La coagulación , también conocida como formación de coágulos , es el proceso por el cual la sangre pasa de un estado líquido a un estado gelificado , formando un coágulo sanguíneo . Produce hemostasia , el cese de la pérdida de sangre de un vaso dañado, seguida de su reparación. El proceso de coagulación implica la activación , adhesión y agregación de plaquetas , así como el depósito y maduración de fibrina .
La coagulación comienza casi instantáneamente después de una lesión en el endotelio que recubre un vaso sanguíneo . La exposición de la sangre al espacio subendotelial inicia dos procesos: cambios en las plaquetas y la exposición del factor tisular plaquetario subendotelial al factor de coagulación VII , que finalmente conduce a la formación de fibrina reticulada . Las plaquetas forman inmediatamente un tapón en el sitio de la lesión; esto se llama hemostasia primaria. La hemostasia secundaria ocurre simultáneamente: factores de coagulación adicionales además del factor VII (enumerados a continuación) responden en cascada para formar hebras de fibrina, que fortalecen el tapón plaquetario . [1]
La coagulación está muy conservada en toda la biología. En todos los mamíferos , la coagulación involucra tanto componentes celulares (plaquetas) como componentes proteínicos (factores de coagulación). [2] [3] La vía en humanos ha sido la más investigada y la mejor comprendida. [4] Los trastornos de la coagulación pueden provocar problemas de hemorragia , hematomas o trombosis . [5]
Existen 13 factores de coagulación tradicionales, que se nombran a continuación [6], y otras sustancias necesarias para la coagulación:
La fisiología de la coagulación sanguínea se basa en la hemostasia , el proceso corporal normal que detiene el sangrado. La coagulación es parte de una serie integrada de reacciones hemostáticas, que involucran componentes plasmáticos, plaquetarios y vasculares. [13]
La hemostasia consta de cuatro etapas principales:
Una vez formado el coágulo de fibrina, se produce la retracción del coágulo y luego comienza la resolución del mismo; estos dos procesos juntos se denominan "hemostasia terciaria". Las plaquetas activadas contraen sus fibrillas internas de actina y miosina en su citoesqueleto, lo que conduce a la contracción del volumen del coágulo. Los activadores del plasminógeno , como el activador tisular del plasminógeno (t-PA), activan el plasminógeno en plasmina, que promueve la lisis del coágulo de fibrina; esto restablece el flujo de sangre en los vasos sanguíneos dañados u obstruidos. [22]
Cuando se produce una lesión en un vaso sanguíneo, las células endoteliales pueden liberar diversas sustancias vasoconstrictoras, como la endotelina [23] y el tromboxano [24] , para inducir la constricción de los músculos lisos de la pared del vaso. Esto ayuda a reducir el flujo sanguíneo al lugar de la lesión y limita el sangrado.
Cuando el endotelio se daña, el colágeno subyacente normalmente aislado queda expuesto a las plaquetas circulantes, que se unen directamente al colágeno con receptores de superficie de glucoproteína Ia/IIa específicos del colágeno . Esta adhesión se fortalece aún más por el factor von Willebrand (vWF), que se libera desde el endotelio y desde las plaquetas; el vWF forma enlaces adicionales entre la glucoproteína Ib/IX/V y el dominio A1 de las plaquetas. Esta localización de las plaquetas en la matriz extracelular promueve la interacción del colágeno con la glucoproteína VI plaquetaria . La unión del colágeno a la glucoproteína VI desencadena una cascada de señalización que da como resultado la activación de las integrinas plaquetarias. Las integrinas activadas median la unión estrecha de las plaquetas a la matriz extracelular. Este proceso adhiere las plaquetas al sitio de la lesión. [25]
Las plaquetas activadas liberan el contenido de los gránulos almacenados en el plasma sanguíneo. Los gránulos incluyen ADP , serotonina , factor activador de plaquetas (PAF), vWF , factor plaquetario 4 y tromboxano A2 ( TXA2 ) , que, a su vez, activan plaquetas adicionales. El contenido de los gránulos activa una cascada de receptores proteicos ligados a Gq , lo que da como resultado un aumento de la concentración de calcio en el citosol de las plaquetas. El calcio activa la proteína quinasa C , que, a su vez, activa la fosfolipasa A2 ( PLA2 ) . Luego, la PLA2 modifica la glicoproteína de membrana de integrina IIb/IIIa , lo que aumenta su afinidad para unirse al fibrinógeno . Las plaquetas activadas cambian de forma de esférica a estrellada, y el fibrinógeno se enlaza con la glicoproteína IIb/IIIa ( lo que ayuda a la agregación de plaquetas adyacentes, formando un tapón plaquetario y completando así la hemostasia primaria). [26]
La cascada de coagulación de la hemostasia secundaria tiene dos vías iniciales que conducen a la formación de fibrina . Estas son la vía de activación por contacto (también conocida como vía intrínseca) y la vía del factor tisular (también conocida como vía extrínseca), que conducen a las mismas reacciones fundamentales que producen fibrina. Anteriormente se pensaba que las dos vías de la cascada de coagulación tenían la misma importancia, pero ahora se sabe que la vía principal para el inicio de la coagulación sanguínea es la vía del factor tisular (extrínseca). Las vías son una serie de reacciones, en las que un zimógeno (precursor enzimático inactivo) de una serina proteasa y su cofactor glicoproteico se activan para convertirse en componentes activos que luego catalizan la siguiente reacción en la cascada, lo que finalmente da como resultado la fibrina reticulada. Los factores de coagulación generalmente se indican con números romanos , con una a minúscula añadida para indicar una forma activa. [27]
Los factores de coagulación son generalmente enzimas llamadas serina proteasas , que actúan escindiendo proteínas dependientes de la enzima. Las excepciones son el factor tisular, FV, FVIII, FXIII. [28] El factor tisular, FV y FVIII son glicoproteínas, y el factor XIII es una transglutaminasa . [27] Los factores de coagulación circulan como zimógenos inactivos . Por lo tanto, la cascada de coagulación se divide clásicamente en tres vías. Las vías del factor tisular y de activación por contacto activan la "vía común final" del factor X, la trombina y la fibrina. [29]
La principal función de la vía del factor tisular (TF) es generar una "explosión de trombina", un proceso por el cual la trombina , el componente más importante de la cascada de coagulación en términos de sus funciones de activación por retroalimentación, se libera muy rápidamente. El FVIIa circula en una cantidad mayor que cualquier otro factor de coagulación activado. El proceso incluye los siguientes pasos: [27]
La vía de activación por contacto comienza con la formación del complejo primario en el colágeno por el quininógeno de alto peso molecular (HMWK), la precalicreína y el factor Hageman (FXII) . La precalicreína se convierte en calicreína y el FXII se convierte en FXIIa. El FXIIa convierte el FXI en FXIa. El factor XIa activa el FIX, que con su cofactor FVIIIa forma el complejo tenasa , que activa el FX en FXa. El papel menor que tiene la vía de activación por contacto en el inicio de la formación de coágulos sanguíneos se puede ilustrar por el hecho de que las personas con deficiencias graves de FXII, HMWK y precalicreína no tienen un trastorno hemorrágico. En cambio, el sistema de activación por contacto parece estar más involucrado en la inflamación [27] y la inmunidad innata [30] . A pesar de esto, la interferencia con la vía puede conferir protección contra la trombosis sin un riesgo significativo de sangrado [30] .
La división de la coagulación en dos vías es arbitraria y tiene su origen en pruebas de laboratorio en las que se midieron los tiempos de coagulación después de que la coagulación fuera iniciada por el vidrio, la vía intrínseca; o la coagulación fuera iniciada por la tromboplastina (una mezcla de factor tisular y fosfolípidos), la vía extrínseca. [31]
Además, el esquema de la vía común final implica que la protrombina se convierte en trombina solo cuando actúa sobre ella la vía intrínseca o extrínseca, lo que es una simplificación excesiva. De hecho, la trombina es generada por plaquetas activadas al inicio del tapón plaquetario, lo que a su vez promueve una mayor activación plaquetaria. [32]
La trombina no sólo funciona para convertir el fibrinógeno en fibrina, sino que también activa los factores VIII y V y su proteína inhibidora C (en presencia de trombomodulina ). Al activar el factor XIII, se forman enlaces covalentes que reticulan los polímeros de fibrina que se forman a partir de los monómeros activados. [27] Esto estabiliza la red de fibrina. [33]
La cascada de coagulación se mantiene en un estado protrombótico mediante la activación continua de FVIII y FIX para formar el complejo tenasa hasta que es regulado negativamente por las vías anticoagulantes. [27]
Un modelo más nuevo del mecanismo de coagulación explica la intrincada combinación de eventos celulares y bioquímicos que ocurren durante el proceso de coagulación in vivo . Junto con las proteínas plasmáticas procoagulantes y anticoagulantes, la coagulación fisiológica normal requiere la presencia de dos tipos de células para la formación de complejos de coagulación: células que expresan factor tisular (generalmente extravascular) y plaquetas. [34]
El proceso de coagulación se produce en dos fases. En primer lugar, está la fase de iniciación, que se produce en las células que expresan el factor tisular. A continuación, viene la fase de propagación, que se produce en las plaquetas activadas . La fase de iniciación, mediada por la exposición al factor tisular, se produce a través de la vía extrínseca clásica y contribuye a aproximadamente el 5% de la producción de trombina. La producción amplificada de trombina se produce a través de la vía intrínseca clásica en la fase de propagación; aproximadamente el 95% de la trombina generada se producirá durante esta segunda fase. [35]
Finalmente, los coágulos sanguíneos se reorganizan y reabsorben mediante un proceso denominado fibrinólisis . La principal enzima responsable de este proceso es la plasmina , que está regulada por activadores e inhibidores de la plasmina . [36]
El sistema de coagulación se superpone con el sistema inmunológico . La coagulación puede atrapar físicamente a los microbios invasores en los coágulos sanguíneos. Además, algunos productos del sistema de coagulación pueden contribuir al sistema inmunológico innato por su capacidad para aumentar la permeabilidad vascular y actuar como agentes quimiotácticos para las células fagocíticas . Además, algunos de los productos del sistema de coagulación son directamente antimicrobianos . Por ejemplo, la beta-lisina , un aminoácido producido por las plaquetas durante la coagulación, puede causar la lisis de muchas bacterias Gram-positivas al actuar como un detergente catiónico. [37] Muchas proteínas de fase aguda de la inflamación están involucradas en el sistema de coagulación. Además, las bacterias patógenas pueden secretar agentes que alteran el sistema de coagulación, por ejemplo, la coagulasa y la estreptoquinasa . [38]
La inmunohemostasia es la integración de la activación inmunitaria en la formación adaptativa de coágulos. La inmunotrombosis es el resultado patológico de la interacción entre inmunidad, inflamación y coagulación. Los mediadores de este proceso incluyen patrones moleculares asociados a daños y patrones moleculares asociados a patógenos , que son reconocidos por receptores tipo Toll , lo que desencadena respuestas procoagulantes y proinflamatorias como la formación de trampas extracelulares de neutrófilos . [39]
Para el correcto funcionamiento de la cascada de coagulación se requieren diversas sustancias:
El calcio y los fosfolípidos (componentes de la membrana plaquetaria ) son necesarios para que los complejos de tenasa y protrombinasa funcionen. [40] El calcio media la unión de los complejos a través de los residuos gamma-carboxílicos terminales en el factor Xa y el factor IXa a las superficies de los fosfolípidos expresados por las plaquetas, así como a las micropartículas procoagulantes o microvesículas que se desprenden de ellas. [41] El calcio también es necesario en otros puntos de la cascada de coagulación. Los iones de calcio desempeñan un papel importante en la regulación de la cascada de coagulación, que es fundamental para el mantenimiento de la hemostasia. Además de la activación plaquetaria, los iones de calcio son responsables de la activación completa de varios factores de coagulación, incluido el factor de coagulación XIII. [42]
La vitamina K es un factor esencial para la gamma-glutamil carboxilasa hepática que añade un grupo carboxilo a los residuos de ácido glutámico en los factores II, VII, IX y X, así como a la proteína S , la proteína C y la proteína Z. Al añadir el grupo gamma-carboxilo a los residuos de glutamato en los factores de coagulación inmaduros, la vitamina K se oxida a sí misma. Otra enzima, la vitamina K epóxido reductasa (VKORC), reduce la vitamina K a su forma activa. La vitamina K epóxido reductasa es farmacológicamente importante como objetivo de los fármacos anticoagulantes warfarina y cumarinas relacionadas , como acenocumarol , fenprocumón y dicumarol . Estos fármacos crean una deficiencia de vitamina K reducida al bloquear la VKORC, inhibiendo así la maduración de los factores de coagulación. La deficiencia de vitamina K por otras causas (p. ej., malabsorción ) o un metabolismo deficiente de la vitamina K en una enfermedad (p. ej., insuficiencia hepática ) conducen a la formación de PIVKA (proteínas formadas en ausencia de vitamina K), que son carboxiladas parcial o totalmente no gamma, lo que afecta la capacidad de los factores de coagulación para unirse a los fosfolípidos. [43]
Varios mecanismos mantienen bajo control la activación plaquetaria y la cascada de coagulación. [44] Las anomalías pueden provocar una mayor tendencia a la trombosis:
La proteína C es un importante anticoagulante fisiológico. Es una enzima serina proteasa dependiente de la vitamina K que se activa por la trombina para formar la proteína C activada (APC). La proteína C se activa en una secuencia que comienza con la unión de la proteína C y la trombina a una proteína de la superficie celular, la trombomodulina . La trombomodulina se une a estas proteínas de tal manera que activa la proteína C. La forma activada, junto con la proteína S y un fosfolípido como cofactores, degrada el FVa y el FVIIIa. La deficiencia cuantitativa o cualitativa de cualquiera de ellos (proteína C o proteína S) puede provocar trombofilia (tendencia a desarrollar trombosis). La acción alterada de la proteína C (resistencia a la proteína C activada), por ejemplo, por tener la variante "Leiden" del factor V o niveles altos de FVIII, también puede provocar una tendencia trombótica. [44]
La antitrombina es un inhibidor de la serina proteasa ( serpina ) que degrada las serina proteasas: trombina, FIXa, FXa, FXIa y FXIIa. Está constantemente activa, pero su adhesión a estos factores aumenta con la presencia de heparán sulfato (un glicosaminoglicano ) o la administración de heparinas (diferentes heparinoides aumentan la afinidad por el FXa, la trombina o ambos). La deficiencia cuantitativa o cualitativa de antitrombina (congénita o adquirida, p. ej., en la proteinuria ) conduce a trombofilia. [44]
El inhibidor de la vía del factor tisular (TFPI) limita la acción del factor tisular (TF). También inhibe la activación excesiva mediada por TF de FVII y FX. [45]
La plasmina se genera por escisión proteolítica del plasminógeno, una proteína plasmática sintetizada en el hígado. Esta escisión es catalizada por el activador tisular del plasminógeno (t-PA), que es sintetizado y secretado por el endotelio. La plasmina escinde proteolíticamente la fibrina en productos de degradación de la fibrina que inhiben la formación excesiva de fibrina. [ cita requerida ]
La prostaciclina (PGI 2 ) es liberada por el endotelio y activa los receptores plaquetarios ligados a la proteína G s . Esto, a su vez, activa la adenilil ciclasa , que sintetiza AMPc. El AMPc inhibe la activación plaquetaria al disminuir los niveles citosólicos de calcio y, al hacerlo, inhibe la liberación de gránulos que conducirían a la activación de plaquetas adicionales y la cascada de coagulación. [36]
Se utilizan numerosas pruebas médicas para evaluar la función del sistema de coagulación: [3] [46]
La vía de activación por contacto (intrínseca) se inicia mediante la activación del sistema de activación por contacto y se puede medir mediante la prueba del tiempo de tromboplastina parcial activada (aPTT). [48]
La vía del factor tisular (extrínseca) se inicia con la liberación del factor tisular (una lipoproteína celular específica) y se puede medir mediante la prueba del tiempo de protrombina (TP). [49] Los resultados del TP a menudo se informan como una relación ( valor de INR ) para controlar la dosificación de anticoagulantes orales como la warfarina . [50]
El cribado cuantitativo y cualitativo del fibrinógeno se mide mediante el tiempo de coagulación de la trombina (TCT). La medición de la cantidad exacta de fibrinógeno presente en la sangre se realiza generalmente mediante el ensayo de fibrinógeno de Clauss . [47] Muchos analizadores son capaces de medir un nivel de "fibrinógeno derivado" a partir del gráfico del tiempo de coagulación de protrombina.
Si un factor de coagulación forma parte de la vía de activación por contacto o del factor tisular, una deficiencia de ese factor afectará solo a una de las pruebas: por lo tanto, la hemofilia A , una deficiencia del factor VIII, que forma parte de la vía de activación por contacto, da como resultado una prueba de TTPa anormalmente prolongada pero una prueba de TP normal. Las deficiencias de los factores de la vía común protrombina, fibrinógeno, FX y FV prolongarán tanto el TTPa como el TP. Si hay un TP o un TTPa anormal, se realizarán pruebas adicionales para determinar qué factor (si lo hay) está presente en concentraciones aberrantes.
Las deficiencias de fibrinógeno (cuantitativa o cualitativa) prolongarán el TP, el TTPa, el tiempo de trombina y el tiempo de reptilasa .
Los defectos de coagulación pueden causar hemorragia o trombosis, y ocasionalmente ambas, dependiendo de la naturaleza del defecto. [51]
Los trastornos plaquetarios pueden ser congénitos o adquiridos. Algunos ejemplos de trastornos plaquetarios congénitos son la trombastenia de Glanzmann , el síndrome de Bernard-Soulier ( complejo de glucoproteína Ib-IX-V anormal ), el síndrome de plaquetas grises (deficiencia de gránulos alfa ) y la deficiencia de la reserva de almacenamiento delta (deficiencia de gránulos densos ). La mayoría son poco frecuentes y predisponen a la hemorragia. La enfermedad de von Willebrand se debe a la deficiencia o al funcionamiento anormal del factor de von Willebrand y conduce a un patrón de sangrado similar; sus formas más leves son relativamente comunes. [ cita requerida ]
La disminución del número de plaquetas (trombocitopenia) se debe a una producción insuficiente (p. ej., síndrome mielodisplásico u otros trastornos de la médula ósea), destrucción por el sistema inmunológico ( púrpura trombocitopénica inmunitaria ) o consumo (p. ej., púrpura trombocitopénica trombótica , síndrome hemolítico-urémico , hemoglobinuria paroxística nocturna , coagulación intravascular diseminada , trombocitopenia inducida por heparina ). [52] Un aumento en el recuento de plaquetas se denomina trombocitosis , que puede conducir a la formación de tromboembolias ; sin embargo, la trombocitosis puede estar asociada con un mayor riesgo de trombosis o hemorragia en pacientes con neoplasia mieloproliferativa . [53]
Los trastornos de los factores de coagulación más conocidos son las hemofilias . Las tres formas principales son la hemofilia A (deficiencia del factor VIII), la hemofilia B (deficiencia del factor IX o "enfermedad de Christmas") y la hemofilia C (deficiencia del factor XI, leve tendencia al sangrado). [54]
La enfermedad de von Willebrand (que se comporta más como un trastorno plaquetario excepto en casos graves) es el trastorno hemorrágico hereditario más común y se caracteriza por ser autosómica recesiva o dominante. En esta enfermedad, existe un defecto en el factor de von Willebrand (vWF), que media la unión de la glucoproteína Ib (GPIb) al colágeno. Esta unión ayuda a mediar la activación de las plaquetas y la formación de la hemostasia primaria. [ cita médica necesaria ]
En la insuficiencia hepática aguda o crónica , hay una producción insuficiente de factores de coagulación, lo que posiblemente aumenta el riesgo de sangrado durante la cirugía. [55]
La trombosis es el desarrollo patológico de coágulos sanguíneos. Estos coágulos pueden desprenderse y volverse móviles, formando un émbolo o crecer hasta un tamaño tal que ocluye el vaso en el que se desarrolló. Se dice que ocurre una embolia cuando el trombo (coágulo sanguíneo) se convierte en un émbolo móvil y migra a otra parte del cuerpo, interfiriendo con la circulación sanguínea y, por lo tanto, perjudicando la función del órgano aguas abajo de la oclusión. Esto causa isquemia y, a menudo, conduce a la necrosis isquémica del tejido. La mayoría de los casos de trombosis venosa se deben a estados adquiridos (edad avanzada, cirugía, cáncer, inmovilidad). La trombosis venosa no provocada puede estar relacionada con trombofilias hereditarias (p. ej., factor V Leiden , deficiencia de antitrombina y varias otras deficiencias o variantes genéticas), particularmente en pacientes más jóvenes con antecedentes familiares de trombosis; sin embargo, los eventos trombóticos son más probables cuando los factores de riesgo adquiridos se superponen al estado heredado. [56]
El uso de productos químicos adsorbentes , como las zeolitas , y otros agentes hemostáticos también se utilizan para sellar rápidamente heridas graves (como en el caso de hemorragias traumáticas secundarias a heridas de bala). La trombina y el pegamento de fibrina se utilizan quirúrgicamente para tratar hemorragias y trombosar aneurismas. El aerosol hemostático en polvo TC-325 se utiliza para tratar hemorragias gastrointestinales. [ cita requerida ]
La desmopresina se utiliza para mejorar la función plaquetaria activando el receptor de vasopresina arginina 1A . [57]
Los concentrados de factores de coagulación se utilizan para tratar la hemofilia , revertir los efectos de los anticoagulantes y tratar las hemorragias en personas con una síntesis deficiente de factores de coagulación o un consumo elevado. El concentrado de complejo de protrombina , el crioprecipitado y el plasma fresco congelado son productos de factores de coagulación de uso común. El factor VII humano activado recombinante se utiliza a veces en el tratamiento de hemorragias importantes.
El ácido tranexámico y el ácido aminocaproico inhiben la fibrinólisis y reducen de facto la tasa de hemorragia. Antes de su retirada, la aprotinina se utilizaba en algunas formas de cirugía mayor para reducir el riesgo de hemorragia y la necesidad de productos sanguíneos.
Los anticoagulantes y los agentes antiplaquetarios (en conjunto, "antitrombóticos") se encuentran entre los medicamentos más utilizados. Los agentes antiplaquetarios incluyen aspirina , dipiridamol , ticlopidina , clopidogrel , ticagrelor y prasugrel ; los inhibidores parenterales de la glucoproteína IIb/IIIa se utilizan durante la angioplastia . De los anticoagulantes, la warfarina (y las cumarinas relacionadas ) y la heparina son los más utilizados. La warfarina afecta a los factores de coagulación dependientes de la vitamina K (II, VII, IX, X) y a la proteína C y la proteína S, mientras que la heparina y los compuestos relacionados aumentan la acción de la antitrombina sobre la trombina y el factor Xa. Se está desarrollando una clase más nueva de medicamentos, los inhibidores directos de la trombina ; algunos de ellos ya se encuentran en uso clínico (como lepirudina , argatrobán , bivalirudina y dabigatrán ). También se utilizan clínicamente otros compuestos de pequeño tamaño molecular que interfieren directamente con la acción enzimática de determinados factores de coagulación (los anticoagulantes orales de acción directa : dabigatrán , rivaroxabán , apixabán y edoxabán ). [58]
Las teorías sobre la coagulación de la sangre han existido desde la antigüedad. El fisiólogo Johannes Müller (1801-1858) describió la fibrina, la sustancia de un trombo . Su precursor soluble, el fibrinógeno , fue nombrado así por Rudolf Virchow (1821-1902), y aislado químicamente por Prosper Sylvain Denis (1799-1863). Alexander Schmidt sugirió que la conversión de fibrinógeno a fibrina es el resultado de un proceso enzimático , y denominó a la enzima hipotética " trombina " y a su precursor " protrombina ". [59] [60] Arthus descubrió en 1890 que el calcio era esencial en la coagulación. [61] [62] Las plaquetas fueron identificadas en 1865, y su función fue dilucidada por Giulio Bizzozero en 1882. [63]
La teoría de que la trombina se genera por la presencia de factor tisular fue consolidada por Paul Morawitz en 1905. [64] En esta etapa, se sabía que la tromboquinasa/tromboplastina (factor III) es liberada por los tejidos dañados, reaccionando con la protrombina (II), que, junto con el calcio (IV), forma la trombina , que convierte el fibrinógeno en fibrina (I). [65]
El resto de los factores bioquímicos que intervienen en el proceso de coagulación se descubrieron en gran parte en el siglo XX. [ cita requerida ]
Una primera pista sobre la complejidad real del sistema de coagulación fue el descubrimiento de la proacelerina (inicialmente y luego llamada Factor V) por Paul Owren
(1905-1990) en 1947. También postuló que su función era la generación de acelerina (Factor VI), que más tarde resultó ser la forma activa de V (o Va); por lo tanto, VI no se utiliza actualmente. [65]El factor VII (también conocido como acelerador de conversión de protrombina sérica o proconvertina , precipitado por sulfato de bario) fue descubierto en una paciente joven en 1949 y 1951 por diferentes grupos.
El factor VIII resultó ser deficiente en la hemofilia A, clínicamente reconocida pero etiológicamente esquiva ; fue identificado en la década de 1950 y se denomina alternativamente globulina antihemofílica debido a su capacidad para corregir la hemofilia A. [65]
El factor IX fue descubierto en 1952 en un paciente joven con hemofilia B llamado Stephen Christmas (1947-1993). Su deficiencia fue descrita por la Dra. Rosemary Biggs y el Profesor RG MacFarlane en Oxford, Reino Unido. Por eso, el factor se llama Factor Christmas. Christmas vivió en Canadá y luchó por la seguridad de las transfusiones de sangre hasta que sucumbió al SIDA relacionado con las transfusiones a los 46 años. Un nombre alternativo para el factor es componente de tromboplastina plasmática , dado por un grupo independiente en California. [65]
El factor Hageman, ahora conocido como factor XII, fue identificado en 1955 en un paciente asintomático con un tiempo de sangrado prolongado llamado John Hageman. El factor X, o factor Stuart-Prower, siguió en 1956. Esta proteína fue identificada en una señora Audrey Prower de Londres, que había tenido una tendencia a sangrar durante toda su vida. En 1957, un grupo estadounidense identificó el mismo factor en un señor Rufus Stuart. Los factores XI y XIII fueron identificados en 1953 y 1961, respectivamente. [65]
La visión de que el proceso de coagulación es una "cascada" fue enunciada casi simultáneamente por MacFarlane [66] en el Reino Unido y por Davie y Ratnoff [67] en los EE. UU., respectivamente.
El uso de números romanos en lugar de epónimos o nombres sistemáticos se acordó durante las conferencias anuales (que comenzaron en 1955) de expertos en hemostasia. En 1962, se alcanzó un consenso sobre la numeración de los factores I a XII. [68] Este comité evolucionó hasta convertirse en el actual Comité Internacional de Trombosis y Hemostasia (ICTH). La asignación de números cesó en 1963 después de la denominación del Factor XIII. Los nombres de Factor Fletcher y Factor Fitzgerald se dieron a otras proteínas relacionadas con la coagulación, a saber, precalicreína y quininógeno de alto peso molecular , respectivamente. [65]
El factor VI [ cita requerida ] no está asignado, ya que se encontró que la acelerina es el factor V activado.
Todos los mamíferos tienen un proceso de coagulación sanguínea muy relacionado, que utiliza un proceso combinado de serina proteasas y células. [ cita requerida ] Es posible que cualquier factor de coagulación de mamíferos "escinda" su objetivo equivalente en cualquier otro mamífero. [ cita requerida ] El único animal no mamífero conocido que utiliza serina proteasas para la coagulación sanguínea es el cangrejo herradura . [ 69 ] Como ejemplo de los estrechos vínculos entre la coagulación y la inflamación, el cangrejo herradura tiene una respuesta primitiva a las lesiones, llevada a cabo por células conocidas como amebocitos (o hemocitos ) que cumplen funciones tanto hemostáticas como inmunitarias. [ 39 ] [ 70 ]