En la geometría de Riemann, una variedad de Riemann es una variedad diferenciable real en la que cada espacio tangente se equipa con un producto interno de manera que varíe suavemente punto a punto.Esto permite que se definan varias nociones métricas como longitud de curvas, ángulos, áreas (o volúmenes), curvatura, gradiente de funciones y divergencia de campos vectoriales.Una variedad de Riemann es una generalización del concepto métrico, diferencial y topológico del espacio euclidiano a objetos geométricos que localmente tienen la misma estructura que el espacio euclidiano pero globalmente pueden representar forma "curva".Esto se realiza definiendo en cada punto un objeto matemático llamado tensor métrico que permite especificar un procedimiento para medir distancias, y por tanto definir cualquier otro concepto métrico basado en distancias y sus variaciones.Donde: En particular, la métrica g permite definir en cada espacio tangente una norma ||.|| medianteUna forma sencilla de construir variedades riemannianas es buscar subconjuntos "suaves" del espacio euclidiano., para algún D. En particular se puede definir una variedad de Riemann como un espacio métrico que es isométrico a una subvariedad diferenciable de RD con la métrica intrínseca inducida.Esta definición puede no ser teóricamente suficientemente flexible, pero es muy útil al construir las primeras intuiciones geométricas en la geometría de Riemann., dimensión m, vendrá definida localmente por un conjunto de aplicaciones diferenciables del tipo:harían el papel de coordenadas locales sobre la subvariedad.Una variedad de Riemann se define generalmente como variedad diferenciable con una sección diferenciable de formas cuadráticas positivo-definidas en el fibrado tangente.Entonces se tiene trabajo en demostrar que puede ser convertido en un espacio métrico: Si γ: [a, b] → M es una curva continuamente diferenciable en la variedad de Riemann M, entonces se define su longitud L(γ) como(nótese que el γ'(t) es un elemento del espacio tangente a M en el punto γ(t); ||.||denota la norma resultante del producto interno dado en ese espacio tangente.)Con esta definición de longitud, cada variedad de Riemann conexa M se convierte en un espacio métrico (e incluso un espacio métrico con longitud) de un modo natural: la distancia d(x, y) entre los puntos x y y en M se define como Aunque las variedades de Riemann son generalmente "curvas", no obstante, podemos encontrar que dados dos puntos diferentes y suficientemente cercanos existe una curva de longitud mínima (aunque esta no tiene por qué ser única).Estas líneas de mínima longitud se llaman líneas geodésicas y son una generalización del concepto "línea recta" o "línea de mínima longitud".Estas son las curvas que localmente conectan sus puntos a lo largo de las trayectorias más cortas.contenida en una variedad riemanniana M, definimos la longitud de dicha curva L(γ) mediante el vector tangente a la misma y las componentes gij del tensor métrico g del siguiente modo:Donde xi(t) es la expresión paramétrica de los puntos de la curva parametrizada mediante el parámetro t. Usando los símbolos de Christoffel asociadas a la conexión sin torsión, la curva geodésica de mínima longitud que pasan por un punto x0 y tiene el vector tangente v satisface la siguiente ecuación:Puede probarse que la ecuación anterior puede obtenerse por métodos variacionales, concretamente podemos de las ecuaciones de Euler-Lagrange para un lagrangiano construido a partir de la forma cuadrática asociada al tensor métrico.El producto interno en Rn (el producto escalar euclidiano familiar) permite que se defina longitudes de vectores y ángulos entre vectores.Por ejemplo, si a y b son vectores en Rn, entonces a² es la longitud al cuadrado del vector, y a * b determina el coseno del ángulo entre ellos (a * b = ||a|| ||b|| cos θ).El producto interno es un concepto del álgebra lineal que se puede definir para cualquier espacio vectorial.Desde el fibrado tangente de una variedad diferenciable (o de hecho, cualquier fibrado vectorial sobre una variedad) es, considerado punto a punto, un espacio vectorial, puede llevar también un producto interno.Si el producto interno en el espacio tangente de una variedad se define suavemente, entonces los conceptos que eran solamente punto a punto definido en cada espacio tangente se pueden integrar, para rendir nociones análogas en regiones finitas de la variedad.En este contexto, el espacio tangente se puede pensar como traslación infinitesimal en la variedad.Así, el producto interno en el espacio tangente da la longitud de una traslación infinitesimal.En una variedad riemanniana las geodésicas alrededor de un punto exhiben comportamientos atípicos respecto a la geometría euclidiana.Por ejemplo en un espacio euclidiano pueden darse líneas rectas paralelas cuya distancia se mantiene constante, sin embargo, en una variedad riemanniana los haces de geodésicas tienden a divergir (curvatura negativa) o a converger (curvatura positiva), según sea la curvatura seccional de dicha variedad.Una relación interesante que aclara el significado del tensor de curvatura es que si se consideran coordenadas normalesPuede verse que si el tensor de Riemann se anula idénticamente entonces localmente la métrica se aproxima a la métrica euclidiana y la geometría localmente es euclidiana.