Se denomina geometría no euclidiana, o no euclídea, a cualquier sistema formal de geometría cuyos postulados y proposiciones difieren en algún asunto de los establecidos por Euclides en su tratado Elementos.
El quinto postulado de Euclides, el postulado de las paralelas, es equivalente al postulado de Playfair, que afirma que, dentro de un plano bidimensional, para cualquier recta l dada y un punto A, que no está en l, hay exactamente una recta que pasa por A que no interseca a l. En la geometría hiperbólica, por el contrario, hay infinitamente muchas líneas a través de A que no intersecan l, mientras que en la geometría elíptica, cualquier línea a través de A interseca l. Otra forma de describir las diferencias entre estas geometrías es considerar dos líneas rectas indefinidamente extendidas en un plano bidimensional que son ambas perpendiculares a una tercera línea (en el mismo plano): La geometría euclidiana, llamada así por el matemático griego Euclides, incluye algunas de las matemáticas más antiguas conocidas, y las geometrías que se desviaban de ella no fueron ampliamente aceptadas como legítimas hasta el siglo XIX.
Otros matemáticos han ideado formas más sencillas de esta propiedad.
Durante al menos mil años, los geómetras se inquietaron por la dispar complejidad del quinto postulado, y creyeron que podía demostrarse como un teorema a partir de los otros cuatro.
Estos primeros intentos de cuestionar el quinto postulado influyeron considerablemente en su desarrollo entre los geómetras europeos posteriores, como Witelo, Levi ben Gerson, Alfonso, John Wallis y Saccheri.
Otro ejemplo es el hijo de al-Tusi, Sadr al-Din (a veces conocido como "Pseudo-Tusi"), que escribió un libro sobre el tema en 1298, basado en los pensamientos posteriores de al-Tusi, en el que presentaba otra hipótesis equivalente al postulado paralelo.
"[5][6] Su obra se publicó en Roma en 1594 y fue estudiada por geómetras europeos, entre ellos Saccheri[5] quien criticó este trabajo así como el de Wallis.
En una obra titulada Euclides ab Omni Naevo Vindicatus (Euclides liberado de todos los defectos), publicada en 1733, Saccheri descartó rápidamente la geometría elíptica como posibilidad (algunos otros axiomas de Euclides deben modificarse para que la geometría elíptica funcione) y se dedicó a demostrar un gran número de resultados en geometría hiperbólica.
En 1766 Johann Lambert escribió, pero no publicó, Theorie der Parallellinien en la que intentó, como Saccheri, demostrar el quinto postulado.
Rápidamente eliminó la posibilidad de que el cuarto ángulo fuera obtuso, como habían hecho Saccheri y Khayyam, y procedió a demostrar muchos teoremas bajo la suposición de un ángulo agudo.
[9] El primer ejemplo de geometría no euclidiana fue la hiperbólica, teorizada inicialmente por Immanuel Kant,[cita requerida] formalizada posteriormente (a principios del siglo XIX) e independientemente por varios autores, tales como Carl Friedrich Gauss, Nikolái Lobachevski, János Bolyai, Eugenio Beltrami y Ferdinand Schweickard.
La geometría euclidiana había sido desarrollada por los griegos y expuesta por Euclides en la obra Los elementos.
En su primera obra publicada, Pensamientos sobre la verdadera estimación de las fuerzas vivas (Gedanken von der wahren Schätzung der lebendigen Kräfte und Beurteilung der Beweise derer sich Herr von Leibniz und anderer Mechaniker in dieser Streitsache bedient haben, de 1746), Immanuel Kant considera espacios de más de tres dimensiones y afirma: Esas posibles geometrías que Kant entrevé son las que hoy se llaman geometrías euclidianas de dimensión mayor que 3.
Por otra parte, ya desde la antigüedad se consideró que el quinto postulado del libro de Euclides no era tan evidente como los otros cuatro pues, al afirmar que ciertas rectas (las paralelas) no se cortarán al prolongarlas indefinidamente, habla de una construcción mental un tanto abstracta.
Por eso durante muchos siglos se intentó sin éxito demostrarlo a partir de los otros cuatro.
A principios del siglo XIX, se intentó demostrarlo por reducción al absurdo, suponiendo que es falso y tratando de obtener una contradicción.
Si bien la mínima distancia posible entre dos puntos viene dada por una línea geodésica, que además son líneas de curvatura mínima, el quinto postulado de Euclídes no es válido para la geometría elíptica, ya que dada una "recta" de esta geometría (es decir, una línea geodésica) y un punto no contenido en la misma no se puede trazar ninguna geodésica que no corte a la primera.
son proporcionales respectivamente al tensor métrico y a la curvatura:
Eso hace que la geometría no sea homogénea, y permite distinguir unos puntos de otros.
Esto es relevante en la teoría de la relatividad general, ya que en principio es posible hacer experimentos de medición de distancias y ángulos que permitan distinguir unos puntos del espacio de otros, tal como especifican numerosos experimentos mentales imaginados por Einstein y otros en los que un experimentador encerrado en una caja puede realizar experimentos para decidir la naturaleza del espacio-tiempo que le rodea.
En ella muestra cómo la geometría del espacio-tiempo tiene curvatura, que es precisamente lo que se observa como campo gravitatorio, y cómo, bajo la acción de la gravedad, los cuerpos siguen las líneas más rectas posibles dentro de dicha geometría, líneas que se denominan geodésicas.
Además, la ecuación de Einstein afirma que para cada observador, la curvatura media del espacio coincide, salvo un factor constante, con la densidad observada, dando cumplimiento así a la fantástica visión de Gauss: la geometría desentrañada por los griegos es la estructura infinitesimal del espacio; al generalizar dicha estructura geométrica, tiene curvatura.
Los modelos de geometría no euclidiana son modelos matemáticos de geometrías que son no euclidianas en el sentido de que no es el caso que exactamente una línea se pueda trazar paralela a una línea dada l a través de un punto que no está en l. En modelos geométricos hiperbólicos, en cambio, hay infinitas líneas a través de A paralelas a l, y en modelos geométricos elípticos, las líneas paralelas no existen.
El modelo más simple para la geometría elíptica es una esfera, donde las líneas son "círculos grandes" (como el ecuador o los meridianos en un globo), y se identifican los puntos opuestos entre sí (se consideran iguales).
El modelo más simple para la geometría elíptica es una esfera, donde las líneas son "círculos grandes" (como el ecuador o los meridianos en un globo), y se identifican los puntos opuestos entre sí (llamados puntos antipodales, considerados iguales).
Incluso después del trabajo de Lobachevsky, Gauss y Bolyai, la pregunta seguía en pie: "¿Existe tal modelo para la geometría hiperbólica?".
En el modelo hiperbólico, dentro de un plano bidimensional, para cualquier línea dada l y un punto A que no está en l, existen infinitas líneas a través de A que no se intersecan con l. En estos modelos, los conceptos de las geometrías no euclidianas se representan mediante objetos euclidianos en un entorno euclidiano.
"Pero en un manuscrito probablemente escrito por su hijo Sadr al-Din en 1298, basado en los pensamientos posteriores de Nasir al-Din sobre el tema, hay un nuevo argumento basado en otra hipótesis, también equivalente a la de Euclides, [...] La importancia de este último trabajo es que se publicó en Roma en 1594 y fue estudiado por los geómetras europeos.