 11 (2): 1–45. doi:10.1177/2041669520913052. PMC 7238452. PMID 32489576.
  84. ^ "Comparison of VR headsets: Project Morpheus vs. Oculus Rift vs. HTC Vive". Data Reality. Archived from the original on 20 August 2015. Retrieved 15 August 2015.
  85. ^ He, Jing; Wu, Yanping (10 October 2022). Tirunagari, Santosh (ed.). "Application of Digital Interactive Display Design Based on Computer Technology in VR Film". Mobile Information Systems. 2022: 1–7. doi:10.1155/2022/8462037. ISSN 1875-905X.
  86. ^ Groom, Victoria; Bailenson, Jeremy N.; Nass, Clifford (1 July 2009). "The influence of racial embodiment on racial bias in immersive virtual environments". Social Influence. 4 (3): 231–248. doi:10.1080/15534510802643750. ISSN 1553-4510. S2CID 15300623.
  87. ^ Wiebe, Annika; Kannen, Kyra; Selaskowski, Benjamin; Mehren, Aylin; Thöne, Ann-Kathrin; Pramme, Lisa; Blumenthal, Nike; Li, Mengtong; Asché, Laura; Jonas, Stephan; Bey, Katharina; Schulze, Marcel; Steffens, Maria; Pensel, Max; Guth, Matthias; Rohlfsen, Felicia; Ekhlas, Mogda; Lügering, Helena; Fileccia, Helena; Pakos, Julian; Lux, Silke; Philipsen, Alexandra; Braun, Niclas (2022). "Virtual reality in the diagnostic and therapy for mental disorders: A systematic review". Clinical Psychology Review. 98 (2): 102213. doi:10.1016/j.cpr.2022.102213. hdl:20.500.11811/10810. PMID 36356351. S2CID 253282697. Retrieved 18 April 2023.
  88. ^ Gonçalves, Raquel; Pedrozo, Ana Lúcia; Coutinho, Evandro Silva Freire; Figueira, Ivan; Ventura, Paula (27 December 2012). "Efficacy of Virtual Reality Exposure Therapy in the Treatment of PTSD: A Systematic Review". PLOS ONE. 7 (12): e48469. Bibcode:2012PLoSO...748469G. doi:10.1371/journal.pone.0048469. ISSN 1932-6203. PMC 3531396. PMID 23300515.
  89. ^ Garrick, Jacqueline; Williams, Mary Beth (2014). Trauma Treatment Techniques: Innovative Trends. London: Routledge. p. 199. ISBN 9781317954934.
  90. ^ Gerardi, Maryrose (June 2010). "Virtual Reality Exposure Therapy for Post-Traumatic Stress Disorder and Other Anxiety Disorders". Current Psychiatry Reports. 12 (4): 298–305. doi:10.1007/s11920-010-0128-4. PMID 20535592. S2CID 436354.
  91. ^ Freeman, Daniel; Lambe, Sinéad; Kabir, Thomas; Petit, Ariane; Rosebrock, Laina; Yu, Ly-Mee; Dudley, Robert; Chapman, Kate; Morrison, Anthony; O'Regan, Eileen; Aynsworth, Charlotte; Jones, Julia; Murphy, Elizabeth; Powling, Rosie; Galal, Ushma (1 May 2022). "Automated virtual reality therapy to treat agoraphobic avoidance and distress in patients with psychosis (gameChange): a multicentre, parallel-group, single-blind, randomised, controlled trial in England with mediation and moderation analyses". The Lancet Psychiatry. 9 (5): 375–388. doi:10.1016/s2215-0366(22)00060-8. ISSN 2215-0366. PMC 9010306. PMID 35395204.
  92. ^ "Virtual reality could help people with psychosis and agoraphobia". NIHR Evidence. 20 July 2023. doi:10.3310/nihrevidence_59108. S2CID 260053713.
  93. ^ Deighan, Mairi Therese; Ayobi, Amid; O'Kane, Aisling Ann (19 April 2023). "Social Virtual Reality as a Mental Health Tool: How People Use VRChat to Support Social Connectedness and Wellbeing". Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI '23. New York, NY, USA: Association for Computing Machinery. pp. 1–13. doi:10.1145/3544548.3581103. ISBN 978-1-4503-9421-5. S2CID 258217919.
  94. ^ [citation needed]
  95. ^ Kamińska, Magdalena Sylwia; Miller, Agnieszka; Rotter, Iwona; Szylińska, Aleksandra; Grochans, Elżbieta (14 November 2018). "The effectiveness of virtual reality training in reducing the risk of falls among elderly people". Clinical Interventions in Aging. 13: 2329–2338. doi:10.2147/CIA.S183502. PMC 6241865. PMID 30532523.
  96. ^ Satava, R. M. (1996). "Medical virtual reality. The current status of the future". Studies in Health Technology and Informatics. 29: 100–106. ISSN 0926-9630. PMID 10163742.
  97. ^ Rosenberg, Louis; Stredney, Don (1996). "A haptic interface for virtual simulation of endoscopic surgery". Studies in Health Technology and Informatics. 29: 371–387. ISSN 0926-9630. PMID 10172846.
  98. ^ Stredney, D.; Sessanna, D.; McDonald, J. S.; Hiemenz, L.; Rosenberg, L. B. (1996). "A virtual simulation environment for learning epidural anesthesia". Studies in Health Technology and Informatics. 29: 164–175. ISSN 0926-9630. PMID 10163747.
  99. ^ Thomas, Daniel J.; Singh, Deepti (2 April 2021). "Letter to the Editor: Virtual Reality in Surgical Training". International Journal of Surgery. 89: 105935. doi:10.1016/j.ijsu.2021.105935. ISSN 1743-9191. PMID 33819684. S2CID 233036480.
  100. ^ Westwood, J.D. Medicine Meets Virtual Reality 21: NextMed / MMVR21. IOS Press. p. 462.
  101. ^ Dockx, Kim (2016). "Virtual reality for rehabilitation in Parkinson's disease". Cochrane Database of Systematic Reviews. 2016 (12): CD010760. doi:10.1002/14651858.CD010760.pub2. PMC 6463967. PMID 28000926.
  102. ^ Darbois, Nelly; Guillaud, Albin; Pinsault, Nicolas (2018). "Does Robotics and Virtual Reality Add Real Progress to Mirror Therapy Rehabilitation? A Scoping Review". Rehabilitation Research and Practice. 2018: 6412318. doi:10.1155/2018/6412318. PMC 6120256. PMID 30210873.
  103. ^ Forbes, Paul A. G.; Pan, Xueni; Hamilton, Antonia F. de C. (2016). "Reduced Mimicry to Virtual Reality Avatars in Autism Spectrum Disorder". Journal of Autism and Developmental Disorders. 46 (12): 3788–3797. doi:10.1007/s10803-016-2930-2. PMC 5110595. PMID 27696183.
  104. ^ "How virtual reality is transforming autism studies". Spectrum | Autism Research News. 24 October 2018.
  105. ^ Chau, Brian (August 2017). "Immersive virtual reality therapy with myoelectric control for treatment-resistant phantom limb pain: Case report". Psychiatry. 14 (7–8): 3–7. PMC 5880370. PMID 29616149.
  106. ^ Warnier, Nadieh (November 2019). "Effect of virtual reality therapy on balance and walking in children with cerebral palsy: A systematic review". Pediatric Health. 23 (8): 502–518. doi:10.1080/17518423.2019.1683907. PMID 31674852. S2CID 207814817.
  107. ^ "VR Meetings Are Weird, but They Beat Our Current Reality". Wired. ISSN 1059-1028. Retrieved 3 April 2021.
  108. ^ Schouten, Alexander P.; van den Hooff, Bart; Feldberg, Frans (March 2016). "Virtual Team Work: Group Decision Making in 3D Virtual Environments". Communication Research. 43 (2): 180–210. doi:10.1177/0093650213509667. ISSN 0093-6502. S2CID 10503426.
  109. ^ "Online High School In Japan Enters Virtual Reality". blogs.wsj.com. 7 April 2016.
  110. ^ Moro, Christian; Štromberga, Zane; Raikos, Athanasios; Stirling, Allan (17 April 2017). "The effectiveness of virtual and augmented reality in health sciences and medical anatomy: VR and AR in Health Sciences and Medical Anatomy". Anatomical Sciences Education. 10 (6): 549–559. doi:10.1002/ase.1696. PMID 28419750. S2CID 25961448.
  111. ^ Moro, Christian; Štromberga, Zane; Stirling, Allan (29 November 2017). "Virtualisation devices for student learning: Comparison between desktop-based (Oculus Rift) and mobile-based (Gear VR) virtual reality in medical and health science education". Australasian Journal of Educational Technology. 33 (6). doi:10.14742/ajet.3840. ISSN 1449-5554.
  112. ^ "DSTS: First immersive virtual training system fielded". www.army.mil. Retrieved 16 March 2017.
  113. ^ "Virtual reality used to train Soldiers in new training simulator".
  114. ^ "NASA shows the world its 20-year virtual reality experiment to train astronauts: The inside story – TechRepublic". TechRepublic. Retrieved 15 March 2017.
  115. ^ James, Paul (19 April 2016). "A Look at NASA's Hybrid Reality Astronaut Training System, Powered by HTC Vive – Road to VR". Road to VR. Retrieved 15 March 2017.
  116. ^ "How NASA is Using Virtual and Augmented Reality to Train Astronauts". Unimersiv. 11 April 2016. Retrieved 15 March 2017.
  117. ^ Dourado, Antônio O.; Martin, C.A. (2013). "New concept of dynamic flight simulator, Part I". Aerospace Science and Technology. 30 (1): 79–82. Bibcode:2013AeST...30...79D. doi:10.1016/j.ast.2013.07.005.
  118. ^ "Virtual Reality in Mine Training". www.cdc.gov. 21 September 2012. Retrieved 9 November 2018.
  119. ^ Moro, C; Birt, J; Stromberga, Z; Phelps, C; Clark, J; Glasziou, P; Scott, AM (May 2021). "Virtual and Augmented Reality Enhancements to Medical and Science Student Physiology and Anatomy Test Performance: A Systematic Review and Meta-Analysis". Anatomical Sciences Education. 14 (3): 368–376. doi:10.1002/ase.2049. PMID 33378557. S2CID 229929326.
  120. ^ Sedlák, Michal; Šašinka, Čeněk; Stachoň, Zdeněk; Chmelík, Jiří; Doležal, Milan (18 October 2022). "Collaborative and individual learning of geography in immersive virtual reality: An effectiveness study". PLOS ONE. 17 (10): e0276267. Bibcode:2022PLoSO..1776267S. doi:10.1371/journal.pone.0276267. ISSN 1932-6203. PMC 9578614. PMID 36256672.
  121. ^ "How Virtual Reality Military Applications Work". 27 August 2007.
  122. ^ Omer; et al. (2018). "Performance evaluation of bridges using virtual reality". Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, Scotland.
  123. ^ Seu; et al. (2018). "Use of gaming and affordable VR technology for the visualization of complex flow fields". Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6) & 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, Scotland.
  124. ^ a b Shufelt, Jr., J.W. (2006) A Vision for Future Virtual Training. In Virtual Media for Military Applications (pp. KN2-1 – KN2-12). Meeting Proceedings RTO-MP-HFM-136, Keynote 2. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp Archived 2007-06-13 at the Wayback Machine
  125. ^ Bukhari, Hatim; Andreatta, Pamela; Goldiez, Brian; Rabelo, Luis (1 January 2017). "A Framework for Determining the Return on Investment of Simulation-Based Training in Health Care". INQUIRY: The Journal of Health Care Organization, Provision, and Financing. 54: 0046958016687176. doi:10.1177/0046958016687176. ISSN 0046-9580. PMC 5798742. PMID 28133988.
  126. ^ Smith, Roger (1 February 2010). "The Long History of Gaming in Military Training". Simulation & Gaming. 41 (1): 6–19. doi:10.1177/1046878109334330. ISSN 1046-8781. S2CID 13051996.
  127. ^ Dennis, Ophelie Puissegur; Patterson, Rita M. (April 2020). "Medical virtual reality". Journal of Hand Therapy. 33 (2): 243–245. doi:10.1016/j.jht.2020.02.003. ISSN 1545-004X. PMID 32451173. S2CID 218895372.
  128. ^ Bueckle, Andreas; Buehling, Kilian; Shih, Patrick C.; Börner, Katy (27 October 2021). "3D virtual reality vs. 2D desktop registration user interface comparison". PLOS ONE. 16 (10): e0258103. arXiv:2102.12030. Bibcode:2021PLoSO..1658103B. doi:10.1371/journal.pone.0258103. ISSN 1932-6203. PMC 8550408. PMID 34705835.
  129. ^ Kanade, Sameeran G.; Duffy, Vincent G. (2022). Duffy, Vincent G. (ed.). "Use of Virtual Reality for Safety Training: A Systematic Review". Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Health, Operations Management, and Design. Cham: Springer International Publishing: 364–375. doi:10.1007/978-3-031-06018-2_25. ISBN 978-3-031-06018-2.
  130. ^ Stefan, Hans; Mortimer, Michael; Horan, Ben (December 2023). "Evaluating the effectiveness of virtual reality for safety-relevant training: a systematic review". Virtual Reality. 27 (4): 2839–2869. doi:10.1007/s10055-023-00843-7. ISSN 1359-4338.
  131. ^ Scorgie, D.; Feng, Z.; Paes, D.; Parisi, F.; Yiu, T.W.; Lovreglio, R. (March 2024). "Virtual reality for safety training: A systematic literature review and meta-analysis". Safety Science. 171: 106372. doi:10.1016/j.ssci.2023.106372.
  132. ^ Abulrub, Abdul-Hadi G.; Attridge, Alex N.; Williams, Mark A. (April 2011). "Virtual reality in engineering education: The future of creative learning". 2011 IEEE Global Engineering Education Conference (EDUCON). pp. 751–757. doi:10.1109/EDUCON.2011.5773223. ISBN 978-1-61284-642-2.
  133. ^ Makaklı, Elif Süyük (2019). "STEAM approach in architectural education". SHS Web of Conferences. 66: 01012. doi:10.1051/shsconf/20196601012. ISSN 2261-2424.
  134. ^ Mura, Gianluca (2011). Metaplasticity in Virtual Worlds: Aesthetics and Semantic Concepts. Hershey, Pennsylvania: Information Science Reference. p. 203. ISBN 978-1-60960-077-8.
  135. ^ "Virtual reality at the British Museum: What is the value of virtual reality environments for learning by children and young people, schools, and families? – MW2016: Museums and the Web 2016". Archived from the original on 3 October 2017. Retrieved 23 September 2017.
  136. ^ "Extending the Museum Experience with Virtual Reality". 18 March 2016.
  137. ^ Shirer, Michael; Torchia, Marcus (27 February 2017). "Worldwide Spending on Augmented and Virtual Reality Forecast to Reach $13.9 Billion in 2017, According to IDC". International Data Corporation. Archived from the original on 19 March 2018. Retrieved 16 March 2018.
  138. ^ "How Technology is Expanding the Scope of Online Commerce Beyond Retail". www.walkersands.com. Retrieved 31 August 2018.
  139. ^ Thomas, Daniel J. (December 2016). "Augmented reality in surgery: The Computer-Aided Medicine revolution". International Journal of Surgery (London, England). 36 (Pt A): 25. doi:10.1016/j.ijsu.2016.10.003. ISSN 1743-9159. PMID 27741424.
  140. ^ Sáez-López, José-Manuel; García, María Luisa Sevillano-García; Pascual-Sevillano, María de los Ángeles (2019). "Aplicación del juego ubicuo con realidad aumentada en Educación Primaria". Comunicar (in Spanish). 27 (61): 71–82. doi:10.3916/C61-2019-06. hdl:10651/53881. ISSN 1134-3478.
  141. ^ Kirsch, Breanne (2019). "Virtual Reality: The Next Big Thing for Libraries to Consider". Information Technology and Libraries. 38 (4): 4–5. doi:10.6017/ital.v38i4.11847.
  142. ^ Bozorgi, Khosrow; Lischer-Katz, Zack (2020). "Using 3D/VR for Research and Cultural Heritage Preservation: Project Update on the Virtual Ganjali Khan Project". Preservation, Digital Technology & Culture. 49 (2): 45–57. doi:10.1515/pdtc-2020-0017. S2CID 221160772.
  143. ^ "Meeting You VR Documentary on MBC Global Media". MBC Global Media. 2 February 2022.
  144. ^ Nikolaou, Niki (25 September 2020). "The reconnection with a deceased loved one through virtual reality. Opinions and concerns against an unprecedented challenge". Bioethica. 6 (2): 52–64. doi:10.12681/bioeth.24851. S2CID 225264729.
  145. ^ Stein, Jan-Philipp (2021). "Conjuring up the departed in virtual reality: The good, the bad, and the potentially ugly". Psychology of Popular Media. 10 (4): 505–510. doi:10.1037/ppm0000315. S2CID 233628743.
  146. ^ Takle, Steve (28 February 2022). "HTC Vive partners with holoride; private 5G solution; location based entertainment". The Virtual Report. Retrieved 14 March 2022.
  147. ^ Hayden, Scott (18 June 2020). "Electronic Music Pioneer Jean-Michel Jarre to Host Concert in 'VRChat' This Weekend". Road to VR. Retrieved 6 October 2022.
  148. ^ FIERBERG, RUTHIE (20 July 2020). "Can This Game-Changing Innovation Get Live Theatre Back Before the Pandemic Ends?". PLAYBILL. Retrieved 6 October 2022.
  149. ^ Aswad, Jem (9 November 2021). "Justin Bieber to Stage Interactive Virtual Concert With Wave". Variety. Retrieved 6 October 2022.
  150. ^ "Stage And Screen: Virtual Creators Take The Next Step". The Metaculture. 1 October 2022. Retrieved 6 October 2022.
  151. ^ Moseley, Martin (20 July 2022). "Brendan Bradley's virtual reality musical Non-Player Character debuts on Top Soundtrack Chart with first single 'Reprogram Me' arriving at No. 25 on iTunes". Urbanista Magazine. Retrieved 6 October 2022.
  152. ^ Hamish Hector (14 February 2022). "Meta's Foo Fighters Super Bowl VR concert failed in the most basic ways". TechRadar. Retrieved 6 October 2022.
  153. ^ Havens, Lyndsey (6 July 2022). "Post Malone to Perform 'Twelve Carat Toothache' in a Virtual Reality Concert Hosted by Meta: Exclusive". Billboard. Retrieved 6 October 2022.
  154. ^ "Megan Thee Stallion To Hit the Virtual Road With "Enter Thee Hottieverse" VR Concert Tour". Hypebeast. 1 March 2022. Retrieved 6 October 2022.
  155. ^ Lawson, B. D. (2014). Motion sickness symptomatology and origins. Handbook of Virtual Environments: Design, Implementation, and Applications, 531-599.
  156. ^ "Oculus Rift Health and Safety Notice" (PDF). Archived from the original (PDF) on 6 July 2017. Retrieved 13 March 2017.
  157. ^ Araiza-Alba, Paola; Keane, Therese; Kaufman, Jordy (30 January 2022). "Are we ready for virtual reality in K–12 classrooms?". Technology, Pedagogy and Education. 31 (4): 471–491. doi:10.1080/1475939X.2022.2033307. ISSN 1475-939X. S2CID 246439125.
  158. ^ Fagan, Kaylee. "Here's what happens to your body when you've been in virtual reality for too long". Business Insider. Retrieved 5 September 2018.
  159. ^ Mukamal, Reena (28 February 2017). "Are Virtual Reality Headsets Safe for Eyes?". American Academy of Ophthalmology. Retrieved 11 September 2018.
  160. ^ Langley, Hugh (22 August 2017). "We need to look more carefully into the long-term effects of VR". Wareable.com. Retrieved 11 September 2018.
  161. ^ Kiryu, T; So, RH (25 September 2007). "Sensation of presence and cybersickness in applications of virtual reality for advanced rehabilitation". Journal of Neuroengineering and Rehabilitation. 4: 34. doi:10.1186/1743-0003-4-34. PMC 2117018. PMID 17894857.
  162. ^ Munafo, Justin; Diedrick, Meg; Stoffregen, Thomas A. (3 December 2016). "The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects". Experimental Brain Research. 235 (3): 889–901. doi:10.1007/s00221-016-4846-7. hdl:11299/224663. PMID 27915367. S2CID 13740398.
  163. ^ Park, George D.; Allen, R. Wade; Fiorentino, Dary; Rosenthal, Theodore J.; Cook, Marcia L. (5 November 2016). "Simulator Sickness Scores According to Symptom Susceptibility, Age, and Gender for an Older Driver Assessment Study". Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 50 (26): 2702–2706. doi:10.1177/154193120605002607. S2CID 111310621.
  164. ^ Hicks, Jamison S.; Durbin, David B. (June 2011). "ARL-TR-5573: A Summary of Simulator Sickness Ratings for U.S. Army Aviation Engineering Simulators" (PDF). US Army Research Laboratory. Archived (PDF) from the original on 27 July 2018.
  165. ^ Frischling, Bill (25 October 1995). "Sideline Play". The Washington Post. p. 11 – via ProQuest.
  166. ^ Caddy, Becca (19 October 2016). "Vomit Reality: Why VR makes some of us feel sick and how to make it stop". Wareable.com. Retrieved 11 September 2018.
  167. ^ Samit, Jay. "A Possible Cure for Virtual Reality Motion Sickness". Fortune.com. Retrieved 11 September 2018.
  168. ^ Lawson, Ben D.; Stanney, Kay M. (2021). "Editorial: Cybersickness in Virtual Reality and Augmented Reality". Frontiers in Virtual Reality. 2. doi:10.3389/frvir.2021.759682. ISSN 2673-4192.
  169. ^ Rodriguez, Sarah E. Needleman and Salvador (1 February 2022). "VR to the ER: Metaverse Early Adopters Prove Accident-Prone". The Wall Street Journal. ISSN 0099-9660. Retrieved 2 February 2022.
  170. ^ Elgueta, Adriana (31 January 2022). "Man breaks neck playing virtual reality game". news.com.au. Retrieved 2 February 2022.
  171. ^ a b Yamada-Rice, Dylan; Mushtaq, Faisal; Woodgate, Adam; Bosmans, D.; Douthwaite, A.; Douthwaite, I.; Harris, W.; Holt, R.; Kleeman, D. (12 September 2017). "Children and Virtual Reality: Emerging Possibilities and Challenges" (PDF). digilitey.eu. Archived from the original (PDF) on 17 May 2018. Retrieved 27 April 2020.
  172. ^ "Teens are split on the metaverse, most barely use VR headsets, survey shows". PC Gamer. 14 April 2022.
  173. ^ Bailey, Jakki O.; Bailenson, Jeremy N. (1 January 2017), Blumberg, Fran C.; Brooks, Patricia J. (eds.), "Chapter 9 – Immersive Virtual Reality and the Developing Child", Cognitive Development in Digital Contexts, Academic Press, pp. 181–200, doi:10.1016/B978-0-12-809481-5.00009-2, ISBN 978-0-12-809481-5, retrieved 27 April 2020
  174. ^ Funk, Jeanne B.; Buchman, Debra D. (1 June 1996). "Playing Violent Video and Computer Games and Adolescent Self-Concept". Journal of Communication. 46 (2): 19–32. doi:10.1111/j.1460-2466.1996.tb01472.x. ISSN 0021-9916.
  175. ^ Calvert, Sandra L.; Tan, Siu-Lan (January 1994). "Impact of virtual reality on young adults' physiological arousal and aggressive thoughts: Interaction versus observation". Journal of Applied Developmental Psychology. 15 (1): 125–139. doi:10.1016/0193-3973(94)90009-4. ISSN 0193-3973.
  176. ^ Goldfarb, Avi; Tucker, Catherine (1 May 2012). "Shifts in Privacy Concerns". American Economic Review. 102 (3): 349–353. doi:10.1257/aer.102.3.349. hdl:1721.1/75861. ISSN 0002-8282.
  177. ^ Hong, Weiyin; Thong, James Y. L. (1 January 2013). "Internet Privacy Concerns: An Integrated Conceptualization and Four Empirical Studies". MIS Quarterly. 37 (1): 275–298. doi:10.25300/misq/2013/37.1.12. ISSN 0276-7783.
  178. ^ Rogers, Sol (5 February 2019). "Seven Reasons Why Eye-tracking Will Fundamentally Change VR". Forbes. Retrieved 13 May 2020.
  179. ^ Stein, Scott (31 January 2020). "Eye tracking is the next phase for VR, ready or not". CNET. Retrieved 8 April 2021.
  180. ^ Kröger, Jacob Leon; Lutz, Otto Hans-Martin; Müller, Florian (2020). "What Does Your Gaze Reveal About You? On the Privacy Implications of Eye Tracking". Privacy and Identity Management. Data for Better Living: AI and Privacy. IFIP Advances in Information and Communication Technology. Vol. 576. pp. 226–241. doi:10.1007/978-3-030-42504-3_15. ISBN 978-3-030-42503-6. ISSN 1868-4238.
  181. ^ Li, Yuan (2011). "Empirical Studies on Online Information Privacy Concerns: Literature Review and an Integrative Framework". Communications of the Association for Information Systems. 28. doi:10.17705/1CAIS.02828.
  182. ^ Paine, Carina; Reips, Ulf-Dietrich; Stieger, Stefan; Joinson, Adam; Buchanan, Tom (1 June 2007). "Internet users' perceptions of 'privacy concerns' and 'privacy actions'". International Journal of Human-Computer Studies. 65 (6): 526–536. doi:10.1016/j.ijhcs.2006.12.001. ISSN 1071-5819. S2CID 15610107.
  183. ^ Kokolakis, Spyros (1 January 2017). "Privacy attitudes and privacy behaviour: A review of current research on the privacy paradox phenomenon". Computers & Security. 64: 122–134. doi:10.1016/j.cose.2015.07.002. ISSN 0167-4048. S2CID 422308.
  184. ^ Pennsylvania State University; Xu, Heng; Dinev, Tamara; Florida Atlantic University; Smith, Jeff; Miami University; Hart, Paul; Florida Atlantic University (December 2011). "Information Privacy Concerns: Linking Individual Perceptions with Institutional Privacy Assurances". Journal of the Association for Information Systems. 12 (12): 798–824. doi:10.17705/1jais.00281. S2CID 18474289.
  185. ^ Li, Yuan (2011). "Empirical Studies on Online Information Privacy Concerns: Literature Review and an Integrative Framework". Communications of the Association for Information Systems. 28. doi:10.17705/1CAIS.02828.
  186. ^ Baruh, Lemi; Secinti, Ekin; Cemalcilar, Zeynep (17 January 2017). "Online Privacy Concerns and Privacy Management: A Meta-Analytical Review". Journal of Communication. 67 (1): 26–53. doi:10.1111/jcom.12276. ISSN 0021-9916.
  187. ^ Sam Machkovech. "The Facebookening of Oculus VR becomes more pronounced starting in October". Ars Technica. Archived from the original on 18 August 2020. Retrieved 19 August 2020.
  188. ^ Robertson, Adi (15 October 2020). "Facebook is accidentally locking some users out of their new Oculus headsets". The Verge. Retrieved 18 October 2020.
  189. ^ Robertson, Adi (15 October 2020). "Facebook is accidentally locking some users out of their new Oculus headsets". The Verge. Retrieved 18 October 2020.
  190. ^ Hayden, Scott (2 September 2020). "Facebook Halts Sale of Rift & Quest in Germany Amid Regulatory Concerns". Road to VR. Retrieved 28 July 2021.
  191. ^ Machkovech, Sam (9 July 2022). "Meta removes Facebook account mandate from Quest VR—but is that enough?". Ars Technica. Retrieved 4 August 2022.
  192. ^ "VR headsets can be hacked with an Inception-style attack". MIT Technology Review. Retrieved 25 September 2024.

Further reading

External links