stringtranslate.com

Robot

ASIMO (2000) en la Expo 2005
Los robots de soldadura articulados utilizados en una fábrica son un tipo de robot industrial .
El robot militar cuadrúpedo Cheetah , una evolución de BigDog (en la foto), fue catalogado como el robot con patas más rápido del mundo en 2012, superando el récord establecido por un robot bípedo del MIT en 1989. [1]

Un robot es una máquina —especialmente una programable por computadora— capaz de llevar a cabo una serie compleja de acciones de manera automática. [2] Un robot puede ser guiado por un dispositivo de control externo, o el control puede estar integrado en él. Los robots pueden construirse para evocar la forma humana , pero la mayoría de los robots son máquinas que realizan tareas, diseñadas con énfasis en la funcionalidad estricta, en lugar de la estética expresiva.

Los robots pueden ser autónomos o semiautónomos y van desde humanoides como el Advanced Step in Innovative Mobility ( ASIMO ) de Honda y el TOSY Ping Pong Playing Robot ( TOPIO ) de TOSY hasta robots industriales , robots quirúrgicos médicos , robots de asistencia a pacientes, robots de terapia canina, robots de enjambre programados colectivamente , drones UAV como el General Atomics MQ-1 Predator e incluso nano robots microscópicos . Al imitar una apariencia realista o automatizar movimientos, un robot puede transmitir una sensación de inteligencia o pensamiento propio. Se espera que las cosas autónomas proliferen en el futuro, con la robótica doméstica y el automóvil autónomo como algunos de los principales impulsores. [3]

La rama de la tecnología que se ocupa del diseño, construcción, operación y aplicación de robots, [4] así como de los sistemas informáticos para su control, retroalimentación sensorial y procesamiento de información es la robótica . Estas tecnologías se ocupan de máquinas automatizadas que pueden ocupar el lugar de los humanos en entornos peligrosos o procesos de fabricación , o parecerse a los humanos en apariencia, comportamiento o cognición. Muchos de los robots actuales están inspirados en la naturaleza, lo que contribuye al campo de la robótica de inspiración biológica . Estos robots también han creado una rama más nueva de la robótica: la robótica blanda .

Desde la época de la civilización antigua , ha habido muchos relatos de dispositivos automatizados configurables por el usuario e incluso de autómatas que se asemejan a humanos y otros animales, como los animatrónicos , diseñados principalmente como entretenimiento. A medida que las técnicas mecánicas se desarrollaron durante la era industrial , aparecieron aplicaciones más prácticas, como máquinas automatizadas, control remoto y control remoto inalámbrico .

El término proviene de una raíz eslava, robot- , con significados asociados con el trabajo. La palabra "robot" se utilizó por primera vez para designar a un humanoide ficticio en una obra de teatro en checo de 1920 RUR ( Rossumovi Univerzální Roboti - Los robots universales de Rossum ) de Karel Čapek , aunque fue el hermano de Karel, Josef Čapek , quien fue el verdadero inventor de la palabra. [5] [6] [7] La ​​electrónica se convirtió en la fuerza impulsora del desarrollo con el advenimiento de los primeros robots electrónicos autónomos creados por William Grey Walter en Bristol, Inglaterra en 1948, así como las máquinas herramienta de control numérico por computadora (CNC) a fines de la década de 1940 por John T. Parsons y Frank L. Stulen .

El primer robot comercial, digital y programable fue construido por George Devol en 1954 y recibió el nombre de Unimate . Fue vendido a General Motors en 1961, donde se utilizó para levantar piezas de metal caliente de las máquinas de fundición a presión en la planta Inland Fisher Guide en la sección West Trenton de Ewing Township, Nueva Jersey . [8]

Los robots han reemplazado a los humanos [9] en la realización de tareas repetitivas y peligrosas que los humanos prefieren no hacer, o no pueden hacer debido a limitaciones de tamaño, o que tienen lugar en entornos extremos como el espacio exterior o el fondo del mar. Existe preocupación por el creciente uso de robots y su papel en la sociedad. Se culpa a los robots del aumento del desempleo tecnológico , ya que reemplazan a los trabajadores en un número cada vez mayor de funciones. [10] El uso de robots en el combate militar plantea preocupaciones éticas. Las posibilidades de autonomía de los robots y las posibles repercusiones se han abordado en la ficción y pueden ser una preocupación realista en el futuro.

Resumen

Antropomorfismo en robots:

La palabra robot puede referirse tanto a robots físicos como a agentes de software virtuales , pero a estos últimos generalmente se los denomina bots . [11] No hay consenso sobre qué máquinas califican como robots, pero hay un acuerdo general entre los expertos y el público en que los robots tienden a poseer algunas o todas las siguientes habilidades y funciones: aceptar programación electrónica, procesar datos o percepciones físicas electrónicamente, operar de manera autónoma hasta cierto punto, moverse, operar partes físicas de sí mismo o procesos físicos, sentir y manipular su entorno y exhibir un comportamiento inteligente, especialmente un comportamiento que imita a los humanos u otros animales. [12] [13] Relacionado con el concepto de robot está el campo de la biología sintética , que estudia entidades cuya naturaleza es más comparable a los seres vivos que a las máquinas.

Historia

La idea de los autómatas se origina en las mitologías de muchas culturas alrededor del mundo. Ingenieros e inventores de civilizaciones antiguas, incluyendo la Antigua China , [14] la Antigua Grecia y el Egipto ptolemaico , [15] intentaron construir máquinas que funcionaran solas, algunas de ellas parecidas a animales y humanos. Las primeras descripciones de autómatas incluyen las palomas artificiales de Arquitas , [16] los pájaros artificiales de Mozi y Lu Ban , [17] un autómata "parlante" de Herón de Alejandría , un autómata de lavabo de Filón de Bizancio y un autómata humano descrito en el Lie Zi . [14]

Primeros comienzos

Muchas mitologías antiguas y la mayoría de las religiones modernas incluyen personas artificiales, como los sirvientes mecánicos construidos por el dios griego Hefesto [18] ( Vulcano para los romanos), los gólems de arcilla de la leyenda judía y los gigantes de arcilla de la leyenda nórdica, y Galatea , la estatua mítica de Pigmalión que cobró vida. Desde aproximadamente el año 400 a. C., los mitos de Creta incluyen a Talos , un hombre de bronce que protegía la isla de los piratas.

En la antigua Grecia, el ingeniero griego Ctesibio (c. 270 a. C.) "aplicó conocimientos de neumática e hidráulica para producir los primeros relojes de órgano y de agua con figuras en movimiento". [19] : 2  [20] En el siglo IV a. C., el matemático griego Arquitas de Tarento postuló un pájaro mecánico operado por vapor al que llamó "La Paloma". Herón de Alejandría (10-70 d. C.) , un matemático e inventor griego, creó numerosos dispositivos automatizados configurables por el usuario y describió máquinas impulsadas por presión de aire, vapor y agua. [21]

Al-Jazari – un juguete musical

El Lokapannatti del siglo XI cuenta cómo las reliquias de Buda fueron protegidas por robots mecánicos (bhuta vahana yanta), desde el reino de Roma visaya (Roma); hasta que fueron desarmados por el rey Ashoka . [22]

En la antigua China, el texto del siglo III del Lie Zi describe un relato de autómatas humanoides, que involucra un encuentro mucho más temprano entre el emperador chino, el rey Mu de Zhou , y un ingeniero mecánico conocido como Yan Shi, un "artificial". Yan Shi presentó orgullosamente al rey una figura de tamaño natural, con forma humana, de su "obra" mecánica hecha de cuero, madera y órganos artificiales. [14] También hay relatos de autómatas voladores en el Han Fei Zi y otros textos, que atribuyen al filósofo mohista del siglo V a. C. Mozi y a su contemporáneo Lu Ban la invención de pájaros artificiales de madera ( ma yuan ) que podían volar con éxito. [17]

La torre del reloj astronómico de Su Song muestra las figuras mecánicas que marcaban las horas

En 1066, el inventor chino Su Song construyó un reloj de agua en forma de torre que presentaba figuras mecánicas que marcaban las horas. [23] [24] [25] Su mecanismo tenía una caja de ritmos programable con clavijas ( levas ) que chocaban con pequeñas palancas que operaban instrumentos de percusión. Se podía hacer que el baterista tocara diferentes ritmos y diferentes patrones de percusión moviendo las clavijas a diferentes lugares. [25]

Samarangana Sutradhara , un tratado sánscrito de Bhoja (siglo XI), incluye un capítulo sobre la construcción de artefactos mecánicos ( autómatas ), incluyendo abejas y pájaros mecánicos, fuentes con forma de humanos y animales, y muñecos masculinos y femeninos que rellenaban lámparas de aceite, bailaban, tocaban instrumentos y recreaban escenas de la mitología hindú. [26] [27] [28]

El científico musulmán del siglo XIII Ismail al-Jazari creó varios dispositivos automatizados. Construyó pavos reales móviles automatizados impulsados ​​por energía hidráulica. [29] También inventó las primeras puertas automáticas conocidas, que eran impulsadas por energía hidráulica, [30] creó puertas automáticas como parte de uno de sus elaborados relojes de agua . [31] Uno de los autómatas humanoides de al-Jazari era una camarera que podía servir agua, té o bebidas. La bebida se almacenaba en un tanque con un depósito desde donde la bebida goteaba en un balde y, después de siete minutos, en una taza, después de lo cual la camarera aparece por una puerta automática sirviendo la bebida. [32] Al-Jazari inventó un autómata para lavarse las manos que incorpora un mecanismo de descarga que ahora se usa en los inodoros modernos . Presenta a un autómata humanoide femenino de pie junto a un recipiente lleno de agua. Cuando el usuario tira de la palanca, el agua se drena y el autómata femenino vuelve a llenar el recipiente. [19]

Mark E. Rosheim resume los avances en robótica realizados por los ingenieros musulmanes, especialmente al-Jazari, de la siguiente manera:

A diferencia de los diseños griegos, estos ejemplos árabes revelan un interés, no sólo por la ilusión dramática, sino por manipular el entorno para el confort humano. Así, la mayor contribución de los árabes, además de preservar, difundir y desarrollar el trabajo de los griegos, fue el concepto de aplicación práctica. Este era el elemento clave que faltaba en la ciencia robótica griega. [19] : 9 

Modelo del robot de Leonardo con su funcionamiento interno. Posiblemente construido por Leonardo da Vinci alrededor de 1495. [33]

En el siglo XIV, la coronación de Ricardo II de Inglaterra contó con un ángel autómata. [34]

En la Italia del Renacimiento , Leonardo da Vinci (1452-1519) esbozó planos para un robot humanoide alrededor de 1495. Los cuadernos de notas de Da Vinci, redescubiertos en la década de 1950, contenían dibujos detallados de un caballero mecánico ahora conocido como el robot de Leonardo , capaz de sentarse, mover los brazos y la cabeza y la mandíbula. [35] El diseño probablemente se basó en la investigación anatómica registrada en su Hombre de Vitruvio . No se sabe si intentó construirlo. Según la Enciclopedia Británica , Leonardo da Vinci puede haber sido influenciado por los autómatas clásicos de al-Jazari. [29]

En Japón, se construyeron complejos autómatas animales y humanos entre los siglos XVII y XIX, muchos de los cuales se describen en el Karakuri zui del siglo XVIII ( Maquinaria ilustrada , 1796). Uno de estos autómatas era el karakuri ningyō , una marioneta mecanizada . [36] Existían diferentes variaciones del karakuri: el Butai karakuri , que se utilizaba en el teatro, el Zashiki karakuri , que era pequeño y se utilizaba en los hogares, y el Dashi karakuri, que se utilizaba en festivales religiosos, donde las marionetas se utilizaban para realizar recreaciones de mitos y leyendas tradicionales .

En Francia, entre 1738 y 1739, Jacques de Vaucanson exhibió varios autómatas de tamaño natural: un flautista, un gaitero y un pato. El pato mecánico podía batir sus alas, estirar el cuello y tragar comida de la mano del expositor, y daba la ilusión de digerir su comida excretando materia almacenada en un compartimento oculto. [37] Unos 30 años después, en Suiza, el relojero Pierre Jaquet-Droz fabricó varias figuras mecánicas complejas que podían escribir y tocar música. Varios de estos dispositivos todavía existen y funcionan. [38]

Sistemas de control remoto

El torpedo Brennan , uno de los primeros «misiles guiados»

Los vehículos operados a distancia se demostraron a fines del siglo XIX en forma de varios tipos de torpedos controlados a distancia . A principios de la década de 1870, John Ericsson ( neumático ), John Louis Lay (guiado por cable eléctrico) y Victor von Scheliha (guiado por cable eléctrico) introdujeron torpedos controlados a distancia. [ 39 ]

El torpedo Brennan , inventado por Louis Brennan en 1877, estaba propulsado por dos hélices contrarrotativas que giraban tirando rápidamente de cables de tambores enrollados dentro del torpedo . La velocidad diferencial en los cables conectados a la estación costera permitió guiar al torpedo hasta su objetivo, lo que lo convirtió en "el primer misil guiado práctico del mundo ". [40] En 1897, el inventor británico Ernest Wilson recibió una patente para un torpedo controlado remotamente por ondas "hertzianas" (de radio) [41] [42] y en 1898 Nikola Tesla demostró públicamente un torpedo controlado de forma inalámbrica que esperaba vender a la Marina de los EE . UU . [43] [44]

En 1903, el ingeniero español Leonardo Torres Quevedo demostró un sistema de control por radio llamado Telekino en la Academia de Ciencias de París , [45] que quería utilizar para controlar un dirigible de su propio diseño. Obtuvo varias patentes para el sistema en otros países. [46] [47] A diferencia de las técnicas anteriores de "encendido/apagado", Torres estableció un método para controlar cualquier dispositivo mecánico o eléctrico con diferentes estados de operación. [48] El Telekino controló a distancia un triciclo en 1904, considerado el primer caso de un vehículo terrestre no tripulado , y un barco eléctrico con tripulación en 1906, que se controlaba a una distancia de más de 2 km. [49]

Archibald Low , conocido como el "padre de los sistemas de guía por radio" por su trabajo pionero en cohetes y aviones guiados durante la Primera Guerra Mundial . En 1917, hizo una demostración de un avión teledirigido al Royal Flying Corps y ese mismo año construyó el primer cohete guiado por cable.

Los primeros robots

WH Richards con "George", 1932

En 1928, uno de los primeros robots humanoides, Eric , fue exhibido en la exposición anual de la Model Engineers Society en Londres, donde pronunció un discurso. Inventado por WH Richards, el armazón del robot consistía en un cuerpo de armadura de aluminio con once electroimanes y un motor alimentado por una fuente de energía de doce voltios. El robot podía mover sus manos y cabeza y podía ser controlado a través de control remoto o control de voz. [50] Tanto Eric como su "hermano" George viajaron por el mundo. [51]

Westinghouse Electric Corporation construyó Televox en 1926; era un recorte de cartón conectado a varios dispositivos que los usuarios podían encender y apagar. En 1939, el robot humanoide conocido como Elektro debutó en la Feria Mundial de Nueva York de 1939. [ 52] [53] Con siete pies de alto (2,1 m) y un peso de 265 libras (120,2 kg), podía caminar mediante comandos de voz, hablar unas 700 palabras (usando un tocadiscos de 78 rpm ), fumar cigarrillos, inflar globos y mover la cabeza y los brazos. El cuerpo consistía en un engranaje de acero, una leva y un esqueleto de motor cubierto por una piel de aluminio. En 1928, el primer robot de Japón, Gakutensoku , fue diseñado y construido por el biólogo Makoto Nishimura.

La bomba volante alemana V-1 estaba equipada con sistemas de guía automática y control de alcance, volaba siguiendo un curso predeterminado (que podía incluir un giro de 90 grados) y entraba en picado terminal después de una distancia predeterminada. En las descripciones contemporáneas se decía que era un "robot" [54]

Robots autónomos modernos

Los primeros robots electrónicos autónomos con comportamiento complejo fueron creados por William Grey Walter, del Burden Neurological Institute de Bristol (Inglaterra), en 1948 y 1949. Quería demostrar que las conexiones ricas entre un pequeño número de células cerebrales podían dar lugar a comportamientos muy complejos ; en esencia, que el secreto de cómo funcionaba el cerebro residía en cómo estaba conectado. Sus primeros robots, llamados Elmer y Elsie , se construyeron entre 1948 y 1949 y a menudo se los describía como tortugas debido a su forma y su lento ritmo de movimiento. Los robots tortuga de tres ruedas eran capaces de realizar fototaxis , por la que podían encontrar el camino a una estación de recarga cuando se quedaban sin batería.

Walter destacó la importancia de utilizar electrónica puramente analógica para simular procesos cerebrales en una época en la que sus contemporáneos, como Alan Turing y John von Neumann, estaban adoptando una visión de los procesos mentales en términos de computación digital . Su trabajo inspiró a generaciones posteriores de investigadores en robótica, como Rodney Brooks , Hans Moravec y Mark Tilden . Se pueden encontrar encarnaciones modernas de las tortugas de Walter en la forma de la robótica BEAM . [55]

El primer robot programable y operado digitalmente fue inventado por George Devol en 1954 y finalmente se denominó Unimate . Esto sentó las bases de la industria robótica moderna. [56] Devol vendió el primer Unimate a General Motors en 1960, y se instaló en 1961 en una planta en Trenton, Nueva Jersey, para levantar piezas de metal calientes de una máquina de fundición a presión y apilarlas. [57]

El primer robot paletizador fue introducido en 1963 por la empresa Fuji Yusoki Kogyo. [58] En 1973, un robot con seis ejes accionados electromecánicamente fue patentado [59] [60] [61] por KUKA Robotics en Alemania, y el brazo de manipulación universal programable fue inventado por Victor Scheinman en 1976, y el diseño fue vendido a Unimation .

Los robots comerciales e industriales se utilizan ampliamente en la actualidad y realizan trabajos de forma más económica o con mayor precisión y fiabilidad que los humanos. También se emplean en trabajos que son demasiado sucios, peligrosos o aburridos para que sean adecuados para los humanos. Los robots se utilizan ampliamente en la fabricación, el montaje y el embalaje, el transporte, la exploración de la Tierra y el espacio, la cirugía, el armamento, la investigación de laboratorio y la producción en masa de bienes de consumo e industriales. [62]

Desarrollo futuro y tendencias

Han surgido diversas técnicas para desarrollar la ciencia de la robótica y los robots. Un método es la robótica evolutiva , en la que se someten a pruebas varios robots diferentes. Los que funcionan mejor se utilizan como modelo para crear una "generación" posterior de robots. Otro método es la robótica de desarrollo , que rastrea los cambios y el desarrollo dentro de un solo robot en las áreas de resolución de problemas y otras funciones. Recientemente se presentó otro nuevo tipo de robot que actúa como teléfono inteligente y robot y se llama RoboHon. [63]

A medida que los robots se vuelven más avanzados, eventualmente puede haber un sistema operativo de computadora estándar diseñado principalmente para robots. Robot Operating System (ROS) es un conjunto de programas de software de código abierto que se están desarrollando en la Universidad de Stanford , el Instituto Tecnológico de Massachusetts y la Universidad Técnica de Múnich , Alemania, entre otros. ROS proporciona formas de programar la navegación y las extremidades de un robot independientemente del hardware específico involucrado. También proporciona comandos de alto nivel para elementos como el reconocimiento de imágenes e incluso la apertura de puertas. Cuando ROS se inicia en la computadora de un robot, obtendría datos sobre atributos como la longitud y el movimiento de las extremidades de los robots. Transmitiría estos datos a algoritmos de nivel superior. Microsoft también está desarrollando un sistema "Windows para robots" con su Robotics Developer Studio, que está disponible desde 2007. [64]

Japón espera comercializar robots de servicio a gran escala en 2025. Gran parte de la investigación tecnológica en Japón está a cargo de agencias gubernamentales japonesas, en particular el Ministerio de Comercio. [65]

Muchas aplicaciones futuras de la robótica parecen obvias para las personas, aunque están mucho más allá de las capacidades de los robots disponibles en el momento de la predicción. [66] [67] Ya en 1982 la gente confiaba en que algún día los robots: [68] 1. Limpiarían piezas eliminando rebabas de moldeo 2. Pintarían automóviles con aerosol sin absolutamente ninguna presencia humana 3. Empacarían cosas en cajas: por ejemplo, orientarían y anidarían caramelos de chocolate en cajas de caramelos 4. Fabricarían arneses de cables eléctricos 5. Cargarían camiones con cajas: un problema de embalaje 6. Manejarían bienes blandos, como prendas de vestir y zapatos 7. Esquilarían ovejas 8. Serían utilizados como prótesis 9. Cocinarían comida rápida y trabajarían en otras industrias de servicios 10. Trabajarían como robots domésticos.

Generalmente, tales predicciones son demasiado optimistas en términos de escala temporal.

Nuevas funcionalidades y prototipos

En 2008, Caterpillar Inc. desarrolló un camión volquete que puede conducirse por sí solo sin ningún operador humano. [69] Muchos analistas creen que los camiones autónomos pueden eventualmente revolucionar la logística. [70] Para 2014, Caterpillar tenía un camión volquete autónomo que se espera que cambie en gran medida el proceso de minería. En 2015, estos camiones Caterpillar fueron utilizados activamente en operaciones mineras en Australia por la empresa minera Rio Tinto Coal Australia . [71] [72] [73] [74] Algunos analistas creen que dentro de las próximas décadas, la mayoría de los camiones serán autónomos. [75]

Un robot alfabetizado o "lector" llamado Marge tiene una inteligencia que proviene de un software. Puede leer periódicos, encontrar y corregir palabras mal escritas, aprender sobre bancos como Barclays y entender que algunos restaurantes son mejores lugares para comer que otros. [76]

Baxter es un nuevo robot introducido en 2012 que aprende por medio de una guía. Un trabajador podría enseñarle a Baxter cómo realizar una tarea moviendo sus manos en el movimiento deseado y haciendo que Baxter los memorice. Hay diales, botones y controles adicionales disponibles en el brazo de Baxter para mayor precisión y funciones. Cualquier trabajador normal podría programar a Baxter y solo lleva unos minutos, a diferencia de los robots industriales habituales que requieren programas y codificación extensos para su uso. Esto significa que Baxter no necesita programación para operar. No se necesitan ingenieros de software. Esto también significa que se le puede enseñar a Baxter a realizar múltiples tareas más complicadas. Sawyer se agregó en 2015 para tareas más pequeñas y precisas. [77]

Se han desarrollado prototipos de robots de cocina que podrían programarse para la preparación autónoma, dinámica y ajustable de comidas discretas. [78] [79]

Etimología

Una escena de la obra de teatro RUR (Rossum's Universal Robots) de Karel Čapek de 1920 , que muestra tres robots.

La palabra robot fue introducida al público por el escritor checo de entreguerras Karel Čapek en su obra RUR (Robots universales de Rossum) , publicada en 1920. [6] La obra comienza en una fábrica que utiliza un sustituto químico del protoplasma para fabricar personas vivas y simplificadas llamadas robots. La obra no se centra en detalle en la tecnología detrás de la creación de estas criaturas vivientes, pero en su apariencia prefiguran las ideas modernas de los androides , criaturas que pueden confundirse con humanos. Estos trabajadores producidos en masa son representados como eficientes pero sin emociones, incapaces de pensamiento original e indiferentes a la autoconservación. La cuestión es si los robots están siendo explotados y las consecuencias de la dependencia humana del trabajo mercantilizado (especialmente después de que una serie de robots especialmente formulados logran autoconciencia e incitan a los robots de todo el mundo a levantarse contra los humanos).

Karel Čapek no acuñó la palabra, sino que escribió una breve carta en la que hacía referencia a una etimología del Oxford English Dictionary en la que mencionaba a su hermano, el pintor y escritor Josef Čapek , como su verdadero creador. [6]

En un artículo en la revista checa Lidové noviny en 1933, explicó que originalmente había querido llamar a las criaturas laboři ( ' trabajadores ' , del latín labor ). Sin embargo, no le gustaba la palabra y pidió consejo a su hermano Josef, quien le sugirió roboti . La palabra robota significa literalmente ' corvée , trabajo de siervo ' , y figurativamente ' trabajo pesado, duro ' en checo y también (de manera más general) ' trabajo, labor ' en muchas lenguas eslavas (por ejemplo: búlgaro , ruso , serbio , eslovaco , polaco , macedonio , ucraniano , checo arcaico, así como robot en húngaro ). Tradicionalmente, la robota ( robot húngaro ) era el período de trabajo que un siervo (corvée) tenía que dar para su señor, típicamente seis meses al año. El origen de la palabra es el antiguo eslavo eclesiástico rabota ' servidumbre ' ( ' trabajo ' en búlgaro, macedonio y ruso contemporáneos), que a su vez proviene de la raíz protoindoeuropea * orbh- . Robot es cognado del alemán Arbeit ' trabajo ' . [80] [81]

La pronunciación inglesa de la palabra ha evolucionado relativamente rápido desde su introducción. En los EE. UU., a fines de la década de 1930 y principios de la de 1940, se pronunciaba / ˈ r b t / . [82] [ se necesita una mejor fuente ] A fines de la década de 1950 y principios de la de 1960, algunos la pronunciaban / ˈ r b ə t / , mientras que otros usaban / ˈ r b ɒ t / [83] En la década de 1970, su pronunciación actual / ˈ r b ɒ t / se había vuelto predominante.

La palabra robótica , utilizada para describir este campo de estudio, [4] fue acuñada por el escritor de ciencia ficción Isaac Asimov . Asimov creó las Tres Leyes de la Robótica , que son un tema recurrente en sus libros. Desde entonces, muchas otras personas las han utilizado para definir las leyes que se utilizan en la ficción. (Las tres leyes son pura ficción, y ninguna tecnología creada hasta ahora tiene la capacidad de comprenderlas o seguirlas, y de hecho la mayoría de los robots sirven para fines militares, que son bastante contrarios a la primera ley y, a menudo, a la tercera ley. "La gente piensa en las leyes de Asimov, pero se establecieron para señalar cómo un sistema ético simple no funciona. Si lees los cuentos, cada uno de ellos trata sobre un fracaso, y son totalmente imprácticos", dijo la Dra. Joanna Bryson de la Universidad de Bath. [84] )

Robots modernos

Una máquina de cirugía robótica laparoscópica

Robot móvil

Los robots móviles [85] tienen la capacidad de moverse por su entorno y no están fijados a una ubicación física. Un ejemplo de robot móvil que se utiliza habitualmente en la actualidad es el vehículo guiado automatizado o vehículo guiado automático (AGV). Un AGV es un robot móvil que sigue marcadores o cables en el suelo, o utiliza visión o láseres. [86] Los AGV se analizan más adelante en este artículo.

Los robots móviles también se encuentran en entornos industriales, militares y de seguridad. [87] También aparecen como productos de consumo, para entretenimiento o para realizar ciertas tareas como la limpieza con aspiradora. Los robots móviles son el foco de una gran cantidad de investigaciones actuales y casi todas las universidades importantes tienen uno o más laboratorios que se centran en la investigación de robots móviles. [88]

Los robots móviles suelen emplearse en entornos muy controlados, como las cadenas de montaje , porque tienen dificultades para reaccionar ante interferencias inesperadas. Por este motivo, la mayoría de los seres humanos rara vez se topan con robots. Sin embargo, los robots domésticos para limpieza y mantenimiento son cada vez más comunes en los hogares y sus alrededores en los países desarrollados. También se pueden encontrar robots en aplicaciones militares . [89]

Robots industriales (manipuladores)

Un robot de recogida y colocación en una fábrica

Los robots industriales suelen estar compuestos por un brazo articulado (manipulador multienlace) y un efector final que está unido a una superficie fija. Uno de los tipos más comunes de efector final es un conjunto de pinzas .

La Organización Internacional de Normalización da una definición de robot industrial manipulador en la norma ISO 8373 :

"un manipulador reprogramable, multipropósito, controlado automáticamente, programable en tres o más ejes, que puede ser fijo o móvil para su uso en aplicaciones de automatización industrial". [90]

Esta definición es utilizada por la Federación Internacional de Robótica , la Red Europea de Investigación en Robótica (EURON) y muchos comités de normas nacionales. [91]

Los robots industriales en las plantas de procesamiento de alimentos y bebidas se utilizan para tareas como la alimentación de máquinas, el envasado y la paletización, que han sustituido a muchas tareas físicas manuales. La complejidad de las habilidades digitales que requieren los trabajadores varía según el nivel de automatización y las tareas específicas involucradas. [92]

Robot de servicio

Los robots industriales más comunes son brazos robóticos fijos y manipuladores que se utilizan principalmente para la producción y distribución de bienes. El término "robot de servicio" no está tan bien definido. La Federación Internacional de Robótica ha propuesto una definición tentativa: "Un robot de servicio es un robot que opera de manera semiautónoma o totalmente autónoma para realizar servicios útiles para el bienestar de los seres humanos y los equipos, excluidas las operaciones de fabricación". [93]

Robots educativos (interactivos)

Los robots se utilizan como asistentes educativos para los profesores. A partir de los años 1980, robots como las tortugas se utilizaron en las escuelas y se programaron utilizando el lenguaje Logo . [94] [95]

Existen kits de robots como Lego Mindstorms , BIOLOID , OLLO de ROBOTIS o BotBrain Educational Robots que pueden ayudar a los niños a aprender sobre matemáticas, física, programación y electrónica. La robótica también se ha introducido en las vidas de los estudiantes de primaria y secundaria en forma de competiciones de robots con la empresa FIRST (For Inspiration and Recognition of Science and Technology). La organización es la base de las competiciones FIRST Robotics Competition , FIRST Tech Challenge , FIRST Lego League Challenge y FIRST Lego League Explore .

También ha habido robots como el ordenador de enseñanza Leachim (1974). [96] Leachim fue un ejemplo temprano de síntesis de voz utilizando el método de síntesis Diphone . 2-XL (1976) era un juego/juguete de enseñanza con forma de robot basado en la ramificación entre pistas audibles en un reproductor de cintas de 8 pistas , ambos inventados por Michael J. Freeman . [97] Más tarde, las 8 pistas se actualizaron a casetes de cinta y luego a digitales.

Robot modular

Los robots modulares son una nueva generación de robots diseñados para aumentar el uso de los robots mediante la modularización de su arquitectura. [98] La funcionalidad y la eficacia de un robot modular es más fácil de aumentar en comparación con los robots convencionales. Estos robots están compuestos por un solo tipo de módulo idéntico, varios tipos de módulos idénticos diferentes o módulos de forma similar, que varían en tamaño. Su estructura arquitectónica permite la hiperredundancia de los robots modulares, ya que pueden diseñarse con más de 8 grados de libertad (DOF). La creación de la programación, la cinemática inversa y la dinámica de los robots modulares es más compleja que con los robots tradicionales. Los robots modulares pueden estar compuestos por módulos en forma de L, módulos cúbicos y módulos en forma de U y H. La tecnología ANAT, una de las primeras tecnologías robóticas modulares patentada por Robotics Design Inc., permite la creación de robots modulares a partir de módulos en forma de U y H que se conectan en cadena y se utilizan para formar sistemas robóticos modulares heterogéneos y homogéneos. Estos "robots ANAT" pueden diseñarse con "n" grados de libertad, ya que cada módulo es un sistema robótico motorizado completo que se pliega en relación con los módulos conectados antes y después de él en su cadena, y por lo tanto un solo módulo permite un grado de libertad. Cuantos más módulos estén conectados entre sí, más grados de libertad tendrá. Los módulos en forma de L también pueden diseñarse en cadena, y deben hacerse cada vez más pequeños a medida que aumenta el tamaño de la cadena, ya que las cargas útiles unidas al extremo de la cadena ejercen una mayor tensión sobre los módulos que están más alejados de la base. Los módulos ANAT en forma de H no sufren este problema, ya que su diseño permite que un robot modular distribuya la presión y los impactos de manera uniforme entre otros módulos unidos, y por lo tanto la capacidad de carga útil no disminuye a medida que aumenta la longitud del brazo. Los robots modulares pueden reconfigurarse manualmente o por sí mismos para formar un robot diferente, que puede realizar diferentes aplicaciones. Debido a que los robots modulares del mismo tipo de arquitectura están compuestos de módulos que componen diferentes robots modulares, un robot de brazo de serpiente puede combinarse con otro para formar un robot de brazo dual o cuádruple, o puede dividirse en varios robots móviles, y los robots móviles pueden dividirse en varios más pequeños, o combinarse con otros para formar uno más grande o diferente. Esto permite que un solo robot modular tenga la capacidad de especializarse completamente en una sola tarea, así como la capacidad de especializarse para realizar múltiples tareas diferentes.

La tecnología robótica modular se aplica actualmente en el transporte híbrido, [99] la automatización industrial, [100] la limpieza de conductos [101] y la manipulación. Numerosos centros de investigación y universidades también han estudiado esta tecnología y han desarrollado prototipos.

Robots colaborativos

Un robot colaborativo o cobot es un robot que puede interactuar de forma segura y eficaz con trabajadores humanos mientras realiza tareas industriales sencillas. Sin embargo, los efectores finales y otras condiciones ambientales pueden generar peligros, por lo que se deben realizar evaluaciones de riesgos antes de utilizar cualquier aplicación de control de movimiento industrial. [102]

Los robots colaborativos más utilizados en las industrias hoy en día son fabricados por Universal Robots en Dinamarca. [103]

Rethink Robotics , fundada por Rodney Brooks , anteriormente con iRobot, presentó a Baxter en septiembre de 2012; como un robot industrial diseñado para interactuar de forma segura con trabajadores humanos vecinos y ser programable para realizar tareas simples. [104] Los Baxters se detienen si detectan a un humano en el camino de sus brazos robóticos y tienen interruptores de apagado prominentes. Destinados a la venta a pequeñas empresas, se promocionan como el análogo robótico de la computadora personal. [105] A partir de mayo de 2014 , 190 empresas en los EE. UU. han comprado Baxters y se están utilizando comercialmente en el Reino Unido. [10]

Los robots en la sociedad

TOPIO , un robot humanoide , jugó al ping pong en la Exposición Internacional de Robots de Tokio (IREX) de 2009. [106] [107]

Aproximadamente la mitad de todos los robots del mundo están en Asia, el 32% en Europa, el 16% en América del Norte, el 1% en Australasia y el 1% en África. [108] El 40% de todos los robots del mundo están en Japón, [109] lo que convierte a Japón en el país con el mayor número de robots.

Autonomía y cuestiones éticas

Un androide , o robot diseñado para parecerse a un humano, puede parecer reconfortante para algunas personas y perturbador para otras. [110]

A medida que los robots se han vuelto más avanzados y sofisticados, los expertos y académicos han explorado cada vez más las preguntas de qué ética podría gobernar el comportamiento de los robots, [111] [112] y si los robots podrían reclamar algún tipo de derechos sociales, culturales, éticos o legales. [113] Un equipo científico ha dicho que era posible que existiera un cerebro robótico para 2019. [114] Otros predicen avances en la inteligencia robótica para 2050. [115] Los avances recientes han hecho que el comportamiento robótico sea más sofisticado. [116] El impacto social de los robots inteligentes es el tema de un documental de 2010 llamado Plug & Pray . [117]

Vernor Vinge ha sugerido que puede llegar un momento en que los ordenadores y los robots sean más inteligentes que los humanos. Él llama a esto " la Singularidad ". [118] Sugiere que puede ser algo o posiblemente muy peligroso para los humanos. [119] Esto es discutido por una filosofía llamada Singularitarianismo .

En 2009, los expertos asistieron a una conferencia organizada por la Asociación para el Avance de la Inteligencia Artificial (AAAI) para debatir si las computadoras y los robots podrían adquirir alguna autonomía y en qué medida estas habilidades podrían representar una amenaza o peligro. Observaron que algunos robots han adquirido varias formas de semiautonomía, incluida la capacidad de encontrar fuentes de energía por sí solos y de elegir de forma independiente objetivos para atacar con armas. También observaron que algunos virus informáticos pueden evadir la eliminación y han alcanzado la "inteligencia de las cucarachas". Observaron que la autoconciencia tal como se describe en la ciencia ficción es probablemente poco probable, pero que existen otros peligros y dificultades potenciales. [118] Varias fuentes de los medios de comunicación y grupos científicos han observado tendencias separadas en diferentes áreas que, en conjunto, podrían dar como resultado mayores funcionalidades y autonomía robótica, y que plantean algunas preocupaciones inherentes. [120] [121] [122]

Robots militares

Algunos expertos y académicos han cuestionado el uso de robots para el combate militar, especialmente cuando a dichos robots se les da cierto grado de funciones autónomas. [123] También existen preocupaciones sobre la tecnología que podría permitir que algunos robots armados sean controlados principalmente por otros robots. [124] La Marina de los EE. UU. ha financiado un informe que indica que, a medida que los robots militares se vuelven más complejos, debería prestarse mayor atención a las implicaciones de su capacidad para tomar decisiones autónomas. [125] [126] Un investigador afirma que los robots autónomos podrían ser más humanos, ya que podrían tomar decisiones de manera más efectiva. Sin embargo, otros expertos lo cuestionan. [127]

Un robot en particular, el EATR , ha generado inquietudes públicas [128] sobre su fuente de combustible, ya que puede reabastecerse continuamente utilizando sustancias orgánicas. [129] Aunque el motor del EATR está diseñado para funcionar con biomasa y vegetación [130] seleccionadas específicamente por sus sensores, que puede encontrar en campos de batalla u otros entornos locales, el proyecto ha declarado que también se puede utilizar grasa de pollo. [131]

Manuel De Landa ha señalado que los "misiles inteligentes" y las bombas autónomas dotadas de percepción artificial pueden considerarse robots, ya que toman algunas de sus decisiones de forma autónoma. Cree que esto representa una tendencia importante y peligrosa en la que los humanos están delegando decisiones importantes en las máquinas. [132]

Relación con el desempleo

Durante siglos, la gente ha predicho que las máquinas harían obsoletos a los trabajadores y aumentarían el desempleo , aunque generalmente se piensa que las causas del desempleo se deben a la política social. [133] [134] [135]

Un ejemplo reciente de sustitución humana es el de la empresa tecnológica taiwanesa Foxconn , que en julio de 2011 anunció un plan trienal para sustituir a los trabajadores por más robots. En la actualidad, la empresa utiliza diez mil robots, pero aumentará su número a un millón en un período de tres años. [136]

Los abogados han especulado que una mayor prevalencia de robots en el lugar de trabajo podría llevar a la necesidad de mejorar las leyes de despido. [137]

Kevin J. Delaney dijo: “Los robots están reemplazando a los empleos humanos, pero Bill Gates cree que los gobiernos deberían imponer impuestos a las empresas que los utilizan, como una forma de frenar al menos temporalmente la propagación de la automatización y financiar otros tipos de empleo”. [138] El impuesto a los robots también ayudaría a pagar un salario vital garantizado a los trabajadores desplazados.

El Informe sobre el desarrollo mundial 2019 del Banco Mundial presenta evidencia que muestra que, si bien la automatización desplaza a los trabajadores, la innovación tecnológica crea más industrias y empleos nuevos en general. [139]

Usos contemporáneos

Un robot de uso general actúa como guía durante el día y como guardia de seguridad durante la noche.

En la actualidad, existen dos tipos principales de robots, en función de su uso: robots autónomos de propósito general y robots dedicados.

Los robots se pueden clasificar según su propósito específico . Un robot puede estar diseñado para realizar una tarea en particular de manera excelente o una variedad de tareas de manera menos eficaz. Todos los robots, por su naturaleza, pueden reprogramarse para comportarse de manera diferente, pero algunos están limitados por su forma física. Por ejemplo, un brazo robótico de fábrica puede realizar tareas como cortar, soldar, pegar o actuar como una atracción de feria, mientras que un robot que solo recoge y coloca objetos solo puede llenar placas de circuitos impresos.

Robots autónomos de uso general

Los robots autónomos de uso general pueden realizar una variedad de funciones de forma independiente. Los robots autónomos de uso general suelen poder navegar de forma independiente en espacios conocidos, gestionar sus propias necesidades de recarga, interactuar con puertas electrónicas y ascensores y realizar otras tareas básicas. Al igual que las computadoras, los robots de uso general pueden conectarse con redes, software y accesorios que aumentan su utilidad. Pueden reconocer personas u objetos, hablar, proporcionar compañía, monitorear la calidad ambiental, responder a alarmas, recoger suministros y realizar otras tareas útiles. Los robots de uso general pueden realizar una variedad de funciones simultáneamente o pueden asumir diferentes roles en diferentes momentos del día. Algunos de estos robots intentan imitar a los seres humanos e incluso pueden parecerse a las personas en apariencia; este tipo de robot se llama robot humanoide. Los robots humanoides aún se encuentran en una etapa muy limitada, ya que ningún robot humanoide puede, hasta el momento, navegar por una habitación en la que nunca ha estado. [140] Por lo tanto, los robots humanoides son realmente bastante limitados, a pesar de sus comportamientos inteligentes en sus entornos bien conocidos.

Robots de fábrica

Producción de automóviles

En las últimas tres décadas, las fábricas de automóviles han estado dominadas por robots. Una fábrica típica contiene cientos de robots industriales que trabajan en líneas de producción totalmente automatizadas, con un robot por cada diez trabajadores humanos. En una línea de producción automatizada, el chasis de un vehículo en una cinta transportadora se suelda , se pega , se pinta y, finalmente, se ensambla en una secuencia de estaciones de robots.

Embalaje

Los robots industriales también se utilizan ampliamente para paletizar y embalar productos manufacturados, por ejemplo, para tomar rápidamente cartones de bebidas desde el final de una cinta transportadora y colocarlos en cajas, o para cargar y descargar centros de mecanizado.

Electrónica

Las placas de circuitos impresos (PCB) producidas en masa se fabrican casi exclusivamente mediante robots de selección y colocación, generalmente con manipuladores SCARA , que extraen pequeños componentes electrónicos de tiras o bandejas y los colocan en las PCB con gran precisión. [141] Estos robots pueden colocar cientos de miles de componentes por hora, superando ampliamente a un humano en velocidad, precisión y confiabilidad. [142]

Vehículos guiados automáticamente (AGV)

Un AGV inteligente entrega mercancías sin necesidad de filas ni balizas en el espacio de trabajo.

Los robots móviles, que siguen marcadores o cables en el suelo o utilizan visión [86] o láseres, se utilizan para transportar mercancías en grandes instalaciones, como almacenes, puertos de contenedores u hospitales. [143]

Los primeros robots de estilo AGV

Limitados a tareas que se podían definir con precisión y que debían realizarse de la misma manera cada vez. Se requería muy poca retroalimentación o inteligencia, y los robots solo necesitaban los exteroceptores (sensores) más básicos. Las limitaciones de estos AGV son que sus trayectorias no se alteran fácilmente y no pueden hacerlo si hay obstáculos que las bloqueen. Si un AGV se avería, puede detener toda la operación.

Tecnologías AGV provisionales

Desarrollado para implementar la triangulación a partir de balizas o cuadrículas de códigos de barras para escanear en el piso o el techo. En la mayoría de las fábricas, los sistemas de triangulación tienden a requerir un mantenimiento moderado a alto, como la limpieza diaria de todas las balizas o códigos de barras. Además, si un palé alto o un vehículo grande bloquea las balizas o se estropea un código de barras, los AGV pueden perderse. A menudo, estos AGV están diseñados para usarse en entornos sin personas.

AGV inteligentes (i-AGV)

Por ejemplo, SmartLoader, [144] SpeciMinder, [145] ADAM, [146] Tug [147] Eskorta, [148] y MT 400 con Motivity [149] están diseñados para espacios de trabajo amigables para las personas. Navegan reconociendo características naturales. Los escáneres 3D u otros medios de detección del entorno en dos o tres dimensiones ayudan a eliminar errores acumulativos en los cálculos de estimación de la posición actual del AGV. Algunos AGV pueden crear mapas de su entorno utilizando láseres de escaneo con localización y mapeo simultáneos (SLAM) y usar esos mapas para navegar en tiempo real con otros algoritmos de planificación de rutas y evitación de obstáculos. Pueden operar en entornos complejos y realizar tareas no repetitivas y no secuenciales, como transportar fotomáscaras en un laboratorio de semiconductores, muestras en hospitales y mercancías en almacenes. Para áreas dinámicas, como almacenes llenos de pallets, los AGV requieren estrategias adicionales utilizando sensores tridimensionales como cámaras de tiempo de vuelo o de estereovisión .

Tareas sucias, peligrosas, aburridas o inaccesibles

Hay muchos trabajos que los humanos preferirían dejar en manos de los robots. El trabajo puede ser aburrido, como la limpieza doméstica o marcar las líneas de un campo deportivo , o peligroso, como explorar el interior de un volcán . [150] Otros trabajos son físicamente inaccesibles, como explorar otro planeta , [151] limpiar el interior de una tubería larga o realizar una cirugía laparoscópica . [152]

Sondas espaciales

Casi todas las sondas espaciales no tripuladas que se han lanzado hasta la fecha eran robots. [153] [154] Algunas se lanzaron en la década de 1960 con capacidades muy limitadas, pero su capacidad de volar y aterrizar (en el caso de Luna 9 ) es una indicación de su condición de robot. Esto incluye las sondas Voyager y Galileo, entre otras.

Telerobots

Un técnico del Cuerpo de Marines de EE. UU. se prepara para utilizar un telerobot para detonar un dispositivo explosivo improvisado enterrado cerca del Campamento Fallujah , Irak.

Los robots teleoperados , o telerobots, son dispositivos operados remotamente a distancia por un operador humano en lugar de seguir una secuencia predeterminada de movimientos, pero que tienen un comportamiento semiautónomo. Se utilizan cuando un humano no puede estar presente en el sitio para realizar un trabajo porque es peligroso, está lejos o es inaccesible. El robot puede estar en otra habitación o en otro país, o puede estar en una escala muy diferente a la del operador. Por ejemplo, un robot de cirugía laparoscópica permite al cirujano trabajar dentro de un paciente humano en una escala relativamente pequeña en comparación con la cirugía abierta, acortando significativamente el tiempo de recuperación. [152] También se pueden utilizar para evitar exponer a los trabajadores a espacios peligrosos y estrechos, como en la limpieza de conductos . Al desactivar una bomba, el operador envía un pequeño robot para desactivarla. Varios autores han estado utilizando un dispositivo llamado Longpen para firmar libros de forma remota. [155] Los aviones robot teleoperados, como el vehículo aéreo no tripulado Predator , están siendo cada vez más utilizados por los militares. Estos drones sin piloto pueden buscar terreno y disparar a los objetivos. [156] [157] Cientos de robots como el Packbot de iRobot y el TALON de Foster-Miller están siendo utilizados en Irak y Afganistán por el ejército estadounidense para desactivar bombas al costado de la carretera o dispositivos explosivos improvisados ​​(IED) en una actividad conocida como eliminación de artefactos explosivos (EOD). [158]

Máquinas automáticas para la recolección de frutas

Los robots se utilizan para automatizar la recogida de fruta en los huertos a un coste menor que el de los recolectores humanos.

Robots domésticos

El robot aspirador doméstico Roomba realiza una única tarea, aunque sencilla.

Los robots domésticos son robots sencillos dedicados a una única tarea de uso doméstico. Se utilizan en trabajos sencillos pero a menudo poco deseados, como pasar la aspiradora , fregar el suelo o cortar el césped . Un ejemplo de robot doméstico es el Roomba .

Robots militares

Los robots militares incluyen el robot SWORDS , que actualmente se utiliza en combate terrestre. Puede utilizar una variedad de armas y se está debatiendo la posibilidad de otorgarle cierto grado de autonomía en situaciones de campo de batalla. [159] [160] [161]

Los vehículos aéreos de combate no tripulados (UCAV), que son una forma mejorada de los UAV , pueden realizar una amplia variedad de misiones, incluidas las de combate. Se están diseñando UCAV como el BAE Systems Mantis , que tendría la capacidad de volar por sí solo, elegir su propio curso y objetivo y tomar la mayoría de las decisiones por sí solo. [162] El BAE Taranis es un UCAV construido por Gran Bretaña que puede volar a través de continentes sin piloto y tiene nuevos medios para evitar ser detectado. [163] Se espera que las pruebas de vuelo comiencen en 2011. [164]

La AAAI ha estudiado este tema en profundidad [111] y su presidente ha encargado un estudio para analizar esta cuestión. [165]

Algunos han sugerido la necesidad de construir una " IA amigable ", lo que significa que los avances que ya se están produciendo con la IA también deberían incluir un esfuerzo para hacer que la IA sea intrínsecamente amigable y humana. [166] Según se informa, ya existen varias medidas de este tipo, y países con muchos robots como Japón y Corea del Sur [167] han comenzado a aprobar regulaciones que requieren que los robots estén equipados con sistemas de seguridad y posiblemente conjuntos de "leyes" similares a las Tres Leyes de la Robótica de Asimov . [168] [169] En 2009, el Comité de Política de la Industria Robótica del gobierno japonés emitió un informe oficial. [170] Los funcionarios e investigadores chinos han emitido un informe que sugiere un conjunto de reglas éticas y un conjunto de nuevas pautas legales denominadas "Estudios legales sobre robots". [171] Se ha expresado cierta preocupación por la posible aparición de robots que digan falsedades aparentes. [172]

Robots mineros

Los robots mineros están diseñados para resolver una serie de problemas que enfrenta actualmente la industria minera, incluida la escasez de habilidades, la mejora de la productividad a partir de la disminución de las calidades del mineral y el logro de objetivos ambientales. Debido a la naturaleza peligrosa de la minería, en particular la minería subterránea , la prevalencia de robots autónomos, semiautónomos y teleoperados ha aumentado enormemente en los últimos tiempos. Varios fabricantes de vehículos proporcionan trenes, camiones y cargadores autónomos que cargarán material, lo transportarán en el sitio de la mina hasta su destino y lo descargarán sin requerir intervención humana. Una de las corporaciones mineras más grandes del mundo, Rio Tinto , ha ampliado recientemente su flota de camiones autónomos a la más grande del mundo, compuesta por 150 camiones autónomos Komatsu , que operan en Australia Occidental . [173] De manera similar, BHP ha anunciado la expansión de su flota de perforadoras autónomas a la más grande del mundo, 21 perforadoras autónomas Atlas Copco . [174]

Las máquinas de perforación, de frente largo y de trituración de rocas ahora también están disponibles como robots autónomos. [175] El sistema de control de plataforma Atlas Copco puede ejecutar de forma autónoma un plan de perforación en una plataforma de perforación , moviendo la plataforma a su posición mediante GPS, configurando la plataforma de perforación y perforando hasta profundidades específicas. [176] De manera similar, el sistema Transmin Rocklogic puede planificar automáticamente una ruta para posicionar un rompedor de rocas en un destino seleccionado. [177] Estos sistemas mejoran en gran medida la seguridad y la eficiencia de las operaciones mineras.

Cuidado de la salud

Los robots en el ámbito sanitario tienen dos funciones principales: los que ayudan a una persona, como un paciente con esclerosis múltiple, y los que ayudan en los sistemas generales, como farmacias y hospitales.

Domótica para personas mayores y discapacitadas

El robot cuidador AMIGO

Los robots utilizados en la automatización del hogar han evolucionado con el tiempo desde simples asistentes robóticos básicos, como el Handy 1 , [178] hasta robots semiautónomos, como FRIEND, que puede ayudar a personas mayores y discapacitadas con tareas comunes.

La población está envejeciendo en muchos países, especialmente Japón, lo que significa que hay un número cada vez mayor de personas mayores a las que cuidar, pero relativamente menos jóvenes para cuidarlas. [179] [180] Los humanos son los mejores cuidadores, pero donde no están disponibles, se están introduciendo gradualmente robots. [181]

FRIEND es un robot semiautónomo diseñado para ayudar a personas mayores y discapacitadas en sus actividades de la vida diaria, como preparar y servir una comida. FRIEND permite a los pacientes parapléjicos , con enfermedades musculares o parálisis grave (debido a accidentes cerebrovasculares, etc.) realizar tareas sin la ayuda de otras personas, como terapeutas o personal de enfermería.

Farmacias

Script Pro fabrica un robot diseñado para ayudar a las farmacias a llenar recetas que consisten en sólidos orales o medicamentos en forma de píldora. [182] [ mejor fuente necesaria ] El farmacéutico o técnico de farmacia ingresa la información de la receta en su sistema de información. El sistema, al determinar si el medicamento está o no en el robot, enviará la información al robot para llenar. El robot tiene 3 viales de diferentes tamaños para llenar determinados por el tamaño de la píldora. El técnico del robot, el usuario o el farmacéutico determina el tamaño necesario del vial en función de la tableta cuando el robot está abastecido. Una vez que el vial está lleno, se lleva a una cinta transportadora que lo entrega a un soporte que hace girar el vial y coloca la etiqueta del paciente. Luego se coloca en otra cinta transportadora que entrega el vial del medicamento del paciente a una ranura etiquetada con el nombre del paciente en una lectura LED. Luego, el farmacéutico o técnico verifica el contenido del vial para asegurarse de que sea el medicamento correcto para el paciente correcto y luego sella el vial y lo envía para que lo recojan.

El Robot RX de McKesson es otro producto robótico para el cuidado de la salud que ayuda a las farmacias a dispensar miles de medicamentos diariamente con poco o ningún error. [183] ​​El robot puede tener diez pies de ancho y treinta pies de largo y puede contener cientos de diferentes tipos de medicamentos y miles de dosis. La farmacia ahorra muchos recursos como miembros del personal que de otra manera no estarían disponibles en una industria con escasez de recursos. Utiliza un cabezal electromecánico acoplado a un sistema neumático para capturar cada dosis y entregarla a su ubicación de almacenamiento o dispensación. El cabezal se mueve a lo largo de un solo eje mientras gira 180 grados para extraer los medicamentos. Durante este proceso, utiliza tecnología de código de barras para verificar que está extrayendo el medicamento correcto. Luego entrega el medicamento a un contenedor específico para el paciente en una cinta transportadora. Una vez que el contenedor está lleno con todos los medicamentos que necesita un paciente en particular y que el robot tiene en existencia, el contenedor se libera y se devuelve a la cinta transportadora a un técnico que espera para cargarlo en un carrito para su entrega al piso.

Robots de investigación

Aunque la mayoría de los robots actuales se instalan en fábricas o en hogares, realizando tareas que pueden salvar vidas o trabajos manuales, en laboratorios de todo el mundo se están desarrollando muchos tipos nuevos de robots. Gran parte de la investigación en robótica no se centra en tareas industriales específicas, sino en investigaciones sobre nuevos tipos de robots, formas alternativas de pensar o diseñar robots y nuevas formas de fabricarlos. Se espera que estos nuevos tipos de robots puedan resolver problemas del mundo real cuando finalmente se hagan realidad. [ cita requerida ]

Robots biónicos y biomiméticos

Una forma de diseñar robots es basarlos en animales. BionicKangaroo fue diseñado y fabricado estudiando y aplicando la fisiología y los métodos de locomoción de un canguro.

Nanorobots

La nanorobótica es el campo tecnológico emergente de creación de máquinas o robots cuyos componentes están en o cerca de la escala microscópica de un nanómetro (10 −9 metros). También conocidos como "nanobots" o "nanites", se construirían a partir de máquinas moleculares . Hasta ahora, los investigadores han producido principalmente solo partes de estos sistemas complejos, como cojinetes, sensores y motores moleculares sintéticos , pero también se han creado robots funcionales como los participantes del concurso Nanobot Robocup. [184] Los investigadores también esperan poder crear robots completos tan pequeños como virus o bacterias, que podrían realizar tareas en una escala diminuta. Las posibles aplicaciones incluyen microcirugía (a nivel de células individuales ), niebla de utilidad , [185] fabricación, armamento y limpieza. [186] Algunas personas han sugerido que si hubiera nanobots que pudieran reproducirse, la tierra se convertiría en una " sustancia viscosa gris ", mientras que otros argumentan que este resultado hipotético es una tontería. [187] [188]

Robots reconfigurables

Algunos investigadores han estudiado la posibilidad de crear robots que puedan modificar su forma física para adaptarse a una tarea en particular, [189] como el ficticio T-1000 . Sin embargo, los robots reales no son tan sofisticados y en su mayoría consisten en un pequeño número de unidades con forma de cubo, que pueden moverse en relación con sus vecinos. Se han diseñado algoritmos en caso de que tales robots se conviertan en realidad. [190]

Operadores de laboratorio móviles robóticos

En julio de 2020, los científicos informaron sobre el desarrollo de un robot químico móvil y demostraron que puede ayudar en las búsquedas experimentales. Según los científicos, su estrategia fue automatizar al investigador en lugar de los instrumentos, lo que liberó tiempo para que los investigadores humanos pensaran de manera creativa, y pudo identificar mezclas de fotocatalizadores para la producción de hidrógeno a partir de agua que eran seis veces más activas que las formulaciones iniciales. El robot modular puede operar instrumentos de laboratorio, trabajar casi las 24 horas del día y tomar decisiones de forma autónoma sobre sus próximas acciones en función de los resultados experimentales. [191] [192]

Robots de cuerpo blando

Los robots con cuerpos de silicona y actuadores flexibles ( músculos de aire , polímeros electroactivos y ferrofluidos ) se ven y se sienten diferentes de los robots con esqueletos rígidos, y pueden tener diferentes comportamientos. [193] Los robots suaves, flexibles (y a veces incluso blandos) a menudo se diseñan para imitar la biomecánica de los animales y otras cosas que se encuentran en la naturaleza, lo que está dando lugar a nuevas aplicaciones en medicina, atención, búsqueda y rescate, manipulación y fabricación de alimentos y exploración científica. [194] [195]

Robots enjambre

Inspirándose en colonias de insectos como las hormigas y las abejas , los investigadores están modelando el comportamiento de enjambres de miles de pequeños robots que juntos realizan una tarea útil, como encontrar algo escondido, limpiar o espiar. Cada robot es bastante simple, pero el comportamiento emergente del enjambre es más complejo. Todo el conjunto de robots puede considerarse como un único sistema distribuido, de la misma manera que una colonia de hormigas puede considerarse un superorganismo , que exhibe inteligencia de enjambre . Los enjambres más grandes creados hasta ahora incluyen el enjambre iRobot, el proyecto SRI/MobileRobots CentiBots [196] y el enjambre Open-source Micro-robotic Project, que se están utilizando para investigar comportamientos colectivos. [197] [198] Los enjambres también son más resistentes al fracaso. Mientras que un robot grande puede fallar y arruinar una misión, un enjambre puede continuar incluso si varios robots fallan. Esto podría hacerlos atractivos para misiones de exploración espacial, donde el fracaso normalmente es extremadamente costoso. [199]

Robots con interfaz háptica

La robótica también tiene aplicación en el diseño de interfaces de realidad virtual . Los robots especializados se utilizan ampliamente en la comunidad de investigación háptica . Estos robots, llamados "interfaces hápticas", permiten la interacción táctil del usuario con entornos reales y virtuales. Las fuerzas robóticas permiten simular las propiedades mecánicas de los objetos "virtuales", que los usuarios pueden experimentar a través de su sentido del tacto . [200]

Arte y escultura contemporánea

Los artistas contemporáneos utilizan robots para crear obras que incluyen automatización mecánica. Existen muchas ramas del arte robótico, una de las cuales es el arte de instalación robótica , un tipo de arte de instalación que está programado para responder a las interacciones del espectador, por medio de computadoras, sensores y actuadores. Por lo tanto, el comportamiento futuro de tales instalaciones puede alterarse mediante la entrada del artista o del participante, lo que diferencia estas obras de arte de otros tipos de arte cinético .

El Grand Palais de París organizó en 2018 la exposición «Artistas y robots», en la que se presentaron obras de arte creadas por más de cuarenta artistas con la ayuda de robots. [201]

Los robots en la cultura popular

Robots de juguete en exhibición en el Museo del Objeto del Objeto en la Ciudad de México

Literatura

Los personajes robóticos, androides (hombres/mujeres artificiales) o ginoides (mujeres artificiales) y cyborgs (también " hombres/mujeres biónicos ", o humanos con importantes mejoras mecánicas) se han convertido en un elemento básico de la ciencia ficción.

La primera referencia en la literatura occidental a sirvientes mecánicos aparece en la Ilíada de Homero . En el Libro XVIII, Hefesto , dios del fuego, crea una nueva armadura para el héroe Aquiles, asistido por robots. [202] Según la traducción de Rieu , "Las sirvientas doradas se apresuraron a ayudar a su amo. Parecían mujeres reales y no solo podían hablar y usar sus miembros, sino que estaban dotadas de inteligencia y entrenadas en trabajos manuales por los dioses inmortales". Las palabras "robot" o "androide" no se utilizan para describirlos, pero sin embargo son dispositivos mecánicos de apariencia humana. "El primer uso de la palabra Robot fue en la obra de teatro RUR (Robots universales de Rossum) de Karel Čapek (escrita en 1920)". El escritor Karel Čapek nació en Checoslovaquia (República Checa).

Posiblemente el autor más prolífico del siglo XX fue Isaac Asimov (1920-1992) [203] que publicó más de quinientos libros. [204] Asimov es probablemente más recordado por sus historias de ciencia ficción y especialmente aquellas sobre robots, donde colocó a los robots y su interacción con la sociedad en el centro de muchas de sus obras. [205] [206] Asimov consideró cuidadosamente el problema del conjunto ideal de instrucciones que se les podrían dar a los robots para reducir el riesgo para los humanos, y llegó a sus Tres Leyes de la Robótica : un robot no puede dañar a un ser humano o, por inacción, permitir que un ser humano sufra daño; un robot debe obedecer las órdenes que le dan los seres humanos, excepto cuando dichas órdenes entren en conflicto con la Primera Ley; y un robot debe proteger su propia existencia siempre que dicha protección no entre en conflicto con la Primera o la Segunda Ley. [207] Estas fueron introducidas en su cuento de 1942 "Runaround", aunque anticipadas en algunas historias anteriores. Más tarde, Asimov añadió la Ley Cero: "Un robot no puede dañar a la humanidad o, por inacción, permitir que la humanidad sufra daño"; el resto de las leyes se modifican secuencialmente para reconocer esto.

Según el Oxford English Dictionary, el primer pasaje del cuento de Asimov « ¡Mentiroso! » (1941) que menciona la Primera Ley es el primer uso registrado de la palabra robótica . Asimov no era consciente de ello en un principio; supuso que la palabra ya existía por analogía con mecánica, hidráulica y otros términos similares que denotan ramas del conocimiento aplicado. [208]

Competiciones de robots

Los robots se utilizan en una serie de eventos competitivos. Las competiciones de combate de robots se han popularizado gracias a programas de televisión como Robot Wars y BattleBots , en los que aparecen principalmente "robots" controlados a distancia que compiten entre sí directamente utilizando diversas armas. También hay ligas de combate de robots amateurs activas a nivel mundial fuera de los eventos televisados. También se celebran a nivel internacional eventos de micromouse , en los que robots autónomos compiten para resolver laberintos u otras pistas de obstáculos.

Las competiciones de robots también se utilizan a menudo en entornos educativos para introducir el concepto de robótica a los niños, como la Competición de Robótica FIRST en EE. UU.

Películas

Los robots aparecen en muchas películas. La mayoría de los robots del cine son ficticios. Dos de los más famosos son R2-D2 y C-3PO de la franquicia Star Wars .

Robots sexuales

El concepto de robots sexuales humanoides ha llamado la atención del público y ha suscitado debates sobre sus supuestos beneficios y posibles efectos en la sociedad. Los opositores argumentan que la introducción de tales dispositivos sería socialmente perjudicial y degradante para las mujeres y los niños, [209] mientras que los defensores citan sus posibles beneficios terapéuticos, en particular para ayudar a las personas con demencia o depresión . [210]

Problemas representados en la cultura popular

Película italiana El hombre mecánico (1921), la primera película que mostró una batalla entre robots.

Los temores y las preocupaciones sobre los robots se han expresado repetidamente en una amplia gama de libros y películas. Un tema común es el desarrollo de una raza superior de robots conscientes y altamente inteligentes, motivados a apoderarse de la raza humana o destruirla. Frankenstein (1818), a menudo considerada la primera novela de ciencia ficción, se ha convertido en sinónimo del tema de un robot o androide que avanza más allá de su creador.

Otras obras con temas similares incluyen The Mechanical Man , The Terminator , Runaway , RoboCop , los Replicadores en Stargate , los Cylons en Battlestar Galactica , los Cybermen y Daleks en Doctor Who , Matrix , Enthiran y Yo, Robot . Algunos robots ficticios están programados para matar y destruir; otros obtienen inteligencia y habilidades sobrehumanas al actualizar su propio software y hardware. Ejemplos de medios populares donde el robot se vuelve malvado son 2001: Una odisea del espacio , Planeta rojo y Enthiran .

El juego de 2017 Horizon Zero Dawn explora temas de robótica en la guerra, la ética de los robots y el problema del control de la IA , así como el impacto positivo o negativo que dichas tecnologías podrían tener en el medio ambiente.

Otro tema común es la reacción, a veces llamada el " valle inquietante ", de inquietud e incluso repulsión al ver robots que imitan demasiado de cerca a los humanos. [110]

Más recientemente, las representaciones ficticias de robots con inteligencia artificial en películas como AI Artificial Intelligence y Ex Machina y la adaptación televisiva de 2016 de Westworld han despertado simpatía del público hacia los propios robots.

Véase también

Conceptos específicos de robótica

Métodos y categorías de la robótica

Robots y dispositivos específicos

Otros artículos relacionados

Lectura adicional

Referencias

  1. ^ "El robot de cuatro patas 'Cheetah' establece un nuevo récord de velocidad". Reuters. 6 de marzo de 2012. Archivado desde el original el 22 de octubre de 2013. Consultado el 5 de octubre de 2013 .
  2. ^ Definición de 'robot'. Diccionario Oxford de inglés. Consultado el 27 de noviembre de 2016.
  3. ^ "Previsiones: observación del mercado de vehículos sin conductor". driverless-future.com . Consultado el 26 de septiembre de 2023 .
  4. ^ a b "robotics". Oxford Dictionaries. Archived from the original on 18 May 2011. Retrieved 4 February 2011.
  5. ^ Margolius, Ivan (Autumn 2017). "The Robot of Prague" (PDF). The Friends of Czech Heritage (17): 3–6. Archived (PDF) from the original on 11 September 2017.
  6. ^ a b c Zunt, Dominik. "Who did actually invent the word "robot" and what does it mean?". The Karel Čapek website. Archived from the original on 4 February 2012. Retrieved 11 September 2007.
  7. ^ Kurfess, Thomas R. (1 January 2005). Robotics and Automation Handbook. Taylor & Francis. ISBN 978-0-8493-1804-7. Archived from the original on 4 December 2016. Retrieved 5 July 2016 – via Google Books.
  8. ^ Pearce, Jeremy (15 August 2011). "George C. Devol, Inventor of Robot Arm, Dies at 99". The New York Times. Archived from the original on 25 December 2016. Retrieved 7 February 2012. In 1961, General Motors put the first Unimate arm on an assembly line at the company's plant in Ewing Township, N.J., a suburb of Trenton. The device was used to lift and stack die-cast metal parts taken hot from their molds.
  9. ^ Akins, Crystal. "5 jobs being replaced by robots". Excelle. Monster. Archived from the original on 24 April 2013. Retrieved 15 April 2013.
  10. ^ a b Hoy, Greg (28 May 2014). "Robots could cost Australian economy 5 million jobs, experts warn, as companies look to cut costs". ABC News. Australian Broadcasting Corporation. Archived from the original on 29 May 2014. Retrieved 29 May 2014.
  11. ^ "Telecom glossary "bot"". Alliance for Telecommunications Solutions. 26 September 2023.
  12. ^ Polk, Igor (16 November 2005). "RoboNexus 2005 robot exhibition virtual tour". Robonexus Exhibition 2005. Archived from the original on 12 August 2007. Retrieved 10 September 2007.
  13. ^ Harris, Tom (16 April 2002). "How Robots Work". How Stuff Works. Archived from the original on 26 August 2007. Retrieved 10 September 2007.
  14. ^ a b c Needham, Joseph (1991). Science and Civilisation in China: Volume 2, History of Scientific Thought. Cambridge University Press. ISBN 978-0-521-05800-1.
  15. ^ Currie, Adam (1999). "The History of Robotics". Archived from the original on 18 July 2006. Retrieved 10 September 2007.
  16. ^ Noct. Att. L. 10
  17. ^ a b Needham, Volume 2, 54.
  18. ^ Deborah Levine Gera (2003). Ancient Greek Ideas on Speech, Language, and Civilization. Oxford University Press. ISBN 978-0-19-925616-7. Archived from the original on 5 December 2016. Retrieved 25 September 2016.
  19. ^ a b c Rosheim, Mark E. (1994). Robot evolution: the development of anthrobotics. Wiley-IEEE. ISBN 0-471-02622-0.
  20. ^ ""Robots then and now". BBC. 22 July 2004. Archived from the original on 20 December 2010.
  21. ^ O'Connor, J.J. and E.F. Robertson. "Heron biography". The MacTutor History of Mathematics archive. Retrieved 26 September 2023.
  22. ^ Strong, J.S. (2007). Relics of the Buddha. Princeton University Press. pp. 133–134, 143. ISBN 978-0-691-11764-5.
  23. ^ Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical Instruments". Music Educators Journal. 54 (2): 45–49. doi:10.2307/3391092. ISSN 0027-4321. JSTOR 3391092. S2CID 190524140.
  24. ^ "Early Clocks". A Walk Through Time. NIST Physics Laboratory. 12 August 2009. Retrieved 13 October 2022.
  25. ^ a b "The programmable robot of ancient Greece". New Scientist: 32–35. 6 July 2007.
  26. ^ Varadpande, Manohar Laxman (1987). History of Indian Theatre, Volume 1. Abhinav Publications. p. 68. ISBN 978-81-7017-221-5.
  27. ^ Wujastyk, Dominik (2003). The Roots of Ayurveda: Selections from Sanskrit Medical Writings. Penguin. p. 222. ISBN 978-0-14-044824-5.
  28. ^ Needham, Joseph (1965). Science and Civilisation in China: Volume 4, Physics and Physical Technology Part 2, Mechanical Engineering. Cambridge University Press. p. 164. ISBN 978-0-521-05803-2.
  29. ^ a b "Al-Jazarī | Arab inventor". Encyclopædia Britannica. Retrieved 15 June 2019.
  30. ^ Howard R. Turner (1997). Science in Medieval Islam: An Illustrated Introduction. University of Texas Press. p. 81. ISBN 0-292-78149-0.
  31. ^ Hill, Donald (May 1991). "Mechanical Engineering in the Medieval Near East". Scientific American. pp. 64–69. (cf. Hill, Donald. "History of Sciences in the Islamic World". IX. Mechanical Engineering. Archived from the original on 25 December 2007.)
  32. ^ Ancient Discoveries Islamic Science Part1. Archived from the original on 11 December 2021. Retrieved 15 June 2019.
  33. ^ Moran, M. E. (December 2006). "The da Vinci robot". J. Endourol. 20 (12): 986–90. doi:10.1089/end.2006.20.986. PMID 17206888. ... the date of the design and possible construction of this robot was 1495 ... Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings ... It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight.
  34. ^ Truitt, E.R. (2015). Medieval Robots: Mechanism, Magic, Nature, and Art. The Middle Ages Series. University of Pennsylvania Press, Incorporated. p. 136. ISBN 978-0-8122-9140-7. Retrieved 21 January 2023.
  35. ^ "Leonardo da Vinci's Robots". Leonardo3.net. Archived from the original on 24 September 2008. Retrieved 25 September 2008.
  36. ^ Law, Jane Marie (1997). Puppets of Nostalgia – The Life, Death and Rebirth of the Japanese Awaji Ningyo Tradition. Princeton University Press. ISBN 978-0-691-02894-1.
  37. ^ Wood, Gabby (16 February 2002). "Living Dolls: A Magical History Of The Quest For Mechanical Life". The Guardian. Archived from the original on 20 December 2016.
  38. ^ "The Boy Robot of 1774". 21 February 2018.
  39. ^ Edwyn Gray, Nineteenth-century torpedoes and their inventors, page 18
  40. ^ Gray, Edwyn (2004). Nineteenth-Century Torpedoes and Their Inventors. Naval Institute Press. ISBN 978-1-59114-341-3.
  41. ^ Seifer, Marc (24 October 2011). Life and Times of Nikola Tesla. Citadel. p. 1893. ISBN 978-0-8065-3556-2. Archived from the original on 5 December 2016.
  42. ^ Miessner, Benjamin Franklin (1916). Radiodynamics: The Wireless Control of Torpedoes and Other Mechanisms. D. Van Nostrand Company. p. 83.
  43. ^ US 613809, Tesla, Nikola, "Method of and apparatus for controlling mechanism of moving vessels or vehicles", published 1898-11-08 
  44. ^ "Tesla – Master of Lightning". PBS. Archived from the original on 28 September 2008. Retrieved 24 September 2008.
  45. ^ Sarkar 2006, page 97
  46. ^ Torres, Leonardo, "FR327218A Système dit telekine pour commander à distance un mouvement mécanique.", Espacenet, 10 December 1902.
  47. ^ Torres, Leonardo, "GB190327073 (A) ― Means or Method for Directing Mechanical Movements at or from a Distance.", Espacenet, 10 December 1903.
  48. ^ A. P. Yuste (January 2008). "Early Developments of Wireless Remote Control: The Telekino of Torres-Quevedo". Proceedings of the IEEE. 96 (1): 186–190. doi:10.1109/JPROC.2007.909931. S2CID 111010868.
  49. ^ H. R. Everett (2015). Unmanned Systems of World Wars I and II. MIT Press. pp. 91–95. ISBN 978-0-262-02922-3.
  50. ^ "AH Reffell & Eric the Robot (1928) - the UK's Firs Robot". Retrieved 26 September 2023.
  51. ^ "1932 - George Robot - Capt. W.H. Richards (British)". cyberneticzoo.com. Retrieved 26 September 2023.
  52. ^ "Robot Dreams: The Strange Tale Of A Man's Quest To Rebuild His Mechanical Childhood Friend". The Cleveland Free Times. Archived from the original on 15 January 2010. Retrieved 25 September 2008.
  53. ^ Schaut, Scott (2006). Robots of Westinghouse: 1924-Today. Mansfield Memorial Museum. ISBN 978-0-9785844-1-2.
  54. ^ Secrets of the Flying Bomb Revealed: Special Sectional Drawing and How the Robot's Flight and Dive are Controlled Automatically. Illustrated London News. 1944.
  55. ^ Holland, Owen. "The Grey Walter Online Archive". Archived from the original on 9 October 2008. Retrieved 25 September 2008.
  56. ^ Waurzyniak, Patrick (July 2006). "Masters of Manufacturing: Joseph F. Engelberger". Society of Manufacturing Engineers. 137 (1). Archived from the original on 9 November 2011. Retrieved 25 September 2008.
  57. ^ "Robot Hall of Fame – Unimate". Carnegie Mellon University. Retrieved 26 September 2023.
  58. ^ "Company History". Fuji Yusoki Kogyo Co. Archived from the original on 4 February 2013. Retrieved 12 September 2008.
  59. ^ "KUKA Industrial Robot FAMULUS". Archived from the original on 10 June 2013. Retrieved 10 January 2008.
  60. ^ "History of Industrial Robots" (PDF). Archived from the original (PDF) on 24 December 2012. Retrieved 27 October 2012.
  61. ^ "History of Industrial Robots". robots.com. Archived from the original on 8 July 2015. Retrieved 24 August 2015.
  62. ^ "About us". Archived from the original on 9 January 2014.{{cite web}}: CS1 maint: unfit URL (link)
  63. ^ "RoboHon: Cute little Robot cum Smartphone | Codexify". Archived from the original on 7 October 2015. Retrieved 6 October 2015.
  64. ^ Tesfaye, Mehret (13 August 2009). "Robots to get their own operating system". Ethiopian Review. Archived from the original on 18 September 2009.
  65. ^ Myoken, Yumiko (January 2009). Research and Development for Next-generation Service Robots in Japan (United Kingdom Foreign Ministry report). Science and Innovation Section, British Embassy, Tokyo, Japan. Archived from the original on 23 July 2012.
  66. ^ Dahiya, Ravinder S.; Valle, Maurizio (30 July 2012). Robotic Tactile Sensing – Technologies and System. Springer. doi:10.1007/978-94-007-0579-1. ISBN 978-94-007-0578-4. Archived from the original on 29 December 2013. Retrieved 8 February 2014.
  67. ^ Dahiya, Ravinder S.; Metta, Giorgio; Cannata, Giorgio; Valle, Maurizio (2011). "Guest Editorial Special Issue on Robotic Sense of Touch". IEEE Transactions on Robotics. 27 (3): 385–388. doi:10.1109/TRO.2011.2155830. S2CID 18608163.
  68. ^ Engelberger, Joseph F. (August 1982). "Robotics in practice: Future capabilities". Electronic Servicing & Technology.
  69. ^ McKeough, Tim (1 December 2008). "The Caterpillar Self-Driving Dump Truck". Fast Company. Archived from the original on 7 June 2011.
  70. ^ Weiss, Richard (9 December 2014). "Self-Driving Trucks to Revolutionize Logistics, DHL Says". Bloomberg News. Archived from the original on 22 July 2016.
  71. ^ Grayson, Wayne (16 October 2014). VIDEO: Why Caterpillar's autonomous mining tech is "completely different from anything" it's ever done. Archived from the original on 13 May 2016.
  72. ^ Takahashi, Kaori (23 April 2015). "Self-driving dump trucks, automatic shovels coming to Australian mines". Archived from the original on 9 May 2016.
  73. ^ Hall, Matthew (20 October 2014). "Forget self-driving Google cars, Australia has self-driving trucks". The Age. Archived from the original on 26 April 2016.
  74. ^ Clark, Charles (19 October 2015). "Australian mining giant Rio Tinto is using these huge self-driving trucks to transport iron ore". Business Insider. Archived from the original on 9 May 2016.
  75. ^ Berman, Dennis K. (23 July 2013). "Daddy, What Was a Truck Driver? Over the Next Two Decades, the Machines Themselves Will Take Over the Driving". The Wall Street Journal. Archived from the original on 4 March 2017.
  76. ^ "Robot can read, learn like a human". NBC News. 6 December 2010. Archived from the original on 28 July 2020. Retrieved 10 December 2010.
  77. ^ Melik, James (3 January 2013). "Robots: Brave New World moves a step closer". Business Daily. BBC World Service. Archived from the original on 14 January 2019.
  78. ^ "Kitchen robot in Riga cooks up new future for fast food". techxplore.com. Retrieved 14 August 2021.
  79. ^ "Tech May Widen the Gap Between Rich and Poor". Futurism. Retrieved 23 August 2021.
  80. ^ "Indo-European root *orbh-". Bartleby. 12 May 2008. Archived from the original on 24 January 2009. Retrieved 8 February 2014.
  81. ^ "robot". Online Etymology Dictionary. Retrieved 26 September 2023.
  82. ^ "Hank Green's First Novel Is An Absolutely Remarkable Thing". Indianapolis Monthly. 1 October 2018. Retrieved 20 November 2019.
  83. ^ "You Are Pronouncing the Word "Robot" Wrong". Daily Kos. Retrieved 20 November 2019.
  84. ^ Ranger, Steve (20 December 2013). "Robots of death, robots of love: The reality of android soldiers and why laws for robots are doomed to failure". TechRepublic. Archived from the original on 27 January 2017. Retrieved 21 January 2017.
  85. ^ Moubarak, Paul M.; Ben-Tzvi, Pinhas (2011). "Adaptive manipulation of a Hybrid Mechanism Mobile Robot". 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE). pp. 113–118. doi:10.1109/ROSE.2011.6058520. ISBN 978-1-4577-0819-0. S2CID 8659998.
  86. ^ a b "Smart Caddy". Seegrid. Archived from the original on 11 October 2007. Retrieved 13 September 2007.
  87. ^ Zhang, Gexiang; Pérez-Jiménez, Mario J.; Gheorghe, Marian (5 April 2017). Real-life Applications with Membrane Computing. Springer. ISBN 978-3-319-55989-6.
  88. ^ Kagan, E.; Shvalb, N.; Gal, I. (2019). Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication, and Swarming. John Wiley and Sons. ISBN 978-1-119-21286-7.PP 65-69.
  89. ^ Patic, Deepack; Ansari, Munsaf; Tendulkar, Dilisha; Bhatlekar, Ritesh; Naik, Vijaykumar; Shailendra, Pawar (2020). "A Survey On Autonomous Military Service Robot". 2020 International Conference on Emerging Trends in Information Technology and Engineering (Ic-ETITE). IEEE International Conference on Emerging Trends in Information Technology and Engineering. pp. 1–7. doi:10.1109/ic-ETITE47903.2020.78. ISBN 978-1-7281-4142-8. S2CID 216588335.
  90. ^ "Definition of a robot" (PDF). Dansk Robot Forening. Archived from the original (PDF) on 28 June 2007. Retrieved 10 September 2007.
  91. ^ "Robotics-related Standards Sites". European Robotics Research Network. Archived from the original on 17 June 2006. Retrieved 15 July 2008.
  92. ^ Lloyd, Caroline; Payne, Jonathan (November 2023). "Digital skills in context: Working with robots in lower-skilled jobs". Economic and Industrial Democracy. 44 (4): 1084–1104. doi:10.1177/0143831X221111416. ISSN 0143-831X.
  93. ^ "Service Robots". International Federation of Robotics. 27 October 2012. Archived from the original on 18 February 2010.
  94. ^ Mitgang, Lee (25 October 1983). "'Nova's' 'Talking Turtle' Pofiles High Priest of School Computer Movement". Gainesville Sun.
  95. ^ Barnard, Jeff (January 29, 1985). "Robots In School: Games Or Learning?". Observer-Reporter. Washington. Archived from the original on September 22, 2015. Retrieved March 7, 2012.
  96. ^ "Education: Marvel of the Bronx". Time. April 1974. Archived from the original on 24 May 2019. Retrieved 19 May 2019.
  97. ^ "Leachim Archives". cyberneticzoo.com. 13 September 2010. Archived from the original on 28 May 2019. Retrieved 29 May 2019.
  98. ^ P. Moubarak, et al., Modular and Reconfigurable Mobile Robotics, Journal of Robotics and Autonomous Systems, 60 (12) (2012) 1648–1663.
  99. ^ Rédaction (25 December 2011). "Le consortium franco-québécois Mix dévoile son projet de voiture volante" (in French). aerobuzz.fr. Archived from the original on 6 October 2012. Retrieved 7 September 2012.
  100. ^ Scanlan, Steve (September 2009). "Modularity in robotics provides automation for all". Electronic Products and Technology. Archived from the original on 5 July 2012. Retrieved 7 September 2012.
  101. ^ "Duct cleaning robots" (PDF). Robotics Design Inc. Plumbing & HVAC. April 2010. Archived (PDF) from the original on 25 April 2013. Retrieved 29 April 2010.
  102. ^ "Universal Robots collaborate outside enclosures | Control Engineering". Controleng.com. February 2013. Archived from the original on 18 May 2013. Retrieved 4 June 2013.
  103. ^ Pittman, Kagan (19 May 2016). "INFOGRAPHIC: A Brief History of Collaborative Robots". Engineering.com. Archived from the original on 10 June 2016.
  104. ^ Hagerty, James (18 September 2012). "Baxter Robot Heads to Work'". The Wall Street Journal. New York. Archived from the original on 10 April 2015. Retrieved 29 May 2014.
  105. ^ Markoff, John (18 September 2012). "A Robot With a Reassuring Touch". The New York Times. Archived from the original on 19 September 2012. Retrieved 18 September 2012.
  106. ^ "A Ping-Pong-Playing Terminator". Popular Science. Archived from the original on 29 March 2011. Retrieved 18 December 2010.
  107. ^ "Best robot 2009". Neterion. Tech Magazine.
  108. ^ "Robots Today and Tomorrow: IFR Presents the 2007 World Robotics Statistics Survey". RobotWorx. 29 October 2007. Archived from the original on 5 February 2008. Retrieved 14 December 2007.
  109. ^ "Japan's robots slug it out to be world champ". Reuters. 2 December 2007. Archived from the original on 13 December 2007. Retrieved 1 January 2007.
  110. ^ a b Ho, C. C.; MacDorman, K. F.; Pramono, Z. A. D. (2008). Human emotion and the uncanny valley: A GLM, MDS, and ISOMAP analysis of robot video ratings (PDF). 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI). Archived (PDF) from the original on 11 September 2008. Retrieved 24 September 2008.
  111. ^ a b "AI Topics / Ethics". Association for the Advancement of Artificial Intelligence. Archived from the original on 5 August 2011.
  112. ^ "Robots can be racist and sexist, new study warns". TRT World. Retrieved 27 June 2022.
  113. ^ "News Index by Topic - ETHICAL & SOCIAL IMPLICATIONS Archive". Association for the Advancement of Artificial Intelligence. Archived from the original on 6 April 2012.
  114. ^ McNealy, Kristie (29 July 2009). "Scientists Predict Artificial Brain in 10 Years". Archived from the original on 29 November 2009.
  115. ^ Moravec, Hans (1999). Robot: Mere Machine to Transcendent Mind. Oxford University Press. ISBN 978-0-19-513630-2. Archived from the original on 5 December 2016.
  116. ^ Weigand, Matthew (17 August 2009). "Robots Almost Conquering Walking, Reading, Dancing". Korea IT times. Archived from the original on 21 July 2011.
  117. ^ Schanze, Jens. "Plug & Pray". Archived from the original on 12 February 2016.
  118. ^ a b Markoff, John (26 July 2009). "Scientists Worry Machines May Outsmart Man". The New York Times. Archived from the original on 1 July 2017.
  119. ^ Vinge, Vernor (1993). "The Coming Technological Singularity: How to Survive in the Post-Human Era". Archived from the original on 1 January 2007.
  120. ^ Singer, P. W. (21 May 2009). "Gaming the Robot Revolution: A military technology expert weighs in on Terminator: Salvation". Slate. Archived from the original on 27 January 2010.
  121. ^ "Robot takeover". gyre.org. Archived from the original on 19 April 2012.
  122. ^ "Robotapocalypse". Engadget. Archived from the original on 4 May 2018.
  123. ^ Palmer, Jason (3 August 2009). "Call for debate on killer robots". BBC News. Archived from the original on 7 August 2009.
  124. ^ Axe, David (13 August 2009). "Robot three-way portends autonomous future". Wired. Archived from the original on 7 November 2012.
  125. ^ Mick, Jason (17 February 2009). "New Navy-funded Report Warns of War Robots Going "Terminator"". DailyTech. Archived from the original on 28 July 2009.
  126. ^ Flatley, Joseph L. (18 February 2009). "Navy report warns of robot uprising, suggests a strong moral compass". Engadget. Archived from the original on 4 June 2011.
  127. ^ Lamb, Gregory M. (17 February 2010). "New role for robot warriors". The Christian Science Monitor. Archived from the original on 24 September 2015.
  128. ^ "Biomass-Eating Military Robot Is a Vegetarian, Company Says". Fox News. 16 July 2009. Archived from the original on 3 August 2009. Retrieved 31 July 2009.
  129. ^ Shachtman, Noah (17 July 2009). "Danger Room What's Next in National Security Company Denies its Robots Feed on the Dead". Wired. Archived from the original on 29 July 2009. Retrieved 31 July 2009.
  130. ^ "Cyclone Power Technologies Responds to Rumors about "Flesh Eating" Military Robot" (PDF) (Press release). RTI Inc. 16 July 2009. pp. 1–2. Archived (PDF) from the original on 23 August 2009.
  131. ^ "Brief Project Overview, EATR: Energetically Autonomous Tactical Robot" (PDF). RTI Inc. 6 April 2009. p. 22.
  132. ^ Manuel de Landa, War in the Age of Intelligent Machines, New York: Zone Books, 1991, 280 pages, Hardcover, ISBN 0-942299-76-0; Paperback, ISBN 0-942299-75-2.
  133. ^ McGaughey, E (2022) [January 10, 2018]. "Will Robots Automate Your Job Away? Full Employment, Basic Income, and Economic Democracy". Industrial Law Journal. 51 (3). doi:10.2139/ssrn.3119589. SSRN 3119589.
  134. ^ Porter, Eduardo; Manjoo, Farhad (9 March 2016). "A Future Without Jobs? Two Views of the Changing Work Force". The New York Times. Archived from the original on 15 February 2017. Retrieved 23 February 2017.
  135. ^ Thompson, Derek (July–August 2015). "A World Without Work". The Atlantic. Archived from the original on 27 February 2017. Retrieved 11 March 2017.
  136. ^ Yan (30 July 2011). "Foxconn to replace workers with 1 million robots in 3 years". Xinhua News Agency. Archived from the original on 8 October 2011. Retrieved 4 August 2011.
  137. ^ "Judgment day – employment law and robots in the workplace". futureofworkhub. 20 November 2014. Archived from the original on 3 April 2015. Retrieved 7 January 2015.
  138. ^ Delaney, Kevin (17 February 2017). "The robot that takes your job should pay taxes, says Bill Gates". Quartz. Archived from the original on 5 March 2017. Retrieved 4 March 2017.
  139. ^ "The Changing Nature of Work". Archived from the original on 30 September 2018. Retrieved 8 October 2018.
  140. ^ Talbot, Ben; Dayoub, Feras; Corke, Peter; Wyeth, Gordon (December 2021). "Robot Navigation in Unseen Spaces Using an Abstract Map". IEEE Transactions on Cognitive and Developmental Systems. 13 (4): 791–805. arXiv:2001.11684. doi:10.1109/TCDS.2020.2993855. ISSN 2379-8939. S2CID 211004032.
  141. ^ "Contact Systems Pick and Place robots". Contact Systems. Archived from the original on 14 September 2008. Retrieved 21 September 2008.
  142. ^ "SMT pick-and-place equipment". Assembleon. Archived from the original on 3 August 2008. Retrieved 21 September 2008.
  143. ^ "The Basics of Automated Guided Vehicles". Savant Automation, AGV Systems. Archived from the original on 8 October 2007. Retrieved 13 September 2007.
  144. ^ "Automatic Trailer Loading Vehicle - SmartLoader". Archived from the original on 23 May 2013. Retrieved 2 September 2011.
  145. ^ "SpeciMinder". CSS Robotics. Archived from the original on 1 July 2009. Retrieved 25 September 2008.
  146. ^ "ADAM robot". RMT Robotics. Archived from the original on 17 May 2006. Retrieved 25 September 2008.
  147. ^ "Can Do". Aethon. Archived from the original on 3 August 2008. Retrieved 25 September 2008.
  148. ^ "Eskorta robot". Fennec Fox Technologies. Archived from the original on 6 December 2011. Retrieved 25 November 2011.
  149. ^ "Delivery Robots & AGVs". Mobile Robots. Archived from the original on 26 February 2010. Retrieved 25 September 2008.
  150. ^ "Dante II, list of published papers". The Robotics Institute of Carnegie Mellon University. Archived from the original on 15 May 2008. Retrieved 16 September 2007.
  151. ^ "Mars Pathfinder Mission: Rover Sojourner". NASA. 8 July 1997. Archived from the original on 1 February 2017. Retrieved 19 September 2007.
  152. ^ a b "Robot assisted surgery: da Vinci Surgical System". Brown University Division of Biology and Medicine. Archived from the original on 16 September 2007. Retrieved 19 September 2007.
  153. ^ "The Utilization of Robotic Space Probes in Deep Space Missions:Case Study of AI Protocols and Nuclear Power Requirements". Proceedings of 2011 International Conference on Mechanical Engineering, Robotics and Aerospace. October 2011.
  154. ^ Foust, Jeff (16 January 2012). "Review: Space Probes". Archived from the original on 31 August 2012. Review of Space Probes: 50 Years of Exploration from Luna 1 to New Horizons, by Philippe Séguéla Firefly, 2011.
  155. ^ "Celebrities set to reach for Atwood's LongPen". Canadian Broadcasting Corporation. 15 August 2007. Archived from the original on 22 May 2009. Retrieved 21 September 2008.
  156. ^ Graham, Stephen (12 June 2006). "America's robot army". New Statesman. Archived from the original on 17 February 2012. Retrieved 24 September 2007.
  157. ^ "Battlefield Robots: to Iraq, and Beyond". Defense Industry Daily. 20 June 2005. Archived from the original on 26 August 2007. Retrieved 24 September 2007.
  158. ^ Shachtman, Noah (November 2005). "The Baghdad Bomb Squad". Wired. Archived from the original on 22 April 2008. Retrieved 14 September 2007.
  159. ^ Shachtman, Noah (2 August 2007). "WIRED: First Armed Robots on Patrol in Iraq (Updated)". Wired. Retrieved 26 September 2023.
  160. ^ Shachtman, Noah (28 March 2013). "WIRED: Armed Robots Pushed To Police". Wired. Archived from the original on 12 April 2009. Retrieved 8 February 2014.
  161. ^ "America's Robot Army: Are Unmanned Fighters Ready for Combat?". Popular Mechanics. 17 December 2009. Retrieved 26 September 2023.
  162. ^ Hagerman, Eric (23 February 2010). "The Present and Future of Unmanned Drone Aircraft: An Illustrated Field Guide". Popular Science. Archived from the original on 26 February 2010.
  163. ^ Higgins, Kat (12 July 2010). "Taranis: The £143m Fighter Jet Of The Future". Sky News Online. Archived from the original on 15 July 2010. Retrieved 13 July 2010.
  164. ^ Emery, Daniel (12 July 2010). "MoD lifts lid on unmanned combat plane prototype". BBC News. Archived from the original on 12 July 2010. Retrieved 12 July 2010.
  165. ^ AAAI Presidential Panel on Long-Term AI Futures 2008–2009 Study (Report). Association for the Advancement of Artificial Intelligence. Archived from the original on 28 August 2009. Retrieved 26 July 2009.
  166. ^ "Why We Need Friendly AI". 3 Laws Unsafe. July 2004. Archived from the original on 24 May 2012. Retrieved 27 July 2009.{{cite web}}: CS1 maint: unfit URL (link)
  167. ^ "Robotic age poses ethical dilemma". BBC News. 7 March 2007. Archived from the original on 15 February 2009. Retrieved 2 January 2007.
  168. ^ Christensen, Bill (26 May 2006). "Asimov's First Law: Japan Sets Rules for Robots". Live Science. Archived from the original on 13 October 2008.
  169. ^ "Japan drafts rules for advanced robots". UPI. 6 April 2007. Archived from the original on 11 October 2008 – via physorg.com.
  170. ^ "Building a Safe and Secure Social System Incorporating the Coexistence of Humans and Robots" (Press release). Ministry of Economy, Trade and Industry. March 2009. Archived from the original on 27 September 2011.
  171. ^ Weng, Yueh-Hsuan; Chen, Chien-Hsun; Sun, Chuen-Tsai (25 April 2009). "Toward the Human–Robot Co-Existence Society: On Safety Intelligence for Next Generation Robots". International Journal of Social Robotics. 1 (4): 267–282. doi:10.1007/s12369-009-0019-1. S2CID 36232530.
  172. ^ Fox, Stuart (19 August 2009). "Evolving Robots Learn To Lie To Each Other". Popular Science.
  173. ^ "Rio Tinto Media Center – Rio Tinto boosts driverless truck fleet to 150 under Mine of the Future™ programme". Riotinto.com. Archived from the original on 24 April 2013. Retrieved 8 February 2014.
  174. ^ "BHP Billiton hits go on autonomous drills". Retrieved 13 February 2023.
  175. ^ Adrian (6 September 2011). "AIMEX blog – Autonomous mining equipment". Adrianboeing.blogspot.com. Archived from the original on 18 December 2013. Retrieved 8 February 2014.
  176. ^ "Atlas Copco – RCS". Atlascopco.com. Archived from the original on 7 February 2014. Retrieved 8 February 2014.
  177. ^ "Transmin – Rocklogic". Rocklogic.com.au. Archived from the original on 25 January 2014. Retrieved 8 February 2014.
  178. ^ Topping, Mike; Smith, Jane (1999). "An Overview Of Handy 1, A Rehabilitation Robot For The Severely Disabled". CSUN Center on Disabilities Conference Proceedings. 1999. Proceedings: Session 59. Archived from the original on 5 August 2009. Retrieved 14 August 2010. The early version of the Handy 1 system consisted of a Cyber 310 robotic arm with five degrees of freedom plus a gripper.
  179. ^ Jeavans, Christine (29 November 2004). "Welcome to the ageing future". BBC News. Archived from the original on 16 October 2007. Retrieved 26 September 2007.
  180. ^ "Statistical Handbook of Japan: Chapter 2 Population". Statistics Bureau & Statistical Research and Training Institute. Archived from the original on 6 September 2013. Retrieved 26 September 2007.
  181. ^ "Robotic future of patient care". E-Health Insider. 16 August 2007. Archived from the original on 21 November 2007. Retrieved 26 September 2007.
  182. ^ Gebhart, Fred (4 July 2019). "The Future of Pharmacy Automation". Drug Topics Journal. Drug Topics July 2019. 163 (7). Retrieved 16 October 2022.
  183. ^ Dolan, Kerry A. "R2D2 Has Your Pills". Forbes. Retrieved 20 November 2019.
  184. ^ "Nanobots Play Football". Techbirbal. Archived from the original on 3 April 2013. Retrieved 8 February 2014.
  185. ^ "KurzweilAI.net". 21 June 2010. Archived from the original on 21 June 2010. Retrieved 5 July 2016.
  186. ^ "(Eric Drexler 1986) Engines of Creation, The Coming Era of Nanotechnology". E-drexler.com. Archived from the original on 6 September 2014. Retrieved 8 February 2014.
  187. ^ Phoenix, Chris (December 2003). "Of Chemistry, Nanobots, and Policy". Center for Responsible Nanotechnology. Archived from the original on 11 October 2007. Retrieved 28 October 2007.
  188. ^ "Nanotechnology pioneer slays 'grey goo' myths". ScienceDaily. 9 June 2004.
  189. ^ Toth-Fejel, Tihamer (May 1996). LEGO(TM)s to the Stars: Active MesoStructures, Kinetic Cellular Automata, and Parallel Nanomachines for Space Applications. 1996 International Space Development Conference. New York City. Archived from the original on 27 September 2007.
  190. ^ Fitch, Robert; Butler, Zack; Rus, Daniela. "Reconfiguration Planning for Heterogeneous Self-Reconfiguring Robots" (PDF). Massachusetts Institute of Technology. Archived from the original (PDF) on 19 June 2007.
  191. ^ "Researchers build robot scientist that has already discovered a new catalyst". phys.org. Retrieved 16 August 2020.
  192. ^ Burger, Benjamin; Maffettone, Phillip M.; Gusev, Vladimir V.; Aitchison, Catherine M.; Bai, Yang; Wang, Xiaoyan; Li, Xiaobo; Alston, Ben M.; Li, Buyi; Clowes, Rob; Rankin, Nicola; Harris, Brandon; Sprick, Reiner Sebastian; Cooper, Andrew I. (July 2020). "A mobile robotic chemist". Nature. 583 (7815): 237–241. Bibcode:2020Natur.583..237B. doi:10.1038/s41586-020-2442-2. ISSN 1476-4687. PMID 32641813. S2CID 220420261. Retrieved 16 August 2020.
  193. ^ Schwartz, John (27 March 2007). "In the Lab: Robots That Slink and Squirm". The New York Times. Archived from the original on 3 April 2015. Retrieved 22 September 2008.
  194. ^ Eschner, Kat (25 March 2019). "Squishy robots now have squishy computers to control them". Popular Science.
  195. ^ "The softer side of robotics". May 2019. Retrieved 13 February 2023.
  196. ^ "SRI/MobileRobots". activrobots.com. Archived from the original on 12 February 2009.
  197. ^ "Open-source micro-robotic project". Archived from the original on 11 November 2007. Retrieved 28 October 2007.
  198. ^ "Swarm". iRobot Corporation. Archived from the original on 27 September 2007. Retrieved 28 October 2007.
  199. ^ Knapp, Louise (21 December 2000). "Look, Up in the Sky: Robofly". Wired. Archived from the original on 26 June 2012. Retrieved 25 September 2008.
  200. ^ "The Cutting Edge of Haptics". MIT Technology review. Retrieved 25 September 2008.
  201. ^ "Artists & Robots Exposition au Grand Palais du 5 avril au 9 juillet 2018". 14 August 2019. Archived from the original on 14 August 2019. Retrieved 3 February 2020.
  202. ^ "Comic Potential: Q&A with Director Stephen Cole". Cornell University. Archived from the original on 3 January 2009. Retrieved 21 November 2007.
  203. ^ Freedman, Carl, ed. (2005). Conversations with Isaac Asimov (1. ed.). Jackson: Univ. Press of Mississippi. p. vii. ISBN 978-1-57806-738-1. Retrieved 4 August 2011. ... quite possibly the most prolific
  204. ^ Oakes, Elizabeth H. (2004). American writers. New York: Facts on File. p. 24. ISBN 978-0-8160-5158-8. Retrieved 4 August 2011. most prolific authors asimov.
  205. ^ He wrote "over 460 books as well as thousands of articles and reviews", and was the "third most prolific writer of all time [and] one of the founding fathers of modern science fiction". White, Michael (2005). Isaac Asimov: a life of the grand master of science fiction. Carroll & Graf. pp. 1–2. ISBN 978-0-7867-1518-3. Archived from the original on 5 December 2016. Retrieved 25 September 2016.
  206. ^ R. Clarke. "Asimov's Laws of Robotics – Implications for Information Technology". Australian National University/IEEE. Archived from the original on 22 July 2008. Retrieved 25 September 2008.
  207. ^ Seiler, Edward; Jenkins, John H. (27 June 2008). "Isaac Asimov FAQ". Isaac Asimov Home Page. Archived from the original on 16 July 2012. Retrieved 24 September 2008.
  208. ^ White, Michael (2005). Isaac Asimov: A Life of the Grand Master of Science Fiction. Carroll & Graf. p. 56. ISBN 978-0-7867-1518-3.
  209. ^ "Intelligent machines: Call for a ban on robots designed as sex toys". BBC News. 15 September 2015. Archived from the original on 30 June 2018. Retrieved 21 June 2018.
  210. ^ Abdollahi, Hojjat; Mollahosseini, Ali; Lane, Josh T.; Mahoor, Mohammad H. (November 2017). A pilot study on using an intelligent life-like robot as a companion for elderly individuals with dementia and depression. 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). pp. 541–546. arXiv:1712.02881. Bibcode:2017arXiv171202881A. doi:10.1109/humanoids.2017.8246925. ISBN 978-1-5386-4678-6. S2CID 1962455.

External links