stringtranslate.com

Portal:Matemáticas

El Portal de Matemáticas

  • P:MAT
  • P: MATEMÁTICAS
  • P: MATEMÁTICAS

Las matemáticas son el estudio de la representación y el razonamiento sobre objetos abstractos(como números , puntos , espacios , conjuntos , estructuras y juegos ). Las matemáticas se utilizan en todo el mundo como una herramienta esencial en muchos campos, incluidas las ciencias naturales , la ingeniería , la medicina y las ciencias sociales . Las matemáticas aplicadas , la rama de las matemáticas que se ocupa de la aplicación del conocimiento matemático a otros campos, inspiran y utilizan nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de disciplinas matemáticas completamente nuevas, como la estadística y la teoría de juegos . Los matemáticos también se dedican a la matemática pura , o a la matemática por sí misma, sin tener en mente ninguna aplicación. No existe una línea clara que separe las matemáticas puras y las aplicadas, y a menudo se descubren aplicaciones prácticas para lo que comenzó como matemáticas puras. ( Articulo completo... )

Actualizar con nuevas selecciones a continuación (purgar)

Artículos destacados – cargar nuevo lote

  Aquí se muestran los artículos destacados , que representan algunos de los mejores contenidos de Wikipedia en inglés.

Imagen seleccionada – mostrar otra

gráfico tridimensional dibujado a mano
gráfico tridimensional dibujado a mano
Crédito:  TakuyaMurata (cargador)
Esta es una gráfica dibujada a mano del valor absoluto (o módulo) de la función gamma en el plano complejo , tal como se publicó en el libro de 1909 Tablas de funciones superiores , de Eugene Jahnke y Fritz Emde. Estos gráficos tridimensionales de funciones complicadas eran raros antes de la llegada de los gráficos por computadora de alta resolución (incluso hoy en día, las tablas de valores se utilizan en muchos contextos para buscar valores de funciones en lugar de consultar gráficos directamente). Publicado incluso antes de que se descubrieran las aplicaciones de la compleja función gamma en la física teórica en los años 30, el gráfico de Jahnke y Emde "adquirió un estatus casi icónico", según el físico Michael Berry . Vea una imagen similar generada por computadora para comparar. Cuando se restringe a números enteros positivos, la función gamma genera los factoriales a través de la relación Γ( n ) = ( n − 1). , que es el producto de todos los números enteros positivos desde n - 1 hasta 1 ( 0! se define como igual a 1). Para números reales y complejos , la función se define por la integral impropia . Esta integral diverge cuando t es un entero negativo, lo que provoca los picos en la mitad izquierda del gráfico (estos son polos simples de la función, donde sus valores aumentan hasta el infinito , de forma análoga a las asíntotas en los gráficos bidimensionales). La función gamma tiene aplicaciones en física cuántica , astrofísica y dinámica de fluidos , así como en teoría de números y probabilidad .

Buenos artículos: cargue un nuevo lote

  Estos son buenos artículos , que cumplen con un conjunto básico de altos estándares editoriales.

  • El gráfico de Rado, numerado por Ackermann (1937) y Rado (1964) .

    En el campo matemático de la teoría de grafos , el gráfico de Rado , el gráfico de Erdős-Rényi o el gráfico aleatorio es un gráfico infinito contable que se puede construir (con probabilidad uno ) eligiendo de forma independiente y aleatoria para cada par de sus vértices si se conectan los vértices. por un borde. Los nombres de este gráfico honran a Richard Rado , Paul Erdős y Alfréd Rényi , matemáticos que lo estudiaron a principios de los años 1960; aparece incluso antes en la obra de Wilhelm Ackermann  (1937). El gráfico de Rado también se puede construir de forma no aleatoria, simetrizando la relación de pertenencia de los conjuntos hereditariamente finitos , aplicando el predicado BIT a las representaciones binarias de los números naturales , o como un gráfico de Paley infinito que tiene aristas que conectan pares de números primos. congruentes con 1 mod 4 que son residuos cuadráticos módulo entre sí.

    Cada gráfico finito o contablemente infinito es un subgrafo inducido del gráfico de Rado y se puede encontrar como un subgrafo inducido mediante un algoritmo codicioso que construye el subgrafo un vértice a la vez. El gráfico de Rado se define de forma única, entre los gráficos contables, por una propiedad de extensión que garantiza la corrección de este algoritmo: no importa qué vértices ya hayan sido elegidos para formar parte del subgrafo inducido, y no importa qué patrón de adyacencias se necesite para extender el subgrafo por un vértice más, siempre existirá otro vértice con ese patrón de adyacencias que el algoritmo codicioso puede elegir. ( Articulo completo... )
  • Measuring the width of a Reuleaux triangle as the distance between parallel supporting lines. Because this distance does not depend on the direction of the lines, the Reuleaux triangle is a curve of constant width.

    In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.

    Every body of constant width is a convex set, its boundary crossed at most twice by any line, and if the line crosses perpendicularly it does so at both crossings, separated by the width. By Barbier's theorem, the body's perimeter is exactly π times its width, but its area depends on its shape, with the Reuleaux triangle having the smallest possible area for its width and the circle the largest. Every superset of a body of constant width includes pairs of points that are farther apart than the width, and every curve of constant width includes at least six points of extreme curvature. Although the Reuleaux triangle is not smooth, curves of constant width can always be approximated arbitrarily closely by smooth curves of the same constant width. (Full article...)
  • In mathematics, the three-gap theorem, three-distance theorem, or Steinhaus conjecture states that if one places n points on a circle, at angles of θ, 2θ, 3θ, ... from the starting point, then there will be at most three distinct distances between pairs of points in adjacent positions around the circle. When there are three distances, the largest of the three always equals the sum of the other two. Unless θ is a rational multiple of π, there will also be at least two distinct distances.

    This result was conjectured by Hugo Steinhaus, and proved in the 1950s by Vera T. Sós, János Surányi [hu], and Stanisław Świerczkowski; more proofs were added by others later. Applications of the three-gap theorem include the study of plant growth and musical tuning systems, and the theory of light reflection within a mirrored square. (Full article...)
  • In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

    This result provides a classification theorem for the three-dimensional convex polyhedra, something that is not known in higher dimensions. It provides a complete and purely combinatorial description of the graphs of these polyhedra, allowing other results on them, such as Eberhard's theorem on the realization of polyhedra with given types of faces, to be proven more easily, without reference to the geometry of these shapes. Additionally, it has been applied in graph drawing, as a way to construct three-dimensional visualizations of abstract graphs. Branko Grünbaum has called this theorem "the most important and deepest known result on 3-polytopes." (Full article...)
  • The Petersen graph is the smallest snark.

    In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist.

    One of the equivalent forms of the four color theorem is that every snark is a non-planar graph. Research on snarks originated in Peter G. Tait's work on the four color theorem in 1880, but their name is much newer, given to them by Martin Gardner in 1976. Beyond coloring, snarks also have connections to other hard problems in graph theory: writing in the Electronic Journal of Combinatorics, Miroslav Chladný and Martin Škoviera state thatAs well as the problems they mention, W. T. Tutte's snark conjecture concerns the existence of Petersen graphs as graph minors of snarks; its proof has been long announced but remains unpublished, and would settle a special case of the existence of nowhere zero 4-flows. (Full article...)
  • In the mathematical fields of graph theory and finite model theory, the logic of graphs deals with formal specifications of graph properties using sentences of mathematical logic. There are several variations in the types of logical operation that can be used in these sentences. The first-order logic of graphs concerns sentences in which the variables and predicates concern individual vertices and edges of a graph, while monadic second-order graph logic allows quantification over sets of vertices or edges. Logics based on least fixed point operators allow more general predicates over tuples of vertices, but these predicates can only be constructed through fixed-point operators, restricting their power.

    A sentence may be true for some graphs, and false for others; a graph is said to model , written , if is true of the vertices and adjacency relation of . The algorithmic problem of model checking concerns testing whether a given graph models a given sentence. The algorithmic problem of satisfiability concerns testing whether there exists a graph that models a given sentence.
    Although both model checking and satisfiability are hard in general, several major algorithmic meta-theorems show that properties expressed in this way can be tested efficiently for important classes of graphs. (Full article...)
  • Pell's equation for n = 2 and six of its integer solutions

    Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates, the equation is represented by a hyperbola; solutions occur wherever the curve passes through a point whose x and y coordinates are both integers, such as the trivial solution with x = 1 and y = 0. Joseph Louis Lagrange proved that, as long as n is not a perfect square, Pell's equation has infinitely many distinct integer solutions. These solutions may be used to accurately approximate the square root of n by rational numbers of the form x/y.

    This equation was first studied extensively in India starting with Brahmagupta, who found an integer solution to in his Brāhmasphuṭasiddhānta circa 628. Bhaskara II in the 12th century and Narayana Pandit in the 14th century both found general solutions to Pell's equation and other quadratic indeterminate equations. Bhaskara II is generally credited with developing the chakravala method, building on the work of Jayadeva and Brahmagupta. Solutions to specific examples of Pell's equation, such as the Pell numbers arising from the equation with n = 2, had been known for much longer, since the time of Pythagoras in Greece and a similar date in India. William Brouncker was the first European to solve Pell's equation. The name of Pell's equation arose from Leonhard Euler mistakenly attributing Brouncker's solution of the equation to John Pell. (Full article...)
  • A Halin graph with 21 vertices
    A Halin graph

    In graph theory, a Halin graph is a type of planar graph, constructed by connecting the leaves of a tree into a cycle.
    The tree must have at least four vertices, none of which has exactly two neighbors; it should be drawn in the plane so none of its edges cross (this is called a planar embedding), and the cycle
    connects the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside it.

    Halin graphs are named after German mathematician Rudolf Halin, who studied them in 1971.
    The cubic Halin graphs – the ones in which each vertex touches exactly three edges – had already been studied over a century earlier by Kirkman.
    Halin graphs are polyhedral graphs, meaning that every Halin graph can be used to form the vertices and edges of a convex polyhedron, and the polyhedra formed from them have been called roofless polyhedra or domes. (Full article...)
  • In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other.

    Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal. Having Dehn invariant zero is a necessary (but not sufficient) condition for being a space-filling polyhedron, and a polyhedron can be cut up and reassembled into a space-filling polyhedron if and only if its Dehn invariant is zero. The Dehn invariant of a self-intersection-free flexible polyhedron is invariant as it flexes. Dehn invariants are also an invariant for dissection in higher dimensions, and (with volume) a complete invariant in four dimensions. (Full article...)

  • Portrait of Newton at 46, 1689

    Sir Isaac Newton FRS (25 December 1642 – 20 March 1726/27) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His pioneering book Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687, consolidated many previous results and established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for developing infinitesimal calculus, though he developed calculus years before Leibniz. He is considered one of the greatest and most influential scientists in history.

    In the Principia, Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. Newton used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for tides, the trajectories of comets, the precession of the equinoxes and other phenomena, eradicating doubt about the Solar System's heliocentricity. He demonstrated that the motion of objects on Earth and celestial bodies could be accounted for by the same principles. Newton's inference that the Earth is an oblate spheroid was later confirmed by the geodetic measurements of Maupertuis, La Condamine, and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems. (Full article...)

  • Srinivasa Ramanujan FRS (/ˈsrnɪvɑːsə rɑːˈmɑːnʊən/ SREE-nih-vah-sə rah-MAH-nuuj-ən; born Srinivasa Ramanujan Aiyangar, Tamil: [sriːniʋaːsa ɾaːmaːnud͡ʑan ajːaŋgar]; 22 December 1887 – 26 April 1920) was an Indian mathematician. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then considered unsolvable.

    Ramanujan initially developed his own mathematical research in isolation. According to Hans Eysenck, "he tried to interest the leading professional mathematicians in his work, but failed for the most part. What he had to show them was too novel, too unfamiliar, and additionally presented in unusual ways; they could not be bothered". Seeking mathematicians who could better understand his work, in 1913 he began a postal correspondence with the English mathematician G. H. Hardy at the University of Cambridge, England. Recognising Ramanujan's work as extraordinary, Hardy arranged for him to travel to Cambridge. In his notes, Hardy commented that Ramanujan had produced groundbreaking new theorems, including some that "defeated me completely; I had never seen anything in the least like them before", and some recently proven but highly advanced results. (Full article...)
  • A Doyle spiral of type (8,16) printed in 1911 in Popular Science as an illustration of phyllotaxis. One of its spiral arms is shaded.

    In the mathematics of circle packing, a Doyle spiral is a pattern of non-crossing circles in the plane in which each circle is surrounded by a ring of six tangent circles. These patterns contain spiral arms formed by circles linked through opposite points of tangency, with their centers on logarithmic spirals of three different shapes.

    Doyle spirals are named after mathematician Peter G. Doyle, who made an important contribution to their mathematical construction in the late 1980s or early 1990s. However, their study in phyllotaxis (the mathematics of plant growth) dates back to the early 1900s. (Full article...)

¿Sabías que (generado automáticamente) ? ​​Cargar nuevo lote

¿Sabías más? Ver diferentes entradas

Sabías...
Sabías...

Artículo seleccionado – mostrar otro

La teoría de juegos es una rama de las matemáticas que se utiliza a menudo en el contexto de la economía . Estudia las interacciones estratégicas entre agentes . En los juegos estratégicos, los agentes eligen estrategias que maximizarán su retorno, dadas las estrategias que eligen los demás agentes. La característica esencial es que proporciona un enfoque de modelado formal de situaciones sociales en las que los tomadores de decisiones interactúan con otros agentes. La teoría de juegos amplía el enfoque de optimización más simple desarrollado en la economía neoclásica .

El campo de la teoría de juegos surgió con la clásica Teoría de los juegos y el comportamiento económico de 1944 de John von Neumann y Oskar Morgenstern . Un centro importante para el desarrollo de la teoría de juegos fue RAND Corporation , donde ayudó a definir estrategias nucleares .

La teoría de juegos ha desempeñado y sigue desempeñando un papel importante en las ciencias sociales y ahora también se utiliza en muchos campos académicos diversos. A partir de la década de 1970, la teoría de juegos se aplicó al comportamiento animal, incluida la teoría de la evolución . Muchos juegos, especialmente el dilema del prisionero , se utilizan para ilustrar ideas en ciencias políticas y ética . La teoría de juegos ha llamado recientemente la atención de los científicos informáticos debido a su uso en inteligencia artificial y cibernética . ( Articulo completo... )

Subcategorías

Álgebra | Aritmética | Análisis | Análisis complejo | Matemáticas aplicadas | Cálculo | Teoría de categorías | Teoría del caos | Combinatoria | Sistemas dinámicos | Fractales | Teoría de juegos | Geometría | Geometría algebraica | Teoría de grafos | Teoría de grupos | Álgebra lineal | Lógica matemática | Teoría de modelos | Geometría multidimensional | Teoría de números | Análisis numérico | Optimización | Teoría del orden | Probabilidad y estadística | Teoría de conjuntos | Estadísticas | Topología | Topología algebraica | Trigonometria | Programación lineal


Matemáticas | Historia de las matemáticas | Matemáticos | Premios | Educación | Literatura | Notación | Organizaciones | Teoremas | Pruebas | Problemas no resueltos

Árbol de categorías completo. Seleccione [►] para ver las subcategorías.

Temas de matemáticas

Índice de artículos de matemáticas.

Portales relacionados

WikiProyectos

WikiProyectosMathematics WikiProject es el centro de edición relacionada con las matemáticas en Wikipedia. Únase a la discusión en la página de discusión del proyecto .

En otros proyectos de Wikimedia

Los siguientes proyectos hermanos de la Fundación Wikimedia brindan más información sobre este tema:


  • Repositorio multimedia gratuito Commons
  • Wikilibros
    Libros de texto y manuales gratuitos

  • Base de conocimientos gratuita de Wikidata
  • Wikinoticias
    Noticias de contenido libre
  • Wikiquote
    Colección de citas

  • Biblioteca de contenido gratuito de Wikisource
  • Wikiversidad
    Herramientas de aprendizaje gratuitas

  • Diccionario y tesauro de Wikcionario

Más portales

Descubre Wikipedia usando portales