Maglev (derivado de levitación magnética ) es un sistema de transporte ferroviario cuyo material rodante es levitado por electroimanes en lugar de rodar sobre ruedas, eliminando la resistencia a la rodadura . [1] [2] [3]
En comparación con los ferrocarriles convencionales, los trenes de levitación magnética pueden alcanzar velocidades máximas más altas, una aceleración y desaceleración superiores, menores costos de mantenimiento, mejor manejo de gradientes y menor ruido. Sin embargo, son más costosos de construir, no pueden utilizar la infraestructura existente y consumen más energía a altas velocidades. [4]
Los trenes de levitación magnética han establecido varios récords de velocidad . El récord de velocidad de un tren de 603 km/h (375 mph) lo estableció el maglev japonés experimental de la serie L0 en 2015. [5] Desde 2002 hasta 2021, el récord de la velocidad operativa más alta de un tren de pasajeros de 431 kilómetros por hora (268 mph) lo ostentaba el tren maglev de Shanghái , que utiliza tecnología alemana Transrapid . [6] El servicio conecta el Aeropuerto Internacional de Shanghái Pudong y las afueras del centro de Pudong , Shanghái . A su velocidad máxima histórica, cubrió la distancia de 30,5 kilómetros (19 mi) en poco más de 8 minutos.
Los distintos sistemas de levitación magnética logran la levitación de distintas maneras, que a grandes rasgos se dividen en dos categorías: suspensión electromagnética (EMS) y suspensión electrodinámica (EDS) . La propulsión suele estar a cargo de un motor lineal . [7] La potencia necesaria para la levitación no suele representar un gran porcentaje del consumo energético total de un sistema de levitación magnética de alta velocidad. [8] En cambio, superar la resistencia requiere la mayor parte de la energía. Se ha propuesto la tecnología Vactrain como un medio para superar esta limitación.
A pesar de más de un siglo de investigación y desarrollo, hoy en día sólo hay seis trenes de levitación magnética en funcionamiento: tres en China, dos en Corea del Sur y uno en Japón. [9] [10]
A finales de la década de 1940, el ingeniero eléctrico británico Eric Laithwaite , profesor del Imperial College de Londres , desarrolló el primer modelo funcional a tamaño real del motor de inducción lineal . Se convirtió en profesor de ingeniería eléctrica pesada en el Imperial College en 1964, donde continuó su exitoso desarrollo del motor lineal. [11] Dado que los motores lineales no requieren contacto físico entre el vehículo y la vía guía, se convirtieron en un elemento común en los sistemas de transporte avanzados en las décadas de 1960 y 1970. Laithwaite se unió a uno de esos proyectos, el Tracked Hovercraft RTV-31, con sede cerca de Cambridge, Reino Unido, aunque el proyecto se canceló en 1973. [12]
Naturalmente, el motor lineal también era adecuado para su uso con sistemas de levitación magnética. A principios de la década de 1970, Laithwaite descubrió una nueva disposición de imanes, el río magnético , que permitía que un solo motor lineal produjera tanto sustentación como empuje hacia adelante, lo que permitió construir un sistema de levitación magnética con un solo conjunto de imanes. Trabajando en la División de Investigación de Ferrocarriles Británicos en Derby , junto con equipos de varias empresas de ingeniería civil, el sistema de "flujo transversal" se convirtió en un sistema funcional.
El primer tren de levitación magnética comercial se llamó simplemente " MAGLEV " y se inauguró oficialmente en 1984 cerca de Birmingham , Inglaterra. Funcionaba en un tramo elevado de 600 metros (2000 pies) de vía de monorraíl entre el aeropuerto de Birmingham y la estación de tren internacional de Birmingham , a velocidades de hasta 42 kilómetros por hora (26 mph). El sistema se cerró en 1995 debido a problemas de fiabilidad. [13]
Se concedieron patentes de transporte de alta velocidad a varios inventores en todo el mundo. [14] La primera patente relevante, la patente estadounidense 714.851 (2 de diciembre de 1902), concedida a Albert C. Albertson, utilizaba levitación magnética para quitar parte del peso de las ruedas mientras se utilizaba propulsión convencional.
Las primeras patentes de Estados Unidos para un tren propulsado por motor lineal fueron otorgadas al inventor alemán Alfred Zehden [de] . El inventor recibió la patente estadounidense 782,312 (14 de febrero de 1905) y la patente estadounidense RE12700 (21 de agosto de 1907). [nota 1] En 1907, FS Smith desarrolló otro sistema de transporte electromagnético temprano. [15] En 1908, el alcalde de Cleveland , Tom L. Johnson, presentó una patente para un "ferrocarril de alta velocidad" sin ruedas que levitaba mediante un campo magnético inducido. [16] Conocido en broma como "Greased Lightning", el vagón suspendido funcionaba en una pista de prueba de 90 pies en el sótano de Johnson "absolutamente silencioso[y] sin la menor vibración". [17] Una serie de patentes alemanas para trenes de levitación magnética propulsados por motores lineales fueron otorgadas a Hermann Kemper entre 1937 y 1941. [nota 2] Un tren de levitación magnética temprano fue descrito en la patente estadounidense 3,158,765 , "Sistema magnético de transporte", por GR Polgreen el 25 de agosto de 1959. El primer uso de "maglev" en una patente de los Estados Unidos fue en "Sistema de guía de levitación magnética" [18] por Canadian Patents and Development Limited .
En 1912, el inventor franco-estadounidense Émile Bachelet demostró un modelo de tren con levitación y propulsión electromagnética en Mount Vernon, Nueva York. [19] La primera patente relacionada de Bachelet, la patente estadounidense 1.020.942, fue otorgada en 1912. La propulsión electromagnética se realizaba por atracción del hierro en el tren mediante solenoides de corriente continua espaciados a lo largo de la vía. La levitación electromagnética se debía a la repulsión de la placa base de aluminio del tren por los electroimanes de corriente pulsante debajo de la vía. Los pulsos eran generados por el propio interruptor sincronizador de Bachelet ( patente estadounidense 986.039) alimentado con 220 V CA. A medida que el tren se movía, cambiaba la energía a la sección de la vía en la que se encontraba. Bachelet continuó demostrando su modelo en Londres, Inglaterra, en 1914, lo que resultó en el registro de Bachelet Levitated Railway Syndicate Limited el 9 de julio en Londres, solo unas semanas antes del comienzo de la Primera Guerra Mundial. [20]
La segunda patente relacionada de Bachelet, la patente estadounidense 1.020.943, concedida el mismo día que la primera, tenía los electroimanes de levitación en el tren y la vía era de chapa de aluminio. En la patente afirmaba que se trataba de una construcción mucho más barata, pero no lo demostraba.
En 1959, mientras se encontraba retrasado en el tráfico en el puente Throgs Neck , James Powell , un investigador del Laboratorio Nacional de Brookhaven (BNL), pensó en utilizar un transporte levitado magnéticamente. [21] Powell y su colega del BNL, Gordon Danby, desarrollaron un concepto de levitación magnética utilizando imanes estáticos montados en un vehículo en movimiento para inducir fuerzas electrodinámicas de elevación y estabilización en bucles de forma especial, como bobinas en forma de 8 en una vía guía. [22] Estos fueron patentados en 1968-1969. [23]
Japón opera dos trenes de levitación magnética desarrollados independientemente: uno es el HSST (y su descendiente, la línea Linimo ) de Japan Airlines y el otro, más conocido, es el SCMaglev de Central Japan Railway Company .
El desarrollo de este último comenzó en 1969. El primer recorrido exitoso del SCMaglev se realizó en una vía corta en el Instituto de Investigación Técnica Ferroviaria de los Ferrocarriles Nacionales Japoneses (JNR) en 1972. [24] Los trenes Maglev en la pista de pruebas de Miyazaki (una pista de pruebas posterior de 7 km de longitud) alcanzaron regularmente los 517 kilómetros por hora (321 mph) en 1979. Después de que un accidente destruyera el tren, se seleccionó un nuevo diseño. En Okazaki , Japón (1987), el SCMaglev se utilizó para pruebas de conducción en la exposición de Okazaki. Las pruebas en Miyazaki continuaron durante la década de 1980, antes de transferirse a una pista de pruebas mucho más larga, de 20 kilómetros (12 millas) de largo, en Yamanashi en 1997. Desde entonces, la pista se ha ampliado a casi 43 kilómetros (27 millas). El récord mundial de velocidad de 603 kilómetros por hora (375 mph) para trenes tripulados se estableció allí en 2015.
El desarrollo del HSST comenzó en 1974. En Tsukuba , Japón (1985), el HSST-03 ( Linimo ) se hizo popular en la Exposición Mundial de Tsukuba , a pesar de su baja velocidad máxima de 30 kilómetros por hora (19 mph). En Saitama , Japón (1988), el HSST-04-1 fue revelado en la exposición de Saitama en Kumagaya . Su velocidad más rápida registrada fue de 300 kilómetros por hora (190 mph). [25]
La construcción de una nueva línea de levitación magnética de alta velocidad, el Chuo Shinkansen , comenzó en 2014. Se está construyendo ampliando la pista de pruebas SCMaglev en Yamanashi en ambas direcciones. Se desconoce la fecha de finalización, ya que la estimación de 2027 ya no es posible debido a que el gobierno local rechazó un permiso de construcción. [26]
El Transrapid 05 fue el primer tren de levitación magnética con propulsión de estator largo autorizado para el transporte de pasajeros. En 1979, se inauguró en Hamburgo una vía de 908 metros (2979 pies) para la primera Exposición Internacional de Transportes [de] (IVA 79). El interés fue tal que las operaciones se ampliaron tres meses después de finalizada la exposición, habiendo transportado a más de 50.000 pasajeros. Se volvió a montar en Kassel en 1980.
En 1979, la ciudad soviética de Ramenskoye ( óblast de Moscú ) construyó un campo de pruebas experimental para realizar experimentos con automóviles con suspensión magnética. El campo de pruebas consistía en una rampa de 60 metros que luego se amplió a 980 metros. [27] Desde finales de la década de 1970 hasta la década de 1980, se construyeron cinco prototipos de automóviles que recibieron designaciones de TP-01 (ТП-01) a TP-05 (ТП-05). [28] Se suponía que los primeros automóviles alcanzarían una velocidad de hasta 100 kilómetros por hora (62 mph).
La construcción de una vía de levitación magnética utilizando la tecnología de Ramenskoye comenzó en la República Socialista Soviética de Armenia en 1987 [29] y estaba previsto que se completara en 1991. Se suponía que la vía conectaría las ciudades de Ereván y Sevan a través de la ciudad de Abovyan . [30] La velocidad de diseño original era de 250 kilómetros por hora (160 mph), que luego se redujo a 180 kilómetros por hora (110 mph). [31] Sin embargo, el terremoto de Spitak en 1988 y la Primera Guerra de Nagorno-Karabaj hicieron que el proyecto se paralizara. Al final, el paso elevado solo se construyó parcialmente. [32]
A principios de los años 1990, el proyecto del tren de levitación magnética fue continuado por el Centro de Investigación de Ingeniería "TEMP" (ИНЦ "ТЭМП") [33], esta vez por orden del gobierno de Moscú . El proyecto se denominó V250 (В250). La idea era construir un tren de levitación magnética de alta velocidad para conectar Moscú con el aeropuerto de Sheremetyevo . El tren constaría de vagones de 64 plazas y funcionaría a velocidades de hasta 250 kilómetros por hora (160 mph). [28] En 1993, debido a la crisis financiera , el proyecto fue abandonado. Sin embargo, desde 1999 el centro de investigación "TEMP" había estado participando como co-desarrollador en la creación de los motores lineales para el sistema de monorraíl de Moscú .
El primer sistema de levitación magnética comercial del mundo fue un transbordador de levitación magnética de baja velocidad que funcionó entre la terminal del aeropuerto internacional de Birmingham y la cercana estación de tren internacional de Birmingham entre 1984 y 1995. [34] Su longitud de vía era de 600 metros (2000 pies), y los trenes levitaban a una altitud de 15 milímetros [0,59 pulgadas], levitados por electroimanes y propulsados con motores de inducción lineal. [35] Funcionó durante 11 años y al principio fue muy popular entre los pasajeros, [36] pero los problemas de obsolescencia con los sistemas electrónicos lo hicieron progresivamente poco fiable [37] con el paso de los años, lo que llevó a su cierre en 1995. Uno de los vagones originales se exhibe ahora en Railworld en Peterborough, junto con el vehículo de tren flotante RTV31 . Otro se exhibe en el Museo Nacional del Ferrocarril en York.
Existían varias condiciones favorables cuando se construyó el vínculo: [ cita requerida ]
Después de que el sistema cerró en 1995, la vía original permaneció inactiva [38] hasta 2003, cuando se inauguró un sistema de reemplazo impulsado por cable , el transportador de personas AirRail Link Cable Liner. [39] [40]
La empresa alemana de trenes de levitación magnética Transrapid tenía una pista de pruebas en Emsland con una longitud total de 31,5 kilómetros. La línea de vía única discurría entre Dörpen y Lathen con bucles de giro en cada extremo. Los trenes circulaban regularmente a una velocidad de hasta 420 kilómetros por hora. En el proceso de prueba se transportaban pasajeros que pagaban por entrar. La construcción de la instalación de pruebas comenzó en 1980 y finalizó en 1984.
En 2006, un tren de levitación magnética se accidentó en Lathen y murieron 23 personas. Se descubrió que la causa fue un error humano en la ejecución de los controles de seguridad. A partir de 2006, no se transportaron pasajeros. A finales de 2011, la licencia de explotación expiró y no se renovó, y a principios de 2012 se concedió el permiso de demolición de sus instalaciones, incluidas las vías y la fábrica. [41]
En marzo de 2021 se informó que el CRRC estaba investigando la reactivación de la pista de pruebas de Emsland. [42] En mayo de 2019, CRRC había presentado su prototipo "CRRC 600", que está diseñado para alcanzar los 600 kilómetros por hora (370 mph).
En Vancouver, Canadá, el HSST-03 de HSST Development Corporation ( Japan Airlines y Sumitomo Corporation ) se exhibió en la Expo 86 , [43] y corrió en una pista de prueba de 400 metros (0,25 mi) que proporcionó a los invitados un paseo en un solo automóvil a lo largo de una sección corta de la pista en el recinto ferial. [44] Fue retirado después de la feria. Se mostró en la Expo Aoi en 1987 y ahora está en exhibición estática en Okazaki Minami Park.
En 1993, Corea del Sur completó el desarrollo de su propio tren maglev, exhibido en la Taejŏn Expo '93 , que se desarrolló aún más hasta convertirse en un maglev completo capaz de viajar hasta 110 kilómetros por hora (68 mph) en 2006. Este modelo final se incorporó al Incheon Airport Maglev que se inauguró el 3 de febrero de 2016, convirtiendo a Corea del Sur en el cuarto país del mundo en operar su propio maglev desarrollado por él mismo después del Aeropuerto Internacional de Birmingham del Reino Unido, [46] el Berlin M-Bahn de Alemania , [47] y el Linimo de Japón . [48] Une el Aeropuerto Internacional de Incheon con la Estación Yongyu y el Complejo de Ocio en la isla de Yeongjong . [49] Ofrece una transferencia al Metro Metropolitano de Seúl en la Estación del Aeropuerto Internacional de Incheon de AREX y se ofrece de forma gratuita a cualquier persona que desee viajar, operando entre las 9 a. m. y las 6 p. m. con intervalos de 15 minutos. [50]
El sistema de levitación magnética fue desarrollado conjuntamente por el Instituto de Maquinaria y Materiales de Corea del Sur (KIMM) y Hyundai Rotem . [51] [52] [53] Tiene 6,1 kilómetros (3,8 millas) de largo, con seis estaciones y una velocidad operativa de 110 kilómetros por hora (68 mph). [54]
Se prevén dos etapas más de 9,7 kilómetros y 37,4 kilómetros, y una vez finalizada se convertirá en una línea circular.
Se cerró en septiembre de 2023.
El sistema de transporte Bögl (TSB) es un sistema de levitación magnética sin conductor desarrollado por la empresa de construcción alemana Max Bögl desde 2010. Su principal uso previsto es para distancias cortas y medias (hasta 30 km) y velocidades de hasta 150 km/h para usos como los servicios de transporte al aeropuerto . La empresa ha estado realizando pruebas en una pista de pruebas de 820 metros de largo en su sede de Sengenthal , Alto Palatinado , Alemania , desde 2012, registrando más de 100.000 pruebas que cubren una distancia de más de 65.000 km a fecha de 2018.
En 2018, Max Bögl firmó una empresa conjunta con la empresa china Chengdu Xinzhu Road & Bridge Machinery Co. y el socio chino recibió derechos exclusivos de producción y comercialización del sistema en China. La empresa conjunta construyó una línea de demostración de 3,5 km (2,2 mi) cerca de Chengdu , China, y dos vehículos fueron transportados allí por aire en junio de 2020. [55] En febrero de 2021, un vehículo en la pista de pruebas china alcanzó una velocidad máxima de 169 km/h (105 mph). [56]
Según la Junta Internacional de Maglev, hay al menos cuatro programas de investigación de maglev en marcha en China en: la Universidad Jiaotong del Suroeste (Chengdu), la Universidad de Tongji (Shanghai), CRRC Tangshan-Changchun Railway Vehicle Co. y Chengdu Aircraft Industry Group . [57] El último prototipo de alta velocidad , presentado en julio de 2021, fue fabricado por CRRC Qingdao Sifang . [58]
El desarrollo de los sistemas de velocidad baja a media, es decir, 100-200 km/h (62-124 mph), [59] por parte de la CRRC ha llevado a la apertura de líneas como el Changsha Maglev Express en 2016 y la Línea S1 en Beijing en 2017. En abril de 2020, un nuevo modelo capaz de alcanzar los 160 km/h (99 mph) y compatible con la línea de Changsha completó las pruebas. El vehículo, en desarrollo desde 2018, tiene un aumento del 30 por ciento en la eficiencia de tracción y un aumento del 60 por ciento en la velocidad con respecto al material en uso en la línea desde entonces. [60] Los vehículos entraron en servicio en julio de 2021 con una velocidad máxima de 140 km/h (87 mph). [61] CRRC Zhuzhou Locomotive dijo en abril de 2020 que está desarrollando un modelo capaz de alcanzar los 200 km/h (120 mph). [60]
Hay dos iniciativas en competencia para lograr sistemas de levitación magnética de alta velocidad, es decir, de 300 a 620 km/h (190 a 390 mph).
En el imaginario público, el término "maglev" a menudo evoca el concepto de una vía elevada de monorraíl con un motor lineal . Los sistemas de levitación magnética pueden ser monorraíl o de doble raíl (el SCMaglev MLX01, por ejemplo, utiliza una vía similar a una zanja) y no todos los trenes de monorraíl son de levitación magnética. Algunos sistemas de transporte ferroviario incorporan motores lineales, pero utilizan el electromagnetismo solo para la propulsión , sin hacer levitar el vehículo. Dichos trenes tienen ruedas y no son de levitación magnética. [nota 3] Las vías de levitación magnética, monorraíl o no, también pueden construirse a nivel o bajo tierra en túneles. Por el contrario, las vías que no son de levitación magnética, monorraíl o no, también pueden ser elevadas o subterráneas. Algunos trenes de levitación magnética incorporan ruedas y funcionan como vehículos con ruedas propulsados por motores lineales a velocidades más lentas, pero levitan a velocidades más altas. Este suele ser el caso de los trenes de levitación magnética con suspensión electrodinámica . Los factores aerodinámicos también pueden desempeñar un papel en la levitación de dichos trenes.
Los dos tipos principales de tecnología de levitación magnética son: [69]
En los sistemas de suspensión electromagnética (EMS), el tren levita por atracción sobre un raíl ferromagnético (normalmente de acero) mientras que los electroimanes , fijados al tren, están orientados hacia el raíl desde abajo. El sistema suele estar dispuesto sobre una serie de brazos en forma de C, con la parte superior del brazo fijada al vehículo y el borde interior inferior que contiene los imanes. El raíl está situado dentro de la C, entre los bordes superior e inferior.
La atracción magnética varía inversamente con el cuadrado de la distancia, por lo que pequeños cambios en la distancia entre los imanes y el riel producen fuerzas muy variables. Estos cambios en la fuerza son dinámicamente inestables: una ligera divergencia con respecto a la posición óptima tiende a crecer, lo que requiere sofisticados sistemas de retroalimentación para mantener una distancia constante con respecto a la vía (aproximadamente 15 milímetros [0,59 pulgadas]). [72] [73]
La principal ventaja de los sistemas de levitación magnética suspendidos es que funcionan a todas las velocidades, a diferencia de los sistemas electrodinámicos, que solo funcionan a una velocidad mínima de unos 30 kilómetros por hora (19 mph). Esto elimina la necesidad de un sistema de suspensión independiente de baja velocidad y puede simplificar el diseño de la vía. En el lado negativo, la inestabilidad dinámica exige tolerancias de vía finas, lo que puede contrarrestar esta ventaja. A Eric Laithwaite le preocupaba que para cumplir con las tolerancias requeridas, el espacio entre los imanes y el raíl tendría que aumentarse hasta el punto en que los imanes serían irrazonablemente grandes. [74] En la práctica, este problema se abordó mediante sistemas de retroalimentación mejorados, que admiten las tolerancias requeridas. El espacio de aire y la eficiencia energética se pueden mejorar utilizando la llamada "Suspensión Electromagnética Híbrida (H-EMS)", donde la principal fuerza de levitación es generada por imanes permanentes, mientras que el electroimán controla el espacio de aire, [75] lo que se llama imanes electropermanentes . Lo ideal sería que se necesitara una potencia insignificante para estabilizar la suspensión y, en la práctica, el requerimiento de potencia es menor que el que sería si toda la fuerza de suspensión fuera proporcionada únicamente por electroimanes. [76]
En la suspensión electrodinámica (EDS), tanto la vía como el tren ejercen un campo magnético, y el tren es levitado por la fuerza repulsiva y atractiva entre estos campos magnéticos. [77] En algunas configuraciones, el tren puede ser levitado solo por fuerza repulsiva. En las primeras etapas del desarrollo de levitación magnética en la pista de pruebas de Miyazaki, se utilizó un sistema puramente repulsivo en lugar del posterior sistema EDS repulsivo y atractivo. [78] El campo magnético es producido por imanes superconductores (como en JR-Maglev) o por una matriz de imanes permanentes (como en Inductrack ). La fuerza repulsiva y atractiva en la vía es creada por un campo magnético inducido en cables u otras tiras conductoras en la vía.
Una de las principales ventajas de los sistemas de levitación magnética EDS es que son dinámicamente estables: los cambios en la distancia entre la vía y los imanes crean fuerzas intensas que devuelven el sistema a su posición original. [74] Además, la fuerza de atracción varía de manera opuesta, lo que produce los mismos efectos de ajuste. No se necesita un control de retroalimentación activo.
Sin embargo, a bajas velocidades, la corriente inducida en estas bobinas y el flujo magnético resultante no son lo suficientemente grandes como para hacer levitar el tren. Por este motivo, el tren debe tener ruedas o algún otro tipo de tren de aterrizaje para sostenerlo hasta que alcance la velocidad de despegue. Dado que un tren puede detenerse en cualquier lugar, por ejemplo, debido a problemas con el equipo, toda la vía debe poder soportar el funcionamiento tanto a baja como a alta velocidad.
Otra desventaja es que el sistema EDS crea naturalmente un campo en la pista delante y detrás de los imanes de sustentación, que actúa contra los imanes y crea una resistencia magnética. Esto generalmente solo es un problema a bajas velocidades y es una de las razones por las que JR abandonó un sistema puramente repulsivo y adoptó el sistema de levitación de pared lateral. [78] A velocidades más altas, dominan otros modos de resistencia. [74]
Sin embargo, la fuerza de arrastre se puede utilizar en beneficio del sistema electrodinámico, ya que crea una fuerza variable en los rieles que se puede utilizar como un sistema reaccionario para impulsar el tren, sin la necesidad de una placa de reacción separada, como en la mayoría de los sistemas de motor lineal. Laithwaite dirigió el desarrollo de estos sistemas de "flujo transversal" en su laboratorio del Imperial College. [74] Alternativamente, se utilizan bobinas de propulsión en la vía guía para ejercer una fuerza sobre los imanes en el tren y hacer que el tren se mueva hacia adelante. Las bobinas de propulsión que ejercen una fuerza sobre el tren son efectivamente un motor lineal: una corriente alterna a través de las bobinas genera un campo magnético que varía continuamente y se mueve hacia adelante a lo largo de la vía. La frecuencia de la corriente alterna se sincroniza para que coincida con la velocidad del tren. El desfase entre el campo ejercido por los imanes en el tren y el campo aplicado crea una fuerza que mueve el tren hacia adelante.
El término "maglev" no sólo se refiere a los vehículos, sino también al sistema ferroviario, diseñado específicamente para la levitación y propulsión magnéticas. Todas las implementaciones operativas de la tecnología maglev hacen un uso mínimo de la tecnología de trenes con ruedas y no son compatibles con las vías ferroviarias convencionales . Debido a que no pueden compartir la infraestructura existente, los sistemas maglev deben diseñarse como sistemas independientes. El sistema maglev SPM es interoperable con vías ferroviarias de acero y permitiría que los vehículos maglev y los trenes convencionales operen en las mismas vías. [74] MAN en Alemania también diseñó un sistema maglev que funcionaba con rieles convencionales, pero nunca se desarrolló por completo. [ cita requerida ]
Cada implementación del principio de levitación magnética para viajes en tren implica ventajas y desventajas.
Ni Inductrack ni el sistema EDS superconductor son capaces de hacer levitar vehículos estando parados, aunque Inductrack permite la levitación a una velocidad mucho menor; para estos sistemas se necesitan ruedas. Los sistemas EMS no tienen ruedas.
Los trenes de levitación magnética Transrapid, el japonés HSST (Linimo) y el coreano Rotem EMS de la marca alemana levitan cuando están parados, y los dos últimos obtienen la electricidad de las vías de guiado mediante raíles eléctricos, y de forma inalámbrica en el caso del Transrapid. Si se pierde la energía de las vías de guiado durante el viaje, el Transrapid aún puede generar levitación a velocidades de hasta 10 kilómetros por hora (6,2 mph), [ cita requerida ] utilizando la energía de las baterías de a bordo. Este no es el caso de los sistemas HSST y Rotem.
Los sistemas EMS como HSST/ Linimo pueden proporcionar tanto levitación como propulsión mediante un motor lineal incorporado. Pero los sistemas EDS y algunos sistemas EMS como Transrapid levitan pero no propulsan. Estos sistemas necesitan otra tecnología para la propulsión. Un motor lineal (bobinas de propulsión) montado en la vía es una solución. En largas distancias, los costes de las bobinas pueden resultar prohibitivos.
El teorema de Earnshaw demuestra que ninguna combinación de imanes estáticos puede estar en equilibrio estable. [85] Por lo tanto, se requiere un campo magnético dinámico (que varíe con el tiempo) para lograr la estabilización. Los sistemas EMS se basan en una estabilización electrónica activa que mide constantemente la distancia de apoyo y ajusta la corriente del electroimán en consecuencia. Los sistemas EDS se basan en campos magnéticos cambiantes para crear corrientes, lo que puede dar estabilidad pasiva.
Dado que los vehículos de levitación magnética básicamente vuelan, se requiere la estabilización del cabeceo, el balanceo y la guiñada. Además de la rotación, el movimiento de avance y retroceso, el balanceo (movimiento lateral) y el movimiento de elevación (movimientos hacia arriba y hacia abajo) pueden resultar problemáticos.
Los imanes superconductores colocados sobre una vía formada por un imán permanente bloquean el tren en su posición lateral. Puede moverse linealmente a lo largo de la vía, pero no fuera de ella. Esto se debe al efecto Meissner y a la fijación de flujo .
Algunos sistemas utilizan sistemas de corriente nula (también llamados a veces sistemas de flujo nulo). [77] [86] Estos utilizan una bobina que se enrolla de manera que entra en dos campos opuestos y alternos, de modo que el flujo promedio en el bucle es cero. Cuando el vehículo está en posición recta, no fluye corriente, pero cualquier movimiento fuera de línea crea un flujo que genera un campo que lo empuja o tira naturalmente de nuevo hacia la línea.
Algunos sistemas (en particular, el sistema Swissmetro y el Hyperloop ) proponen el uso de trenes de levitación magnética (vactrains), una tecnología de trenes de levitación magnética que se utiliza en tubos de vacío (sin aire), lo que elimina la resistencia del aire . Esto tiene el potencial de aumentar la velocidad y la eficiencia en gran medida, ya que la mayor parte de la energía de los trenes de levitación magnética convencionales se pierde debido a la resistencia aerodinámica. [87]
Un riesgo potencial para los pasajeros de trenes que circulan en tubos de vacío es que podrían estar expuestos al riesgo de despresurización de la cabina a menos que los sistemas de control de seguridad del túnel puedan volver a presurizar el tubo en caso de avería o accidente del tren, aunque como es probable que los trenes circulen en la superficie de la Tierra o cerca de ella, la restauración de la presión ambiental en caso de emergencia debería ser sencilla. La Corporación RAND ha descrito un tren de tubos de vacío que, en teoría, podría cruzar el Atlántico o los Estados Unidos en unos 21 minutos. [88]
La startup polaca Nevomo (anteriormente Hyper Poland ) está desarrollando un sistema para modificar las vías ferroviarias existentes y convertirlas en un sistema de levitación magnética, por el que pueden circular tanto trenes convencionales de ruedas y raíles como vehículos de levitación magnética. [89] Los vehículos en este sistema denominado "magrail" podrán alcanzar velocidades de hasta 300 kilómetros por hora (190 mph) con costes de infraestructura significativamente inferiores a los de las líneas de levitación magnética independientes. En 2023, Nevomo realizó las primeras pruebas de MagRail en la pista de pruebas más larga de Europa para levitación magnética pasiva, que la empresa había construido previamente en Polonia. [90]
La energía de los trenes de levitación magnética se utiliza para acelerar el tren. La energía se puede recuperar cuando el tren disminuye su velocidad mediante el frenado regenerativo . También hace levitar y estabiliza el movimiento del tren. La mayor parte de la energía se necesita para superar la resistencia del aire . Parte de la energía se utiliza para el aire acondicionado, la calefacción, la iluminación y otros usos diversos.
A bajas velocidades, el porcentaje de energía utilizada para la levitación puede ser significativo, consumiendo hasta un 15% más de energía que un servicio de metro o tren ligero. [91] Para distancias cortas, la energía utilizada para la aceleración puede ser considerable.
La fuerza utilizada para vencer la resistencia del aire aumenta con el cuadrado de la velocidad y, por lo tanto, predomina a alta velocidad. La energía necesaria por unidad de distancia aumenta con el cuadrado de la velocidad y el tiempo disminuye linealmente. Sin embargo, la potencia aumenta con el cubo de la velocidad. Por ejemplo, se necesita 2,37 veces más potencia para viajar a 400 kilómetros por hora (250 mph) que a 300 kilómetros por hora (190 mph), mientras que la resistencia aumenta en 1,77 veces la fuerza original. [92]
Los aviones aprovechan la menor presión atmosférica y las temperaturas más bajas al volar a gran altitud para reducir el consumo de energía, pero a diferencia de los trenes, necesitan llevar combustible a bordo . Esto ha llevado a la sugerencia de transportar vehículos de levitación magnética a través de tubos parcialmente evacuados .
El transporte de levitación magnética no utiliza contacto y es eléctrico. Depende menos o nada de las ruedas, cojinetes y ejes comunes a los sistemas ferroviarios con ruedas. [93]
Diferencias entre viajar en avión y en tren de levitación magnética:
A medida que se implementen más sistemas de levitación magnética, los expertos esperan que los costos de construcción disminuyan gracias al empleo de nuevos métodos de construcción y a las economías de escala . [101]
La línea de demostración de levitación magnética de Shanghái costó 1.200 millones de dólares en 2004. [102] Este total incluye costos de capital como limpieza de la vía, hincado extenso de pilotes, fabricación de guías en el lugar, construcción de pilares en el lugar a intervalos de 25 metros (82 pies), una instalación de mantenimiento y un patio de vehículos, varios cambios de agujas, dos estaciones, sistemas de operaciones y control, sistema de alimentación de energía, cables e inversores, y capacitación operativa. El número de pasajeros no es el objetivo principal de esta línea de demostración, ya que la estación de Longyang Road está en las afueras orientales de Shanghái. Una vez que la línea se extienda a la estación de trenes de Shanghái Sur y a la estación del Aeropuerto de Hongqiao, lo que puede no suceder por razones económicas, se esperaba que el número de pasajeros cubriera los costos de operación y mantenimiento y generara ingresos netos significativos. [ ¿según quién? ]
Se esperaba que la ampliación al sur de Shanghái costara aproximadamente 18 millones de dólares por kilómetro. En 2006, el gobierno alemán invirtió 125 millones de dólares en el desarrollo de vías de guía que permitieron reducir los costos, lo que dio como resultado un diseño modular totalmente de hormigón que es más rápido de construir y un 30% menos costoso. También se desarrollaron otras nuevas técnicas de construcción que hicieron que el tren de levitación magnética tuviera un precio igual o inferior al de la construcción de nuevos trenes de alta velocidad. [103]
La Administración Federal de Ferrocarriles de los Estados Unidos, en un informe de 2005 al Congreso, estimó el costo por milla entre 50 y 100 millones de dólares estadounidenses. [104] La Declaración de Impacto Ambiental de la Administración de Tránsito de Maryland (MTA) estimó un precio de 4.900 millones de dólares estadounidenses para la construcción y 53 millones de dólares al año para las operaciones de su proyecto. [105]
Se estima que el tren maglev Chuo Shinkansen propuesto en Japón costaría aproximadamente 82 mil millones de dólares y que su ruta requeriría túneles largos. Una ruta maglev Tokaido que reemplazara al Shinkansen costaría una décima parte del costo, ya que no se necesitaría un nuevo túnel, pero las preocupaciones por la contaminación acústica lo hicieron inviable. [ cita requerida ] [ la neutralidad está en disputa ]
El tren japonés Linimo HSST costó aproximadamente 100 millones de dólares por kilómetro para construirse. [106] Además de ofrecer mejores costos de operación y mantenimiento en comparación con otros sistemas de tránsito, estos trenes maglev de baja velocidad brindan niveles ultra altos de confiabilidad operativa, introducen poco ruido y generan cero contaminación del aire en entornos urbanos densos .
La velocidad de levitación magnética más alta registrada es de 603 kilómetros por hora (375 mph), lograda en Japón por el maglev superconductor L0 de JR Central el 21 de abril de 2015, [107] 28 kilómetros por hora (17 mph) más rápido que el récord de velocidad rueda-carril del TGV convencional . Sin embargo, las diferencias operativas y de rendimiento entre estas dos tecnologías tan diferentes son mucho mayores. El récord del TGV se logró acelerando por una ligera pendiente de 72,4 kilómetros (45 mi), lo que requirió 13 minutos. Luego tomó otros 77,25 kilómetros (48 mi) para que el TGV se detuviera, requiriendo una distancia total de 149,65 kilómetros (93 mi) para la prueba. [108] El récord L0, sin embargo, se logró en la pista de pruebas de Yamanashi de 42,8 kilómetros (26,6 mi), menos de 1/3 de la distancia. [109] En realidad, no se ha intentado ninguna operación comercial de tren maglev o de rueda-riel a velocidades superiores a 500 kilómetros por hora (310 mph).
El tren de levitación magnética de Shanghái , una implementación del sistema alemán Transrapid , tiene una velocidad máxima de 300 kilómetros por hora (190 mph). [6] La línea es el tren de levitación magnética de alta velocidad más rápido y el primero en operar comercialmente. Conecta el Aeropuerto Internacional de Shanghái-Pudong y las afueras del centro de Pudong , Shanghái . El servicio cubre una distancia de 30,5 kilómetros (19,0 mi) en solo 8 minutos. [112]
En enero de 2001, los chinos firmaron un acuerdo con Transrapid para construir una línea de levitación magnética de alta velocidad EMS para unir el Aeropuerto Internacional de Pudong con la estación de metro de Longyang Road en el extremo sureste de Shanghái. Esta línea de demostración del tren de levitación magnética de Shanghái , o Segmento Operativo Inicial (IOS), ha estado en operaciones comerciales desde abril de 2004 [113] y ahora opera 115 viajes diarios (frente a los 110 de 2010) que recorren los 30 kilómetros (19 millas) entre las dos estaciones en 8 minutos, alcanzando una velocidad máxima de 300 kilómetros por hora (190 mph) y un promedio de 224 kilómetros por hora (139 mph). Antes de mayo de 2021, los servicios operaban a hasta 431 kilómetros por hora (268 mph), y tardaban solo 7 minutos en completar el viaje. [114] En una prueba de puesta en servicio del sistema realizada el 12 de noviembre de 2003, alcanzó los 501 kilómetros por hora (311 mph), su velocidad máxima de crucero diseñada. El tren de levitación magnética de Shanghai es más rápido que la tecnología de Birmingham y tiene una fiabilidad de puntualidad (hasta el segundo) superior al 99,97%. [115]
Los planes para ampliar la línea hasta la estación de tren sur de Shanghái y el aeropuerto de Hongqiao, en el extremo noroeste de Shanghái, están en suspenso. Después de que el ferrocarril de pasajeros Shanghái-Hangzhou entrara en funcionamiento a fines de 2010, la extensión del tren de levitación magnética se volvió algo redundante y podría cancelarse.
El sistema comercial automatizado "Urban Maglev" comenzó a funcionar en marzo de 2005 en Aichi , Japón. La línea Tobu Kyuryo, también conocida como línea Linimo , cubre 9 kilómetros (5,6 millas). Tiene un radio mínimo de operación de 75 metros (246 pies) y una pendiente máxima del 6%. El tren levitado magnéticamente con motor lineal tiene una velocidad máxima de 100 kilómetros por hora (62 mph). Más de 10 millones de pasajeros utilizaron esta línea "urban maglev" en sus primeros tres meses de operación. A 100 kilómetros por hora (62 mph), es lo suficientemente rápido para paradas frecuentes, tiene poco o ningún impacto de ruido en las comunidades circundantes, puede navegar por derechos de paso de radio corto y opera durante condiciones climáticas adversas. Los trenes fueron diseñados por Chubu HSST Development Corporation, que también opera una pista de prueba en Nagoya. [116]
Las primeras pruebas de levitación magnética con suspensión electromagnética abiertas al público fueron el HML-03, fabricado por Hyundai Heavy Industries para la Expo de Daejeon en 1993 , después de cinco años de investigación y fabricación de dos prototipos, el HML-01 y el HML-02. [117] [118] [119] La investigación gubernamental sobre levitación magnética urbana con suspensión electromagnética comenzó en 1994. [119] El primer tren de levitación magnética urbana en funcionamiento fue el UTM-02 en Daejeon, que comenzó el 21 de abril de 2008 después de 14 años de desarrollo y un prototipo; el UTM-01. El tren circula por una vía de 1 kilómetro (0,6 millas) entre el Parque de la Expo y el Museo Nacional de Ciencias [120] [121] que se ha acortado con la remodelación del Parque de la Expo. La vía actualmente termina en la calle paralela al museo de ciencias. Mientras tanto, el UTM-02 realizó la primera simulación de levitación magnética del mundo. [122] [123] Sin embargo, el UTM-02 sigue siendo el segundo prototipo de un modelo final. El modelo UTM final del tren de levitación magnética urbana de Rotem, el UTM-03, se utilizó para una nueva línea que se inauguró en 2016 en la isla Yeongjong de Incheon que conecta el Aeropuerto Internacional de Incheon (véase más abajo). [124]
El gobierno provincial de Hunan puso en marcha la construcción de una línea de levitación magnética entre el Aeropuerto Internacional de Changsha Huanghua y la Estación de Ferrocarril Sur de Changsha , que cubrirá una distancia de 18,55 km. La construcción comenzó en mayo de 2014 y se completó a finales de 2015. [125] [126] Las pruebas comenzaron el 26 de diciembre de 2015 y las operaciones de prueba comenzaron el 6 de mayo de 2016. [127] Al 13 de junio de 2018, el tren de levitación magnética de Changsha había cubierto una distancia de 1,7 millones de km y transportado a casi 6 millones de pasajeros. Se ha producido una segunda generación de estos vehículos que tienen una velocidad máxima de 160 km/h (99 mph). [128] En julio de 2021, el nuevo modelo entró en servicio operando a una velocidad máxima de 140 km/h (87 mph), lo que redujo el tiempo de viaje en 3 minutos. [129]
Pekín ha construido la segunda línea de levitación magnética de baja velocidad de China, la Línea S1 del Metro de Pekín , utilizando tecnología desarrollada por la Universidad Nacional de Tecnología de Defensa . La línea se inauguró el 30 de diciembre de 2017 y opera a velocidades de hasta 100 kilómetros por hora (62 mph). [130]
Fenghuang Maglev (凤凰磁浮) es una línea de levitación magnética de velocidad media a baja en el condado de Fenghuang , Xiangxi , provincia de Hunan , China. La línea opera a velocidades de hasta 100 kilómetros por hora (62 mph). La primera fase tiene 9,12 kilómetros (5,67 mi) con 4 estaciones (y 2 estaciones de relleno futuras más). La primera fase se inauguró el 30 de julio de 2022 [131] y conecta la estación de tren Fenghuanggucheng en el ferrocarril de alta velocidad Zhangjiajie–Jishou–Huaihua con el Jardín Folclórico de Fenghuang. [132]
El Chuo Shinkansen es una línea de levitación magnética de alta velocidad en Japón. La construcción comenzó en 2014 y se esperaba que las operaciones comerciales comenzaran en 2027. [133] El objetivo de 2027 se abandonó en julio de 2020. [134] El Proyecto Lineal Chuo Shinkansen tiene como objetivo conectar Tokio y Osaka a través de Nagoya , la ciudad capital de Aichi , en aproximadamente una hora, menos de la mitad del tiempo de viaje de los trenes bala más rápidos existentes que conectan las tres metrópolis. [135] Originalmente se esperaba que la vía completa entre Tokio y Osaka se completara en 2045, pero el operador ahora apunta a 2037. [136] [137] [138]
El tren de la serie L0 está siendo probado por la Central Japan Railway Company (JR Central) para su eventual uso en la línea Chūō Shinkansen. Estableció un récord mundial de velocidad tripulado de 603 kilómetros por hora (375 mph) el 21 de abril de 2015. [107] Está previsto que los trenes circulen a una velocidad máxima de 505 kilómetros por hora (314 mph), [139] ofreciendo tiempos de viaje de 40 minutos entre Tokio ( estación de Shinagawa ) y Nagoya , y 1 hora y 7 minutos entre Tokio y Osaka ( estación de Shin-Ōsaka ). [140]
La línea turística de levitación magnética de Qingyuan (清远磁浮旅游专线) es una línea de levitación magnética de velocidad media a baja en Qingyuan , provincia de Guangdong , China. La línea operará a velocidades de hasta 100 kilómetros por hora (62 mph). [141] La primera fase tiene 8,1 km con 3 estaciones (y 1 estación de relleno futura más). [141] La primera fase estaba originalmente programada para abrir en octubre de 2020 [142] y conectará la estación de tren Yinzhan en el ferrocarril interurbano Guangzhou-Qingyuan con el parque temático Qingyuan Chimelong . [143] A largo plazo, la línea tendrá 38,5 km. [144]
Un segundo prototipo de sistema fue construido por American Maglev Technology, Inc. en Powder Springs , Georgia , EE. UU. La pista de prueba tiene 610 metros (2000 pies) de largo con una curva de 168,6 metros (553 pies). Los vehículos funcionan a una velocidad de hasta 60 kilómetros por hora (37 mph), por debajo del máximo operativo propuesto de 97 kilómetros por hora (60 mph). Una revisión de la tecnología realizada en junio de 2013 exigió que se llevara a cabo un extenso programa de pruebas para garantizar que el sistema cumpliera con varios requisitos reglamentarios, incluida la norma People Mover de la Sociedad Estadounidense de Ingenieros Civiles (ASCE). La revisión señaló que la pista de prueba es demasiado corta para evaluar la dinámica de los vehículos a las velocidades máximas propuestas. [145]
En Estados Unidos, el programa de demostración de tecnología de levitación magnética urbana de la Administración Federal de Tránsito (FTA) financió el diseño de varios proyectos de demostración de levitación magnética urbana de baja velocidad. Evaluó el HSST para el Departamento de Transporte de Maryland y la tecnología de levitación magnética para el Departamento de Transporte de Colorado. La FTA también financió el trabajo de General Atomics en la Universidad de California en Pensilvania para evaluar el MagneMotion M3 y el sistema EDS superconductor Maglev2000 de Florida. Otros proyectos de demostración de levitación magnética urbana de Estados Unidos que merecen la pena son el LEVX en el estado de Washington y el Magplane con sede en Massachusetts.
General Atomics tiene una instalación de pruebas de 120 metros (390 pies) en San Diego, que se utiliza para probar el transbordador de carga de 8 kilómetros (5 millas) de Union Pacific en Los Ángeles. La tecnología es "pasiva" (o "permanente"), utiliza imanes permanentes en un conjunto Halbach para la elevación y no requiere electroimanes ni para la levitación ni para la propulsión. General Atomics recibió 90 millones de dólares en fondos de investigación del gobierno federal. También están considerando su tecnología para servicios de pasajeros de alta velocidad. [146]
Japón tiene una línea de demostración en la prefectura de Yamanashi , donde el tren de pruebas SCMaglev L0 Series Shinkansen alcanzó los 603 kilómetros por hora (375 mph), más rápido que cualquier tren con ruedas. [107] La línea de demostración se convertirá en parte del Chūō Shinkansen que une Tokio y Nagoya, que actualmente está en construcción.
Estos trenes utilizan imanes superconductores , que permiten un espacio mayor, y suspensión electrodinámica de tipo repulsivo / atractivo (EDS). [77] [147] En comparación, Transrapid utiliza electroimanes convencionales y suspensión electromagnética de tipo atractivo (EMS). [148] [149]
El 15 de noviembre de 2014, la Central Japan Railway Company realizó ocho días de pruebas del tren de levitación magnética experimental Shinkansen en su pista de pruebas de la prefectura de Yamanashi. Cien pasajeros recorrieron una ruta de 42,8 kilómetros (26,6 millas) entre las ciudades de Uenohara y Fuefuki, alcanzando velocidades de hasta 500 kilómetros por hora (310 mph). [150]
Transport System Bögl , una división de la empresa constructora alemana Max Bögl, ha construido una pista de pruebas en Sengenthal , Baviera, Alemania. En apariencia, se parece más al M-Bahn alemán que al sistema Transrapid . [151] El vehículo probado en la pista está patentado en los EE. UU. Por Max Bögl. [152] La empresa también está en una empresa conjunta con una empresa china . Se ha construido una línea de demostración de 3,5 km (2,2 mi) cerca de Chengdu , China y dos vehículos fueron transportados por aire allí en junio de 2000. [55] En abril de 2021, un vehículo en la pista de pruebas china alcanzó una velocidad máxima de 169 km/h (105 mph). [153]
El 31 de diciembre de 2000, se probó con éxito el primer maglev superconductor de alta temperatura tripulado en la Universidad Jiaotong del Suroeste , Chengdu, China. Este sistema se basa en el principio de que los superconductores de alta temperatura a granel pueden levitarse de manera estable por encima o por debajo de un imán permanente. La carga era de más de 530 kilogramos (1170 libras) y el espacio de levitación de más de 20 milímetros (0,79 pulgadas). El sistema utiliza nitrógeno líquido para enfriar el superconductor . [154] [155] [156]
Desde 2006 funciona una pista de pruebas de levitación magnética de 1,5 km (0,93 mi) en el campus de Jiading de la Universidad de Tongji , al noroeste de Shanghái. La pista utiliza el mismo diseño que el tren de levitación magnética de Shanghái en funcionamiento. La velocidad máxima está limitada a 120 km/h (75 mph) debido a la longitud de la pista y su topología.
En el primer trimestre de 2022, la startup tecnológica polaca Nevomo completó la construcción de la pista de pruebas más larga de Europa para levitación magnética pasiva. La vía férrea de 700 metros de largo en el Voivodato de Subcarpacia en Polonia permite que los vehículos que utilizan el sistema MagRail de la empresa viajen a velocidades de hasta 160 km/h. [157] La instalación de todo el equipo necesario en la vía se completó en diciembre de 2022 y las pruebas comenzaron en la primavera de 2023. [158]
Se han propuesto muchos sistemas de levitación magnética en América del Norte, Asia, Europa y en la Luna. [159] [160] Muchos están en las primeras etapas de planificación o fueron rechazados explícitamente.
Se propuso una ruta de levitación magnética entre Sídney y Wollongong . [161] La propuesta cobró importancia a mediados de la década de 1990. El corredor de cercanías Sídney-Wollongong es el más grande de Australia, con más de 20.000 personas viajando cada día. Los trenes existentes utilizan la línea Illawarra , entre la pared del acantilado de Illawarra y el océano Pacífico, con tiempos de viaje de aproximadamente 2 horas. La propuesta reduciría los tiempos de viaje a 20 minutos.
A finales de 2008, se presentó una propuesta al Gobierno de Victoria para construir una línea de levitación magnética financiada y operada de forma privada para dar servicio al área metropolitana del Gran Melbourne en respuesta al Informe de Transporte de Eddington que no investigó las opciones de transporte sobre la superficie. [162] [163] El tren de levitación magnética daría servicio a una población de más de 4 millones de personas [ cita requerida ] y la propuesta tenía un coste de 8.000 millones de dólares australianos.
Sin embargo, a pesar de la congestión vial y el mayor espacio vial per cápita de Australia, [ cita requerida ] el gobierno desestimó la propuesta a favor de la expansión de la carretera, incluyendo un túnel vial de 8,5 mil millones de dólares australianos, una extensión de 6 mil millones de dólares del Eastlink hasta la Western Ring Road y un Frankston Bypass de 700 millones de dólares.
Zoológico de Toronto : Magnovate, con sede en Edmonton, propuso un nuevo sistema de paseos y transporte en el Zoológico de Toronto que reactiva el sistema Toronto Zoo Domain Ride , que se cerró después de dos accidentes graves en 1994. La junta del Zoológico aprobó la propuesta por unanimidad el 29 de noviembre de 2018.
La empresa planea construir y operar el sistema de 25 millones de dólares en la antigua ruta del Domain Ride (conocido localmente como el Monorraíl, a pesar de no ser considerado uno) sin costo alguno para el Zoológico y operarlo durante 15 años, dividiendo las ganancias con el Zoológico. El recorrido dará un circuito unidireccional alrededor de los terrenos del Zoológico, con cinco estaciones y probablemente reemplazando el actual servicio de tranvía turístico Zoomobile. Se planea que esté operativo en 2022 como muy pronto, este sería el primer sistema de levitación magnética comercial en América del Norte si se aprueba. [164]
En 2020 se empezará a construir una línea de prueba de levitación magnética que unirá Xianning, en la provincia de Hubei , y Changsha, en la provincia de Hunan . La línea de prueba tiene unos 200 kilómetros (120 millas) de longitud y podría formar parte de la línea de levitación magnética Beijing-Guangzhou en la planificación a largo plazo. [165] [166] En 2021, el gobierno de Guangdong propuso una línea de levitación magnética entre Hong Kong y Guangzhou a través de Shenzhen y más allá hasta Beijing. [167] [168]
China planeó extender el actual tren de levitación magnética de Shanghái [169], inicialmente unos 35 kilómetros (22 millas) hasta el aeropuerto de Shanghái Hongqiao y luego 200 kilómetros (120 millas) hasta la ciudad de Hangzhou ( tren de levitación magnética Shanghái-Hangzhou ). De construirse, esta sería la primera línea ferroviaria de levitación magnética interurbana en servicio comercial.
El proyecto fue controvertido y se retrasó repetidamente. En mayo de 2007, los funcionarios suspendieron el proyecto, al parecer debido a las preocupaciones públicas sobre la radiación del sistema. [170] En enero y febrero de 2008, cientos de residentes se manifestaron en el centro de Shanghái porque la ruta de la línea pasaba demasiado cerca de sus hogares, citando preocupaciones sobre enfermedades debido a la exposición al fuerte campo magnético , el ruido, la contaminación y la devaluación de la propiedad cerca de las líneas. [171] [172] La aprobación final para construir la línea se otorgó el 18 de agosto de 2008. Originalmente programado para estar listo para la Expo 2010 , [173] los planes exigían su finalización para 2014. El gobierno municipal de Shanghái consideró múltiples opciones, incluida la construcción de la línea subterránea para disipar los temores públicos. Este mismo informe afirmó que la decisión final tenía que ser aprobada por la Comisión Nacional de Desarrollo y Reforma. [174]
En 2007, el gobierno municipal de Shanghai estaba considerando construir una fábrica en el distrito de Nanhui para producir trenes maglev de baja velocidad para uso urbano. [175]
Una línea propuesta habría conectado Shanghái con Pekín, a lo largo de una distancia de 1.300 kilómetros (800 millas), con un coste estimado de 15.500 millones de libras. [176] Hasta 2014 no se había revelado ningún proyecto. [177]
El 25 de septiembre de 2007, Baviera anunció un servicio ferroviario de levitación magnética de alta velocidad desde Múnich hasta su aeropuerto . El gobierno bávaro firmó contratos con Deutsche Bahn y Transrapid con Siemens y ThyssenKrupp para el proyecto de 1.850 millones de euros. [178]
El 27 de marzo de 2008, el ministro de Transporte alemán anunció que el proyecto había sido cancelado debido al aumento de los costos asociados con la construcción de la vía. Una nueva estimación situó el proyecto entre 3.200 y 3.400 millones de euros. [179]
En marzo de 2021, un funcionario del gobierno dijo que Hong Kong se incluiría en una red de levitación magnética planificada en China, que se planea que funcione a 600 km/h (370 mph) y comience a abrirse en 2030. [180]
Hong Kong ya está conectado a la red ferroviaria de alta velocidad china a través del enlace ferroviario exprés Guangzhou-Shenzhen-Hong Kong , que se inauguró el domingo 23 de septiembre de 2018.
Mumbai – Delhi : Una empresa estadounidense presentó un proyecto al entonces ministro de ferrocarriles indio ( Mamata Banerjee ) para conectar Mumbai y Delhi . El entonces primer ministro Manmohan Singh dijo que si el proyecto de la línea tenía éxito, el gobierno indio construiría líneas entre otras ciudades y también entre Mumbai Central y el Aeropuerto Internacional Chhatrapati Shivaji. [181]
Mumbai – Nagpur : El estado de Maharashtra aprobó un estudio de viabilidad para un tren de levitación magnética entre Mumbai y Nagpur, a unos 1.000 kilómetros (620 millas) de distancia. [182]
Chennai – Bangalore – Mysore : Se debía preparar y presentar un informe detallado en diciembre de 2012 para una línea que conectaría Chennai con Mysore vía Bangalore a un costo de 26 millones de dólares por kilómetro, alcanzando velocidades de 350 kilómetros por hora (220 mph). [183]
En mayo de 2009, Irán y una empresa alemana firmaron un acuerdo para utilizar el tren de levitación magnética para unir Teherán y Mashhad . El acuerdo se firmó en el recinto ferial internacional de Mashhad entre el Ministerio de Carreteras y Transporte de Irán y la empresa alemana. La línea de 900 kilómetros (560 millas) posiblemente podría reducir el tiempo de viaje entre Teherán y Mashhad a aproximadamente 2,5 horas. [ cita requerida ] Schlegel Consulting Engineers, con sede en Múnich, dijo que había firmado el contrato con el Ministerio de Transporte iraní y el gobernador de Mashad. "Se nos ha encomendado liderar un consorcio alemán en este proyecto", dijo un portavoz. "Estamos en una fase preparatoria". El proyecto podría valer entre 10.000 y 12.000 millones de euros, dijo el portavoz de Schlegel. [184]
Una primera propuesta fue formalizada en abril de 2008, en Brescia , por el periodista Andrew Spannaus quien recomendaba una conexión de alta velocidad entre el aeropuerto de Malpensa con las ciudades de Milán, Bérgamo y Brescia. [185]
En marzo de 2011, Nicola Oliva propuso una conexión maglev entre el aeropuerto de Pisa y las ciudades de Prato y Florencia (estación de tren de Santa Maria Novella y aeropuerto de Florencia). [186] [187] El tiempo de viaje se reduciría de la típica hora y 15 minutos a unos 20 minutos. [188] La segunda parte de la línea sería una conexión con Livorno , para integrar los sistemas de transporte marítimo, aéreo y terrestre. [189] [190]
Un consorcio liderado por UEM Group Bhd y ARA Group propuso la tecnología de levitación magnética para unir las ciudades de Malasia con Singapur. La idea fue planteada primero por YTL Group. Se decía que su socio tecnológico en ese momento era Siemens. Los altos costos hundieron la propuesta. El concepto de un enlace ferroviario de alta velocidad de Kuala Lumpur a Singapur resurgió. Fue citado como un proyecto propuesto de "alto impacto" en el Programa de Transformación Económica (ETP) que se dio a conocer en 2010. [191] Se ha dado aprobación para el proyecto ferroviario de alta velocidad Kuala Lumpur-Singapur , pero no se utiliza tecnología de levitación magnética. [ cita requerida ]
El proyecto de levitación flexible sobre una pista (FLOAT), anunciado por la NASA , planea construir un tren de levitación magnética en la Luna . [160] [192]
El proyecto de monorraíl de Cebú del consorcio Philtram se construirá inicialmente como un sistema de monorraíl . En el futuro, se modernizará con una tecnología de levitación magnética patentada denominada Tren de levitación magnética de la ley de Lenz inducido por espín. [193]
SwissRapide : La SwissRapide AG, junto con el Consorcio SwissRapide, estaba planificando y desarrollando el primer sistema de monorraíl de levitación magnética para el tráfico interurbano entre las principales ciudades del país. SwissRapide iba a ser financiado por inversores privados. A largo plazo, el SwissRapide Express iba a conectar las principales ciudades al norte de los Alpes entre Ginebra y San Galo , incluidas Lucerna y Basilea . Los primeros proyectos fueron Berna - Zúrich , Lausana -Ginebra y Zúrich - Winterthur . La primera línea (Lausana-Ginebra o Zúrich-Winterthur) podría entrar en servicio a partir de 2020. [194] [195]
Swissmetro : En un proyecto anterior, Swissmetro AG había previsto un tren de levitación magnética subterráneo parcialmente evacuado (un tren de vacío ). Al igual que SwissRapide, Swissmetro tenía previsto conectar las principales ciudades de Suiza entre sí. En 2011, Swissmetro AG se disolvió y los derechos de propiedad intelectual de la organización pasaron a manos de la EPFL en Lausana. [196]
Londres – Glasgow : En el Reino Unido se propuso una línea [197] que uniera Londres con Glasgow y que contara con varias opciones de ruta a través de las Midlands, el noroeste y el noreste de Inglaterra. Se informó que el gobierno estaba considerando favorablemente esta posibilidad. [198] La propuesta fue rechazada en el Libro Blanco del Gobierno sobre la creación de un ferrocarril sostenible, publicado el 24 de julio de 2007. [199] Se planeó otro enlace de alta velocidad entre Glasgow y Edimburgo, pero la tecnología seguía sin estar definida. [200] [201] [202]
Washington, DC a la ciudad de Nueva York: utilizando la tecnología Superconducting Maglev (SCMAGLEV) desarrollada por la Central Japan Railway Company , el Northeast Maglev finalmente conectaría los principales centros metropolitanos y aeropuertos del noreste viajando a más de 480 kilómetros por hora (300 millas por hora), [203] con el objetivo de un servicio de una hora entre Washington, DC y la ciudad de Nueva York . [204] A partir de 2019, [actualizar]la Administración Federal de Ferrocarriles y el Departamento de Transporte de Maryland estaban preparando una Declaración de Impacto Ambiental (DIA) para evaluar los impactos potenciales de construir y operar el primer tramo del sistema entre Washington, DC y Baltimore, Maryland con una parada intermedia en el Aeropuerto BWI . [205]
Transportador de carga de Union Pacific : La empresa ferroviaria estadounidense Union Pacific tiene planes de construir un transbordador de contenedores de 7,9 kilómetros (4,9 millas) entre los puertos de Los Ángeles y Long Beach , con la instalación de transferencia de contenedores intermodal de UP . El sistema se basaría en tecnología "pasiva", especialmente adecuada para la transferencia de carga, ya que no se necesita energía a bordo. El vehículo es un chasis que se desliza hasta su destino. El sistema está siendo diseñado por General Atomics . [146]
California-Nevada Interstate Maglev : Se están estudiando líneas de levitación magnética de alta velocidad entre las principales ciudades del sur de California y Las Vegas a través del Proyecto de levitación magnética interestatal California-Nevada . [206] Este plan se propuso originalmente como parte de un plan de expansión de la I-5 o la I-15 , pero el gobierno federal dictaminó que debe separarse de los proyectos de obras públicas interestatales.
Tras la decisión, grupos privados de Nevada propusieron una línea que fuera de Las Vegas a Los Ángeles con paradas en Primm, Nevada ; Baker, California ; y otros puntos a lo largo del condado de San Bernardino hasta Los Ángeles. Los políticos expresaron su preocupación por que una línea ferroviaria de alta velocidad fuera del estado llevaría el gasto fuera del estado junto con los viajeros.
El proyecto de Pensilvania : el corredor del proyecto de levitación magnética de alta velocidad de Pensilvania se extiende desde el Aeropuerto Internacional de Pittsburgh hasta Greensburg , con paradas intermedias en el centro de Pittsburgh y Monroeville . Se afirmó que este proyecto inicial daría servicio a aproximadamente 2,4 millones de personas en el área metropolitana de Pittsburgh . La propuesta de Baltimore compitió con la de Pittsburgh por una subvención federal de 90 millones de dólares. [207]
Aeropuerto de San Diego-Condado Imperial : En 2006, San Diego encargó un estudio para una línea de levitación magnética hasta un aeropuerto propuesto ubicado en el Condado Imperial . SANDAG afirmó que el concepto sería el de un "aeropuerto [sic] sin terminales", que permitiría a los pasajeros registrarse en una terminal en San Diego ("terminales satélite"), tomar el tren hasta el aeropuerto y abordar directamente el avión. Además, el tren tendría el potencial de transportar mercancías. Se solicitaron estudios adicionales, aunque no se acordó ninguna financiación. [208]
Aeropuerto Internacional de Orlando al Centro de Convenciones del Condado de Orange : En diciembre de 2012, el Departamento de Transporte de Florida dio aprobación condicional a una propuesta de American Maglev para construir una línea privada de 14,9 millas (24 km) y 5 estaciones desde el Aeropuerto Internacional de Orlando hasta el Centro de Convenciones del Condado de Orange . El Departamento solicitó una evaluación técnica y dijo que se emitiría una solicitud de propuestas para revelar cualquier plan competidor. La ruta requiere el uso de un derecho de paso público. [209] Si la primera fase tuviera éxito, American Maglev propondría dos fases más (de 4,9 y 19,4 millas [7,9 y 31,2 km]) para llevar la línea a Walt Disney World . [210]
San Juan – Caguas : Se propuso un proyecto de levitación magnética de 16,7 millas (26,9 km) que uniría la estación Cupey del Tren Urbano en San Juan con dos estaciones propuestas en la ciudad de Caguas, al sur de San Juan. La línea de levitación magnética correría por la carretera PR-52 , conectando ambas ciudades. Según American Maglev, el costo del proyecto sería de aproximadamente US$380 millones. [211] [212] [213]
En dos incidentes hubo incendios. En 1991, un tren de pruebas japonés en Miyazaki, el MLU002, fue completamente consumido por un incendio. [214]
El 11 de agosto de 2006, se produjo un incendio en el Shanghai Transrapid comercial poco después de llegar a la terminal de Longyang. Se evacuó a la gente sin incidentes antes de que el vehículo se moviera alrededor de un kilómetro para evitar que el humo llenara la estación. Los funcionarios de NAMTI visitaron las instalaciones de mantenimiento de SMT en noviembre de 2010 y se enteraron de que la causa del incendio fue una " fuga térmica " en una bandeja de batería. Como resultado, SMT consiguió un nuevo proveedor de baterías, instaló nuevos sensores de temperatura y aisladores y rediseñó las bandejas. [ cita requerida ]
El 22 de septiembre de 2006, un tren de Transrapid chocó con un vehículo de mantenimiento durante un recorrido de prueba/publicidad en Lathen (Baja Sajonia/noroeste de Alemania). [215] [216] Veintitrés personas murieron y diez resultaron heridas; se trata de las primeras víctimas mortales de un accidente de tren de levitación magnética. El accidente fue causado por un error humano. Se presentaron cargos contra tres empleados de Transrapid tras una investigación que duró un año. [217]
La seguridad es una preocupación mayor en el transporte público de alta velocidad debido al potencial de una gran fuerza de impacto y un gran número de víctimas. En el caso de los trenes de levitación magnética, así como de los ferrocarriles de alta velocidad convencionales, un incidente podría ser resultado de un error humano, incluida la pérdida de energía, o de factores fuera del control humano, como el movimiento del suelo causado por un terremoto.
{{cite journal}}
: Requiere citar revista |journal=
( ayuda ){{cite web}}
: CS1 maint: URL no apta ( enlace )该条磁悬浮试验线长度约200公里,连接湖北省咸宁市和湖南省长沙市 (La línea de prueba de maglev tiene unos 200 km de longitud y unirá la ciudad de Xianning en la provincia de Hubei con la ciudad de Changsha en la provincia deHunan
)
{{cite web}}
: CS1 maint: copia archivada como título ( enlace )