Trisectriz de Maclaurin

En geometría, la trisectriz de Maclaurin es una curva cúbica notable por su propiedad de trisectriz, lo cual quiere decir que se puede usar para trisecar un ángulo.Se puede definir como el lugar geométrico de los puntos de intersección de dos rectas, girando cada una a una velocidad angular uniforme alrededor de puntos separados, de forma que la proporción de las velocidades de rotación sea de 1:3 y las líneas inicialmente coincidan con la línea entre los dos puntos.Una generalización de esta construcción se denomina una sectriu de Maclaurin.La curva se denomina en honor al matemático escocés Colin Maclaurin, quien investigó la curva en 1742.[1]​ Sean dos rectas que giran alrededor de los puntos, de forma que cuando la recta que gira alrededor deforme un ángulo decon el eje x, la que gira en torno aforme un ánguloSi el punto de intersección es, entonces el ángulo formado por las rectas enPor el teorema de los senossen ⁡ 3 θasí la ecuación en coordenadas polares es (realizando una traslación y una rotación)La curva es por lo tanto un miembro de la familia de las concoides de De Sluze.En coordenadas cartesianas la ecuación esSi el origen se traslada a, entonces una deducción similar a la anterior muestra que la ecuación de la curva en coordenadas polares toma la formahaciéndola un ejemplo de una epiespiral (un caracol con un bucle)., se traza una recta desdecuyo ángulo con el ejeA continuación, se traza otra recta desde el origen hasta el punto donde la primera recta corta a la curva.Entonces, por la construcción de la curva, el ángulo entre la segunda recta y el ejeLa curva corta al eje, y tiene un punto doble en su origen.La recta verticalLa curva corta la recta, o el punto correspondiente a la trisección de un ángulo recto, enComo una cúbica nodal, es de género cero.La trisectriz de Maclaurin se puede definir a partir de secciones cónicas de tres maneras.
La trisectriz de Maclaurin mostrando la propiedad de trisecar el ángulo