stringtranslate.com

Impresión 3D

Time-lapse de una impresora tridimensional en acción

La impresión 3D o fabricación aditiva es la construcción de un objeto tridimensional a partir de un modelo CAD o un modelo 3D digital . [1] [2] [3] Se puede realizar en una variedad de procesos en los que el material se deposita, se une o se solidifica bajo control informático , [4] y el material se agrega (como plásticos, líquidos o granos de polvo que se fusionan), generalmente capa por capa.

En la década de 1980, las técnicas de impresión 3D se consideraban adecuadas solo para la producción de prototipos funcionales o estéticos, y un término más apropiado para ello en ese momento era prototipado rápido . [5] A partir de 2019 , la precisión, repetibilidad y gama de materiales de la impresión 3D han aumentado hasta el punto de que algunos procesos de impresión 3D se consideran viables como una tecnología de producción industrial; en este contexto, el término fabricación aditiva se puede utilizar como sinónimo de impresión 3D . [6] Una de las principales ventajas de la impresión 3D [7] es la capacidad de producir formas o geometrías muy complejas que de otro modo serían inviables de construir a mano, incluidas piezas huecas o piezas con estructuras de celosía internas para reducir el peso y crear menos desperdicio de material. El modelado por deposición fundida (FDM), que utiliza un filamento continuo de un material termoplástico , es el proceso de impresión 3D más común en uso a partir de 2020. [ 8]

Terminología

El término general fabricación aditiva (AM) ganó popularidad en la década de 2000, [9] inspirado en el tema de la adición de material ( de varias maneras ). En contraste, el término fabricación sustractiva apareció como un retrónimo para la gran familia de procesos de mecanizado que tienen la eliminación de material como su proceso común. El término impresión 3D todavía se refería solo a las tecnologías de polímeros en la mente de la mayoría, y el término AM era más probable que se usara en contextos de metalurgia y producción de piezas de uso final que entre los entusiastas de polímeros, inyección de tinta o estereolitografía.

A principios de la década de 2010, los términos impresión 3D y fabricación aditiva evolucionaron hacia sentidos en los que eran términos alternativos para las tecnologías aditivas, uno utilizado en el lenguaje popular por las comunidades de consumidores y fabricantes y los medios de comunicación, y el otro utilizado de manera más formal por los productores de piezas de uso final industrial, los fabricantes de máquinas y las organizaciones de estándares técnicos globales. Hasta hace poco, el término impresión 3D se ha asociado con máquinas de bajo precio o capacidad. [10] La impresión 3D y la fabricación aditiva reflejan que las tecnologías comparten el tema de la adición o unión de material a lo largo de un entorno de trabajo 3D bajo control automatizado. Peter Zelinski, editor en jefe de la revista Additive Manufacturing , señaló en 2017 que los términos todavía son a menudo sinónimos en el uso informal, [11] pero algunos expertos de la industria manufacturera están tratando de hacer una distinción por la cual la fabricación aditiva comprende la impresión 3D más otras tecnologías u otros aspectos de un proceso de fabricación . [11]

Otros términos que se han utilizado como sinónimos o hiperónimos incluyen fabricación de escritorio , fabricación rápida (como el sucesor lógico a nivel de producción de la creación rápida de prototipos ) y fabricación bajo demanda (que se hace eco de la impresión bajo demanda en el sentido 2D de impresión ). El hecho de que la aplicación de los adjetivos rápida y bajo demanda al sustantivo fabricación fuera novedosa en la década de 2000 revela el modelo mental prevaleciente durante mucho tiempo de la era industrial anterior durante la cual casi toda la fabricación de producción había involucrado largos tiempos de entrega para el laborioso desarrollo de herramientas. Hoy, el término sustractivo no ha reemplazado al término mecanizado , sino que lo complementa cuando se necesita un término que cubra cualquier método de eliminación. Las herramientas ágiles son el uso de medios modulares para diseñar herramientas que se producen mediante métodos de fabricación aditiva o impresión 3D para permitir la creación rápida de prototipos y respuestas a las necesidades de herramientas y accesorios. Las herramientas ágiles utilizan un método rentable y de alta calidad para responder rápidamente a las necesidades de los clientes y del mercado, y se pueden utilizar en hidroconformado , estampado , moldeo por inyección y otros procesos de fabricación.

Historia

Década de 1940 y 1950

El concepto general y el procedimiento a utilizar en la impresión 3D fueron descritos por primera vez por Murray Leinster en su cuento de 1945 "Las cosas pasan": "Pero este constructor es eficiente y flexible. Introduzco plásticos magnetrónicos (el material con el que se hacen las casas y los barcos hoy en día) en este brazo móvil. Hace dibujos en el aire siguiendo los dibujos que escanea con fotocélulas. Pero el plástico sale por el extremo del brazo de dibujo y se endurece a medida que avanza... siguiendo únicamente los dibujos" [12].

Raymond F. Jones también lo describió en su relato "Tools of the Trade", publicado en la edición de noviembre de 1950 de la revista Astounding Science Fiction , en el que se refirió a él como un "spray molecular".

Década de 1970

En 1971, Johannes F Gottwald patentó el Liquid Metal Recorder (patente estadounidense 3596285A), [13] un dispositivo de inyección de tinta continua de material metálico para formar una pieza de metal removible sobre una superficie reutilizable para su uso inmediato o para su recuperación para su posterior impresión mediante su refundición. Esta parece ser la primera patente que describe la impresión 3D con prototipado rápido y fabricación controlada de patrones a demanda.

La patente establece:

Tal como se utiliza en el presente documento, el término impresión no se entiende en un sentido limitado, sino que incluye escritura u otros símbolos, caracteres o formación de patrones con una tinta. El término tinta, tal como se utiliza en el presente documento, pretende incluir no sólo materiales que contengan colorantes o pigmentos, sino cualquier sustancia o composición fluida adecuada para su aplicación sobre la superficie para formar símbolos, caracteres o patrones de inteligencia mediante marcado. La tinta preferida es de tipo termofusible. En la actualidad, no se conoce la gama de composiciones de tinta disponibles comercialmente que podrían cumplir los requisitos de la invención. Sin embargo, se ha conseguido una impresión satisfactoria según la invención con la aleación de metal conductora como tinta.

Pero en términos de requerimientos materiales para exhibiciones tan grandes y continuas, si se consumen a los ritmos conocidos hasta ahora, pero se incrementan en proporción al aumento de tamaño, el alto costo limitaría severamente cualquier disfrute generalizado de un proceso o aparato que satisfaga los objetivos antes mencionados.

Por tanto, un objeto adicional de la invención es minimizar el uso de materiales en un proceso de la clase indicada.

Un objeto adicional de la invención es que los materiales empleados en dicho proceso se puedan recuperar para su reutilización.

Según otro aspecto de la invención, una combinación para escribir y similares comprende un soporte para mostrar un patrón de inteligencia y una disposición para retirar el patrón del soporte.

En 1974, David EH Jones expuso el concepto de impresión 3D en su columna habitual Ariadne en la revista New Scientist . [14] [15]

Década de 1980

Los primeros equipos y materiales de fabricación aditiva se desarrollaron en la década de 1980. [16]

En abril de 1980, Hideo Kodama del Instituto de Investigación Industrial Municipal de Nagoya inventó dos métodos aditivos para fabricar modelos plásticos tridimensionales con polímero termoendurecible fotoendurecible , donde el área de exposición a los rayos UV está controlada por un patrón de máscara o un transmisor de fibra de escaneo. [17] Presentó una patente para este trazador XYZ, que se publicó el 10 de noviembre de 1981. (JP S56-144478). [18] Los resultados de su investigación como artículos de revistas se publicaron en abril y noviembre de 1981. [19] [20] Sin embargo, no hubo reacción a la serie de sus publicaciones. Su dispositivo no fue muy bien evaluado en el laboratorio y su jefe no mostró ningún interés. Su presupuesto de investigación fue de solo 60.000 yenes o 545 dólares al año. La adquisición de los derechos de patente para el trazador XYZ fue abandonada y el proyecto se dio por terminado.

Una patente estadounidense número 4323756, sobre un método de fabricación de artículos por deposición secuencial , otorgada el 6 de abril de 1982 a Raytheon Technologies Corp, describe el uso de cientos o miles de "capas" de metal en polvo y una fuente de energía láser y representa una referencia temprana a la formación de "capas" y la fabricación de artículos sobre un sustrato.

El 2 de julio de 1984, el empresario estadounidense Bill Masters presentó una patente para su sistema y proceso de fabricación automatizados por ordenador (US 4665492). [21] Esta solicitud figura en los registros de la USPTO como la primera patente de impresión 3D de la historia; fue la primera de las tres patentes pertenecientes a Masters que sentaron las bases de los sistemas de impresión 3D que se utilizan en la actualidad. [22] [23]

El 16 de julio de 1984, Alain Le Méhauté , Olivier de Witte y Jean Claude André presentaron su patente para el proceso de estereolitografía . [24] La solicitud de los inventores franceses fue abandonada por la compañía francesa General Electric (ahora Alcatel-Alsthom) y CILAS (The Laser Consortium). [25] La razón alegada fue "por falta de perspectiva comercial". [26]

En 1983, Robert Howard fundó RH Research, posteriormente llamada Howtek, Inc. en febrero de 1984 para desarrollar una impresora de inyección de tinta en color 2D, Pixelmaster, comercializada en 1986, utilizando tinta plástica termoplástica (termofusible). [27] Se formó un equipo, 6 miembros [27] de Exxon Office Systems, Danbury Systems Division, una startup de impresoras de inyección de tinta y algunos miembros del grupo Howtek, Inc que se convirtieron en figuras populares en la industria de la impresión 3D. Un miembro de Howtek, Richard Helinski (patente US5136515A, Método y medios para construir artículos tridimensionales por deposición de partículas, solicitud 11/07/1989 concedida el 08/04/1992) formó una empresa de New Hampshire, CAD-Cast, Inc, cuyo nombre cambió posteriormente a Visual Impact Corporation (VIC) el 22/08/1991. Un prototipo de la impresora 3D VIC para esta empresa está disponible con una presentación en video que muestra un modelo 3D impreso con una inyección de tinta de una sola boquilla. Otro empleado, Herbert Menhennett, formó una empresa de New Hampshire, HM Research, en 1991 y presentó la tecnología de inyección de tinta y los materiales termoplásticos de Howtek, Inc. a Royden Sanders de SDI y a Bill Masters de Ballistic Particle Manufacturing (BPM), donde trabajó durante varios años. Tanto las impresoras 3D de BPM como las impresoras 3D de SPI utilizan impresoras de inyección de tinta de estilo Howtek, Inc. y materiales de estilo Howtek, Inc. Royden Sanders obtuvo la licencia de la patente de Helinksi antes de fabricar la Modelmaker 6 Pro en Sanders Prototype, Inc. (SPI) en 1993. James K. McMahon, que fue contratado por Howtek, Inc. para ayudar a desarrollar la inyección de tinta, trabajó más tarde en Sanders Prototype y ahora opera Layer Grown Model Technology, un proveedor de servicios 3D especializado en impresoras de inyección de tinta de una sola boquilla y soporte para impresoras SDI de Howtek. James K. McMahon trabajó con Steven Zoltan, inventor de la inyección de tinta por goteo en 1972, en Exxon y tiene una patente en 1978 que amplió la comprensión de las impresoras de inyección de tinta con diseño de una sola boquilla (chorros Alpha) y ayudó a perfeccionar las impresoras de inyección de tinta termofusible de Howtek, Inc. Esta tecnología termoplástica termofusible de Howtek es popular en la fundición de metales, especialmente en la industria de la joyería con impresión 3D. [28] El primer cliente de Modelmaker 6Pro de Sanders (SDI) fue Hitchner Corporations, Metal Casting Technology, Inc en Milford, NH, a una milla de las instalaciones de SDI a fines de 1993-1995, cuando fundió palos de golf y piezas de motores de automóviles.

El 8 de agosto de 1984 se presentó una patente, US4575330, asignada a UVP, Inc., posteriormente asignada a Chuck Hull de 3D Systems Corporation [29] , su propia patente para un sistema de fabricación por estereolitografía , en el que se añaden láminas o capas individuales curando fotopolímeros con radiación incidente, bombardeo de partículas, reacción química o simplemente láseres de luz ultravioleta . Hull definió el proceso como un "sistema para generar objetos tridimensionales mediante la creación de un patrón transversal del objeto que se va a formar". [30] [31] La contribución de Hull fue el formato de archivo STL (estereolitografía) y las estrategias de corte y relleno digitales comunes a muchos procesos actuales. En 1986, Charles "Chuck" Hull obtuvo una patente para este sistema y se formó su empresa, 3D Systems Corporation, que lanzó la primera impresora 3D comercial, la SLA-1, [32] más tarde en 1987 o 1988.

La tecnología utilizada por la mayoría de las impresoras 3D hasta la fecha, especialmente los modelos para aficionados y consumidores, es el modelado por deposición fundida , una aplicación especial de la extrusión de plástico , desarrollada en 1988 por S. Scott Crump y comercializada por su empresa Stratasys , que comercializó su primera máquina FDM en 1992. [28]

Poseer una impresora 3D en la década de 1980 costaba más de 300.000 dólares (650.000 dólares en dólares de 2016). [33]

Década de 1990

Los procesos AM para sinterización o fusión de metales (como sinterización selectiva por láser , sinterización directa de metales por láser y fusión selectiva por láser) solían tener sus propios nombres individuales en los años 1980 y 1990. En ese momento, todo el trabajo de metales se realizaba mediante procesos que ahora se llaman no aditivos ( fundición , fabricación , estampación y mecanizado ); aunque se aplicó mucha automatización a esas tecnologías (como la soldadura robótica y el CNC ), la idea de una herramienta o cabezal que se mueve a través de un entorno de trabajo 3D transformando una masa de materia prima en una forma deseada con una trayectoria de herramienta se asociaba en el trabajo de metales solo con procesos que eliminaban metal (en lugar de agregarlo), como fresado CNC , EDM CNC y muchos otros. Sin embargo, las técnicas automatizadas que agregaban metal, que más tarde se llamarían fabricación aditiva, estaban comenzando a desafiar esa suposición. A mediados de la década de 1990, se desarrollaron nuevas técnicas para la deposición de material en Stanford y la Universidad Carnegie Mellon , incluida la microfundición [34] y los materiales rociados. [35] Los materiales de sacrificio y de apoyo también se habían vuelto más comunes, lo que permitió nuevas geometrías de objetos. [36]

El término impresión 3D originalmente se refería a un proceso de lecho de polvo que emplea cabezales de impresión de inyección de tinta estándar y personalizados , desarrollado en el MIT por Emanuel Sachs en 1993 y comercializado por Soligen Technologies, Extrude Hone Corporation y Z Corporation . [ cita requerida ]

El año 1993 también vio el comienzo de una empresa de impresoras 3D de inyección de tinta inicialmente llamada Sanders Prototype, Inc y más tarde llamada Solidscape , introduciendo un sistema de fabricación de chorro de polímero de alta precisión con estructuras de soporte solubles (categorizado como una técnica de "punto sobre punto"). [28]

En 1995, la Sociedad Fraunhofer desarrolló el proceso de fusión selectiva por láser .

Década de 2000

A principios de la década de 2000, las impresoras 3D todavía se utilizaban principalmente en las industrias de fabricación e investigación, ya que la tecnología era relativamente joven y demasiado cara para que la mayoría de los consumidores pudieran conseguirla. En la década de 2000, se empezó a ver un uso a mayor escala de la tecnología en la industria, con mayor frecuencia en las industrias de la arquitectura y la medicina, aunque se utilizaba típicamente para modelado y pruebas de baja precisión, en lugar de para la producción de bienes manufacturados comunes o prototipos pesados. [37]

En 2005 los usuarios comenzaron a diseñar y distribuir planos para impresoras 3D que podían imprimir alrededor del 70% de sus propias piezas, cuyos planos originales fueron diseñados por Adrian Bowyer en la Universidad de Bath en 2004, siendo el nombre del proyecto RepRap (Replicating Rapid-prototyper). [38]

De manera similar, en 2006 Evan Malone y Hod Lipson iniciaron el proyecto Fab@Home , otro proyecto cuyo propósito era diseñar un sistema de fabricación de bajo costo y código abierto que los usuarios pudieran desarrollar por su cuenta y publicar comentarios, lo que hizo que el proyecto fuera muy colaborativo. [39]

Gran parte del software para impresión 3D disponible para el público en ese momento era de código abierto y, como tal, fue distribuido y mejorado rápidamente por muchos usuarios individuales. En 2009, las patentes del proceso de impresión Fused Deposition Modeling (FDM) expiraron. Esto abrió la puerta a una nueva ola de empresas emergentes, muchas de las cuales fueron establecidas por los principales contribuyentes de estas iniciativas de código abierto, con el objetivo de muchas de ellas de comenzar a desarrollar impresoras 3D FDM comerciales que fueran más accesibles para el público en general. [40]

Década de 2010

A medida que los diversos procesos aditivos maduraron, se hizo evidente que pronto la eliminación de metal ya no sería el único proceso de metalurgia realizado a través de una herramienta o cabezal que se mueve a través de un entorno de trabajo 3D, transformando una masa de materia prima en una forma deseada capa por capa. La década de 2010 fue la primera en la que las piezas de uso final de metal, como los soportes de motor [41] y las tuercas grandes [42], se cultivarían (ya sea antes o en lugar del mecanizado) en la producción a pedido en lugar de mecanizarse obligatoriamente a partir de barras o placas. Sigue siendo el caso de que la fundición, la fabricación, el estampado y el mecanizado sean más frecuentes que la fabricación aditiva en el trabajo de metales, pero la AM ahora está comenzando a hacer incursiones significativas y, con las ventajas del diseño para la fabricación aditiva , está claro para los ingenieros que mucho más está por venir.

Un área en la que la fabricación aditiva está logrando avances significativos es la industria de la aviación. Con casi 3.800 millones de pasajeros aéreos en 2016, [43] la demanda de motores a reacción de bajo consumo de combustible y de fácil producción nunca ha sido mayor. Para los grandes fabricantes de equipos originales (OEM) como Pratt and Whitney (PW) y General Electric (GE), esto significa considerar la fabricación aditiva como una forma de reducir costos, reducir la cantidad de piezas no conformes, reducir el peso de los motores para aumentar la eficiencia del combustible y encontrar formas nuevas y altamente complejas que no serían factibles con los métodos de fabricación anticuados. Un ejemplo de integración de la fabricación aditiva con la industria aeroespacial fue en 2016, cuando Airbus entregó el primero de los motores LEAP de GE . Este motor tiene boquillas de combustible impresas en 3D integradas, lo que reduce las piezas de 20 a 1, una reducción de peso del 25% y tiempos de ensamblaje reducidos. [44] Una boquilla de combustible es la vía de acceso perfecta para la fabricación aditiva en un motor a reacción, ya que permite un diseño optimizado de los componentes internos complejos y es una pieza de bajo estrés y no giratoria. De manera similar, en 2015, PW entregó sus primeras piezas AM en el PurePower PW1500G a Bombardier. PW se ciñó a piezas no giratorias y de bajo estrés y seleccionó los estatores del compresor y los soportes del anillo de sincronización [45] para implementar esta nueva tecnología de fabricación por primera vez. Si bien la AM todavía desempeña un papel pequeño en el número total de piezas en el proceso de fabricación de motores a reacción, el retorno de la inversión ya se puede ver en la reducción de piezas, las capacidades de producción rápida y el "diseño optimizado en términos de rendimiento y costo". [46]

A medida que la tecnología maduró, varios autores comenzaron a especular que la impresión 3D podría ayudar al desarrollo sostenible en el mundo en desarrollo. [47]

En 2012, Filabot desarrolló un sistema para cerrar el ciclo [48] con plástico y permite que cualquier impresora 3D FDM o FFF pueda imprimir con una gama más amplia de plásticos.

En 2014, Benjamin S. Cook y Manos M. Tentzeris demostraron la primera plataforma de fabricación aditiva de electrónica impresa verticalmente integrada y de múltiples materiales (VIPRE) que permitió la impresión 3D de electrónica funcional que opera hasta 40 GHz. [49]

A medida que el precio de las impresoras comenzó a bajar, las personas interesadas en esta tecnología tuvieron más acceso y libertad para fabricar lo que quisieran. En 2014, el precio de las impresoras comerciales seguía siendo alto, superando los 2000 dólares. [50]

El término "impresión 3D" se refería originalmente a un proceso que deposita un material aglutinante sobre un lecho de polvo con cabezales de impresora de inyección de tinta capa por capa. Más recientemente, el término se ha empezado a utilizar en la jerga popular para abarcar una variedad más amplia de técnicas de fabricación aditiva, como la fabricación aditiva por haz de electrones y la fusión selectiva por láser. Los Estados Unidos y las normas técnicas mundiales utilizan el término oficial de fabricación aditiva para este sentido más amplio.

El proceso de impresión 3D más utilizado (46% a partir de 2018 ) es una técnica de extrusión de material llamada modelado por deposición fundida o FDM. [8] Si bien la tecnología FDM se inventó después de las otras dos tecnologías más populares, la estereolitografía (SLA) y la sinterización selectiva por láser (SLS), la FDM suele ser la más económica de las tres por un amplio margen, [ cita requerida ] lo que contribuye a la popularidad del proceso.

Década de 2020

A partir de 2020, las impresoras 3D han alcanzado el nivel de calidad y precio que permite a la mayoría de las personas ingresar al mundo de la impresión 3D. En 2020, se pueden encontrar impresoras de calidad decente por menos de US$200 para máquinas de nivel básico. Estas impresoras más asequibles suelen ser impresoras de modelado por deposición fundida (FDM). [51]

En noviembre de 2021, un paciente británico llamado Steve Verze recibió el primer ojo protésico totalmente impreso en 3D del mundo del Moorfields Eye Hospital de Londres . [52] [53]

En abril de 2024, se presentó en la Universidad de Maine la impresora 3D más grande del mundo, la Factory of the Future 1.0 , capaz de fabricar objetos de 96 pies de largo, o 29 metros. [54]

En 2024, los investigadores utilizaron el aprendizaje automático para mejorar la construcción de hueso sintético [55] y establecieron un récord de absorción de impactos. [56]

En julio de 2024, los investigadores publicaron un artículo en Advanced Materials Technologies que describe el desarrollo de vasos sanguíneos artificiales utilizando tecnología de impresión 3D, que son tan fuertes y duraderos como los vasos sanguíneos naturales . [57] El proceso implicó el uso de un husillo giratorio integrado en una impresora 3D para crear injertos a partir de un gel a base de agua, que luego se recubrieron con moléculas de poliéster biodegradable. [57]

Beneficios de la impresión 3D

La fabricación aditiva o impresión 3D ha ganado importancia rápidamente en el campo de la ingeniería debido a sus múltiples beneficios. La visión de la impresión 3D es la libertad de diseño, la individualización, [58] la descentralización [59] y la ejecución de procesos que antes eran imposibles mediante métodos alternativos. [60] Algunos de estos beneficios incluyen la posibilidad de crear prototipos más rápidos, reducir los costos de fabricación, aumentar la personalización del producto y mejorar la calidad del producto. [61]

Además, las capacidades de la impresión 3D se han extendido más allá de la fabricación tradicional, como la construcción ligera, [62] o la reparación y el mantenimiento [63] con aplicaciones en prótesis, [64] bioimpresión, [65] industria alimentaria, [66] construcción de cohetes, [67] diseño y arte [68] y sistemas de energía renovable. [69] La tecnología de impresión 3D se puede utilizar para producir sistemas de almacenamiento de energía de baterías, que son esenciales para la generación y distribución de energía sostenible.

Otro beneficio de la impresión 3D es la capacidad de la tecnología para producir geometrías complejas con alta precisión y exactitud. [70] Esto es particularmente relevante en el campo de la ingeniería de microondas, donde la impresión 3D se puede utilizar para producir componentes con propiedades únicas que son difíciles de lograr utilizando métodos de fabricación tradicionales. [71]

Los procesos de fabricación aditiva generan un mínimo de residuos al añadir material solo donde es necesario, a diferencia de los métodos tradicionales que eliminan el exceso de material. [72] Esto reduce tanto los costos de material como el impacto ambiental. [73] Esta reducción de residuos también reduce el consumo de energía para la producción y eliminación de material, lo que contribuye a una menor huella de carbono . [74] [75]

Principios generales

Modelado

Modelo CAD utilizado para impresión 3D
Se pueden generar modelos 3D a partir de imágenes 2D tomadas en un fotomatón 3D.

Los modelos imprimibles en 3D se pueden crear con un paquete de diseño asistido por computadora (CAD), a través de un escáner 3D o con una cámara digital simple y un software de fotogrametría . Los modelos impresos en 3D creados con CAD dan como resultado relativamente menos errores que otros métodos. Los errores en los modelos imprimibles en 3D se pueden identificar y corregir antes de imprimir. [76] El proceso de modelado manual de preparación de datos geométricos para gráficos de computadora en 3D es similar a las artes plásticas como la escultura. El escaneo 3D es un proceso de recopilación de datos digitales sobre la forma y la apariencia de un objeto real y creación de un modelo digital basado en ellos.

Los modelos CAD se pueden guardar en el formato de archivo de estereolitografía (STL) , un formato de archivo CAD de facto para la fabricación aditiva que almacena datos basados ​​en triangulaciones de la superficie de los modelos CAD. STL no está diseñado para la fabricación aditiva porque genera archivos de gran tamaño de piezas optimizadas en topología y estructuras reticulares debido a la gran cantidad de superficies involucradas. En 2011 se introdujo un formato de archivo CAD más nuevo, el formato de archivo de fabricación aditiva (AMF) , para resolver este problema. Almacena información mediante triangulaciones curvas. [77]

Impresión

Antes de imprimir un modelo 3D a partir de un archivo STL , primero se debe examinar para detectar errores. La mayoría de las aplicaciones CAD producen errores en los archivos STL resultantes, [78] [79] de los siguientes tipos:

Un paso en la generación de STL conocido como "reparación" corrige dichos problemas en el modelo original. [82] [83] Generalmente, los STL que se han producido a partir de un modelo obtenido mediante escaneo 3D a menudo tienen más de estos errores [84] ya que el escaneo 3D a menudo se logra mediante adquisición/mapeo punto a punto. La reconstrucción 3D a menudo incluye errores. [85]

Una vez completado, el archivo STL debe procesarse mediante un software llamado " slicer ", que convierte el modelo en una serie de capas delgadas y produce un archivo de código G que contiene instrucciones adaptadas a un tipo específico de impresora 3D ( impresoras FDM ). [86] Este archivo de código G se puede imprimir con un software cliente de impresión 3D (que carga el código G y lo utiliza para dar instrucciones a la impresora 3D durante el proceso de impresión 3D).

La resolución de la impresora describe el espesor de la capa y la resolución X–Y en puntos por pulgada (dpi) o micrómetros (μm). El espesor de capa típico es de alrededor de 100 μm (250  DPI ), aunque algunas máquinas pueden imprimir capas tan delgadas como 16 μm (1600 DPI). [87] La ​​resolución X–Y es comparable a la de las impresoras láser . Las partículas (puntos 3D) tienen alrededor de 0,01 a 0,1 μm (2 540 000 a 250 000 DPI) de diámetro. [88] Para esa resolución de impresora, especificar una resolución de malla de 0,01–0,03 mm y una longitud de cuerda ≤ 0,016 mm genera un archivo de salida STL óptimo para un archivo de entrada de modelo determinado. [89] Especificar una resolución más alta da como resultado archivos más grandes sin aumentar la calidad de impresión.

3:30 Lapso de tiempo de un video de 80 minutos de un objeto fabricado con PLA mediante deposición de polímero fundido

La construcción de un modelo con métodos actuales puede llevar desde varias horas hasta varios días, dependiendo del método utilizado y del tamaño y la complejidad del modelo. Los sistemas aditivos suelen reducir este tiempo a unas pocas horas, aunque varía mucho según el tipo de máquina utilizada y el tamaño y la cantidad de modelos que se produzcan simultáneamente.

Refinamiento

Si bien la resolución y el acabado de la superficie producidos por la impresora son suficientes para algunas aplicaciones, los métodos de posprocesamiento y acabado permiten obtener beneficios como mayor precisión dimensional, superficies más suaves y otras modificaciones como la coloración.

El acabado superficial de una pieza impresa en 3D se puede mejorar utilizando métodos sustractivos como el lijado y el granallado. Al alisar piezas que requieren precisión dimensional, es importante tener en cuenta el volumen del material que se va a eliminar. [90]

Algunos polímeros imprimibles, como el acrilonitrilo butadieno estireno (ABS), permiten suavizar y mejorar el acabado de la superficie mediante procesos químicos de vapor [91] basados ​​en acetona o disolventes similares.

Algunas técnicas de fabricación aditiva pueden beneficiarse del recocido como paso de posprocesamiento. El recocido de una pieza impresa en 3D permite una mejor unión de las capas internas debido a la recristalización de la pieza. Permite un aumento de las propiedades mecánicas, algunas de las cuales son la tenacidad a la fractura , [92] la resistencia a la flexión , [93] la resistencia al impacto , [94] y la resistencia al calor . [94] El recocido de un componente puede no ser adecuado para aplicaciones donde se requiere precisión dimensional, ya que puede introducir deformaciones o encogimiento debido al calentamiento y enfriamiento. [95]

La fabricación híbrida aditiva o sustractiva (ASHM) es un método que implica producir una pieza impresa en 3D y utilizar el mecanizado (fabricación sustractiva) para eliminar material. [96] Las operaciones de mecanizado se pueden completar después de cada capa o después de que se haya completado toda la impresión 3D, según los requisitos de la aplicación. Estos métodos híbridos permiten que las piezas impresas en 3D logren mejores acabados superficiales y precisión dimensional. [97]

La estructura en capas de los procesos tradicionales de fabricación aditiva produce un efecto de escalonamiento en las superficies de las piezas que están curvadas o inclinadas con respecto a la plataforma de construcción. El efecto depende en gran medida de la altura de capa utilizada, así como de la orientación de la superficie de la pieza dentro del proceso de construcción. [98] Este efecto se puede minimizar utilizando "alturas de capa variables" o "alturas de capa adaptables". Estos métodos reducen la altura de capa en lugares donde se necesita una mayor calidad. [99]

Pintar una pieza impresa en 3D ofrece una variedad de acabados y apariencias que no se pueden lograr con la mayoría de las técnicas de impresión 3D. El proceso generalmente implica varios pasos, como la preparación de la superficie, la imprimación y la pintura. [100] Estos pasos ayudan a preparar la superficie de la pieza y garantizar que la pintura se adhiera correctamente.

Algunas técnicas de fabricación aditiva permiten utilizar varios materiales simultáneamente. Estas técnicas permiten imprimir en varios colores y combinaciones de colores simultáneamente y pueden producir piezas que no necesariamente requieren pintura.

Algunas técnicas de impresión requieren la construcción de soportes internos para sostener los elementos salientes durante la construcción. Estos soportes deben eliminarse mecánicamente o disolverse si se utiliza un material de soporte soluble en agua, como PVA, después de completar una impresión.

Algunas impresoras 3D de metal comerciales implican el corte del componente metálico del sustrato metálico después de la deposición. Un nuevo proceso para la impresión 3D GMAW permite realizar modificaciones en la superficie del sustrato para eliminar el aluminio [101] o el acero . [102]

Materiales

Detalle del Stoofbrug  [nl] en Ámsterdam, el primer puente metálico impreso en 3D del mundo [103]

Tradicionalmente, la impresión 3D se centraba en los polímeros para la impresión, debido a la facilidad de fabricación y manipulación de los materiales poliméricos. Sin embargo, el método ha evolucionado rápidamente para no solo imprimir varios polímeros [104] sino también metales [105] [106] y cerámicas , [107] lo que convierte a la impresión 3D en una opción versátil para la fabricación. La fabricación capa por capa de modelos físicos tridimensionales es un concepto moderno que "se origina en la industria CAD en constante crecimiento, más específicamente en el lado de modelado sólido de CAD. Antes de que se introdujera el modelado sólido a fines de la década de 1980, los modelos tridimensionales se creaban con marcos de alambre y superficies". [108] pero en todos los casos las capas de materiales están controladas por la impresora y las propiedades del material. La capa de material tridimensional está controlada por la tasa de deposición establecida por el operador de la impresora y almacenada en un archivo de computadora. El primer material patentado impreso fue una tinta de tipo termofusible para imprimir patrones utilizando una aleación de metal calentada.

Charles Hull presentó la primera patente el 8 de agosto de 1984 para utilizar una resina acrílica curada con rayos UV utilizando una fuente de luz enmascarada con rayos UV en UVP Corp para construir un modelo simple. La SLA-1 fue el primer producto SL anunciado por 3D Systems en la Autofact Exposition, Detroit, en noviembre de 1978. La SLA-1 Beta se envió en enero de 1988 a Baxter Healthcare, Pratt and Whitney, General Motors y AMP. La primera SLA-1 de producción se envió a Precision Castparts en abril de 1988. El material de resina UV cambió rápidamente a una resina de material a base de epoxi. En ambos casos, los modelos SLA-1 necesitaban un curado en horno UV después de enjuagarse en un limpiador de solvente para eliminar la resina límite sin curar. Se vendió un aparato de postcurado (PCA) con todos los sistemas. Las primeras impresoras de resina requerían una cuchilla para mover resina fresca sobre el modelo en cada capa. El espesor de la capa era de 0,006 pulgadas y el modelo láser HeCd del SLA-1 era de 12 vatios y barría la superficie a 30 pulgadas por segundo. UVP fue adquirida por 3D Systems en enero de 1990. [109]

Un repaso de la historia muestra que en la década de 1980 se utilizaron varios materiales (resinas, polvo plástico, filamento plástico y tinta plástica termofusible) para patentes en el campo del prototipado rápido. La resina curada con luz ultravioleta con lámpara enmascarada también fue introducida por Itzchak Pomerantz de Cubital en el Soldier 5600, los polvos termoplásticos sinterizados por láser de Carl Deckard (DTM) y el papel adhesivo cortado con láser (LOM) apilado para formar objetos por Michael Feygin antes de que 3D Systems hiciera su primer anuncio. Scott Crump también estaba trabajando con modelado de filamentos plásticos "derretidos" extruidos (FDM) y la deposición de gotas había sido patentada por William E Masters una semana después de la patente de Hull en 1984, pero tuvo que descubrir las impresoras de inyección de tinta termoplásticas, introducidas por la impresora 3D de Visual Impact Corporation en 1992, utilizando impresoras de inyección de tinta de Howtek, Inc., antes de formar BPM para sacar su propio producto de impresora 3D en 1994. [109]

Impresión 3D multimaterial

Un 3DBenchy multimaterial

Los esfuerzos para lograr la impresión 3D de múltiples materiales varían desde procesos mejorados similares a FDM como VoxelJet hasta nuevas tecnologías de impresión basadas en vóxeles como el ensamblaje en capas. [110]

Un inconveniente de muchas tecnologías de impresión 3D existentes es que solo permiten imprimir un material a la vez, lo que limita muchas aplicaciones potenciales que requieren la integración de diferentes materiales en el mismo objeto. La impresión 3D multimaterial resuelve este problema al permitir fabricar objetos con disposiciones complejas y heterogéneas de materiales utilizando una sola impresora. En este caso, se debe especificar un material para cada vóxel (o elemento de píxel de impresión 3D) dentro del volumen del objeto final.

Sin embargo, el proceso puede presentar complicaciones debido a los algoritmos aislados y monolíticos. Algunos dispositivos comerciales han intentado resolver estos problemas, como la construcción de un traductor Spec2Fab, pero el progreso aún es muy limitado. [111] No obstante, en la industria médica se ha presentado un concepto de píldoras y vacunas impresas en 3D. [112] Con este nuevo concepto, se pueden combinar múltiples medicamentos, lo que se espera que reduzca muchos riesgos. Con cada vez más aplicaciones de la impresión 3D de múltiples materiales, los costos de la vida diaria y el desarrollo de alta tecnología serán inevitablemente más bajos.

También se están investigando los materiales metalográficos de la impresión 3D. [113] Al clasificar cada material, CIMP-3D puede realizar sistemáticamente la impresión 3D con múltiples materiales. [114]

Impresión 4D

El uso de la impresión 3D y de estructuras multimaterial en la fabricación aditiva ha permitido el diseño y la creación de lo que se denomina impresión 4D. La impresión 4D es un proceso de fabricación aditiva en el que el objeto impreso cambia de forma con el tiempo, la temperatura o algún otro tipo de estimulación. La impresión 4D permite la creación de estructuras dinámicas con formas, propiedades o funcionalidades ajustables. Los materiales inteligentes o sensibles a estímulos que se crean mediante la impresión 4D se pueden activar para crear respuestas calculadas, como autoensamblaje, autorreparación, multifuncionalidad, reconfiguración y cambio de forma. Esto permite la impresión personalizada de materiales que cambian de forma y con memoria de forma. [115]

La impresión 4D tiene el potencial de encontrar nuevas aplicaciones y usos para los materiales (plásticos, compuestos, metales, etc.) y tiene el potencial de crear nuevas aleaciones y compuestos que antes no eran viables. La versatilidad de esta tecnología y de estos materiales puede generar avances en múltiples campos de la industria, incluidos los sectores espacial, comercial y médico. La repetibilidad, la precisión y la gama de materiales para la impresión 4D deben aumentar para permitir que el proceso se vuelva más práctico en todas estas industrias. 

Para convertirse en una opción viable de producción industrial, la impresión 4D debe superar algunos desafíos. Entre ellos, el hecho de que las microestructuras de estos materiales inteligentes impresos deben ser similares o mejores que las de las piezas obtenidas mediante procesos de mecanizado tradicionales. Es necesario desarrollar materiales nuevos y personalizables que tengan la capacidad de responder de manera constante a estímulos externos variables y cambiar a la forma deseada. También es necesario diseñar un nuevo software para los diversos tipos de técnicas de impresión 4D. El software de impresión 4D deberá tener en cuenta el material inteligente de base, la técnica de impresión y los requisitos estructurales y geométricos del diseño. [116]

Procesos e impresoras

La norma ISO/ASTM52900-15 define siete categorías de procesos de fabricación aditiva (FA) dentro de su alcance. [117] [118] Son:

Las principales diferencias entre los procesos están en la forma en que se depositan las capas para crear las piezas y en los materiales que se utilizan. Cada método tiene sus propias ventajas e inconvenientes, por lo que algunas empresas ofrecen la posibilidad de elegir entre polvo y polímero como material para construir el objeto. [119] Otras utilizan a veces papel comercial estándar disponible en el mercado como material de construcción para producir un prototipo duradero. Las principales consideraciones a la hora de elegir una máquina son generalmente la velocidad, los costes de la impresora 3D, del prototipo impreso, la elección y el coste de los materiales y las capacidades de color. [120] Las impresoras que trabajan directamente con metales suelen ser caras. Sin embargo, se pueden utilizar impresoras menos costosas para hacer un molde, que luego se utiliza para fabricar piezas de metal. [121]

Inyección de material

El primer proceso en el que se deposita material tridimensional para formar un objeto se realizó con inyección de material [28] o como se lo llamó originalmente, deposición de partículas. La deposición de partículas por inyección de tinta comenzó primero con la tecnología de inyección de tinta continua (CIT) (década de 1950) y luego con la tecnología de inyección de tinta de gota a demanda (década de 1970) utilizando tintas termofusibles. Las tintas de cera fueron los primeros materiales tridimensionales inyectados y más tarde se inyectaron metales de aleación de baja temperatura con CIT. Los siguientes fueron los termofusibles de cera y termoplásticos inyectados por DOD. Los objetos eran muy pequeños y comenzaron con caracteres de texto y números para señalización. Un objeto debe tener forma y se puede manipular. Los caracteres de cera se desprendían de documentos de papel e inspiraron una patente de grabadora de metal líquido para fabricar caracteres de metal para señalización en 1971. Las tintas de color termoplásticas (CMYK) se imprimieron con capas de cada color para formar los primeros objetos en capas formados digitalmente en 1984. La idea de la fundición de inversión con imágenes o patrones inyectados con tinta sólida en 1984 condujo a la primera patente para formar artículos a partir de la deposición de partículas en 1989, emitida en 1992.

Extrusión de material

Representación esquemática de la técnica de impresión 3D conocida como fabricación con filamento fundido; un filamento " a) " de material plástico se introduce a través de un cabezal móvil calentado " b) " que lo funde y lo extruye depositándolo, capa tras capa, en la forma deseada " c) . Una plataforma móvil " e) " desciende después de depositar cada capa. Para este tipo de tecnología, se necesitan estructuras de soporte verticales adicionales " d) " para sostener las piezas que sobresalen

Algunos métodos funden o ablandan el material para producir las capas. En la fabricación de filamentos fundidos , también conocida como modelado por deposición fundida (FDM), el modelo o la pieza se produce extruyendo pequeñas perlas o corrientes de material que se endurecen inmediatamente para formar capas. Un filamento de termoplástico , alambre de metal u otro material se introduce en un cabezal de boquilla de extrusión ( extrusor de impresora 3D ), que calienta el material y enciende y apaga el flujo. FDM está algo restringido en la variación de formas que se pueden fabricar. Otra técnica fusiona partes de la capa y luego se mueve hacia arriba en el área de trabajo, agregando otra capa de gránulos y repitiendo el proceso hasta que la pieza se haya acumulado. Este proceso utiliza los medios no fusionados para soportar voladizos y paredes delgadas en la pieza que se está produciendo, lo que reduce la necesidad de soportes auxiliares temporales para la pieza. [122] Recientemente, FFF/FDM se ha expandido a la impresión 3D directamente a partir de pellets para evitar la conversión a filamento. Este proceso se denomina fabricación de partículas fundidas (FPF) (o fabricación granular fundida (FGF) y tiene el potencial de utilizar más materiales reciclados. [123]

Fusión de lecho de polvo

Las técnicas de fusión de lecho de polvo, o PBF, incluyen varios procesos como DMLS , SLS , SLM, MJF y EBM . Los procesos de fusión de lecho de polvo se pueden utilizar con una variedad de materiales y su flexibilidad permite estructuras geométricamente complejas, [124] lo que lo convierte en una buena opción para muchos proyectos de impresión 3D. Estas técnicas incluyen la sinterización selectiva por láser , tanto con metales como con polímeros, y la sinterización directa por láser de metales . [125] La fusión selectiva por láser no utiliza la sinterización para la fusión de gránulos de polvo, sino que fundirá completamente el polvo utilizando un láser de alta energía para crear materiales completamente densos en un método por capas que tiene propiedades mecánicas similares a las de los metales fabricados convencionales. La fusión por haz de electrones es un tipo similar de tecnología de fabricación aditiva para piezas metálicas (por ejemplo, aleaciones de titanio ). La EBM fabrica piezas fundiendo polvo metálico capa por capa con un haz de electrones en alto vacío. [126] [127] Otro método consiste en un sistema de impresión 3D por inyección de tinta , que crea el modelo capa por capa extendiendo una capa de polvo ( yeso o resinas ) e imprimiendo un aglutinante en la sección transversal de la pieza mediante un proceso similar a la inyección de tinta. Con la fabricación de objetos laminados , se cortan capas finas para darles forma y se unen. Además de los métodos mencionados anteriormente, HP ha desarrollado Multi Jet Fusion (MJF), que es una técnica a base de polvo, aunque no intervienen láseres. Una matriz de inyección de tinta aplica agentes de fusión y detallado que luego se combinan mediante calentamiento para crear una capa sólida. [128]

Inyección de aglutinante

La técnica de impresión 3D por inyección de aglutinante implica la deposición de un agente adhesivo aglutinante sobre capas de material, generalmente en polvo, y luego esta parte en estado "verde" puede curarse e incluso sinterizarse. Los materiales pueden ser de base cerámica, metal o plástico. Este método también se conoce como impresión 3D por inyección de tinta . Para producir una pieza, la impresora construye el modelo utilizando un cabezal que se mueve sobre la base de la plataforma para esparcir o depositar capas alternas de polvo ( yeso y resinas ) y aglutinante. La mayoría de las impresoras de inyección de aglutinante modernas también curan cada capa de aglutinante. Estos pasos se repiten hasta que se hayan impreso todas las capas. Esta parte verde generalmente se cura en un horno para liberar la mayor parte del aglutinante antes de sinterizarse en un horno con una curva de tiempo-temperatura específica para el material o materiales dados.

Esta tecnología permite la impresión de prototipos, salientes y piezas de elastómero a todo color. La resistencia de las impresiones de polvo adherido se puede mejorar impregnando los espacios entre la matriz de polvo entallada o sinterizada con otros materiales compatibles según el material del polvo, como cera, polímero termoendurecible o incluso bronce. [129] [130]

Representación esquemática de la estereolitografía; un dispositivo emisor de luz a) (láser o DLP ) ilumina selectivamente el fondo transparente c) de un tanque b) lleno de una resina fotopolimerizante líquida; la resina solidificada d) es arrastrada progresivamente hacia arriba por una plataforma elevadora e)

Estereolitografía

Otros métodos curan materiales líquidos utilizando diferentes tecnologías sofisticadas, como la estereolitografía . La fotopolimerización se utiliza principalmente en la estereolitografía para producir una pieza sólida a partir de un líquido. Los sistemas de impresión de inyección de tinta como el sistema Objet PolyJet rocían materiales fotopoliméricos sobre una bandeja de construcción en capas ultrafinas (entre 16 y 30 μm) hasta que la pieza está completa. [131] Cada capa de fotopolímero se cura con luz ultravioleta después de ser inyectada, produciendo modelos completamente curados que pueden manipularse y usarse inmediatamente, sin poscurado. Se pueden hacer características ultrapequeñas con la técnica de microfabricación 3D utilizada en la fotopolimerización multifotónica . Debido a la naturaleza no lineal de la fotoexcitación, el gel se cura hasta convertirse en un sólido solo en los lugares donde se enfocó el láser mientras que el gel restante se lava. Se producen fácilmente tamaños de características de menos de 100 nm, así como estructuras complejas con partes móviles e interconectadas. [132] Otro enfoque utiliza una resina sintética que se solidifica utilizando LED . [133]

En la estereolitografía basada en la proyección de imágenes de máscara, un modelo digital 3D se corta en rodajas mediante un conjunto de planos horizontales. Cada corte se convierte en una imagen de máscara bidimensional. A continuación, la imagen de máscara se proyecta sobre una superficie de resina líquida fotocurable y se proyecta luz sobre la resina para curarla en la forma de la capa. [134] La producción continua de la interfaz líquida comienza con un charco de resina fotopolimérica líquida . Parte del fondo del charco es transparente a la luz ultravioleta (la "ventana"), lo que hace que la resina se solidifique. El objeto se eleva lo suficientemente lento como para permitir que la resina fluya por debajo y mantenga el contacto con la parte inferior del objeto. [135] En la deposición de energía dirigida alimentada con polvo, se utiliza un láser de alta potencia para fundir el polvo metálico suministrado al foco del haz láser. El proceso de energía dirigida alimentada con polvo es similar a la sinterización selectiva por láser, pero el polvo metálico se aplica solo donde se está añadiendo material a la pieza en ese momento. [136] [137]

Litografía axial computarizada

La litografía axial computarizada es un método de impresión 3D basado en exploraciones de tomografía computarizada para crear impresiones en resina fotocurable. Fue desarrollado por una colaboración entre la Universidad de California, Berkeley con el Laboratorio Nacional Lawrence Livermore . [138] [139] [140] A diferencia de otros métodos de impresión 3D, no construye modelos mediante la deposición de capas de material como el modelado por deposición fundida y la estereolitografía , sino que crea objetos utilizando una serie de imágenes 2D proyectadas sobre un cilindro de resina. [138] [140] Es notable por su capacidad para construir un objeto mucho más rápido que otros métodos que utilizan resinas y la capacidad de incrustar objetos dentro de las impresiones. [139]

Fabricación aditiva de líquidos

La fabricación aditiva líquida (LAM) es una técnica de impresión 3D que deposita un líquido o un material de alta viscosidad (por ejemplo, caucho de silicona líquida) sobre una superficie de construcción para crear un objeto que luego se vulcaniza utilizando calor para endurecer el objeto. [141] [142] [143] El proceso fue creado originalmente por Adrian Bowyer y luego fue desarrollado por German RepRap. [141] [144] [145]

Una técnica llamada herramientas programables utiliza la impresión 3D para crear un molde temporal, que luego se llena mediante un proceso de moldeo por inyección convencional y luego se disuelve inmediatamente. [146]

Laminación

En algunas impresoras, se puede utilizar papel como material de construcción, lo que reduce el coste de impresión. Durante la década de 1990, algunas empresas comercializaron impresoras que cortaban secciones transversales de papel recubierto con adhesivo especial utilizando un láser de dióxido de carbono y luego las laminaban juntas.

En 2005, Mcor Technologies Ltd desarrolló un proceso diferente utilizando hojas comunes de papel de oficina, una hoja de carburo de tungsteno para cortar la forma y una deposición selectiva de adhesivo y presión para unir el prototipo. [147]

Deposición de energía dirigida (DED)

Deposición de energía dirigida alimentada con polvo

En la deposición de energía dirigida alimentada con polvo (también conocida como deposición de metal por láser ), se utiliza un láser de alta potencia para fundir el polvo metálico suministrado al foco del rayo láser. El rayo láser normalmente viaja a través del centro del cabezal de deposición y se enfoca en un punto pequeño mediante una o más lentes. La construcción se produce en una mesa XY que es impulsada por una trayectoria de herramienta creada a partir de un modelo digital para fabricar un objeto capa por capa. El cabezal de deposición se mueve verticalmente hacia arriba a medida que se completa cada capa. Algunos sistemas incluso utilizan sistemas de 5 ejes [148] [149] o 6 ejes [150] ( es decir , brazos articulados ) capaces de suministrar material sobre el sustrato (una cama de impresión o una pieza preexistente [151] ) con pocas o ninguna restricción de acceso espacial. El polvo metálico se suministra y se distribuye alrededor de la circunferencia del cabezal o se puede dividir mediante un colector interno y suministrar a través de boquillas dispuestas en varias configuraciones alrededor del cabezal de deposición. A menudo se utiliza una cámara herméticamente sellada llena de gas inerte o un gas de cobertura inerte local (a veces ambos combinados) para proteger el baño de fusión del oxígeno atmosférico, limitar la oxidación y controlar mejor las propiedades del material. El proceso de energía dirigida con alimentación de polvo es similar a la sinterización selectiva por láser, pero el polvo metálico se proyecta solo donde se está agregando el material a la pieza en ese momento. El rayo láser se utiliza para calentar y crear un "baño de fusión" en el sustrato, en el que se inyecta el nuevo polvo casi simultáneamente. El proceso admite una amplia gama de materiales, incluidos titanio, acero inoxidable, aluminio, tungsteno y otros materiales especiales, así como materiales compuestos y materiales con clasificación funcional. El proceso no solo puede construir completamente nuevas piezas de metal, sino que también puede agregar material a piezas existentes, por ejemplo, para recubrimientos, reparaciones y aplicaciones de fabricación híbrida. El modelado de red diseñado por láser (LENS), que fue desarrollado por Sandia National Labs, es un ejemplo del proceso de deposición de energía dirigida con alimentación de polvo para la impresión 3D o la restauración de piezas de metal. [152] [153]

Procesos de alambre de metal

Los sistemas de alimentación de alambre basados ​​en láser, como el de deposición de metal por láser (LMD-w), alimentan el alambre a través de una boquilla que se funde mediante un láser utilizando un gas inerte de protección en un entorno abierto (gas que rodea al láser) o en una cámara sellada. La fabricación de formas libres con haz de electrones utiliza una fuente de calor de haz de electrones dentro de una cámara de vacío.

También es posible utilizar soldadura por arco metálico con gas convencional acoplada a una plataforma 3D para imprimir en 3D metales como acero, bronce y aluminio. [154] [155] Las impresoras 3D de código abierto de bajo costo de estilo RepRap han sido equipadas con sensores basados ​​en Arduino y han demostrado propiedades metalúrgicas razonables a partir de alambre de soldadura convencional como materia prima. [156]

Deposición selectiva de polvo (SPD)

En la deposición selectiva de polvos, los polvos de construcción y de soporte se depositan selectivamente en un crisol, de modo que el polvo de construcción adopte la forma del objeto deseado y el polvo de soporte llene el resto del volumen del crisol. A continuación, se aplica un material de relleno, de modo que entre en contacto con el polvo de construcción. A continuación, el crisol se calienta en un horno a una temperatura superior al punto de fusión del relleno, pero inferior a los puntos de fusión de los polvos. Cuando el relleno se funde, empapa el polvo de construcción, pero no empapa el polvo de soporte, porque el polvo de soporte se elige de modo que no sea humectable por el relleno. Si a la temperatura de cocción, los átomos del material de relleno y el polvo de construcción son mutuamente desactivables, como en el caso del polvo de cobre y el relleno de zinc, entonces el material resultante será una mezcla uniforme de esos átomos, en este caso, bronce. Pero si los átomos no son mutuamente desactivables, como en el caso del tungsteno y el cobre a 1100 °C, entonces el material resultante será un compuesto. Para evitar la distorsión de la forma, la temperatura de cocción debe ser inferior a la temperatura de solidificación de la aleación resultante. [157]

Impresión 3D criogénica

La impresión 3D criogénica es una colección de técnicas que forman estructuras sólidas congelando materiales líquidos mientras se depositan. A medida que se aplica cada capa de líquido, se enfría por la baja temperatura de la capa anterior y el entorno de impresión, lo que da como resultado la solidificación. A diferencia de otras técnicas de impresión 3D, la impresión 3D criogénica requiere un entorno de impresión controlado. La temperatura ambiente debe estar por debajo del punto de congelación del material para garantizar que la estructura permanezca sólida durante la fabricación y la humedad debe permanecer baja para evitar la formación de escarcha entre la aplicación de capas. [158] Los materiales generalmente incluyen agua y soluciones a base de agua, como salmuera , lodo e hidrogeles . [159] [160] Las técnicas de impresión 3D criogénica incluyen prototipos de congelación rápida (RFP), [159] fabricación por deposición a baja temperatura (LDM), [161] y fabricación por extrusión de forma congelada (FEF). [162]

Aplicaciones

El Audi RSQ se fabricó con robots industriales de prototipado rápido KUKA

La impresión 3D o fabricación aditiva se ha utilizado en los sectores manufacturero, médico, industrial y sociocultural (por ejemplo, patrimonio cultural) para crear tecnología comercial exitosa. [163] Más recientemente, la impresión 3D también se ha utilizado en el sector humanitario y de desarrollo para producir una gama de artículos médicos, prótesis, repuestos y reparaciones. [164] La primera aplicación de la fabricación aditiva fue en el extremo de la sala de herramientas del espectro de fabricación. Por ejemplo, la creación rápida de prototipos fue una de las primeras variantes aditivas, y su misión era reducir el tiempo de entrega y el costo de desarrollar prototipos de nuevas piezas y dispositivos, lo que antes solo se hacía con métodos sustractivos de sala de herramientas como el fresado CNC, el torneado y el rectificado de precisión. [165] En la década de 2010, la fabricación aditiva entró en la producción en una medida mucho mayor.

Alimento

La fabricación aditiva de alimentos se está desarrollando mediante la compresión de los alimentos, capa por capa, hasta formar objetos tridimensionales. Una gran variedad de alimentos son candidatos apropiados, como el chocolate y los dulces, y alimentos planos como las galletas, la pasta [166] y la pizza. [167] [168] La NASA está estudiando la tecnología para crear alimentos impresos en 3D para limitar el desperdicio de alimentos y hacer alimentos diseñados para satisfacer las necesidades dietéticas de un astronauta. [169] En 2018, el bioingeniero italiano Giuseppe Scionti desarrolló una tecnología que permite la producción de análogos de carne de origen vegetal fibroso utilizando una bioimpresora 3D personalizada , imitando la textura de la carne y los valores nutricionales. [170] [171]

Moda

Collar impreso en 3D

La impresión 3D ha entrado en el mundo de la ropa, y los diseñadores de moda están experimentando con bikinis, zapatos y vestidos impresos en 3D. [172] En la producción comercial, Nike utilizó la impresión 3D para crear prototipos y fabricar el calzado de fútbol Vapor Laser Talon 2012 para jugadores de fútbol americano, y New Balance ha fabricado en 3D zapatos personalizados para atletas. [172] [173] La impresión 3D ha llegado al punto en que las empresas están imprimiendo gafas de consumo con un ajuste y un estilo personalizados a pedido (aunque no pueden imprimir los lentes). La personalización a pedido de las gafas es posible con la creación rápida de prototipos. [174]

Transporte

Un modelo de motor a reacción impreso en 3D

En automóviles, camiones y aviones, la fabricación aditiva está empezando a transformar tanto el diseño y la producción de carrocerías monocasco y fuselajes como el diseño y la producción de sistemas de propulsión . Por ejemplo, General Electric utiliza impresoras 3D de alta gama para fabricar piezas para turbinas . [175] Muchos de estos sistemas se utilizan para la creación rápida de prototipos antes de emplear métodos de producción en masa. Otros ejemplos destacados son:

Armas de fuego

El impacto de la fabricación aditiva en las armas de fuego implica dos dimensiones: nuevos métodos de fabricación para empresas establecidas y nuevas posibilidades para la fabricación de armas de fuego caseras . En 2012, el grupo estadounidense Defense Distributed reveló planes para diseñar un arma de fuego impresa en 3D de plástico funcional "que pudiera ser descargada y reproducida por cualquier persona con una impresora 3D". [184] [185] Después de que Defense Distributed publicara sus planes, surgieron preguntas sobre los efectos que la impresión 3D y el mecanizado CNC generalizado a nivel de consumidor [186] [187] pueden tener en la efectividad del control de armas . [188] [189] [190] [191] Además, las estrategias de diseño de armaduras se pueden mejorar inspirándose en la naturaleza y creando prototipos de esos diseños fácilmente, utilizando la fabricación aditiva. [192]

Salud

Los usos quirúrgicos de las terapias centradas en la impresión 3D comenzaron a mediados de la década de 1990 con el modelado anatómico para la planificación de la cirugía reconstructiva ósea. Los implantes adaptados a cada paciente fueron una extensión natural de este trabajo, lo que dio lugar a implantes verdaderamente personalizados que se adaptan a un individuo único. [193] La planificación virtual de la cirugía y la guía utilizando instrumentos personalizados impresos en 3D se han aplicado a muchas áreas de la cirugía, incluido el reemplazo total de articulaciones y la reconstrucción craneomaxilofacial con gran éxito. [194] [195] Un ejemplo de esto es la férula traquial bioreabsorbible para tratar a los recién nacidos con traqueobroncomalacia [196] desarrollada en la Universidad de Michigan. El uso de la fabricación aditiva para la producción en serie de implantes ortopédicos (metales) también está aumentando debido a la capacidad de crear de manera eficiente estructuras de superficie porosas que facilitan la osteointegración . Se espera que las industrias de los audífonos y la odontología sean las mayores áreas de desarrollo futuro utilizando tecnología de impresión 3D personalizada. [197]

La impresión 3D no se limita solo a materiales inorgánicos; ha habido una serie de avances biomédicos que han sido posibles gracias a la impresión 3D. A partir de 2012 , las empresas de biotecnología y el mundo académico han estudiado la tecnología de bioimpresión 3D para su posible uso en aplicaciones de ingeniería de tejidos en las que se construyen órganos y partes del cuerpo utilizando técnicas de impresión por inyección de tinta . En este proceso, se depositan capas de células vivas sobre un medio de gel o una matriz de azúcar y se acumulan lentamente para formar estructuras tridimensionales que incluyen sistemas vasculares. [198] La impresión 3D se ha considerado como un método para implantar células madre capaces de generar nuevos tejidos y órganos en humanos vivos. [199] En 2018, la tecnología de impresión 3D se utilizó por primera vez para crear una matriz para la inmovilización de células en la fermentación. La producción de ácido propiónico por Propionibacterium acidipropionici inmovilizado en perlas de nailon impresas en 3D se eligió como estudio modelo. Se demostró que esas perlas impresas en 3D eran capaces de promover la unión de células de alta densidad y la producción de ácido propiónico, lo que podría adaptarse a otros bioprocesos de fermentación. [200]

La impresión 3D también ha sido utilizada por investigadores en el campo farmacéutico. Durante los últimos años, ha habido un aumento en el interés académico con respecto a la administración de medicamentos con la ayuda de técnicas de fabricación aditiva. Esta tecnología ofrece una forma única de utilizar materiales en formulaciones novedosas. [201] La fabricación aditiva permite el uso de materiales y compuestos en el desarrollo de formulaciones, de formas que no son posibles con las técnicas convencionales/tradicionales en el campo farmacéutico, por ejemplo, la fabricación de comprimidos, el moldeo por fundición, etc. Además, una de las principales ventajas de la impresión 3D, especialmente en el caso del modelado por deposición fundida (FDM), es la personalización de la forma de dosificación que se puede lograr, apuntando así a las necesidades específicas del paciente. [202] En un futuro no muy lejano, se espera que las impresoras 3D lleguen a los hospitales y farmacias para proporcionar una producción a pedido de formulaciones personalizadas de acuerdo con las necesidades de los pacientes. [203]

La impresión 3D también se ha utilizado para equipos médicos. Durante la pandemia de COVID-19, se utilizaron impresoras 3D para complementar el escaso suministro de EPI mediante voluntarios que utilizaban sus propias impresoras para producir diversas piezas de equipo de protección personal (por ejemplo, marcos para protectores faciales).

Educación

La impresión 3D, y las impresoras 3D de código abierto, en particular, son las últimas tecnologías que se están abriendo camino en el aula. [204] [205] [206] La educación superior ha demostrado ser un importante comprador de impresoras 3D de escritorio y profesionales, lo que los expertos de la industria generalmente consideran un indicador positivo. [207] Algunos autores han afirmado que las impresoras 3D ofrecen una "revolución" sin precedentes en la educación STEM . [208] [209] La evidencia de tales afirmaciones proviene tanto de la capacidad de bajo costo para la creación rápida de prototipos en el aula por parte de los estudiantes, sino también de la fabricación de equipos científicos de alta calidad y bajo costo a partir de diseños de hardware abierto que forman laboratorios de código abierto . [210] Además, las bibliotecas de todo el mundo también se han convertido en lugares para albergar impresoras 3D más pequeñas para acceso educativo y comunitario. [211] Las futuras aplicaciones de la impresión 3D podrían incluir la creación de equipos científicos de código abierto. [210] [212]

Escultura impresa en 3D de un faraón egipcio en exhibición en Threeding

Replicando artefactos arqueológicos

En la década de 2010, la impresión 3D se utilizó intensivamente en el campo del patrimonio cultural con fines de preservación, restauración y difusión. [213] Muchos museos europeos y norteamericanos han comprado impresoras 3D y recrean activamente piezas faltantes de sus reliquias [214] y monumentos arqueológicos como Tiwanaku en Bolivia . [215] El Museo Metropolitano de Arte y el Museo Británico han comenzado a utilizar sus impresoras 3D para crear recuerdos de museos que están disponibles en las tiendas del museo. [216] Otros museos, como el Museo Nacional de Historia Militar y el Museo Histórico de Varna, han ido más allá y venden a través de la plataforma en línea Threeding modelos digitales de sus artefactos, creados con escáneres 3D de Artec , en un formato de archivo compatible con la impresión 3D, que todos pueden imprimir en 3D en casa. [217] Morehshin Allahyari , una artista estadounidense nacida en Irán, considera su uso de procesos de escultura 3D para reconstruir tesoros culturales iraníes como activismo feminista. Allahyari utiliza un software de modelado 3D para reconstruir una serie de artefactos culturales que fueron demolidos por militantes de ISIS en 2014. [218]

Replicando edificios históricos y estructuras arquitectónicas

El Stoofbrug  [nl] de Ámsterdam, el primer puente de metal impreso en 3D del mundo [103]

La aplicación de la impresión 3D para la representación de activos arquitectónicos presenta muchos desafíos. En 2018, la estructura del Banco Nacional de Irán se inspeccionó y modeló tradicionalmente en un software de gráficos por computadora (específicamente, Cinema4D ) y se optimizó para la impresión 3D. El equipo probó la técnica para la construcción de la pieza y tuvo éxito. Después de probar el procedimiento, los modeladores reconstruyeron la estructura en Cinema4D y exportaron la parte frontal del modelo a Netfabb. Se eligió la entrada del edificio debido a las limitaciones de la impresión 3D y al presupuesto del proyecto para producir la maqueta. La impresión 3D fue solo una de las capacidades habilitadas por el modelo 3D producido del banco, pero debido al alcance limitado del proyecto, el equipo no continuó modelando para la representación virtual u otras aplicaciones. [219] En 2021, Parsinejad et al. compararon exhaustivamente el método de inspección manual para la reconstrucción 3D lista para la impresión 3D con la grabación digital (adopción del método de fotogrametría). [219]

El primer puente de acero impreso en 3D del mundo se inauguró en Ámsterdam en julio de 2021. Con una longitud de 12 metros sobre el canal Oudezijds Achterburgwal , el puente se creó utilizando brazos robóticos que imprimieron más de 4.500 kilogramos de acero inoxidable. Se necesitaron seis meses para completarlo. [220]

Actuadores suaves

Los actuadores blandos impresos en 3D son una aplicación en crecimiento de la tecnología de impresión 3D que ha encontrado su lugar en las aplicaciones de impresión 3D. Estos actuadores blandos se están desarrollando para tratar estructuras y órganos blandos, especialmente en sectores biomédicos y donde la interacción entre humanos y robots es inevitable. La mayoría de los actuadores blandos existentes se fabrican mediante métodos convencionales que requieren la fabricación manual de dispositivos, posprocesamiento/ensamblaje y largas iteraciones hasta que se alcanza la madurez de la fabricación. En lugar de los aspectos tediosos y que requieren mucho tiempo de los procesos de fabricación actuales, los investigadores están explorando un enfoque de fabricación adecuado para la fabricación eficaz de actuadores blandos. Por lo tanto, se introducen actuadores blandos impresos en 3D para revolucionar el diseño y la fabricación de actuadores blandos con propiedades geométricas, funcionales y de control personalizadas en un enfoque más rápido y económico. También permiten la incorporación de todos los componentes del actuador en una sola estructura eliminando la necesidad de utilizar juntas externas , adhesivos y sujetadores .

Placas de circuitos

La fabricación de placas de circuitos implica varios pasos que incluyen la formación de imágenes, la perforación, el enchapado, el revestimiento de máscara de soldadura, la impresión de nomenclatura y los acabados de la superficie. Estos pasos incluyen muchos productos químicos como disolventes agresivos y ácidos. Las placas de circuitos de impresión 3D eliminan la necesidad de muchos de estos pasos y, al mismo tiempo, producen diseños complejos. [221] La tinta polimérica se utiliza para crear las capas de la construcción, mientras que el polímero de plata se utiliza para crear los rastros y los agujeros que se utilizan para permitir que fluya la electricidad. [222] La fabricación actual de placas de circuitos puede ser un proceso tedioso según el diseño. Los materiales especificados se reúnen y se envían al procesamiento de la capa interna, donde se imprimen, revelan y graban las imágenes. Los núcleos de grabado normalmente se perforan para agregar herramientas de laminación. Luego, los núcleos se preparan para la laminación. La pila, la acumulación de una placa de circuito, se construye y se envía a laminación donde se unen las capas. Luego, las placas se miden y se perforan. Muchos pasos pueden diferir de esta etapa; sin embargo, para diseños simples, el material pasa por un proceso de enchapado para recubrir los orificios y la superficie. La imagen exterior se imprime, se revela y se graba. Una vez definida la imagen, el material debe recubrirse con una máscara de soldadura para soldarla más tarde. Luego se agrega la nomenclatura para que los componentes se puedan identificar más tarde. Luego se agrega el acabado de la superficie. Las placas se sacan del formato de panel a su formato único o de matriz y luego se prueban eléctricamente. Además del papeleo que se debe completar para demostrar que las placas cumplen con las especificaciones, las placas se empaquetan y se envían. Los beneficios de la impresión 3D serían que el contorno final se define desde el principio, no se requiere formación de imágenes, perforación o laminación y las conexiones eléctricas se realizan con el polímero de plata, lo que elimina la perforación y el enchapado. El papeleo final también se reduciría en gran medida debido a la falta de materiales necesarios para construir la placa de circuito. Los diseños complejos que pueden tardar semanas en completarse mediante un procesamiento normal se pueden imprimir en 3D, lo que reduce en gran medida el tiempo de fabricación.

Un selfie 3D a escala 1:20 impreso mediante impresión a base de yeso

Aficionados

En 2005, las revistas académicas comenzaron a informar sobre las posibles aplicaciones artísticas de la tecnología de impresión 3D. [223] Las máquinas disponibles comercialmente eran cada vez más capaces de producir aplicaciones domésticas prácticas, por ejemplo, objetos ornamentales. Algunos ejemplos prácticos incluyen un reloj que funciona [224] y engranajes impresos para máquinas de carpintería domésticas, entre otros fines. [225] Los sitios web asociados con la impresión 3D doméstica tendían a incluir rascadores de espalda, ganchos para abrigos, pomos de puertas, etc. [226] A partir de 2017, la impresión 3D doméstica estaba llegando a una audiencia de consumidores más allá de los aficionados y entusiastas. Varios proyectos y empresas están haciendo esfuerzos para desarrollar impresoras 3D asequibles para uso de escritorio en el hogar. Gran parte de este trabajo ha sido impulsado y dirigido a las comunidades de bricolaje / fabricantes / entusiastas / adoptantes tempranos , con vínculos adicionales con las comunidades académicas y de hackers .

Impulsados ​​por las disminuciones de precios y los aumentos de calidad, a partir de 2019 se estima que 2 millones de personas en todo el mundo han comprado una impresora 3D para uso recreativo. [227]

Aspectos legales

Propiedad intelectual

La impresión 3D existe desde hace décadas en ciertas industrias manufactureras en las que pueden aplicarse muchos regímenes legales, incluidas patentes , derechos de diseño industrial , derechos de autor y marcas registradas . Sin embargo, no hay mucha jurisprudencia que diga cómo se aplicarán estas leyes si las impresoras 3D se generalizan y los individuos o las comunidades de aficionados comienzan a fabricar artículos para uso personal, para distribución sin fines de lucro o para la venta.

Cualquiera de los regímenes jurídicos mencionados puede prohibir la distribución de los diseños utilizados en la impresión 3D o la distribución o venta del artículo impreso. Para poder hacer estas cosas, cuando se trate de propiedad intelectual activa, una persona tendría que ponerse en contacto con el propietario y solicitar una licencia, que puede venir acompañada de condiciones y un precio. Sin embargo, muchas leyes de patentes, diseño y derechos de autor contienen una limitación o excepción estándar para el uso "privado" o "no comercial" de invenciones, diseños u obras de arte protegidas por la propiedad intelectual (PI). Esa limitación o excepción estándar puede dejar esos usos privados y no comerciales fuera del alcance de los derechos de PI.

Las patentes cubren invenciones que incluyen procesos, máquinas, manufacturas y composiciones de materia y tienen una duración finita que varía según los países, pero generalmente es de 20 años a partir de la fecha de solicitud. Por lo tanto, si se patenta un tipo de rueda, la impresión, uso o venta de dicha rueda podría constituir una infracción de la patente. [228]

Copyright covers an expression[229] in a tangible, fixed medium and often lasts for the life of the author plus 70 years thereafter.[230] For example, a sculptor retains copyright over a statue, such that other people cannot then legally distribute designs to print an identical or similar statue without paying royalties, waiting for the copyright to expire, or working within a fair use exception.

When a feature has both artistic (copyrightable) and functional (patentable) merits when the question has appeared in US court, the courts have often held the feature is not copyrightable unless it can be separated from the functional aspects of the item.[230] In other countries the law and the courts may apply a different approach allowing, for example, the design of a useful device to be registered (as a whole) as an industrial design on the understanding that, in case of unauthorized copying, only the non-functional features may be claimed under design law whereas any technical features could only be claimed if covered by a valid patent.

Gun legislation and administration

The US Department of Homeland Security and the Joint Regional Intelligence Center released a memo stating that "significant advances in three-dimensional (3D) printing capabilities, availability of free digital 3D printable files for firearms components, and difficulty regulating file sharing may present public safety risks from unqualified gun seekers who obtain or manufacture 3D printed guns" and that "proposed legislation to ban 3D printing of weapons may deter, but cannot completely prevent their production. Even if the practice is prohibited by new legislation, online distribution of these 3D printable files will be as difficult to control as any other illegally traded music, movie or software files."[231]

Attempting to restrict the distribution of gun plans via the Internet has been likened to the futility of preventing the widespread distribution of DeCSS, which enabled DVD ripping.[232][233][234][235] After the US government had Defense Distributed take down the plans, they were still widely available via the Pirate Bay and other file sharing sites.[236] Downloads of the plans from the UK, Germany, Spain, and Brazil were heavy.[237][238] Some US legislators have proposed regulations on 3D printers to prevent them from being used for printing guns.[239][240] 3D printing advocates have suggested that such regulations would be futile, could cripple the 3D printing industry and could infringe on free speech rights, with early pioneers of 3D printing professor Hod Lipson suggesting that gunpowder could be controlled instead.[241][242][243][244][245][246]

Internationally, where gun controls are generally stricter than in the United States, some commentators have said the impact may be more strongly felt since alternative firearms are not as easily obtainable.[247] Officials in the United Kingdom have noted that producing a 3D-printed gun would be illegal under their gun control laws.[248] Europol stated that criminals have access to other sources of weapons but noted that as technology improves, the risks of an effect would increase.[249][250]

Aerospace regulation

In the United States, the FAA has anticipated a desire to use additive manufacturing techniques and has been considering how best to regulate this process.[251] The FAA has jurisdiction over such fabrication because all aircraft parts must be made under FAA production approval or under other FAA regulatory categories.[252] In December 2016, the FAA approved the production of a 3D printed fuel nozzle for the GE LEAP engine.[253] Aviation attorney Jason Dickstein has suggested that additive manufacturing is merely a production method, and should be regulated like any other production method.[254][255] He has suggested that the FAA's focus should be on guidance to explain compliance, rather than on changing the existing rules, and that existing regulations and guidance permit a company "to develop a robust quality system that adequately reflects regulatory needs for quality assurance".[254]

Health and safety

A video on research done on printer emissions

Research on the health and safety concerns of 3D printing is new and in development due to the recent proliferation of 3D printing devices. In 2017, the European Agency for Safety and Health at Work published a discussion paper on the processes and materials involved in 3D printing, the potential implications of this technology for occupational safety and health and avenues for controlling potential hazards.[256]

Noise levels

Noise level is measured in decibels (dB), and can vary greatly in home printers from 15 dB to 75 dB.[257] Some main sources of noise in filament printers are fans, motors and bearings, while in resin printers the fans usually are responsible for most of the noise.[257] Some methods for dampening the noise from a printer may be to install vibration isolation, use larger diameter fans, perform regular maintenance and lubrication, or use a soundproofing enclosure.[257]

Impact

Additive manufacturing, starting with today's infancy period, requires manufacturing firms to be flexible, ever-improving users of all available technologies to remain competitive. Advocates of additive manufacturing also predict that this arc of technological development will counter globalization, as end users will do much of their own manufacturing rather than engage in trade to buy products from other people and corporations.[16] The real integration of the newer additive technologies into commercial production, however, is more a matter of complementing traditional subtractive methods rather than displacing them entirely.[258]

The futurologist Jeremy Rifkin[259] claimed that 3D printing signals the beginning of a third industrial revolution,[260] succeeding the production line assembly that dominated manufacturing starting in the late 19th century.

Social change

Street sign in Windhoek, Namibia, advertising 3D printing, July 2018

Since the 1950s, a number of writers and social commentators have speculated in some depth about the social and cultural changes that might result from the advent of commercially affordable additive manufacturing technology.[261] In recent years, 3D printing has created a significant impact in the humanitarian and development sector. Its potential to facilitate distributed manufacturing is resulting in supply chain and logistics benefits, by reducing the need for transportation, warehousing and wastage. Furthermore, social and economic development is being advanced through the creation of local production economies.[164]

Others have suggested that as more and more 3D printers start to enter people's homes, the conventional relationship between the home and the workplace might get further eroded.[262] Likewise, it has also been suggested that, as it becomes easier for businesses to transmit designs for new objects around the globe, so the need for high-speed freight services might also become less.[263] Finally, given the ease with which certain objects can now be replicated, it remains to be seen whether changes will be made to current copyright legislation so as to protect intellectual property rights with the new technology widely available.

Some call attention to the conjunction of commons-based peer production with 3D printing and other low-cost manufacturing techniques.[264][265][266] The self-reinforced fantasy of a system of eternal growth can be overcome with the development of economies of scope, and here, society can play an important role contributing to the raising of the whole productive structure to a higher plateau of more sustainable and customized productivity.[264] Further, it is true that many issues, problems, and threats arise due to the democratization of the means of production, and especially regarding the physical ones.[264] For instance, the recyclability of advanced nanomaterials is still questioned; weapons manufacturing could become easier; not to mention the implications for counterfeiting[267] and on intellectual property.[268] It might be maintained that in contrast to the industrial paradigm whose competitive dynamics were about economies of scale, commons-based peer production 3D printing could develop economies of scope. While the advantages of scale rest on cheap global transportation, the economies of scope share infrastructure costs (intangible and tangible productive resources), taking advantage of the capabilities of the fabrication tools.[264] And following Neil Gershenfeld[269] in that "some of the least developed parts of the world need some of the most advanced technologies", commons-based peer production and 3D printing may offer the necessary tools for thinking globally but acting locally in response to certain needs.

Larry Summers wrote about the "devastating consequences" of 3D printing and other technologies (robots, artificial intelligence, etc.) for those who perform routine tasks. In his view, "already there are more American men on disability insurance than doing production work in manufacturing. And the trends are all in the wrong direction, particularly for the less skilled, as the capacity of capital embodying artificial intelligence to replace white-collar as well as blue-collar work will increase rapidly in the years ahead." Summers recommends more vigorous cooperative efforts to address the "myriad devices" (e.g., tax havens, bank secrecy, money laundering, and regulatory arbitrage) enabling the holders of great wealth to "a paying" income and estate taxes, and to make it more difficult to accumulate great fortunes without requiring "great social contributions" in return, including: more vigorous enforcement of anti-monopoly laws, reductions in "excessive" protection for intellectual property, greater encouragement of profit-sharing schemes that may benefit workers and give them a stake in wealth accumulation, strengthening of collective bargaining arrangements, improvements in corporate governance, strengthening of financial regulation to eliminate subsidies to financial activity, easing of land-use restrictions that may cause the real estate of the rich to keep rising in value, better training for young people and retraining for displaced workers, and increased public and private investment in infrastructure development—e.g., in energy production and transportation.[270]

Michael Spence wrote that "Now comes a ... powerful, wave of digital technology that is replacing labor in increasingly complex tasks. This process of labor substitution and disintermediation has been underway for some time in service sectors—think of ATMs, online banking, enterprise resource planning, customer relationship management, mobile payment systems, and much more. This revolution is spreading to the production of goods, where robots and 3D printing are displacing labor." In his view, the vast majority of the cost of digital technologies comes at the start, in the design of hardware (e.g. 3D printers) and, more importantly, in creating the software that enables machines to carry out various tasks. "Once this is achieved, the marginal cost of the hardware is relatively low (and declines as scale rises), and the marginal cost of replicating the software is essentially zero. With a huge potential global market to amortize the upfront fixed costs of design and testing, the incentives to invest [in digital technologies] are compelling."[271]

Spence believes that, unlike prior digital technologies, which drove firms to deploy underutilized pools of valuable labor around the world, the motivating force in the current wave of digital technologies "is cost reduction via the replacement of labor". For example, as the cost of 3D printing technology declines, it is "easy to imagine" that production may become "extremely" local and customized. Moreover, production may occur in response to actual demand, not anticipated or forecast demand. Spence believes that labor, no matter how inexpensive, will become a less important asset for growth and employment expansion, with labor-intensive, process-oriented manufacturing becoming less effective, and that re-localization will appear in both developed and developing countries. In his view, production will not disappear, but it will be less labor-intensive, and all countries will eventually need to rebuild their growth models around digital technologies and the human capital supporting their deployment and expansion. Spence writes that "the world we are entering is one in which the most powerful global flows will be ideas and digital capital, not goods, services, and traditional capital. Adapting to this will require shifts in mindsets, policies, investments (especially in human capital), and quite possibly models of employment and distribution."[271]

Naomi Wu regards the usage of 3D printing in the Chinese classroom (where rote memorization is standard) to teach design principles and creativity as the most exciting recent development of the technology, and more generally regards 3D printing as being the next desktop publishing revolution.[272]

Environmental change

The growth of additive manufacturing could have a large impact on the environment. As opposed to traditional manufacturing, for instance, in which pieces are cut from larger blocks of material, additive manufacturing creates products layer-by-layer and prints only relevant parts, wasting much less material and thus wasting less energy in producing the raw materials needed.[273] By making only the bare structural necessities of products, additive manufacturing also could make a profound contribution to lightweighting, reducing the energy consumption and greenhouse gas emissions of vehicles and other forms of transportation.[274] A case study on an airplane component made using additive manufacturing, for example, found that the component's use saves 63% of relevant energy and carbon dioxide emissions over the course of the product's lifetime.[275] In addition, previous life-cycle assessment of additive manufacturing has estimated that adopting the technology could further lower carbon dioxide emissions since 3D printing creates localized production, and products would not need to be transported long distances to reach their final destination.[276]

Continuing to adopt additive manufacturing does pose some environmental downsides, however. Despite additive manufacturing reducing waste from the subtractive manufacturing process by up to 90%, the additive manufacturing process creates other forms of waste such as non-recyclable material (metal) powders. Additive manufacturing has not yet reached its theoretical material efficiency potential of 97%, but it may get closer as the technology continues to increase productivity.[277]

Some large FDM printers that melt high-density polyethylene (HDPE) pellets may also accept sufficiently clean recycled material such as chipped milk bottles. In addition, these printers can use shredded material coming from faulty builds or unsuccessful prototype versions thus reducing overall project wastage and materials handling and storage. The concept has been explored in the RecycleBot.

See also

References

  1. ^ "3D printing scales up". The Economist. 5 September 2013. Archived from the original on 15 July 2019. Retrieved 15 July 2019.
  2. ^ Gao, Wei; Zhang, Yunbo; Ramanujan, Devarajan; Ramani, Karthik; Chen, Yong; Williams, Christopher B.; Wang, Charlie C. L.; Shin, Yung C.; Zhang, Song; Zavattieri, Pablo D. (2015). "The status, challenges, and future of additive manufacturing in engineering". Computer-Aided Design. 69: 65–89. doi:10.1016/j.cad.2015.04.001. ISSN 0010-4485. S2CID 33086357.
  3. ^ Ngo, Tuan D.; Kashani, Alireza; Imbalzano, Gabriele; Nguyen, Kate T. Q.; Hui, David (2018). "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges". Composites Part B: Engineering. 143: 172–196. doi:10.1016/j.compositesb.2018.02.012. S2CID 139464688.
  4. ^ Excell, Jon (23 May 2010). "The rise of additive manufacturing". The Engineer. Archived from the original on 19 September 2015. Retrieved 30 October 2013.
  5. ^ "Learning Course: Additive Manufacturing – Additive Fertigung". tmg-muenchen.de. Archived from the original on 23 August 2019. Retrieved 23 August 2019.
  6. ^ Lam, Hugo K.S.; Ding, Li; Cheng, T.C.E.; Zhou, Honggeng (1 January 2019). "The impact of 3D printing implementation on stock returns: A contingent dynamic capabilities perspective". International Journal of Operations & Production Management. 39 (6/7/8): 935–961. doi:10.1108/IJOPM-01-2019-0075. ISSN 0144-3577. S2CID 211386031.
  7. ^ "3D Printing: All You Need To Know". explainedideas.com. Archived from the original on 20 August 2022. Retrieved 11 August 2022.
  8. ^ a b "Most used 3D printing technologies 2017–2018 | Statistic". Statista. Archived from the original on 2 March 2019. Retrieved 2 December 2018.
  9. ^ "Google Ngram Viewer". books.google.com. Archived from the original on 6 July 2024. Retrieved 23 August 2019.
  10. ^ "ISO/ASTM 52900:2015 – Additive manufacturing – General principles – Terminology". iso.org. Archived from the original on 10 July 2017. Retrieved 15 June 2017.
  11. ^ a b Zelinski, Peter (4 August 2017), "Additive manufacturing and 3D printing are two different things", Additive Manufacturing, archived from the original on 12 August 2017, retrieved 11 August 2017.
  12. ^ M. Leinster, Things Pass By, in The Earth In Peril (D. Wollheim ed.). Ace Books 1957, USA, List of Ace SF double titles D-205, p.25, story copyright 1945, by Standard Magazines Inc.
  13. ^ "US3596285A - Liquid metal recorder". Google Patents. Archived from the original on 5 March 2024.
  14. ^ "Ariadne". New Scientist. 64 (917): 80. 3 October 1974. ISSN 0262-4079. Archived from the original on 6 October 2023.
  15. ^ Ellam, Richard (26 February 2019). "3D printing: you read it here first". New Scientist. Archived from the original on 17 August 2019. Retrieved 23 August 2019.
  16. ^ a b Jane Bird (8 August 2012). "Exploring the 3D printing opportunity". Financial Times. Archived from the original on 16 January 2016. Retrieved 30 August 2012.
  17. ^ Hideo Kodama, " Background of my invention of 3D printer and its spread", Patent Magazine of Japan Patent Attorneys Association, vo.67, no.13, pp.109-118, November 2014.
  18. ^ JP-S56-144478, "JP Patent: S56-144478 - 3D figure production device", issued 10 November 1981 
  19. ^ Hideo Kodama, "A Scheme for Three-Dimensional Display by Automatic Fabrication of Three-Dimensional Model", IEICE Transactions on Electronics (Japanese Edition), vol. J64-C, No. 4, pp. 237–41, April 1981
  20. ^ Hideo Kodama, "Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer", Review of Scientific Instruments, Vol. 52, No. 11, pp. 1770–73, November 1981
  21. ^ 4665492, Masters, William E., "United States Patent: 4665492 - Computer automated manufacturing process and system", issued 12 May 1987  Archived 12 April 2022 at the Wayback Machine
  22. ^ "3-D Printing Steps into the Spotlight". Upstate Business Journal. 11 April 2013. Archived from the original on 20 December 2019. Retrieved 20 December 2019.
  23. ^ Wang, Ben (27 January 1999). Concurrent Design of Products, Manufacturing Processes and Systems. CRC Press. ISBN 978-90-5699-628-4.
  24. ^ Jean-Claude, Andre. "Disdpositif pour realiser un modele de piece industrielle". National De La Propriete Industrielle. Archived from the original on 5 February 2016. Retrieved 5 February 2016.
  25. ^ Mendoza, Hannah Rose (15 May 2015). "Alain Le Méhauté, The Man Who Submitted Patent For SLA 3D Printing Before Chuck Hull". 3dprint.com. Archived from the original on 3 February 2016. Retrieved 5 February 2016.
  26. ^ Moussion, Alexandre (2014). "Interview d'Alain Le Méhauté, l'un des pères de l'impression (Interview of Alain Le Mehaute, one of the 3D printinf technologies fathers) 3D". Primante 3D.
  27. ^ a b Howard, Robert (2009). Connecting the dots: my life and inventions, from X-rays to death rays. New York, NY: Welcome Rain. pp. 195–197. ISBN 978-1-56649-957-6. OCLC 455879561.
  28. ^ a b c d Barnatt, Christopher (2013). 3D printing: the next industrial revolution. [Nottingham, England?]: ExplainingTheFuture.com. ISBN 978-1-4841-8176-8. OCLC 854672031.
  29. ^ "3D Printing: What You Need to Know". PCMag.com. Archived from the original on 18 October 2013. Retrieved 30 October 2013.
  30. ^ Apparatus for Production of Three-Dimensional Objects by Stereolithography (8 August 1984)
  31. ^ Freedman, David H (2012). "Layer By Layer". Technology Review. 115 (1): 50–53.
  32. ^ "History of 3D Printing: When Was 3D Printing Invented?". All3DP. 10 December 2018. Archived from the original on 3 July 2019. Retrieved 22 November 2019.
  33. ^ "The Evolution of 3D Printing: Past, Present and Future". 3D Printing Industry. 1 August 2016. Archived from the original on 17 March 2021. Retrieved 24 February 2021.
  34. ^ Amon, C. H.; Beuth, J. L.; Weiss, L. E.; Merz, R.; Prinz, F. B. (1998). "Shape Deposition Manufacturing With Microcasting: Processing, Thermal and Mechanical Issues". Journal of Manufacturing Science and Engineering. 120 (3): 656–665. doi:10.1115/1.2830171. Archived from the original (PDF) on 20 December 2014. Retrieved 20 December 2014.
  35. ^ Beck, J.E.; Fritz, B.; Siewiorek, Daniel; Weiss, Lee (1992). "Manufacturing Mechatronics Using Thermal Spray Shape Deposition" (PDF). Proceedings of the 1992 Solid Freeform Fabrication Symposium. Archived from the original (PDF) on 24 December 2014. Retrieved 20 December 2014.
  36. ^ Prinz, F. B.; Merz, R.; Weiss, Lee (1997). Ikawa, N. (ed.). Building Parts You Could Not Build Before. Proceedings of the 8th International Conference on Production Engineering. London, UK: Chapman & Hall. pp. 40–44.
  37. ^ Wu, Peng; Wang, Jun; Wang, Xiangyu (1 August 2016). "A critical review of the use of 3-D printing in the construction industry". Automation in Construction. 68: 21–31. doi:10.1016/j.autcon.2016.04.005. hdl:20.500.11937/7988. ISSN 0926-5805. S2CID 54037889.
  38. ^ "About - RepRap". reprap.org. Archived from the original on 27 December 2023. Retrieved 27 November 2023.
  39. ^ Malone, Evan; Lipson, Hod (1 January 2007). "Fab@Home: the personal desktop fabricator kit". Rapid Prototyping Journal. 13 (4): 245–255. doi:10.1108/13552540710776197. ISSN 1355-2546.
  40. ^ Matias, Elizabeth; Rao, Bharat (2015). "3D printing: On its historical evolution and the implications for business". 2015 Portland International Conference on Management of Engineering and Technology (PICMET). pp. 551–558. doi:10.1109/PICMET.2015.7273052. ISBN 978-1-8908-4331-1. S2CID 10569154. Archived from the original on 25 January 2024. Retrieved 29 November 2023.
  41. ^ GE jet engine bracket challenge, archived from the original on 7 November 2020, retrieved 7 June 2014
  42. ^ Zelinski, Peter (2 June 2014), "How do you make a howitzer less heavy?", Modern Machine Shop, archived from the original on 15 November 2020, retrieved 7 June 2014
  43. ^ "As Billions More Fly, Here's How Aviation Could Evolve". National Geographic. 22 June 2017. Archived from the original on 27 February 2021. Retrieved 20 November 2020.
  44. ^ "Aviation and Aerospace Industry". GE Additive. Archived from the original on 17 January 2021. Retrieved 20 November 2020.
  45. ^ "Pratt & Whitney to Deliver First Entry Into Service Engine Parts Using Additive Manufacturing". Additive Manufacturing. 6 April 2015. Archived from the original on 19 October 2020. Retrieved 20 December 2020.
  46. ^ Han, Pinlina (2017). "Additive Design and Manufacturing of Jet Engine Parts". Engineering. 3 (5): 648–652. Bibcode:2017Engin...3..648H. doi:10.1016/j.eng.2017.05.017.
  47. ^ b. Mtaho, Adam; r.Ishengoma, Fredrick (2014). "3D Printing: Developing Countries Perspectives". International Journal of Computer Applications. 104 (11): 30. arXiv:1410.5349. Bibcode:2014IJCA..104k..30R. doi:10.5120/18249-9329. S2CID 5381455.
  48. ^ "Filabot: Plastic Filament Maker". Kickstarter. 24 May 2012. Retrieved 1 December 2018.
  49. ^ Cook, Benjamin Stassen (26 March 2014). "VIPRE 3D Printed Electronics". Archived from the original on 2 April 2019. Retrieved 2 April 2019.
  50. ^ "3D Printer Price: How Much Does a 3D Printer Cost?". 3D Insider. 22 June 2017. Archived from the original on 27 January 2021. Retrieved 24 February 2021.
  51. ^ "How Much Does a 3D Printer Cost? Calculate the ROI Now". Formlabs. Archived from the original on 16 January 2021. Retrieved 24 February 2021.
  52. ^ "Patient receives the world's first fully 3D-printed prosthetic eye". Engadget. 30 November 2021. Archived from the original on 4 December 2021. Retrieved 4 December 2021.
  53. ^ "Vsak dan prvi - 24ur.com". www.24ur.com. Retrieved 4 December 2021.
  54. ^ "World's biggest 3D printer whirs into action". www.bbc.com. Archived from the original on 26 April 2024. Retrieved 26 April 2024.
  55. ^ University of Illinois at Urbana-Champaign (25 May 2024). "Synthetic Bones Designed by AI Set to Transform Orthopedic Surgery". SciTechDaily. Archived from the original on 26 May 2024. Retrieved 26 May 2024.
  56. ^ Salas, Joe (23 May 2024). "Autonomous robot invents the world's best shock absorber". New Atlas. Archived from the original on 26 May 2024. Retrieved 26 May 2024.
  57. ^ a b Fazal, Faraz; Melchels, Ferry P.W.; McCormack, Andrew; Silva, Andreia F.; Handley, Ella-Louise; Mazlan, Nurul Ain; Callanan, Anthony; Koutsos, Vasileios; Radacsi, Norbert (25 July 2024). "Fabrication of a Compliant Vascular Graft Using Extrusion Printing and Electrospinning Technique". Advanced Materials Technologies. doi:10.1002/admt.202400224. ISSN 2365-709X.
  58. ^ Weller, Christian; Kleer, Robin; Piller, Frank T. (1 June 2015). "Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited". International Journal of Production Economics. 164: 43–56. doi:10.1016/j.ijpe.2015.02.020. ISSN 0925-5273. Archived from the original on 9 July 2019. Retrieved 27 March 2024.
  59. ^ Ben-Ner, Avner; Siemsen, Enno (February 2017). "Decentralization and Localization of Production: The Organizational and Economic Consequences of Additive Manufacturing (3D Printing)". California Management Review. 59 (2): 5–23. doi:10.1177/0008125617695284. ISSN 0008-1256. Archived from the original on 27 March 2024. Retrieved 27 March 2024.
  60. ^ Li, Zhaolong; Wang, Qinghai; Liu, Guangdong (April 2022). "A Review of 3D Printed Bone Implants". Micromachines. 13 (4): 528. doi:10.3390/mi13040528. ISSN 2072-666X. PMC 9025296. PMID 35457833.
  61. ^ P. Sivasankaran and B. Radjaram, "3D Printing and Its Importance in Engineering - A Review", 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 2020, pp. 1-3, doi:10.1109/ICSCAN49426.2020.9262378.
  62. ^ Zhang, Zhi; Zhang, Lei; Song, Bo; Yao, Yonggang; Shi, Yusheng (1 March 2022). "Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials". Applied Materials Today. 26: 101268. doi:10.1016/j.apmt.2021.101268. ISSN 2352-9407.
  63. ^ Westerweel, Bram; Basten, Rob; denBoer, Jelmar; vanHoutum, Geert-Jan (June 2021). "Printing Spare Parts at Remote Locations: Fulfilling the Promise of Additive Manufacturing". Production and Operations Management. 30 (6): 1615–1632. doi:10.1111/poms.13298. ISSN 1059-1478. Archived from the original on 27 March 2024. Retrieved 27 March 2024.
  64. ^ Manero, Albert; Smith, Peter; Sparkman, John; Dombrowski, Matt; Courbin, Dominique; Kester, Anna; Womack, Isaac; Chi, Albert (January 2019). "Implementation of 3D Printing Technology in the Field of Prosthetics: Past, Present, and Future". International Journal of Environmental Research and Public Health. 16 (9): 1641. doi:10.3390/ijerph16091641. ISSN 1660-4601. PMC 6540178. PMID 31083479.
  65. ^ Caprioli, Matteo; Roppolo, Ignazio; Chiappone, Annalisa; Larush, Liraz; Pirri, Candido Fabrizio; Magdassi, Shlomo (28 April 2021). "3D-printed self-healing hydrogels via Digital Light Processing". Nature Communications. 12 (1): 2462. Bibcode:2021NatCo..12.2462C. doi:10.1038/s41467-021-22802-z. ISSN 2041-1723. PMC 8080574. PMID 33911075.
  66. ^ Nachal, N.; Moses, J. A.; Karthik, P.; Anandharamakrishnan, C. (1 September 2019). "Applications of 3D Printing in Food Processing". Food Engineering Reviews. 11 (3): 123–141. doi:10.1007/s12393-019-09199-8. ISSN 1866-7929.
  67. ^ Zastrow, Mark (5 February 2020). "3D printing gets bigger, faster and stronger". Nature. 578 (7793): 20–23. Bibcode:2020Natur.578...20Z. doi:10.1038/d41586-020-00271-6. ISSN 0028-0836. PMID 32025009.
  68. ^ Schubert, Carl; Langeveld, Mark C. van; Donoso, Larry A. (1 February 2014). "Innovations in 3D printing: a 3D overview from optics to organs". British Journal of Ophthalmology. 98 (2): 159–161. doi:10.1136/bjophthalmol-2013-304446. ISSN 0007-1161. PMID 24288392. Archived from the original on 27 March 2024. Retrieved 27 March 2024.
  69. ^ K. J. A. Al Ahbabi, M. M. S. Alrashdi and W. K. Ahmed, "The Capabilities of 3D Printing Technology in the Production of Battery Energy Storage System", 2021 6th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab Emirates, 2021, pp. 211-216, doi:10.1109/ICREGA50506.2021.9388302.
  70. ^ F. Auricchio, "The magic world of 3D printing", 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 2017, pp. 1-1, doi:10.1109/IMWS-AMP.2017.8247328.
  71. ^ Attaran, Mohsen (2017). "The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing". Business Horizons. 60 (5): 677–688. doi:10.1016/j.bushor.2017.05.011.
  72. ^ Javaid, Mohd; Haleem, Abid (2021). "Role of additive manufacturing applications towards environmental sustainability". Advanced Industrial and Engineering Polymer Research. 4 (4): 312–322. doi:10.1016/j.aiepr.2021.07.005.
  73. ^ Trento, Chin (27 December 2023). "Additive Manufacturing vs Traditional Manufacturing". Stanford Advanced Materials. Retrieved 31 July 2024.
  74. ^ Elbadawi, Moe; Basit, A.W. (2023). "Energy consumption and carbon footprint of 3D printing in pharmaceutical manufacture". International Journal of Pharmaceutics. 639. doi:10.1016/j.ijpharm.2023.122926. PMID 37030639.
  75. ^ Hegab, Hussain; Khanna, Navneet (2023). "Design for sustainable additive manufacturing: A review". Sustainable Materials and Technologies. 35: e00576. Bibcode:2023SusMT..3500576H. doi:10.1016/j.susmat.2023.e00576.
  76. ^ Jacobs, Paul Francis (1 January 1992). Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Society of Manufacturing Engineers. ISBN 978-0-87263-425-1.
  77. ^ Azman, Abdul Hadi; Vignat, Frédéric; Villeneuve, François (29 April 2018). "Cad Tools and File Format Performance Evaluation in Designing Lattice Structures for Additive Manufacturing". Jurnal Teknologi. 80 (4). doi:10.11113/jt.v80.12058. ISSN 2180-3722.
  78. ^ "3D solid repair software – Fix STL polygon mesh files – LimitState:FIX". Print.limitstate.com. Archived from the original on 4 March 2016. Retrieved 4 January 2016.
  79. ^ "3D Printing Pens". yellowgurl.com. Archived from the original on 16 September 2016. Retrieved 9 August 2016.
  80. ^ "Model Repair Service". Modelrepair.azurewebsites.net. Archived from the original on 4 March 2016. Retrieved 4 January 2016.
  81. ^ "3D Printing Overhang: How to 3D Print Overhangs". All3DP. 16 June 2021. Archived from the original on 9 October 2021. Retrieved 11 October 2021.
  82. ^ "Magics, the Most Powerful 3D Printing Software | Software for additive manufacturing". Software.materialise.com. Archived from the original on 4 January 2016. Retrieved 4 January 2016.
  83. ^ "netfabb Cloud Services". Netfabb.com. 15 May 2009. Archived from the original on 30 December 2015. Retrieved 4 January 2016.
  84. ^ "How to repair a 3D scan for printing". Anamarva.com. Archived from the original on 24 January 2016. Retrieved 4 January 2016.
  85. ^ Fausto Bernardini, Holly E. Rushmeier (2002). "The 3D Model Acquisition Pipeline GAS" (PDF). Computer Graphics Forum. 21 (2): 149–72. doi:10.1111/1467-8659.00574. S2CID 15779281. Archived (PDF) from the original on 3 March 2016. Retrieved 4 January 2016.
  86. ^ Satyanarayana, B.; Prakash, Kode Jaya (2015). "Component Replication Using 3D Printing Technology". Procedia Materials Science. 10. Elsevier BV: 263–269. doi:10.1016/j.mspro.2015.06.049. ISSN 2211-8128.
  87. ^ "Objet Connex 3D Printers". Objet Printer Solutions. Archived from the original on 7 November 2011. Retrieved 31 January 2012.
  88. ^ Lee, Handol; Kwak, Dong-Bin; Choi, Chi Young; Ahn, Kang-Ho (2023). "Accurate measurements of particle emissions from a three-dimensional printer using a chamber test with a mixer-installed sampling system". Scientific Reports. 13 (1): 6495. Bibcode:2023NatSR..13.6495L. doi:10.1038/s41598-023-33538-9. PMC 10119104. PMID 37081153. 6495.
  89. ^ "Design Guide: Preparing a File for 3D Printing" (PDF). Xometry. Archived (PDF) from the original on 20 January 2018. Retrieved 19 January 2018.
  90. ^ "How to Smooth 3D-Printed Parts". Machine Design. 29 April 2014. Archived from the original on 29 November 2020. Retrieved 23 August 2019.
  91. ^ Kraft, Caleb. "Smoothing Out Your 3D Prints With Acetone Vapor". Make. Archived from the original on 24 March 2016. Retrieved 5 January 2016.
  92. ^ Hart, Kevin R.; Dunn, Ryan M.; Sietins, Jennifer M.; Hofmeister Mock, Clara M.; Mackay, Michael E.; Wetzel, Eric D. (2018). "Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing". Polymer. 144: 192–204. doi:10.1016/j.polymer.2018.04.024. ISSN 0032-3861.
  93. ^ Valvez, S.; Silva, A.P.; Reis, P.N.B.; Berto, F. (2022). "Annealing effect on mechanical properties of 3D printed composites". Procedia Structural Integrity. 37: 738–745. doi:10.1016/j.prostr.2022.02.004. ISSN 2452-3216.
  94. ^ a b Benwood, C.; Anstey, A.; Andrzejewski, J.; Misra, M.; Mohanty, A. K. (2018). "Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid)". ACS Omega. 3 (4): 4400–4411. doi:10.1021/acsomega.8b00129. PMC 6641607. PMID 31458666.
  95. ^ Wijnbergen, D.C.; van der Stelt, M.; Verhamme, L.M. (2021). "The effect of annealing on deformation and mechanical strength of tough PLA and its application in 3D printed prosthetic sockets". Rapid Prototyping Journal. 27 (11): 81–89. doi:10.1108/RPJ-04-2021-0090. S2CID 244259184.
  96. ^ Wei Du; Qian Bai; Bi Zhang (2016). "A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts". Procedia Manufacturing. 5: 1018–1030. doi:10.1016/j.promfg.2016.08.067. ISSN 2351-9789.
  97. ^ Li F, Chen S, Shi J, Tian H (2018). "Investigation on Surface Quality in a Hybrid Manufacturing System Combining Wire and Arc Additive Manufacturing and Machining". In Chen S, Zhang Y, Feng Z (eds.). Transactions on Intelligent Welding Manufacturing. Springer. pp. 127–137. doi:10.1007/978-981-10-7043-3_9. ISBN 978-981-10-7042-6.
  98. ^ Delfs, P.; T̈ows, M.; Schmid, H.-J. (October 2016). "Optimized build orientation of additive manufactured parts for improved surface quality and build time". Additive Manufacturing. 12: 314–320. doi:10.1016/j.addma.2016.06.003. ISSN 2214-8604.
  99. ^ O'Connell, Jackson (29 April 2022). "Cura Adaptive Layers – Simply Explained". All3DP. Archived from the original on 29 March 2023. Retrieved 29 March 2023.
  100. ^ Boissonneault, Tess (15 August 2022). "Your Guide to Painting PLA 3D Prints". Wevolver. Archived from the original on 29 March 2023. Retrieved 29 March 2023.
  101. ^ Haselhuhn, Amberlee S.; Gooding, Eli J.; Glover, Alexandra G.; Anzalone, Gerald C.; Wijnen, Bas; Sanders, Paul G.; Pearce, Joshua M. (2014). "Substrate Release Mechanisms for Gas Metal Arc Weld 3D Aluminum Metal Printing". 3D Printing and Additive Manufacturing. 1 (4): 204. doi:10.1089/3dp.2014.0015. S2CID 135499443.
  102. ^ Haselhuhn, Amberlee S.; Wijnen, Bas; Anzalone, Gerald C.; Sanders, Paul G.; Pearce, Joshua M. (2015). "In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing". Journal of Materials Processing Technology. 226: 50. doi:10.1016/j.jmatprotec.2015.06.038. Archived from the original on 28 April 2019. Retrieved 19 July 2019.
  103. ^ a b Huet, Natalie (16 July 2021). "Amsterdam unveils the world's first 3D-printed steel bridge". euronews.
  104. ^ Wang, Xin; Jiang, Man; Zhou, Zuowan; Gou, Jihua; Hui, David (2017). "3D printing of polymer matrix composites: A review and prospective". Composites Part B: Engineering. 110: 442–458. doi:10.1016/j.compositesb.2016.11.034.
  105. ^ Rose, L. (2011). On the degradation of porous stainless steel (Thesis). University of British Columbia. pp. 104–143. doi:10.14288/1.0071732.
  106. ^ Zadi-Maad, Ahmad; Rohbib, Rohbib; Irawan, A (2018). "Additive manufacturing for steels: a review". IOP Conference Series: Materials Science and Engineering. 285 (1): 012028. Bibcode:2018MS&E..285a2028Z. doi:10.1088/1757-899X/285/1/012028.
  107. ^ Galante, Raquel; G. Figueiredo-Pina, Celio; Serro, Ana Paula (2019). "Additive manufacturing of ceramics for dental applications". Dental Materials. 35 (6): 825–846. doi:10.1016/j.dental.2019.02.026. PMID 30948230. S2CID 96434269.
  108. ^ Cooper, Kenneth G. (2001). Rapid prototyping technology: selection and application. New York: Marcel Dekker. pp. 39–41. ISBN 0-8247-0261-1. OCLC 45873626.
  109. ^ a b Burns, Marshall (1993). Automated fabrication: improving productivity in manufacturing. Englewood Cliffs, N.J.: PTR Prentice Hall. pp. 8, 15, 49, 95, 97. ISBN 0-13-119462-3. OCLC 27810960.
  110. ^ Mici, Joni; Ko, Jang Won; West, Jared; Jaquith, Jeffrey; Lipson, Hod (2019). "Parallel electrostatic grippers for layered assembly". Additive Manufacturing. 27: 451–460. doi:10.1016/j.addma.2019.03.032. S2CID 141154762.
  111. ^ Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. Spec2Fab. CiteSeerX 10.1.1.396.2985.
  112. ^ Researchers Turn to Multi-Material 3D Printing to Develop Responsive, Versatile Smart Composites. Researchers Turn to Multi-Material 3D Printing to Develop Responsive, Versatile Smart Composites. Archived from the original on 20 February 2019. Retrieved 19 February 2019.
  113. ^ CIMP-3D. CIMP-3d (in Chinese). Archived from the original on 20 February 2019. Retrieved 19 February 2019.
  114. ^ CIMP-3D. CIMP-3d. Archived from the original on 19 February 2019. Retrieved 18 February 2019.
  115. ^ Momeni, Farhang, Xun Liu, and Jun Ni. "A review of 4D printing". Materials & design 122 (2017): 42-79.
  116. ^ Joshi, Siddharth, et al. "4D printing of materials for the future: Opportunities and challenges." Applied Materials Today 18 (2020): 100490.
  117. ^ "Additive manufacturing – General Principles – Overview of process categories and feedstock". ISO/ASTM International Standard (17296–2:2015(E)). 2015.
  118. ^ "Standard Terminology for Additive Manufacturing – General Principles – Terminology". ASTM International – Standards Worldwide. 1 December 2015. Archived from the original on 9 February 2019. Retrieved 23 August 2019.
  119. ^ Sherman, Lilli Manolis (15 November 2007). "A whole new dimension – Rich homes can afford 3D printers". The Economist. Archived from the original on 27 March 2008. Retrieved 24 January 2008.
  120. ^ Wohlers, Terry. "Factors to Consider When Choosing a 3D Printer (WohlersAssociates.com, Nov/Dec 2005)". Archived from the original on 4 November 2020. Retrieved 6 January 2007.
  121. ^ "Casting aluminium parts directly from 3D printed PLA parts". 3ders.org. 25 September 2012. Retrieved 30 October 2013.[permanent dead link]
  122. ^ "How Selective Heat Sintering Works". THRE3D.com. Archived from the original on 3 February 2014. Retrieved 3 February 2014.
  123. ^ Woern, Aubrey; Byard, Dennis; Oakley, Robert; Fiedler, Matthew; Snabes, Samantha (12 August 2018). "Fused Particle Fabrication 3-D Printing: Recycled Materials' Optimization and Mechanical Properties". Materials. 11 (8): 1413. Bibcode:2018Mate...11.1413W. doi:10.3390/ma11081413. PMC 6120030. PMID 30103532.
  124. ^ "Powder bed fusion - DMLS, SLS, SLM, MJF, EBM". make.3dexperience.3ds.com. Archived from the original on 10 April 2019. Retrieved 10 April 2019.
  125. ^ "Aluminium-powder DMLS-printed part finishes race first". Machine Design. 3 March 2014. Archived from the original on 9 July 2023. Retrieved 13 April 2023.
  126. ^ Hiemenz, Joe. "Rapid prototypes move to metal components (EE Times, 3/9/2007)". Archived from the original on 2 November 2012. Retrieved 31 January 2012.
  127. ^ "Rapid Manufacturing by Electron Beam Melting". SMU.edu. Archived from the original on 20 July 2018. Retrieved 18 July 2017.
  128. ^ "Material extrusion - FDM". make.3dexperience.3ds.com. Archived from the original on 9 February 2019. Retrieved 13 March 2019.
  129. ^ "3DEXPERIENCE Platform". make.3dexperience.3ds.com. Archived from the original on 3 April 2023. Retrieved 3 April 2023.
  130. ^ Doyle, Michael; Agarwal, Kuldeep; Sealy, Winston; Schull, Kevin (2015). "Effect of Layer Thickness and Orientation on Mechanical Behavior of Binder Jet Stainless Steel 420 + Bronze Parts". Elsevier Procedia Manufacturing. 1: 251–262. doi:10.1016/j.promfg.2015.09.016. ISSN 2351-9789. S2CID 138624845.
  131. ^ Cameron Coward (7 April 2015). 3D Printing. DK Publishing. p. 74. ISBN 978-1-61564-745-3.
  132. ^ Johnson, R. Colin. "Cheaper avenue to 65 nm? (EE Times, 3/30/2007)".
  133. ^ "The World's Smallest 3D Printer". TU Wien. 12 September 2011. Archived from the original on 20 September 2011. Retrieved 15 September 2011.
  134. ^ "3D-printing multi-material objects in minutes instead of hours". Kurzweil Accelerating Intelligence. 22 November 2013. Archived from the original on 25 January 2021. Retrieved 26 November 2013.
  135. ^ St. Fleur, Nicholas (17 March 2015). "3-D Printing Just Got 100 Times Faster". The Atlantic. Archived from the original on 19 March 2015. Retrieved 19 March 2015.
  136. ^ Beese, Allison M.; Carroll, Beth E. (2015). "Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock". JOM. 68 (3): 724. Bibcode:2016JOM....68c.724B. doi:10.1007/s11837-015-1759-z. S2CID 138250882.
  137. ^ Gibson, Ian; Rosen, David; Stucker, Brent (2015). Additive Manufacturing Technologies (PDF). doi:10.1007/978-1-4939-2113-3. ISBN 978-1-4939-2112-6.
  138. ^ a b Kelly, Brett E.; Bhattacharya, Indrasen; Heidari, Hossein; Shusteff, Maxim; Spadaccini, Christopher M.; Taylor, Hayden K. (31 January 2019). "Volumetric additive manufacturing via tomographic reconstruction". Science. 363 (6431): 1075–1079. Bibcode:2019Sci...363.1075K. doi:10.1126/science.aau7114. ISSN 0036-8075. PMID 30705152. S2CID 72336143.
  139. ^ a b "Star Trek–like replicator creates entire objects in minutes". Science. 31 January 2019. Archived from the original on 19 May 2022. Retrieved 31 January 2019.
  140. ^ a b Kelly, Brett; Bhattacharya, Indrasen; Shusteff, Maxim; Panas, Robert M.; Taylor, Hayden K.; Spadaccini, Christopher M. (16 May 2017). "Computed Axial Lithography (CAL): Toward Single Step 3D Printing of Arbitrary Geometries". arXiv:1705.05893 [cs.GR].
  141. ^ a b "German RepRap introduces L280, first Liquid Additive Manufacturing (LAM) production-ready 3D printer". 3ders.org. Archived from the original on 13 April 2019. Retrieved 13 April 2019.
  142. ^ Davies, Sam (2 November 2018). "German RepRap to present series-ready Liquid Additive Manufacturing system at Formnext". TCT Magazine. Retrieved 13 April 2019.
  143. ^ "German RepRap presenting Liquid Additive Manufacturing technology at RAPID+TCT". TCT Magazine. 10 May 2017. Retrieved 13 April 2019.
  144. ^ Scott, Clare (2 November 2018). "German RepRap to Present Liquid Additive Manufacturing and L280 3D Printer at Formnext". 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing. Archived from the original on 13 April 2019. Retrieved 13 April 2019.
  145. ^ "German RepRap develops new polyurethane material for Liquid Additive Manufacturing". TCT Magazine. 2 August 2017. Retrieved 13 April 2019.
  146. ^ "Essentium to acquire collider to advance DLP 3D printing technology". Make Parts Fast. 20 July 2021. Archived from the original on 3 April 2023. Retrieved 3 April 2023.
  147. ^ "3D Printer Uses Standard Paper". www.rapidtoday.com. Archived from the original on 9 November 2020. Retrieved 19 March 2013.
  148. ^ Yang, Y.; Gong, Y.; Qu, S. (2019). "Additive/subtractive hybrid manufacturing of 316L stainless steel powder: Densification, microhardness and residual stress". J Mech Sci Technol. 33 (12): 5797–5807. doi:10.1007/s12206-019-1126-z. S2CID 214298577.
  149. ^ Boisselier, D.; Sankaré, S.; Engel, T. (2014). "Improvement of the Laser Direct Metal Deposition Process in 5-axis Configuration". Physics Procedia. 56 (8th International Conference on Laser Assisted Net Shape Engineering LANE 2014): 239–249. Bibcode:2014PhPro..56..239B. doi:10.1016/j.phpro.2014.08.168. S2CID 109491084.
  150. ^ Li, L.; Haghighi, A.; Yang, Y. (2018). "A novel 6-axis hybrid additive-subtractive manufacturing process: Design and case studies". Journal of Manufacturing Processes. 33: 150–160. doi:10.1016/j.jmapro.2018.05.008. S2CID 139579311.
  151. ^ "Saving with Feature Additions". BeAM Machines. 17 July 2020. Archived from the original on 4 July 2022. Retrieved 29 April 2022.
  152. ^ Beese, Allison M.; Carroll, Beth E. (21 December 2015). "Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock". JOM. 68 (3): 724–734. Bibcode:2016JOM....68c.724B. doi:10.1007/s11837-015-1759-z. ISSN 1047-4838. S2CID 138250882.
  153. ^ Gibson, Ian; Rosen, David; Stucker, Brent (2015). "Chapter 10". Additive Manufacturing Technologies - Springer (PDF). doi:10.1007/978-1-4939-2113-3. ISBN 978-1-4939-2112-6. S2CID 114833020. Archived (PDF) from the original on 29 August 2023. Retrieved 14 August 2023.
  154. ^ Surovi, Nowrin Akter; Hussain, Shaista; Soh, Gim Song (2022). A Study of Machine Learning Framework for Enabling Early Defect Detection in Wire Arc Additive Manufacturing Processes. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 86229. pp. V03AT03A002.
  155. ^ Nilsiam, Yuenyong; Haselhuhn, Amberlee; Wijnen, Bas; Sanders, Paul; Pearce, Joshua M. (2015). "Integrated Voltage – Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer". Machines. 3 (4): 339–51. doi:10.3390/machines3040339.
  156. ^ Pinar, A.; Wijnen, B.; Anzalone, G. C.; Havens, T. C.; Sanders, P. G.; Pearce, J. M. (2015). "Low-cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3-D Printing". Journal of Sensors. 2015: 1–8. doi:10.1155/2015/876714.
  157. ^ Magalhães, Samuel; Sardinha, Manuel; Vicente, Carlos; Leite, Marco; Ribeiro, Relógio; Vaz, Maria; Reis, Luís (23 August 2021). "Validation of a low-cost selective powder deposition process through the characterization of tin bronze specimens". The Journal of Materials: Design and Applications. 235 (12): 2681–2691. doi:10.1177/14644207211031941. S2CID 238738655.
  158. ^ Li, Zongan; Xu, Mengjia; Wang, Jiahang; Zhang, Feng (October 2022). "Recent Advances in Cryogenic 3D Printing Technologies". Advanced Engineering Materials. 24 (10): 2200245. doi:10.1002/adem.202200245. ISSN 1438-1656. S2CID 248488161.
  159. ^ a b Zhang, Wei; Leu, Ming C; Ji, Zhiming; Yan, Yongnian (1 June 1999). "Rapid freezing prototyping with water". Materials & Design. 20 (2): 139–145. doi:10.1016/S0261-3069(99)00020-5. ISSN 0261-3069.
  160. ^ Tan, Zhengchu; Parisi, Cristian; Di Silvio, Lucy; Dini, Daniele; Forte, Antonio Elia (24 November 2017). "Cryogenic 3D Printing of Super Soft Hydrogels". Scientific Reports. 7 (1): 16293. Bibcode:2017NatSR...716293T. doi:10.1038/s41598-017-16668-9. ISSN 2045-2322. PMC 5701203. PMID 29176756.
  161. ^ Xiong, Zhuo; Yan, Yongnian; Wang, Shenguo; Zhang, Renji; Zhang, Chao (7 June 2002). "Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition". Scripta Materialia. 46 (11): 771–776. doi:10.1016/S1359-6462(02)00071-4. ISSN 1359-6462.
  162. ^ Huang, Tieshu; Mason, Michael S.; Hilmas, Gregory E.; Leu, Ming C. (1 June 2006). "Freeze-form extrusion fabrication of ceramic parts". Virtual and Physical Prototyping. 1 (2): 93–100. doi:10.1080/17452750600649609. ISSN 1745-2759. S2CID 135763440.
  163. ^ Taufik, Mohammad; Jain, Prashant K. (10 December 2016). "Additive Manufacturing: Current Scenario". Proceedings of International Conference on: Advanced Production and Industrial Engineering -ICAPIE 2016: 380–386. Archived from the original on 1 October 2020. Retrieved 31 May 2017.
  164. ^ a b Corsini, Lucia; Aranda-Jan, Clara B.; Moultrie, James (2019). "Using digital fabrication tools to provide humanitarian and development aid in low-resource settings". Technology in Society. 58: 101117. doi:10.1016/j.techsoc.2019.02.003. ISSN 0160-791X. Archived from the original on 29 April 2023. Retrieved 23 August 2019.
  165. ^ Vincent (January–February 2011). "Origins: A 3D Vision Spawns Stratasys, Inc". Today's Machining World. Vol. 7, no. 1. pp. 24–25. Archived from the original on 6 October 2023. Retrieved 27 March 2023.
  166. ^ Wong, Venessa (28 January 2014). "A Guide to All the Food That's Fit to 3D Print (So Far)". Bloomberg.com. Archived from the original on 18 July 2019. Retrieved 4 March 2017.
  167. ^ "Did BeeHex Just Hit "Print" to Make Pizza at Home?". 27 May 2016. Archived from the original on 21 February 2023. Retrieved 28 May 2016.
  168. ^ "Foodini 3D Printer Cooks Up Meals Like the Star Trek Food Replicator". Archived from the original on 2 May 2020. Retrieved 27 January 2015.
  169. ^ "3D Printed Food System for Long Duration Space Missions". sbir.gsfc.nasa.gov. Archived from the original on 24 July 2020. Retrieved 24 April 2019.
  170. ^ Bejerano, Pablo G. (28 September 2018). "Barcelona researcher develops 3D printer that makes 'steaks'". El País. ISSN 1134-6582. Archived from the original on 25 December 2019. Retrieved 21 June 2019.
  171. ^ Lidia Montes; Ruqayyah Moynihan. "A researcher has developed a plant-based meat substitute that's made with a 3D printer". Business Insider. Archived from the original on 15 November 2023. Retrieved 21 June 2019.
  172. ^ a b "3D Printed Clothing Becoming a Reality". Resins Online. 17 June 2013. Archived from the original on 1 November 2013. Retrieved 30 October 2013.
  173. ^ Michael Fitzgerald (28 May 2013). "With 3-D Printing, the Shoe Really Fits". MIT Sloan Management Review. Archived from the original on 8 November 2020. Retrieved 30 October 2013.
  174. ^ Sharma, Rakesh (10 September 2013). "3D Custom Eyewear The Next Focal Point For 3D Printing". Forbes.com. Archived from the original on 13 September 2013. Retrieved 10 September 2013.
  175. ^ "3D Printing: Challenges and Opportunities for International Relations". Council on Foreign Relations. 23 October 2013. Archived from the original on 28 October 2013. Retrieved 30 October 2013.
  176. ^ "Koenigsegg One:1 Comes With 3D Printed Parts". Business Insider. Archived from the original on 9 December 2020. Retrieved 14 May 2014.
  177. ^ "Conheça o Urbee, primeiro carro a ser fabricado com uma impressora 3D". tecmundo.com.br. 3 November 2010.
  178. ^ Eternity, Max (23 November 2014). "The Urbee 3D-Printed Car: Coast to Coast on 10 Gallons?".
  179. ^ 3D Printed Car Creator Discusses Future of the Urbee on YouTube
  180. ^ "Local Motors shows Strati, the world's first 3D-printed car". 13 January 2015. Archived from the original on 29 June 2016. Retrieved 21 July 2016.
  181. ^ Simmons, Dan (6 May 2015). "Airbus had 1,000 parts 3D printed to meet deadline". BBC. Archived from the original on 4 November 2020. Retrieved 27 November 2015.
  182. ^ Zitun, Yoav (27 July 2015). "The 3D printer revolution comes to the IAF". Ynetnews. Ynet News. Archived from the original on 29 September 2015. Retrieved 29 September 2015.
  183. ^ Zelinski, Peter (31 March 2017), "GE team secretly printed a helicopter engine, replacing 900 parts with 16", Modern Machine Shop, retrieved 9 April 2017.
  184. ^ Greenberg, Andy (23 August 2012). "'Wiki Weapon Project' Aims To Create A Gun Anyone Can 3D-Print at Home". Forbes. Archived from the original on 25 August 2012. Retrieved 27 August 2012.
  185. ^ Poeter, Damon (24 August 2012). "Could a "Printable Gun" Change the World?". PC Magazine. Archived from the original on 27 August 2012. Retrieved 27 August 2012.
  186. ^ Samsel, Aaron (23 May 2013). "3D Printers, Meet Othermill: A CNC machine for your home office (VIDEO)". Guns.com. Archived from the original on 4 October 2018. Retrieved 30 October 2013.
  187. ^ "The Third Wave, CNC, Stereolithography, and the end of gun control". Popehat. 6 October 2011. Archived from the original on 12 December 2020. Retrieved 30 October 2013.
  188. ^ Rosenwald, Michael S. (25 February 2013). "Weapons made with 3-D printers could test gun-control efforts". Washington Post. Archived from the original on 20 October 2019. Retrieved 23 August 2017.
  189. ^ "Making guns at home: Ready, print, fire". The Economist. 16 February 2013. Archived from the original on 2 November 2013. Retrieved 30 October 2013.
  190. ^ Rayner, Alex (6 May 2013). "3D-printable guns are just the start, says Cody Wilson". The Guardian. London. Archived from the original on 31 July 2013. Retrieved 10 December 2016.
  191. ^ Manjoo, Farhad (8 May 2013). "3-D-printed gun: Yes, it will be possible to make weapons with 3-D printers. No, that doesn't make gun control futile". Slate.com. Archived from the original on 5 December 2018. Retrieved 30 October 2013.
  192. ^ Islam, Muhammed Kamrul; Hazell, Paul J.; Escobedo, Juan P.; Wang, Hongxu (July 2021). "Biomimetic armour design strategies for additive manufacturing: A review". Materials & Design. 205: 109730. doi:10.1016/j.matdes.2021.109730.
  193. ^ Eppley, B. L.; Sadove, A. M. (1 November 1998). "Computer-generated patient models for reconstruction of cranial and facial deformities". J Craniofac Surg. 9 (6): 548–556. doi:10.1097/00001665-199811000-00011. PMID 10029769.
  194. ^ Poukens, Jules (1 February 2008). "A classification of cranial implants based on the degree of difficulty in computer design and manufacture". The International Journal of Medical Robotics and Computer Assisted Surgery. 4 (1): 46–50. doi:10.1002/rcs.171. PMID 18240335. S2CID 26121479.
  195. ^ Perry, Keith (12 March 2014). "Man makes surgical history after having his shattered face rebuilt using 3D printed parts". The Daily Telegraph. London. Archived from the original on 11 January 2022. Retrieved 12 March 2014.
  196. ^ Zopf, David A.; Hollister, Scott J.; Nelson, Marc E.; Ohye, Richard G.; Green, Glenn E. (2013). "Bioresorbable Airway Splint Created with a Three-Dimensional Printer". New England Journal of Medicine. 368 (21): 2043–5. doi:10.1056/NEJMc1206319. PMID 23697530.
  197. ^ Moore, Calen (11 February 2014). "Surgeons have implanted a 3-D-printed pelvis into a U.K. cancer patient". fiercemedicaldevices.com. Archived from the original on 14 June 2016. Retrieved 4 March 2014.
  198. ^ "3D-printed sugar network to help grow artificial liver". BBC News. 2 July 2012. Archived from the original on 13 September 2020. Retrieved 21 July 2018.
  199. ^ "RFA-HD-15-023: Use of 3-D Printers for the Production of Medical Devices (R43/R44)". NIH grants. Archived from the original on 31 March 2023. Retrieved 30 September 2015.
  200. ^ Belgrano, Fabricio dos Santos; Diegel, Olaf; Pereira, Nei; Hatti-Kaul, Rajni (2018). "Cell immobilization on 3D-printed matrices: A model study on propionic acid fermentation". Bioresource Technology. 249: 777–782. Bibcode:2018BiTec.249..777B. doi:10.1016/j.biortech.2017.10.087. PMID 29136932.
  201. ^ Melocchi, Alice; Uboldi, Marco; Cerea, Matteo; Foppoli, Anastasia; Maroni, Alessandra; Moutaharrik, Saliha; Palugan, Luca; Zema, Lucia; Gazzaniga, Andrea (1 October 2020). "A Graphical Review on the Escalation of Fused Deposition Modeling (FDM) 3D Printing in the Pharmaceutical Field". Journal of Pharmaceutical Sciences. 109 (10): 2943–2957. doi:10.1016/j.xphs.2020.07.011. hdl:2434/828138. ISSN 0022-3549. PMID 32679215. S2CID 220630295.
  202. ^ Afsana; Jain, Vineet; Haider, Nafis; Jain, Keerti (20 March 2019). "3D Printing in Personalized Drug Delivery". Current Pharmaceutical Design. 24 (42): 5062–5071. doi:10.2174/1381612825666190215122208. PMID 30767736. S2CID 73421860.
  203. ^ Trenfield, Sarah J; Awad, Atheer; Madla, Christine M; Hatton, Grace B; Firth, Jack; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W (3 October 2019). "Shaping the future: recent advances of 3D printing in drug delivery and healthcare" (PDF). Expert Opinion on Drug Delivery. 16 (10): 1081–1094. doi:10.1080/17425247.2019.1660318. ISSN 1742-5247. PMID 31478752. S2CID 201805196. Archived (PDF) from the original on 7 November 2020. Retrieved 5 October 2020.
  204. ^ Schelly, C., Anzalone, G., Wijnen, B., & Pearce, J. M. (2015). "Open-source 3-D printing Technologies for education: Bringing Additive Manufacturing to the Classroom". Journal of Visual Languages & Computing.
  205. ^ Grujović, N., Radović, M., Kanjevac, V., Borota, J., Grujović, G., & Divac, D. (September 2011). "3D printing technology in education environment." In 34th International Conference on Production Engineering (pp. 29–30).
  206. ^ Mercuri, Rebecca; Meredith, Kevin (2014). "An educational venture into 3D Printing". 2014 IEEE Integrated STEM Education Conference. pp. 1–6. doi:10.1109/ISECon.2014.6891037. ISBN 978-1-4799-3229-0. S2CID 16555348.
  207. ^ "Despite Market Woes, 3D Printing Has a Future Thanks to Higher Education – Bold". 2 December 2015. Archived from the original on 30 March 2016. Retrieved 1 April 2016.
  208. ^ Oppliger, Douglas E.; Anzalone, Gerald; Pearce, Joshua M.; Irwin, John L. (15 June 2014). "The RepRap 3-D Printer Revolution in STEM Education". 2014 ASEE Annual Conference & Exposition: 24.1242.1–24.1242.13. ISSN 2153-5868. Archived from the original on 7 July 2023. Retrieved 23 August 2019.
  209. ^ Gillen, Andrew (2016). "Teacher's Toolkit: The New Standard in Technology Education: 3-D Design Class". Science Scope. 039 (9). doi:10.2505/4/ss16_039_09_8. ISSN 0887-2376.
  210. ^ a b Zhang, Chenlong; Anzalone, Nicholas C.; Faria, Rodrigo P.; Pearce, Joshua M. (2013). "Open-Source 3D-Printable Optics Equipment". PLOS ONE. 8 (3): e59840. Bibcode:2013PLoSO...859840Z. doi:10.1371/journal.pone.0059840. PMC 3609802. PMID 23544104.
  211. ^ "UMass Amherst Library Opens 3-D Printing Innovation Center". Library Journal. 2 April 2015. Archived from the original on 2 April 2015. Retrieved 23 August 2019.
  212. ^ Pearce, Joshua M. (14 September 2012). "Building Research Equipment with Free, Open-Source Hardware". Science. 337 (6100): 1303–1304. Bibcode:2012Sci...337.1303P. doi:10.1126/science.1228183. ISSN 0036-8075. PMID 22984059. S2CID 44722829.
  213. ^ Scopigno, R.; Cignoni, P.; Pietroni, N.; Callieri, M.; Dellepiane, M. (2017). "Digital Fabrication Techniques for Cultural Heritage: A Survey]" (PDF). Computer Graphics Forum. 36 (1): 6–21. doi:10.1111/cgf.12781. S2CID 26690232. Archived (PDF) from the original on 12 April 2017. Retrieved 12 April 2017.
  214. ^ "Museum uses 3D printing to take fragile maquette by Thomas Hart Benton on tour through the States". Archived from the original on 17 November 2015.
  215. ^ Vranich, Alexei (December 2018). "Reconstructing ancient architecture at Tiwanaku, Bolivia: the potential and promise of 3D printing". Heritage Science. 6 (1): 65. doi:10.1186/s40494-018-0231-0. S2CID 139309556.
  216. ^ "British Museum releases 3D printer scans of artefacts". Independent.co.uk. 4 November 2014. Archived from the original on 7 November 2014.
  217. ^ "Threeding Uses Artec 3D Scanning Technology to Catalog 3D Models for Bulgaria's National Museum of Military History". 3dprint.com. 20 February 2015. Archived from the original on 17 November 2015. Retrieved 13 November 2015.
  218. ^ Soulellis, P. (2017). Material Speculation: ISIS. In M. Allahyari & D. Rourke (Eds.), The 3D Additivist Cookbook (pp. 129–131). Institute of Network Cultures.
  219. ^ a b Parsinejad, H.; Choi, I.; Yari, M. (2021). "Production of Iranian Architectural Assets for Representation in Museums: Theme of Museum-Based Digital Twin". Body, Space and Technology. 20 (1): 61–74. doi:10.16995/bst.364.
  220. ^ "First 3D Printed Footbridge In Amsterdam Revealed To The Public - NPR". npr.org. Retrieved 9 September 2024.
  221. ^ "3D Printed Circuit Boards are the Next Big Thing in Additive Manufacturing". 20 June 2018. Archived from the original on 24 April 2019. Retrieved 24 April 2019.
  222. ^ "Additive Manufacturing Inks & Materials for Custom 3D Printing Solutions". nano-di.com.
  223. ^ Séquin, Carlo H. (2005). "Rapid prototyping". Communications of the ACM. 48 (6): 66–73. doi:10.1145/1064830.1064860. S2CID 2216664. INIST 16817711.
  224. ^ "3D printed clock and gears". Instructables.com. Archived from the original on 26 July 2020. Retrieved 30 October 2013.
  225. ^ "Successful Sumpod 3D printing of a herringbone gear". 3d-printer-kit.com. 23 January 2012. Archived from the original on 2 November 2013. Retrieved 30 October 2013.
  226. ^ ""backscratcher" 3D Models to Print – yeggi". yeggi.com. Archived from the original on 28 November 2020. Retrieved 23 August 2019.
  227. ^ Congressional Research Service. "3D Printing: Overview, Impacts, and the Federal Role" (August 2, 2019) Fas.org
  228. ^ "3D Printing Technology Insight Report, 2014, patent activity involving 3D-Printing from 1990–2013" (PDF). Archived (PDF) from the original on 11 November 2020. Retrieved 10 June 2014.
  229. ^ Thompson, Clive (30 May 2012). "3-D Printing's Legal Morass". Wired. Archived from the original on 21 December 2020. Retrieved 4 March 2017.
  230. ^ a b Weinberg, Michael (January 2013). "What's the Deal with copyright and 3D printing?" (PDF). Institute for Emerging Innovation. Archived from the original (PDF) on 24 November 2020. Retrieved 30 October 2013.
  231. ^ "Homeland Security bulletin warns 3D-printed guns may be "impossible" to stop". Fox News. 23 May 2013. Archived from the original on 24 September 2015. Retrieved 30 October 2013.
  232. ^ "Controlled by Guns". Quiet Babylon. 7 May 2013. Archived from the original on 4 November 2020. Retrieved 30 October 2013.
  233. ^ "3dprinting". Joncamfield.com. Archived from the original on 28 November 2020. Retrieved 30 October 2013.
  234. ^ "State Dept Censors 3D Gun Plans, Citing "National Security"". News.antiwar.com. 10 May 2013. Archived from the original on 7 November 2020. Retrieved 30 October 2013.
  235. ^ "Wishful Thinking Is Control Freaks' Last Defense Against 3D-Printed Guns". Reason.com. 8 May 2013. Archived from the original on 17 January 2019. Retrieved 30 October 2013.
  236. ^ Lennard, Natasha (10 May 2013). "The Pirate Bay steps in to distribute 3-D gun designs". Salon.com. Archived from the original on 11 May 2013. Retrieved 30 October 2013.
  237. ^ "US demands removal of 3D printed gun blueprints". neurope.eu. Archived from the original on 30 October 2013. Retrieved 30 October 2013.
  238. ^ Economía, E. F. E. (9 May 2013). "España y EE.UU. lideran las descargas de los planos de la pistola de impresión casera". El País. ElPais.com. Archived from the original on 27 June 2017. Retrieved 30 October 2013.
  239. ^ "Sen. Leland Yee Proposes Regulating Guns From 3-D Printers". CBS Sacramento. 8 May 2013. Archived from the original on 31 December 2020. Retrieved 30 October 2013.
  240. ^ "Schumer Announces Support For Measure To Make 3D Printed Guns Illegal". 5 May 2013. Archived from the original on 10 December 2020. Retrieved 23 August 2019.
  241. ^ "Four Horsemen of the 3D Printing Apocalypse". Makezine.com. 30 June 2011. Archived from the original on 30 March 2013. Retrieved 30 October 2013.
  242. ^ Ball, James (10 May 2013). "US government attempts to stifle 3D-printer gun designs will ultimately fail". The Guardian. London. Archived from the original on 21 March 2022. Retrieved 10 December 2016.
  243. ^ "Like It Or Not, 3D Printing Will Probably Be Legislated". TechCrunch. 18 January 2013. Archived from the original on 17 November 2013. Retrieved 30 October 2013.
  244. ^ Beckhusen, Robert (15 February 2013). "3-D Printing Pioneer Wants Government to Restrict Gunpowder, Not Printable Guns". Wired. Archived from the original on 11 November 2013. Retrieved 30 October 2013.
  245. ^ Bump, Philip (10 May 2013). "How Defense Distributed Already Upended the World". The Atlantic Wire. Archived from the original on 7 June 2013. Retrieved 30 October 2013.
  246. ^ "News". European Plastics News. Archived from the original on 29 October 2013. Retrieved 30 October 2013.
  247. ^ Cochrane, Peter (21 May 2013). "Peter Cochrane's Blog: Beyond 3D Printed Guns". TechRepublic. Archived from the original on 6 July 2024. Retrieved 30 October 2013.
  248. ^ Gilani, Nadia (6 May 2013). "Gun factory fears as 3D blueprints put online by Defense Distributed". Metro.co.uk. Archived from the original on 8 November 2020. Retrieved 30 October 2013.
  249. ^ "Liberator: First 3D-printed gun sparks gun control controversy". Digitaljournal.com. 6 May 2013. Archived from the original on 4 November 2020. Retrieved 30 October 2013.
  250. ^ "First 3D Printed Gun "The Liberator" Successfully Fired". International Business Times UK. 7 May 2013. Archived from the original on 29 October 2013. Retrieved 30 October 2013.
  251. ^ "FAA prepares guidance for wave of 3D-printed aerospace parts". SpaceNews.com. 20 October 2017. Archived from the original on 6 July 2024. Retrieved 23 August 2019.
  252. ^ "eCFR – Code of Federal Regulations". ecfr.gov. Archived from the original on 4 August 2018. Retrieved 4 August 2018.
  253. ^ "FAA to launch eight-year additive manufacturing road map". 3D Printing Industry. 21 October 2017. Archived from the original on 19 January 2018. Retrieved 18 January 2018.
  254. ^ a b "2017 – Edition 4 – May 5, 2017 – ARSA". arsa.org. Archived from the original on 19 January 2018. Retrieved 18 January 2018.
  255. ^ "Embracing Drones and 3D Printing in the Regulatory Framework". MRO Network. 10 January 2018. Archived from the original on 23 August 2019. Retrieved 23 August 2019.
  256. ^ "3D Printing and monitoring of workers: a new industrial revolution?". osha.europa.eu. 7 June 2017. Archived from the original on 24 September 2017. Retrieved 31 October 2017.
  257. ^ a b c "How Loud Are 3D Printers and Making Them Quiet". 21 July 2020. Archived from the original on 12 November 2022. Retrieved 12 November 2022.
  258. ^ Albert, Mark (17 January 2011). "Subtractive plus additive equals more than (– + + = >)". Modern Machine Shop. Vol. 83, no. 9. p. 14. Archived from the original on 9 December 2020. Retrieved 26 March 2012.
  259. ^ "Jeremy Rifkin and The Third Industrial Revolution Home Page". The third industrial revolution.com. Archived from the original on 25 February 2017. Retrieved 4 January 2016.
  260. ^ "A third industrial revolution". The Economist. 21 April 2012. Archived from the original on 16 June 2018. Retrieved 4 January 2016.
  261. ^ Hollow, Matthew. Confronting a New 'Era of Duplication'? 3D Printing, Replicating Technology and the Search for Authenticity in George O. Smith's Venus Equilateral Series (Thesis). Durham University. Archived from the original on 27 June 2021. Retrieved 21 July 2013.
  262. ^ Ratto, Matt; Ree, Robert (2012). "Materializing information: 3D printing and social change". First Monday. 17 (7). doi:10.5210/fm.v17i7.3968.
  263. ^ "Additive Manufacturing: A supply chain wide response to economic uncertainty and environmental sustainability" (PDF). Archived from the original (PDF) on 15 January 2014. Retrieved 11 January 2014.
  264. ^ a b c d Kostakis, Vasilis (12 January 2013). "At the Turning Point of the Current Techno-Economic Paradigm: Commons-Based Peer Production, Desktop Manufacturing and the Role of Civil Society in the Perezian Framework". TripleC: Communication, Capitalism & Critique. 11 (1): 173–190. doi:10.31269/triplec.v11i1.463. ISSN 1726-670X. Archived from the original on 23 August 2019. Retrieved 23 August 2019.
  265. ^ Kostakis, Vasilis; Papachristou, Marios (2014). "Commons-based peer production and digital fabrication: The case of a Rep Rap-based, Lego-built 3D printing-milling machine". Telematics and Informatics. 31 (3): 434–43. doi:10.1016/j.tele.2013.09.006. S2CID 2297267.
  266. ^ Kostakis, Vasilis; Fountouklis, Michail; Drechsler, Wolfgang (2013). "Peer Production and Desktop Manufacturing". Science, Technology, & Human Values. 38 (6): 773–800. doi:10.1177/0162243913493676. JSTOR 43671156. S2CID 43962759.
  267. ^ Thomas Campbell; Christopher Williams; Olga Ivanova; Banning Garrett (17 October 2011). "Could 3D Printing Change the World?". Atlantic Council. Archived from the original on 23 August 2019. Retrieved 23 August 2019.
  268. ^ Haufe, Patrick; Bowyer, Adrian; Bradshaw, Simon (2010). "The intellectual property implications of low-cost 3D printing". SCRIPTed. 7 (1): 5–31. ISSN 1744-2567.
  269. ^ Gershenfeld, Neil (2008). Fab: The Coming Revolution on Your Desktop—from Personal Computers to Personal Fabrication. Basic Books. pp. 13–14. ISBN 978-0-7867-2204-4. Archived from the original on 6 July 2024. Retrieved 23 August 2019.
  270. ^ "The Inequality Puzzle". Democracy Journal. 14 May 2014. Archived from the original on 23 August 2019. Retrieved 23 August 2019.
  271. ^ a b Spence, Michael (22 May 2014). "Labor's Digital Displacement | by Michael Spence". Project Syndicate. Archived from the original on 8 March 2022. Retrieved 23 August 2019.
  272. ^ Andre, Helene (29 November 2017). "Naomi Wu – "My visibility allows me to direct more attention to important issues and other deserving women"". Women in 3D Printing. Archived from the original on 4 December 2017. Retrieved 3 December 2017.
  273. ^ Lyons Hardcastle, Jessica (24 November 2015). "Is 3D Printing the Future of Sustainable Manufacturing?". Environmental Leader. Archived from the original on 22 January 2019. Retrieved 21 January 2019.
  274. ^ Simpson, Timothy W. (31 January 2018). "Lightweighting with Lattices". Additive Manufacturing. Archived from the original on 22 January 2019. Retrieved 21 January 2019.
  275. ^ Reeves, P. (2012). "Example of Econolyst Research-Understanding the Benefits of AM on CO2" (PDF). The Econolyst. Archived (PDF) from the original on 19 August 2019. Retrieved 21 January 2019.
  276. ^ Gelber, Malte; Uiterkamp, Anton J.M. Schoot; Visser, Cindy (October 2015). "A Global Sustainability Perspective of 3D Printing Technologies". Energy Policy. 74 (1): 158–167. doi:10.1016/j.enpol.2014.08.033.
  277. ^ Peng, Tao; Kellens, Karel; Tang, Renzhong; Chen, Chao; Chen, Gang (May 2018). "Sustainability of additive manufacturing: An overview on its energy demand and environmental impact". Additive Manufacturing. 21 (1): 694–704. doi:10.1016/j.addma.2018.04.022.

Further reading

External links