stringtranslate.com

Arenas petrolíferas

Las arenas petrolíferas de Athabasca en Alberta , Canadá, son una fuente muy importante de betún , que se puede mejorar para producir petróleo crudo pesado sintético , Western Canadian Select (WCS).
Arenisca bituminosa de California , Estados Unidos

Las arenas petrolíferas , arenas bituminosas , betún crudo o arenas bituminosas son un tipo de yacimiento de petróleo no convencional . Las arenas petrolíferas son arenas sueltas o areniscas parcialmente consolidadas que contienen una mezcla natural de arena , arcilla y agua, empapadas con betún , una forma densa y extremadamente viscosa de petróleo .

Se han registrado importantes depósitos de betún en Canadá , [1] [2] Kazajstán , Rusia y Venezuela . Se estima que los depósitos mundiales de petróleo superan los 2 billones de barriles (320 mil millones de metros cúbicos). [3] Las reservas probadas de betún contienen aproximadamente 100 mil millones de barriles, [4] y las reservas totales de betún natural se estiman en 249,67 Gbbl (39,694 × 10 9  m 3 ) en todo el mundo, de los cuales 176,8 Gbbl (28,11 × 10 9  m 3 ), o el 70,8 %, se encuentran en Alberta, Canadá. [1]^^

El bitumen crudo es una forma espesa y pegajosa de petróleo crudo, y es tan viscoso que no fluirá a menos que se caliente o se diluya con hidrocarburos más ligeros, como petróleo crudo ligero o condensado de gas natural . A temperatura ambiente, es muy parecido a la melaza fría . [5] La Faja del Orinoco en Venezuela a veces se describe como arenas petrolíferas, pero estos depósitos no son bituminosos, sino que caen en la categoría de petróleo pesado o extrapesado debido a su menor viscosidad. [6] El betún natural y el petróleo extrapesado difieren en el grado en que han sido degradados de los petróleos convencionales originales por bacterias .

Los aumentos de los precios del petróleo en 1973 y 1979 y el desarrollo de una mejor tecnología de extracción permitieron la extracción y el procesamiento rentables de las arenas petrolíferas. Junto con otras prácticas de extracción de petróleo llamadas no convencionales , las arenas petrolíferas están implicadas en el debate sobre el carbono no combustible , pero también contribuyen a la seguridad energética y contrarrestan el cártel de precios internacional de la OPEP . Según el Índice climático del petróleo, las emisiones de carbono del crudo de arenas petrolíferas son un 31% más altas que las del petróleo convencional. [7] En Canadá, la producción de arenas petrolíferas en general, y la extracción in situ, en particular, son los mayores contribuyentes al aumento de las emisiones de gases de efecto invernadero del país entre 2005 y 2017, según Recursos Naturales de Canadá (NRCan). [8]

Historia

El uso de depósitos y filtraciones bituminosas se remonta al Paleolítico . [9] El uso más antiguo conocido del betún fue por parte de los neandertales , hace unos 40.000 años. Se ha encontrado betún adherido a herramientas de piedra utilizadas por los neandertales en yacimientos de Siria. Después de la llegada del Homo sapiens , los humanos utilizaron el betún para la construcción de edificios y la impermeabilización de barcos de juncos , entre otros usos. En el antiguo Egipto, el uso del betún era importante para preparar momias . [10]

En la antigüedad, el betún era un producto principalmente mesopotámico utilizado por los sumerios y babilonios , aunque también se encontró en el Levante y Persia . La zona a lo largo de los ríos Tigris y Éufrates estaba llena de cientos de filtraciones de betún puro. Los mesopotámicos utilizaban el betún para impermeabilizar barcos y edificios. En Europa, se extraían ampliamente cerca de la ciudad francesa de Pechelbronn , donde se utilizaba el proceso de separación por vapor en 1742. [11] [12]

En Canadá, los pueblos originarios habían utilizado el betún de las filtraciones a lo largo de los ríos Athabasca y Clearwater para impermeabilizar sus canoas de corteza de abedul desde tiempos prehistóricos. Las arenas petrolíferas canadienses fueron conocidas por primera vez por los europeos en 1719 cuando un cree llamado Wa-Pa-Su llevó una muestra al comerciante de pieles de la Compañía de la Bahía de Hudson, Henry Kelsey , quien comentó sobre ella en sus diarios. El comerciante de pieles Peter Pond remó río abajo por el río Clearwater hasta Athabasca en 1778, vio los depósitos y escribió sobre "manantiales de betún que fluyen por el suelo". En 1787, el comerciante de pieles y explorador Alexander MacKenzie, en su camino hacia el océano Ártico, vio las arenas petrolíferas de Athabasca y comentó: "A unas 24 millas de la bifurcación (de los ríos Athabasca y Clearwater) hay algunas fuentes bituminosas en las que se puede insertar un poste de 20 pies de largo sin la menor resistencia". [13]

Costo de las operaciones de extracción de petróleo en arenas petrolíferas

En su comparación de mayo de 2019 de la "actualización de la curva de costo de suministro" en la que Rystad Energy, con sede en Noruega (una "investigación y consultoría energética independiente") clasificó los "recursos líquidos recuperables totales del mundo por su precio de equilibrio", Rystad informó que el precio de equilibrio promedio para el petróleo de las arenas petrolíferas fue de US$83 en 2019, lo que lo convierte en el más caro de producir, en comparación con todas las demás "regiones productoras de petróleo importantes" del mundo. [14] [a] La Agencia Internacional de Energía hizo comparaciones similares. [15]

El precio por barril de los crudos más pesados ​​y ácidos que carecen de acceso a las aguas de marea, como el Western Canadian Select (WCS) de las arenas petrolíferas de Athabaska, se cotiza a un precio diferencial con el del petróleo más ligero y dulce , como el West Texas Intermediate (WTI). El precio se basa en su grado, determinado por factores como su gravedad específica o API y su contenido de azufre, y su ubicación, por ejemplo, su proximidad a las aguas de marea y/o refinerías.

Debido a que el costo de producción es mucho más alto en las operaciones de extracción de petróleo de arenas petrolíferas, el punto de equilibrio es mucho más alto que para los petróleos más ligeros y dulces como los producidos por Arabia Saudita , Irán , Irak y los Estados Unidos. [14] Las producciones de arenas petrolíferas se expanden y prosperan a medida que el precio mundial del petróleo aumenta hasta alcanzar máximos debido al embargo petrolero árabe de 1973 , la revolución iraní de 1979 , la crisis y guerra del Golfo Pérsico de 1990 , los ataques del 11 de septiembre de 2001 y la invasión de Irak de 2003. [ 16] Los períodos de auge fueron seguidos por la caída, ya que el precio mundial del petróleo cayó durante la década de 1980 y nuevamente en la de 1990, durante un período de recesiones globales, y nuevamente en 2003. [17]

Nomenclatura

El nombre de arenas bituminosas se aplicó a las arenas bituminosas a finales del siglo XIX y principios del XX. [18] Las personas que vieron las arenas bituminosas durante este período estaban familiarizadas con las grandes cantidades de residuos de alquitrán producidos en las áreas urbanas como subproducto de la fabricación de gas de carbón para calefacción e iluminación urbana. [19] La palabra " alquitrán " para describir estos depósitos naturales de betún es realmente un nombre inapropiado, ya que, químicamente hablando, el alquitrán es una sustancia hecha por el hombre producida por la destilación destructiva de material orgánico , generalmente carbón . [20]

Desde entonces, el gas de hulla ha sido reemplazado casi por completo por el gas natural como combustible, y el alquitrán de hulla como material para pavimentar caminos ha sido reemplazado por el producto derivado del petróleo, el asfalto . El betún natural es químicamente más similar al asfalto que al alquitrán de hulla, y la industria de las áreas productoras usa más comúnmente el término arenas petrolíferas (o arenas bituminosas) que arenas bituminosas porque el petróleo sintético se fabrica a partir del betún, [20] y debido a la sensación de que la terminología de las arenas bituminosas es menos aceptable políticamente para el público. [21] Las arenas bituminosas son ahora una alternativa al petróleo crudo convencional. [22]

Geología

Los mayores depósitos de arenas petrolíferas del mundo se encuentran en Venezuela y Canadá. La geología de los depósitos en los dos países es en general bastante similar. Son grandes depósitos de petróleo pesado , petróleo extrapesado y/o betún con petróleo de más de 20° API, que se encuentran principalmente en areniscas no consolidadas con propiedades similares. "No consolidado" en este contexto significa que las arenas tienen alta porosidad, ninguna cohesión significativa y una resistencia a la tracción cercana a cero. Las arenas están saturadas de petróleo, lo que ha impedido que se consoliden en areniscas duras. [6]

Tamaño de los recursos

La magnitud de los recursos en los dos países es del orden de 3,5 a 4 billones de barriles (550 a 650 mil millones de metros cúbicos) de petróleo original en el lugar (OOIP). [23] [24] El petróleo en el lugar no es necesariamente reservas de petróleo , y la cantidad que se puede producir depende de la evolución tecnológica . Los rápidos avances tecnológicos en Canadá en el período 1985-2000 dieron como resultado técnicas como el drenaje gravitacional asistido por vapor (SAGD) que pueden recuperar un porcentaje mucho mayor del OOIP que los métodos convencionales. El gobierno de Alberta estima que con la tecnología actual, se puede recuperar el 10% de su betún y petróleo pesado, lo que le daría alrededor de 200 mil millones de barriles (32 mil millones de m 3 ) de reservas de petróleo recuperables. Venezuela estima su petróleo recuperable en 267 mil millones de barriles (42 mil millones de m 3 ). [6] Esto coloca a Canadá y Venezuela en la misma liga que Arabia Saudita, teniendo las tres mayores reservas de petróleo del mundo .

Yacimientos importantes

Existen numerosos yacimientos de arenas petrolíferas en el mundo, pero los más grandes e importantes se encuentran en Canadá y Venezuela, y otros más pequeños en Kazajstán y Rusia. El volumen total de petróleo no convencional en las arenas petrolíferas de estos países supera las reservas de petróleo convencional de todos los demás países juntos. En las provincias canadienses de Alberta y Saskatchewan existen vastos yacimientos de betún (más de 350.000 millones de metros cúbicos [2,2 billones de barriles] de petróleo en el lugar) . Si se pudiera extraer el 30% de este petróleo, se podrían satisfacer todas las necesidades de América del Norte durante más de 100 años a los niveles de consumo de 2002. Estos yacimientos representan petróleo abundante, pero no barato. Requieren tecnología avanzada para extraerlo y transportarlo a las refinerías de petróleo . [25]

Canadá

Las arenas petrolíferas de la Cuenca Sedimentaria del Oeste de Canadá (WCSB) son el resultado de la formación de las Montañas Rocosas canadienses por la placa del Pacífico que empujó a la placa norteamericana a medida que avanzaba desde el oeste, arrastrando las antiguas grandes cadenas de islas que ahora componen la mayor parte de Columbia Británica . La colisión comprimió las llanuras de Alberta y elevó las Montañas Rocosas por encima de las llanuras, formando cadenas montañosas . Este proceso de construcción de montañas enterró las capas de roca sedimentaria que subyacen a la mayor parte de Alberta a una gran profundidad , creando altas temperaturas subterráneas y produciendo un efecto de olla a presión gigante que convirtió el kerógeno en las lutitas ricas en materia orgánica profundamente enterradas en petróleo ligero y gas natural. [6] [26] Estas rocas generadoras eran similares a las llamadas lutitas petrolíferas estadounidenses , excepto que estas últimas nunca han sido enterradas lo suficientemente profundo como para convertir el kerógeno en ellas en petróleo líquido.

Este cabalgamiento también inclinó las formaciones rocosas sedimentarias precretácicas subyacentes a la mayor parte del subsuelo de Alberta, deprimiendo las formaciones rocosas en el suroeste de Alberta hasta 8 km (5 mi) de profundidad cerca de las Montañas Rocosas, pero a profundidad cero en el noreste, donde se apretaron contra las rocas ígneas del Escudo Canadiense , que afloran en la superficie. Esta inclinación no es evidente en la superficie porque la zanja resultante se ha rellenado con material erosionado de las montañas. El petróleo ligero migró en sentido ascendente a través del transporte hidrodinámico desde las Montañas Rocosas en el suroeste hacia el Escudo Canadiense en el noreste siguiendo una discordancia precretácica compleja que existe en las formaciones bajo Alberta. La distancia total de la migración del petróleo de suroeste a noreste fue de aproximadamente 500 a 700 km (300 a 400 mi). En las profundidades poco profundas de las formaciones sedimentarias en el noreste, la biodegradación microbiana masiva a medida que el petróleo se acercaba a la superficie hizo que el petróleo se volviera altamente viscoso e inmóvil. Casi todo el petróleo restante se encuentra en el extremo norte de Alberta, en depósitos de arena, limo y esquisto del Cretácico medio (de 115 millones de años de antigüedad) cubiertos por esquistos gruesos, aunque se encuentran grandes cantidades de petróleo pesado más liviano que el betún en el Cinturón de Petróleo Pesado a lo largo de la frontera entre Alberta y Saskatchewan, que se extiende hasta Saskatchewan y se acerca a la frontera con Montana. Cabe señalar que, aunque adyacente a Alberta, Saskatchewan no tiene depósitos masivos de betún, solo grandes reservorios de petróleo pesado de más de 10° API. [6] [26]

La mayor parte de las arenas petrolíferas canadienses se encuentran en tres importantes depósitos en el norte de Alberta: las arenas petrolíferas de Athabasca-Wabiskaw , en el noreste de Alberta, los depósitos de Cold Lake , en el noreste de Alberta, y los depósitos de Peace River, en el noroeste de Alberta. Entre ambos, cubren más de 140.000 kilómetros cuadrados (54.000 millas cuadradas), un área mayor que Inglaterra , y contienen aproximadamente 1,75 Tbbl (280 × 10 9  m 3 ) de bitumen crudo . El gobierno de Alberta estima que aproximadamente el 10% del petróleo en el yacimiento , o 173 Gbbl (27,5 × 10 9  m 3 ), se puede recuperar a los precios actuales, utilizando la tecnología actual, lo que equivale al 97% de las reservas de petróleo canadienses y al 75% de las reservas totales de petróleo de América del Norte. [2] Aunque el depósito de Athabasca es el único en el mundo que tiene áreas lo suficientemente superficiales para extraerlas desde la superficie, las tres áreas de Alberta son adecuadas para la producción utilizando métodos in situ , como la estimulación cíclica con vapor (CSS) y el drenaje gravitacional asistido por vapor (SAGD).^^

El mayor yacimiento de arenas petrolíferas de Canadá, las arenas petrolíferas de Athabasca , se encuentran en la Formación McMurray , centrada en la ciudad de Fort McMurray, Alberta . Aflora en la superficie (profundidad de enterramiento cero) a unos 50 km (30 mi) al norte de Fort McMurray, donde se han establecido enormes minas de arenas petrolíferas, pero se encuentra a 400 m (1300 pies) de profundidad al sureste de Fort McMurray. Solo el 3% del área de arenas petrolíferas que contiene aproximadamente el 20% del petróleo recuperable se puede producir mediante minería de superficie , por lo que el 80% restante tendrá que producirse utilizando pozos in situ . Los otros depósitos canadienses están entre 350 y 900 m (1000 y 3000 pies) de profundidad y requerirán producción in situ. [6] [26]

Atabasca
La ciudad de Fort McMurray a orillas del río Athabasca

Las arenas petrolíferas de Athabasca , también conocidas como arenas bituminosas de Athabasca, son grandes depósitos de betún , una forma pesada y viscosa de petróleo, en el noreste de Alberta , Canadá. Estas reservas son una de las mayores fuentes de petróleo no convencional del mundo, lo que convierte a Canadá en un actor importante en el mercado energético mundial. [27]

A partir de 2023, la industria de arenas petrolíferas de Canadá, junto con el oeste de Canadá y las instalaciones petroleras en alta mar cerca de Terranova y Labrador, continuaron aumentando la producción y se proyecta que aumentarán en un estimado de 10% en 2024, lo que representa un potencial récord al final del año de aproximadamente 5,3 millones de barriles por día (bpd). [28] El aumento de la producción se atribuye principalmente al crecimiento de las arenas petrolíferas de Alberta. [28] La expansión del oleoducto Trans Mountain , el único oleoducto a la Costa Oeste, facilitará aún más este aumento, con su capacidad que aumentará significativamente, a 890.000 barriles por día desde los 300.000 bpd actuales. [29] [28] A pesar de este crecimiento, hay advertencias de que podría ser de corta duración, con una posible estabilización de la producción después de 2024. [28] El aumento previsto de la producción de petróleo de Canadá supera al de otros productores importantes como Estados Unidos, y el país está preparado para convertirse en un importante impulsor del crecimiento de la producción mundial de petróleo crudo en 2024. [28] La explotación de estos recursos ha suscitado debates sobre el desarrollo económico, la seguridad energética y los impactos ambientales, en particular las emisiones de las arenas petrolíferas, lo que ha provocado discusiones sobre las regulaciones de emisiones para el sector del petróleo y el gas. [28] [30] [31] [32] [33] [34] [35]

Las arenas petrolíferas de Athabaska, junto con los depósitos de arenas petrolíferas de Peace River y Cold Lake, se encuentran bajo 141.000 kilómetros cuadrados (54.000 millas cuadradas) de bosque boreal y turberas , según el Ministerio de Energía del Gobierno de Alberta, [36] el Regulador de Energía de Alberta (AER) y la Asociación Canadiense de Productores de Petróleo (CAPP).
Lago frío
El lago Cold visto desde el parque provincial Meadow Lake , Saskatchewan

Las arenas petrolíferas de Cold Lake se encuentran al noreste de la capital de Alberta, Edmonton , cerca de la frontera con Saskatchewan. Una pequeña parte del depósito de Cold Lake se encuentra en Saskatchewan. Aunque son más pequeñas que las arenas petrolíferas de Athabasca, las arenas petrolíferas de Cold Lake son importantes porque parte del petróleo es lo suficientemente fluido como para ser extraído por métodos convencionales. El betún de Cold Lake contiene más alcanos y menos asfaltenos que las otras arenas petrolíferas principales de Alberta y el petróleo es más fluido. [37] Como resultado, la estimulación cíclica con vapor (CSS) se utiliza comúnmente para la producción.

Las arenas petrolíferas de Cold Lake tienen una forma aproximadamente circular, centradas alrededor de Bonnyville, Alberta . Probablemente contienen más de 60 mil millones de metros cúbicos (370 mil millones de barriles) de petróleo extrapesado in situ. El petróleo es altamente viscoso, pero considerablemente menos que las arenas petrolíferas de Athabasca, y es algo menos sulfuroso . La profundidad de los depósitos es de 400 a 600 metros (1.300 a 2.000 pies) y tienen de 15 a 35 metros (49 a 115 pies) de espesor. [25] Son demasiado profundos para la minería a cielo abierto .

Gran parte de las arenas petrolíferas se encuentran en la base de las Fuerzas Canadienses Cold Lake . Los aviones de combate CF-18 Hornet de la base de las Fuerzas Canadienses Cold Lake defienden la mitad occidental del espacio aéreo canadiense y cubren el territorio ártico de Canadá. El campo de tiro aéreo de armas de Cold Lake (CLAWR) es uno de los campos de tiro con bombas más grandes del mundo, que incluye pruebas de misiles de crucero. A medida que la producción de arenas petrolíferas continúa creciendo, varios sectores compiten por el acceso al espacio aéreo, la tierra y los recursos, y esto complica significativamente la perforación y producción de pozos petrolíferos.

Río de la Paz
El depósito de arenas petrolíferas de Peace River se encuentra al oeste de Alberta y es más profundo que las arenas petrolíferas de Athabasca , más grandes y más conocidas .

Ubicado en el centro-noroeste de Alberta , el depósito de arenas petrolíferas de Peace River es el más pequeño de cuatro grandes depósitos de arenas petrolíferas [38] de la formación de la Cuenca Sedimentaria del Oeste de Canadá . [38]

Las arenas petrolíferas del río Peace se encuentran, generalmente, en la cuenca del río Peace .

Los depósitos de arenas petrolíferas de Peace River son los más pequeños de la provincia. Los más grandes, las arenas petrolíferas de Athabasca , se encuentran al este. El segundo más grande, el depósito de arenas petrolíferas de Cold Lake , está al sur de Athabaska y las arenas petrolíferas de Wabasco están al sur de Athabaska y generalmente están vinculadas a él. [38] Según Petroleum Economist , las arenas petrolíferas se encuentran en más de 70 países, pero la mayor parte se encuentra en estas cuatro regiones que juntas cubren un área de unos 77.000 kilómetros cuadrados (30.000 millas cuadradas). [39] En 2007, el Consejo Mundial de Energía estimó que estas áreas de arenas petrolíferas contenían al menos dos tercios del betún descubierto en el mundo en ese momento, [40] con una reserva original de petróleo en el lugar (OOIP) de 260.000.000.000 de metros cúbicos (9,2 × 10 12  pies cúbicos) (1,6 billones de barriles ), una cantidad comparable a las reservas mundiales totales de petróleo convencional.

Mientras que las arenas petrolíferas de Athabasca se encuentran lo suficientemente cerca de la superficie como para que la arena pueda ser extraída en minas a cielo abierto y llevada a una ubicación central para su procesamiento, los depósitos de Peace River se consideran demasiado profundos y se explotan in situ utilizando drenaje gravitacional asistido por vapor (SAGD) y producción de petróleo pesado frío con arena (CHOPS). [41]

Venezuela

La Cuenca Oriental de Venezuela tiene una estructura similar a la Cuenca del Este de Venezuela, pero a menor escala. La distancia que el petróleo ha migrado en dirección ascendente desde el frente montañoso de la Sierra Oriental hasta las arenas petrolíferas del Orinoco , donde choca contra las rocas ígneas del Escudo Guayanés , es de sólo 200 a 300 km (100 a 200 mi). Las condiciones hidrodinámicas del transporte del petróleo fueron similares: las rocas generadoras enterradas profundamente por la elevación de las montañas de la Sierra Oriental produjeron petróleo ligero que se movió en dirección ascendente hacia el sur hasta que fue inmovilizado gradualmente por el aumento de la viscosidad causado por la biodegradación cerca de la superficie. Los depósitos del Orinoco son secuencias de arena-limo-esquisto del Terciario temprano (de 50 a 60 millones de años) recubiertas por lutitas gruesas y continuas, muy similares a los depósitos canadienses.

En Venezuela, las arenas petrolíferas de la Faja del Orinoco tienen una profundidad de entre 350 y 1.000 m (1.000 y 3.000 pies) y no existen afloramientos superficiales. El depósito tiene unos 500 km (300 mi) de largo de este a oeste y de 50 a 60 km (30 a 40 mi) de ancho de norte a sur, mucho menos que el área combinada cubierta por los depósitos canadienses. En general, los depósitos canadienses se encuentran en un área mucho más amplia, tienen una gama más amplia de propiedades y tienen una gama más amplia de tipos de yacimientos que los venezolanos, pero las estructuras y mecanismos geológicos involucrados son similares. La principal diferencia es que el petróleo en las arenas de Venezuela es menos viscoso que en Canadá, lo que permite que una parte se produzca mediante técnicas de perforación convencionales, pero nada se acerca a la superficie como en Canadá, lo que significa que no se puede producir mediante minería de superficie. Los depósitos canadienses tendrán que producirse casi en su totalidad mediante minería o utilizando nuevas técnicas no convencionales.

Orinoco
Panorama del río Orinoco

La Faja del Orinoco es un territorio en la franja sur de la cuenca oriental del río Orinoco en Venezuela, que se encuentra sobre uno de los depósitos de petróleo más grandes del mundo. La Faja del Orinoco sigue la línea del río. Tiene aproximadamente 600 kilómetros (370 millas) de este a oeste y 70 kilómetros (43 millas) de norte a sur, con una superficie de aproximadamente 55.314 kilómetros cuadrados (21.357 millas cuadradas).

Las arenas petrolíferas están formadas por grandes depósitos de crudo extrapesado . Se estima que los depósitos de petróleo pesado de Venezuela, de aproximadamente 1.200 Gbbl (190 × 10 9  m 3 ) de petróleo en el lugar, equivalen aproximadamente a las reservas mundiales de petróleo más ligero. [1]^

En 2009, el Servicio Geológico de Estados Unidos (USGS) aumentó sus estimaciones de las reservas a 513 Gbbl (81,6 × 10 9  m 3 ) de petróleo, que es "técnicamente recuperable (producible utilizando la tecnología y las prácticas industriales actualmente disponibles)". No se realizó ninguna estimación de cuánto petróleo es económicamente recuperable. [42]^

Otros depósitos

Ubicación de la isla Melville

Además de las tres principales arenas petrolíferas canadienses en Alberta, hay un cuarto depósito importante de arenas petrolíferas en Canadá, las arenas petrolíferas de la isla Melville, en las islas árticas canadienses , que son demasiado remotas para esperar una producción comercial en el futuro previsible.

Aparte de los megagigantes [43] depósitos de arenas petrolíferas en Canadá y Venezuela, muchos otros países poseen depósitos de arenas petrolíferas más pequeños. En los Estados Unidos, hay recursos de arenas petrolíferas supergigantes [43] concentrados principalmente en el este de Utah , con un total de 32 Gbbl (5,1 × 10 9  m 3 ) de petróleo (conocido y potencial) en ocho depósitos importantes en los condados de Carbon , Garfield , Grand , Uintah y Wayne . [44] Además de ser mucho más pequeñas que los depósitos de arenas petrolíferas canadienses, las arenas petrolíferas estadounidenses son humedecidas con hidrocarburos, mientras que las arenas petrolíferas canadienses son humedecidas con agua. [45] Esto requiere técnicas de extracción algo diferentes para las arenas petrolíferas de Utah de las utilizadas para las arenas petrolíferas de Alberta.^

Rusia posee arenas petrolíferas en dos regiones principales. Grandes recursos están presentes en la Cuenca de Tunguska , Siberia Oriental , siendo los depósitos más grandes Olenyok y Siligir . Otros depósitos se encuentran en las cuencas de Timan-Pechora y Volga-Urales (en y alrededor de Tatarstán ), que es una provincia importante pero muy madura en términos de petróleo convencional, que posee grandes cantidades de arenas petrolíferas en una formación pérmica poco profunda. [1] [46] En Kazajstán, grandes depósitos de betún se encuentran en la Cuenca del Caspio Norte.

En Madagascar, Tsimiroro y Bemolanga son dos depósitos de arenas petrolíferas pesadas, con un pozo piloto que ya produce pequeñas cantidades de petróleo en Tsimiroro. [47] y una explotación a mayor escala en la fase de planificación inicial. [48] En la República del Congo, las reservas se estiman entre 0,5 y 2,5 Gbbl (79 × 10 6 y 397 × 10 6  m 3 ).^^

Producción

Las arenas bituminosas son una fuente importante de petróleo no convencional, aunque sólo Canadá tiene una industria de arenas bituminosas comerciales a gran escala. En 2006, la producción de bitumen en Canadá alcanzó un promedio de 1,25 Mbbl/d (200.000 m3 / d) a través de 81 proyectos de arenas bituminosas. El 44% de la producción petrolera canadiense en 2007 provino de arenas bituminosas. [49] Se esperaba (a partir de 2008) que esta proporción aumentara en las próximas décadas a medida que la producción de bitumen aumenta mientras que la producción de petróleo convencional disminuye, aunque debido a la crisis económica de 2008 se han pospuesto los trabajos en nuevos proyectos. [2] El petróleo no se produce a partir de arenas bituminosas en un nivel significativo en otros países. [45]

Canadá

Las arenas petrolíferas de Alberta han estado en producción comercial desde que la mina original Great Canadian Oil Sands (ahora Suncor Energy ) comenzó a operar en 1967. La segunda mina de Syncrude comenzó a operar en 1978 y es la mina más grande de cualquier tipo en el mundo. La tercera mina en Athabasca Oil Sands, el consorcio Albian Sands de Shell Canada , Chevron Corporation y Western Oil Sands Inc. (comprado por Marathon Oil Corporation en 2007) comenzó a operar en 2003. Petro-Canada también estaba desarrollando un Proyecto Fort Hills de $ 33 mil millones, en asociación con UTS Energy Corporation y Teck Cominco , que perdió impulso después de la fusión de Petro-Canada en 2009 con Suncor. [50]

En 2013, había nueve proyectos de extracción de arenas petrolíferas en el depósito de arenas petrolíferas de Athabasca: Suncor Energy Inc. (Suncor), Mildred Lake y Aurora North de Syncrude Canada Limited (Syncrude), Muskeg River y Jackpine de Shell Canada Limited (Shell), Horizon de Canadian Natural Resources Limited (CNRL), Imperial Oil Resources Ventures Limited (Imperial), Kearl Oil Sands Project (KOSP), Total E&P Canada Ltd., Joslyn North Mine y Fort Hills Energy Corporation (FHEC). [51] Solo en 2011, produjeron más de 52 millones de metros cúbicos de betún. [51]

La extracción de arenas petrolíferas canadienses ha creado un daño ambiental extenso, y muchos pueblos indígenas, científicos, abogados, periodistas y grupos ambientalistas han descrito la minería de arenas petrolíferas canadienses como un ecocidio . [52] [53] [54] [55] [56] [57]

Desde principios de 2022, la extracción de arenas petrolíferas en Alberta ha aumentado considerablemente, superando con creces el nivel de 2014. Los altos precios del petróleo son una de las causas. [58] En 2024 se prevé que aumente aún más, por lo que Canadá puede convertirse en un líder en la producción de petróleo. [59]

Venezuela

Antes de 2000 no se había llevado a cabo ningún desarrollo significativo de los yacimientos de petróleo extrapesado de Venezuela, a excepción de la operación BITOR, que produjo algo menos de 100.000 barriles de petróleo por día (16.000 m 3 /d) de petróleo de 9°API por producción primaria. Este se enviaba principalmente como una emulsión ( Orimulsión ) de 70% de petróleo y 30% de agua con características similares al fueloil pesado para quemar en plantas de energía térmica. [6] Sin embargo, cuando una huelga importante afectó a la compañía petrolera estatal venezolana PDVSA , la mayoría de los ingenieros fueron despedidos como castigo. [ cita requerida ] La orimulsión había sido el orgullo de los ingenieros de PDVSA, por lo que la orimulsión cayó en desgracia ante los líderes políticos clave. Como resultado, el gobierno ha estado tratando de "reducir" el programa de orimulsión. [ cita requerida ]

A pesar de que las arenas petrolíferas del Orinoco contienen petróleo extrapesado, que es más fácil de extraer que las reservas de bitumen de Canadá, de tamaño similar, la producción petrolera de Venezuela ha estado disminuyendo en los últimos años debido a los problemas políticos y económicos del país, mientras que la de Canadá ha estado aumentando. Como resultado, las exportaciones canadienses de petróleo pesado y bitumen han estado expulsando al petróleo pesado y extrapesado venezolano del mercado estadounidense, y las exportaciones totales de petróleo de Canadá a Estados Unidos han llegado a ser varias veces mayores que las de Venezuela.

En 2016, cuando la economía de Venezuela estaba en picada y el país sufría una escasez generalizada de alimentos, apagones eléctricos, disturbios y protestas antigubernamentales, no estaba claro cuánta producción nueva de arenas petrolíferas se produciría en el futuro cercano. [60]

Otros países

En mayo de 2008, la petrolera italiana Eni anunció un proyecto para explotar un pequeño yacimiento de arenas petrolíferas en la República del Congo . Está previsto que la producción comience en 2014 y se estima que alcanzará un rendimiento total de 40.000 bbl/d (6.400 m3 / d). [61]

Métodos de extracción

Con excepción de una fracción del petróleo extrapesado o del bitumen que se puede extraer mediante la tecnología convencional de pozos petrolíferos, las arenas petrolíferas deben producirse mediante minería a cielo abierto o haciendo fluir el petróleo hacia los pozos utilizando técnicas sofisticadas in situ . Estos métodos suelen utilizar más agua y requieren mayores cantidades de energía que la extracción convencional de petróleo. Si bien gran parte de las arenas petrolíferas de Canadá se producen mediante minería a cielo abierto , aproximadamente el 90% de las arenas petrolíferas canadienses y todas las arenas petrolíferas de Venezuela están demasiado por debajo de la superficie para utilizar la minería de superficie. [62]

Producción primaria

El petróleo crudo convencional normalmente se extrae del suelo perforando pozos petrolíferos en un yacimiento de petróleo , permitiendo que el petróleo fluya hacia ellos bajo las presiones naturales del yacimiento, aunque a menudo se requieren técnicas de elevación artificial como la perforación horizontal , la inundación con agua y la inyección de gas para mantener la producción. Cuando se utiliza la producción primaria en las arenas petrolíferas venezolanas, donde el petróleo extrapesado está a unos 50 grados Celsius , las tasas típicas de recuperación de petróleo son de alrededor del 8-12%. Las arenas petrolíferas canadienses son mucho más frías y más biodegradadas, por lo que las tasas de recuperación de betún suelen ser de solo alrededor del 5-6%. Históricamente, la recuperación primaria se utilizó en las áreas más fluidas de las arenas petrolíferas canadienses. Sin embargo, recuperó solo una pequeña fracción del petróleo en el lugar , por lo que no se usa a menudo en la actualidad. [63]

Minería de superficie

Operaciones mineras en las arenas petrolíferas de Athabasca. Imagen del Observatorio de la Tierra de la NASA , 2009.

Las arenas petrolíferas de Athabasca son los únicos depósitos importantes de arenas petrolíferas que son lo suficientemente superficiales como para realizar una extracción a cielo abierto. En las arenas de Athabasca hay grandes cantidades de betún cubiertas por una pequeña capa superficial , lo que hace que la minería a cielo abierto sea el método más eficiente para extraerlo. La capa superficial consiste en una capa de turba cargada de agua sobre una capa de arcilla y arena estéril. Las arenas petrolíferas en sí mismas son típicamente depósitos de betún crudo de 40 a 60 metros (130 a 200 pies) de espesor incrustados en arenisca no consolidada , asentados sobre una roca caliza plana . Desde que Great Canadian Oil Sands (ahora Suncor Energy ) comenzó a operar la primera mina de arenas petrolíferas a gran escala en 1967, se ha extraído betún a escala comercial y el volumen ha crecido a un ritmo constante desde entonces.

Actualmente, hay un gran número de minas de arenas petrolíferas en funcionamiento y otras más se encuentran en las etapas de aprobación o desarrollo. La mina Syncrude Canada fue la segunda en abrirse en 1978, Shell Canada abrió su mina Muskeg River (Albian Sands) en 2003 y Canadian Natural Resources Ltd (CNRL) abrió su proyecto Horizon Oil Sands en 2009. Las minas más nuevas incluyen la mina Jackpine de Shell Canada, [64] el proyecto Kearl Oil Sands de Imperial Oil , la mina Northern Lights de Synenco Energy (ahora propiedad de TotalEnergies ) y la mina Fort Hills de Suncor.

Balsas de relaves de arenas petrolíferas

Sitio, planta y estanques de relaves de Syncrude en Mildred Lake, Fort McMurray , Alberta

Los estanques de relaves de arenas petrolíferas son sistemas de diques y presas diseñadas que contienen sales, sólidos suspendidos y otros compuestos químicos disolubles como ácidos nafténicos , benceno , hidrocarburos [65], betún residual , limos finos (relaves finos maduros MFT) y agua. [66] Grandes volúmenes de relaves son un subproducto de la minería a cielo abierto de las arenas petrolíferas y la gestión de estos relaves es uno de los aspectos más dañinos de las arenas bituminosas. [66] El Gobierno de Alberta informó en 2013 que los estanques de relaves en las arenas petrolíferas de Alberta cubrían un área de aproximadamente 77 kilómetros cuadrados (30 millas cuadradas). [66] La presa de relaves Syncrude o cuenca de sedimentación del lago Mildred (MLSB) es una presa de terraplén que es, por volumen de material de construcción, la estructura de tierra más grande del mundo en 2001. [67]

Producción de petróleo pesado frío con arena (CHOPS)

Hace algunos años, las compañías petroleras canadienses descubrieron que si retiraban los filtros de arena de los pozos de petróleo pesado y producían la mayor cantidad posible de arena con el petróleo, las tasas de producción mejoraban significativamente. Esta técnica se conoció como Producción de petróleo pesado en frío con arena (CHOPS). Investigaciones posteriores revelaron que bombear arena abría "agujeros de gusano" en la formación de arena que permitían que más petróleo llegara al pozo . La ventaja de este método es una mejor tasa de producción y recuperación (alrededor del 10% frente al 5-6% con filtros de arena en su lugar) y la desventaja de que la eliminación de la arena producida es un problema. Una forma novedosa de hacerlo era esparcirla en caminos rurales , lo que a los gobiernos rurales les gustaba porque la arena aceitosa reducía el polvo y las compañías petroleras realizaban el mantenimiento de las carreteras por ellos. Sin embargo, los gobiernos se han preocupado por el gran volumen y la composición del petróleo esparcido en las carreteras. [68] Por lo que en los últimos años, la eliminación de arena aceitosa en cavernas de sal subterráneas se ha vuelto más común.

Estimulación cíclica por vapor (CSS)

El uso de inyección de vapor para recuperar petróleo pesado se ha utilizado en los yacimientos petrolíferos de California desde la década de 1950. El método de estimulación cíclica con vapor (CSS) "huff-and-puff" se utiliza ahora ampliamente en la producción de petróleo pesado en todo el mundo debido a sus rápidas tasas de producción inicial; sin embargo, los factores de recuperación son relativamente bajos (10-40% del petróleo en el lugar) en comparación con SAGD (60-70% del petróleo en el lugar). [69]

El método CSS ha sido utilizado por Imperial Oil en Cold Lake desde 1985 y también lo utiliza Canadian Natural Resources en Primrose y Wolf Lake y Shell Canada en Peace River. En este método, el pozo se somete a ciclos de inyección de vapor, remojo y producción de petróleo. Primero, se inyecta vapor en un pozo a una temperatura de 300 a 340 grados Celsius durante un período de semanas a meses; luego, se deja reposar el pozo durante días o semanas para permitir que el calor penetre en la formación; y, más tarde, se bombea el petróleo caliente fuera del pozo durante un período de semanas o meses. Una vez que la tasa de producción disminuye, el pozo se somete a otro ciclo de inyección, remojo y producción. Este proceso se repite hasta que el costo de inyectar vapor sea mayor que el dinero que se gana con la producción de petróleo. [70]

Drenaje gravitacional asistido por vapor (SAGD)

El drenaje gravitacional asistido por vapor fue desarrollado en la década de 1980 por la Autoridad de Tecnología e Investigación de Arenas Petrolíferas de Alberta y coincidió fortuitamente con mejoras en la tecnología de perforación direccional que lo hicieron rápido y económico de hacer a mediados de la década de 1990. En SAGD, se perforan dos pozos horizontales en las arenas petrolíferas, uno en el fondo de la formación y otro a unos 5 metros por encima de ella. Estos pozos se perforan típicamente en grupos a partir de plataformas centrales y pueden extenderse por kilómetros en todas las direcciones. En cada par de pozos, se inyecta vapor en el pozo superior, el calor derrite el betún, lo que permite que fluya hacia el pozo inferior, donde se bombea a la superficie. [70]

El método SAGD ha demostrado ser un gran avance en la tecnología de producción, ya que es más económico que el CSS, permite tasas de producción de petróleo muy altas y recupera hasta el 60% del petróleo existente. Debido a su viabilidad económica y su aplicabilidad a una vasta área de arenas petrolíferas, este método por sí solo cuadriplicó las reservas de petróleo de América del Norte y permitió a Canadá pasar al segundo lugar en reservas de petróleo del mundo después de Arabia Saudita. La mayoría de las principales compañías petroleras canadienses tienen ahora proyectos SAGD en producción o en construcción en las áreas de arenas petrolíferas de Alberta y en Wyoming. Entre los ejemplos se incluyen el proyecto de Japan Canada Oil Sands Ltd (JACOS) , el proyecto Firebag de Suncor, el proyecto Long Lake de Nexen , el proyecto MacKay River de Suncor (anteriormente de Petro-Canada), los proyectos Tucker Lake y Sunrise de Husky Energy , el proyecto Peace River de Shell Canada, los proyectos Foster Creek [71] y Christina Lake [72] de Cenovus Energy , el proyecto Surmont de ConocoPhillips , el proyecto Jackfish de Devon Canada y el proyecto LAK Ranch de Derek Oil & Gas. OSUM Corp de Alberta ha combinado tecnología probada de minería subterránea con SAGD para permitir tasas de recuperación más altas mediante la ejecución de pozos subterráneos desde dentro del depósito de arenas petrolíferas, reduciendo así también los requisitos de energía en comparación con SAGD tradicional. Esta aplicación de tecnología en particular se encuentra en su fase de prueba.

Extracción de vapor (VAPEX)

Varios métodos utilizan disolventes, en lugar de vapor, para separar el betún de la arena. Algunos métodos de extracción con disolventes pueden funcionar mejor en la producción in situ y otros en la minería. [73] El disolvente puede ser beneficioso si produce más petróleo y requiere menos energía para producir vapor.

El proceso de extracción por vapor (VAPEX) es una tecnología in situ , similar a la extracción por destilación por gravedad. En lugar de vapor, se inyectan disolventes de hidrocarburos en un pozo superior para diluir el betún y permitir que el betún diluido fluya hacia un pozo inferior. Tiene la ventaja de una eficiencia energética mucho mejor que la inyección de vapor y permite una mejora parcial del betún para convertirlo en petróleo directamente en la formación. El proceso ha atraído la atención de las compañías petroleras, que están experimentando con él.

Los métodos anteriores no son mutuamente excluyentes. Es cada vez más común que los pozos se sometan a un ciclo de inyección-remojo-producción de CSS para acondicionar la formación antes de pasar a la producción SAGD, y las empresas están experimentando con la combinación de VAPEX con SAGD para mejorar las tasas de recuperación y reducir los costos de energía. [74]

Inyección de aire de punta a talón (THAI)

Este es un método muy nuevo y experimental que combina un pozo de inyección de aire vertical con un pozo de producción horizontal. El proceso enciende el petróleo en el yacimiento y crea una pared vertical de fuego que se mueve desde la "punta" del pozo horizontal hacia el "talón", que quema los componentes más pesados ​​del petróleo y mejora parte del betún pesado en petróleo más ligero directamente en la formación. Históricamente, los proyectos de inyección de aire no han funcionado bien debido a la dificultad de controlar el frente de llama y la propensión a incendiar los pozos de producción. Sin embargo, algunas compañías petroleras creen que el método THAI será más controlable y práctico, y tendrá la ventaja de no requerir energía para crear vapor. [75]

Los defensores de este método de extracción afirman que utiliza menos agua dulce, produce un 50% menos de gases de efecto invernadero y tiene una huella menor que otras técnicas de producción. [76]

Petrobank Energy and Resources ha informado de resultados alentadores de sus pozos de prueba en Alberta, con tasas de producción de hasta 400 bbl/d (64 m 3 /d) por pozo, y el petróleo ha mejorado de 8 a 12  grados API . La empresa espera obtener una mejora adicional de 7 grados de su sistema CAPRI (infusión de resina a presión atmosférica controlada) [77] , que hace pasar el petróleo a través de un catalizador que recubre la tubería inferior. [78] [79] [80]

Después de varios años de producción in situ, ha quedado claro que los métodos actuales de THAI no funcionan como estaba previsto. En medio de constantes caídas en la producción de sus pozos THAI en Kerrobert, Petrobank ha reducido a cero el valor de sus patentes de THAI y las reservas de la instalación. Tienen planes de experimentar con una nueva configuración que llaman "multi-THAI", que implica agregar más pozos de inyección de aire. [81]

Drenaje por gravedad de la combustión en altura (COGD)

Este es un método experimental que emplea una serie de pozos de inyección de aire verticales sobre un pozo de producción horizontal ubicado en la base de la zona de producción de betún. Se utiliza un ciclo de vapor inicial similar al CSS para preparar el betún para la ignición y la movilidad. Después de ese ciclo, se inyecta aire en los pozos verticales, encendiendo el betún superior y movilizando (a través del calentamiento) el betún inferior para que fluya hacia el pozo de producción. Se espera que el COGD resulte en un ahorro de agua del 80% en comparación con el SAGD. [82]

Tratamiento de espuma

El tratamiento con espuma de betún es un proceso utilizado en las operaciones de recuperación de betún de las arenas petrolíferas de Athabasca (AOS) para eliminar los inorgánicos finos (agua y partículas minerales) de la espuma de betún , diluyendo el betún con un disolvente de hidrocarburo ligero (nafténico o parafínico) para reducir la viscosidad de la espuma y eliminar los contaminantes que no se eliminaron en las fases anteriores de recuperación por gravedad a base de agua. [83] El betún con una alta viscosidad o con demasiados contaminantes no es adecuado para transportarlo a través de tuberías o refinarlo. El tratamiento con espuma nafténica (NFT) original y convencional utiliza un disolvente de nafta con la adición de productos químicos. El tratamiento con espuma con disolvente parafínico (PSFT), que se utilizó por primera vez de forma comercial en las arenas del Albiano a principios de la década de 2000, da como resultado un betún más limpio con niveles más bajos de contaminantes, como agua y sólidos minerales. [84] Después de los tratamientos con espuma, el betún se puede mejorar aún más utilizando "calor para producir petróleo crudo sintético mediante una unidad de coquización". [84]

Balance energético

Se necesitan aproximadamente entre 1,0 y 1,25 gigajulios (280 y 350 kWh) de energía para extraer un barril de bitumen y transformarlo en crudo sintético. En 2006, la mayor parte de esta energía se produce quemando gas natural. [85] Como un barril de petróleo equivalente equivale a unos 6,117 gigajulios (1.699 kWh), su EROEI es de 5-6. Esto significa que se extrae entre 5 y 6 veces más energía de la que se consume. Se espera que la eficiencia energética mejore hasta un promedio de 900 pies cúbicos (25 m3 ) de gas natural o 0,945 gigajulios (262 kWh) de energía por barril en 2015, lo que arroja un EROEI de aproximadamente 6,5. [86]

Existen alternativas al gas natural y están disponibles en el área de arenas petrolíferas. El bitumen puede utilizarse como combustible, consumiendo entre un 30 y un 35% del bitumen crudo por unidad producida de crudo sintético. El proyecto Long Lake de Nexen utilizará una tecnología de desasfaltado patentada para mejorar el bitumen, utilizando residuos de asfaltenos para alimentar un gasificador cuyo gas de síntesis será utilizado por una turbina de cogeneración y una unidad productora de hidrógeno, cubriendo todas las necesidades energéticas del proyecto: vapor, hidrógeno y electricidad. [87] Por lo tanto, producirá crudo sintético sin consumir gas natural, pero el costo de capital es muy alto.

Hace unos años se predijo que la escasez de gas natural para combustible de proyectos sería un problema para la producción de arenas petrolíferas canadienses, pero los recientes aumentos en la producción de gas de esquisto de los EE. UU . han eliminado gran parte del problema para América del Norte. Con el creciente uso de la fracturación hidráulica que hace que los EE. UU. sean en gran medida autosuficientes en gas natural y exporten más gas natural al este de Canadá para reemplazar el gas de Alberta, el gobierno de Alberta está utilizando sus poderes bajo el TLCAN y la Constitución canadiense para reducir los envíos de gas natural a los EE. UU. y al este de Canadá, y desviar el gas para uso interno de Alberta, particularmente para combustible de arenas petrolíferas. Los gasoductos naturales al este y al sur están siendo transformados para transportar la creciente producción de arenas petrolíferas a estos destinos en lugar de gas. Canadá también tiene enormes depósitos de gas de esquisto sin explotar, además de los de los EE. UU., por lo que el gas natural para la futura producción de arenas petrolíferas no parece ser un problema grave. El bajo precio del gas natural como resultado de la nueva producción ha mejorado considerablemente la economía de la producción de arenas petrolíferas.

Actualización y mezcla

El petróleo crudo extrapesado o bitumen crudo extraído de las arenas petrolíferas es una forma semisólida muy viscosa de petróleo que no fluye fácilmente a temperaturas normales, lo que dificulta su transporte al mercado por oleoducto. Para que fluya a través de los oleoductos, debe ser mejorado a petróleo crudo sintético (SCO) más ligero, mezclado con diluyentes para formar dilbit o calentado para reducir su viscosidad. [88]

Canadá

En las arenas petrolíferas canadienses, el betún producido mediante la minería a cielo abierto generalmente se mejora en el lugar y se entrega como petróleo crudo sintético. Esto hace que la entrega de petróleo al mercado a través de oleoductos convencionales sea bastante fácil. Por otro lado, el betún producido por los proyectos in situ generalmente no se mejora, sino que se entrega al mercado en forma cruda. Si el agente utilizado para mejorar el betún a crudo sintético no se produce en el lugar, debe buscarse en otro lugar y transportarse al lugar de mejora. Si el crudo mejorado se transporta desde el lugar por oleoducto, se necesitará un oleoducto adicional para traer suficiente agente de mejora. Los costos de producción del agente de mejora, el oleoducto para transportarlo y el costo de operación del oleoducto deben calcularse en el costo de producción del crudo sintético.

Al llegar a una refinería , el crudo sintético se procesa y una parte importante del agente de mejoramiento se elimina durante el proceso de refinación. Puede usarse para otras fracciones de combustible, pero el resultado final es que el combustible líquido debe transportarse por tuberías a la instalación de mejoramiento simplemente para que el betún pueda transportarse por tuberías. Si se consideran todos los costos, la producción y transferencia de crudo sintético utilizando betún y un agente de mejoramiento puede resultar económicamente insostenible.

Cuando se construyeron las primeras plantas de arenas petrolíferas hace más de 50 años, la mayoría de las refinerías de petróleo en su área de mercado estaban diseñadas para procesar petróleo crudo ligero o mediano con un contenido de azufre menor que el 4-7% que se encuentra típicamente en el betún. Los mejoradores de arenas petrolíferas originales fueron diseñados para producir un petróleo crudo sintético (SCO) de alta calidad con menor densidad y menor contenido de azufre. Se trata de plantas grandes y costosas que se parecen mucho a las refinerías de petróleo pesado. Actualmente se están realizando investigaciones para diseñar mejoradores más simples que no produzcan SCO sino que simplemente traten el betún para reducir su viscosidad, lo que permite transportarlo sin mezclar como el petróleo pesado convencional.

Western Canadian Select , lanzado en 2004 como una nueva corriente de petróleo pesado, mezclado en la terminal Husky Energy en Hardisty , Alberta , [89] es la corriente de petróleo crudo más grande que proviene de las arenas petrolíferas canadienses y el punto de referencia para los crudos pesados ​​emergentes de alto TAN (ácidos). [90] [91] : 9  [92] [93] Western Canadian Select (WCS) se comercializa en Cushing, Oklahoma , un importante centro de suministro de petróleo que conecta a los proveedores de petróleo con la Costa del Golfo, que se ha convertido en el centro comercial más importante de petróleo crudo en América del Norte. Si bien su componente principal es el betún, también contiene una combinación de diluyentes sintéticos y condensados ​​dulces , y 25 corrientes existentes de petróleo convencional y no convencional [94] lo que lo convierte en un syndilbit, tanto un dilbit como un synbit. [95] : 16 

El primer paso en la mejora es la destilación al vacío para separar las fracciones más ligeras. Después, se utiliza el desasfaltado para separar el asfalto de la materia prima. El craqueo se utiliza para descomponer las moléculas de hidrocarburos más pesadas en otras más simples. Dado que el craqueo produce productos ricos en azufre, se debe realizar una desulfuración para reducir el contenido de azufre por debajo del 0,5% y crear petróleo crudo sintético ligero y dulce. [96]

En 2012, Alberta produjo alrededor de 1.900.000 bbl/d (300.000 m3 / d) de betún crudo de sus tres principales depósitos de arenas petrolíferas, de los cuales alrededor de 1.044.000 bbl/d (166.000 m3 / d) se mejoraron para obtener productos más ligeros y el resto se vendió como betún crudo. El volumen de betún mejorado y no mejorado aumenta cada año. Alberta tiene cinco mejoradores de arenas petrolíferas que producen una variedad de productos. Estos incluyen: [97] [98]

Las refinerías modernizadas y nuevas de gran tamaño, como las que se encuentran en el medio oeste de los Estados Unidos y en la costa del Golfo de los Estados Unidos , así como muchas en China , pueden manejar la mejora del petróleo pesado por sí mismas, por lo que su demanda es de bitumen no mejorado y petróleo extrapesado en lugar de SCO. El problema principal es que la materia prima sería demasiado viscosa para fluir a través de oleoductos, por lo que, a menos que se entregue en un camión cisterna o un vagón de ferrocarril, debe mezclarse con un diluyente para permitir que fluya. Esto requiere mezclar el bitumen crudo con un diluyente de hidrocarburo más ligero, como condensado de pozos de gas, pentanos y otros productos livianos de refinerías de petróleo o plantas de gas, o petróleo crudo sintético de mejoradores de arenas petrolíferas para permitir que fluya a través de oleoductos hasta el mercado.

Por lo general, el betún mezclado contiene aproximadamente un 30 % de condensado de gas natural u otros diluyentes y un 70 % de betún. Alternativamente, el betún también puede entregarse al mercado mediante vagones cisterna especialmente diseñados , camiones cisterna , barcazas de carga líquida o petroleros oceánicos . Estos no requieren necesariamente que el betún se mezcle con diluyente, ya que los tanques se pueden calentar para permitir que se bombee el petróleo.

Se espera que la demanda de condensado para diluir arenas petrolíferas supere los 750.000 bbl/d (119.000 m3 / d) en 2020, el doble de los volúmenes de 2012. Como el oeste de Canadá produce sólo unos 150.000 bbl/d (24.000 m3 / d) de condensado, se esperaba que el suministro se convirtiera en una importante limitación para el transporte de betún. Sin embargo, el reciente aumento enorme de la producción de petróleo de esquisto bituminoso en Estados Unidos ha resuelto en gran medida este problema, porque gran parte de la producción es demasiado ligera para su uso en las refinerías estadounidenses, pero ideal para diluir el betún. El excedente de condensado y petróleo ligero estadounidense se está exportando a Canadá y se mezcla con betún, para luego reimportarlo a Estados Unidos como materia prima para las refinerías. Como el diluyente simplemente se exporta y luego se reimporta inmediatamente, no está sujeto a la prohibición estadounidense de exportar petróleo crudo. Una vez que el gas llega a Estados Unidos, las refinerías separan el diluyente y lo reexportan a Canadá, que nuevamente evita las leyes de exportación de crudo de Estados Unidos, ya que ahora es un producto de refinería. Para ayudar en este proceso, Kinder Morgan Energy Partners está revirtiendo su oleoducto Cochin, que solía transportar propano de Edmonton a Chicago, para transportar 95.000 bbl/d (15.100 m3 / d) de condensado de Chicago a Edmonton a mediados de 2014; y Enbridge está considerando la expansión de su oleoducto Southern Lights, que actualmente transporta 180.000 bbl/d (29.000 m3 / d) de diluyente desde el área de Chicago a Edmonton, agregando otros 100.000 bbl/d (16.000 m3 / d). [99]

Venezuela

Aunque el petróleo extrapesado venezolano es menos viscoso que el bitumen canadiense, gran parte de la diferencia se debe a la temperatura. Una vez que el petróleo sale de la tierra y se enfría, tiene la misma dificultad, ya que es demasiado viscoso para fluir a través de los oleoductos. Venezuela está produciendo ahora más crudo extrapesado en las arenas petrolíferas del Orinoco de lo que sus cuatro mejoradores, que fueron construidos por compañías petroleras extranjeras hace más de una década, pueden manejar. Los mejoradores tienen una capacidad combinada de 630.000 bbl/d (100.000 m3 / d), que es sólo la mitad de su producción de petróleo extrapesado. Además, Venezuela produce volúmenes insuficientes de nafta para utilizar como diluyente para llevar el petróleo extrapesado al mercado. A diferencia de Canadá, Venezuela no produce mucho condensado de gas natural de sus propios pozos de gas, ni tiene fácil acceso al condensado de la nueva producción de gas de esquisto de Estados Unidos . Como Venezuela tampoco tiene suficiente capacidad de refinación para abastecer su mercado interno, el suministro de nafta no es suficiente para utilizarla como diluyente para los oleoductos, y el país se ve obligado a importar nafta para llenar el vacío. Como Venezuela también tiene problemas financieros (como resultado de la crisis económica del país ) y desacuerdos políticos con el gobierno estadounidense y las compañías petroleras, la situación sigue sin resolverse. [100]

Refinando

La materia prima de crudo pesado necesita un preprocesamiento antes de ser apta para las refinerías convencionales, aunque las refinerías de petróleo pesado y betún pueden realizar el preprocesamiento por sí mismas. Este preprocesamiento se denomina "mejora" y sus componentes clave son los siguientes:

  1. Eliminación de agua, arena, desechos físicos y productos más ligeros.
  2. Purificación catalítica por hidrodesmetalización (HDM), hidrodesulfuración (HDS) e hidrodesnitrogenación (HDN)
  3. hidrogenación mediante rechazo de carbono o hidrocraqueo catalítico (HCR)

Como el rechazo de carbono es muy ineficiente y genera desperdicios en la mayoría de los casos, se prefiere el hidrocraqueo catalítico . Todos estos procesos consumen grandes cantidades de energía y agua, y emiten más dióxido de carbono que el petróleo convencional.

La purificación catalítica y el hidrocraqueo se conocen en conjunto como hidroprocesamiento . El gran desafío en el hidroprocesamiento es lidiar con las impurezas que se encuentran en el crudo pesado, ya que envenenan los catalizadores con el tiempo. Se han hecho muchos esfuerzos para lidiar con esto y asegurar una alta actividad y una larga vida útil de un catalizador. Los materiales del catalizador y las distribuciones del tamaño de los poros son parámetros clave que deben optimizarse para lidiar con este desafío y varían de un lugar a otro, dependiendo del tipo de materia prima presente. [101]

Canadá

Existen cuatro refinerías de petróleo importantes en Alberta que abastecen a la mayor parte del oeste de Canadá con productos derivados del petróleo , pero en 2012 estas procesaban menos de 1/4 de los aproximadamente 1.900.000 bbl/d (300.000 m 3 /d) de betún y SCO producidos en Alberta. Algunas de las grandes mejoradoras de arenas petrolíferas también producían combustible diésel como parte de sus operaciones. Parte del betún y SCO de arenas petrolíferas se destinaba a refinerías en otras provincias, pero la mayor parte se exportaba a los Estados Unidos. Las cuatro refinerías principales de Alberta son: [102]

La refinería Sturgeon , de 8.500 millones de dólares y la quinta refinería más importante de Alberta, está en construcción cerca de Fort Saskatchewan y su finalización está prevista para 2017. [103] [104]

El proyecto Pacific Future Energy propuso una nueva refinería en Columbia Británica que procesaría betún para convertirlo en combustible para los mercados asiático y canadiense. Pacific Future Energy propone transportar betún casi sólido a la refinería utilizando vagones cisterna de ferrocarril. [105]

La mayor parte de la industria canadiense de refinación de petróleo es de propiedad extranjera. Las refinerías canadienses pueden procesar sólo alrededor del 25% del petróleo producido en Canadá. Las refinerías canadienses, fuera de Alberta y Saskatchewan, fueron construidas originalmente para petróleo crudo ligero y mediano. Con la producción de arenas petrolíferas que se está produciendo a precios más bajos que el petróleo internacional, los desequilibrios de precios del mercado han arruinado la economía de las refinerías que no podían procesarlo.

Estados Unidos

Antes de 2013, cuando China lo superó, Estados Unidos era el mayor importador de petróleo del mundo. [106] A diferencia de Canadá, Estados Unidos tiene cientos de refinerías de petróleo, muchas de las cuales han sido modificadas para procesar petróleo pesado a medida que la producción estadounidense de petróleo ligero y mediano disminuía. Se suponía que el principal mercado para el betún canadiense, así como para el petróleo extrapesado venezolano, era Estados Unidos. Estados Unidos ha sido históricamente el mayor cliente de Canadá para petróleo crudo y productos, particularmente en los últimos años. Las importaciones estadounidenses de petróleo y productos de Canadá crecieron de 450.000 bbl/d (72.000 m3 / d) en 1981 a 3.120.000 bbl/d (496.000 m3 / d) en 2013, a medida que las arenas petrolíferas de Canadá producían cada vez más petróleo, mientras que en Estados Unidos, la producción interna y las importaciones de otros países disminuyeron. [107] Sin embargo, esta relación se está tensando debido a influencias físicas, económicas y políticas. La capacidad de los oleoductos de exportación se está acercando a sus límites; el petróleo canadiense se vende con un descuento respecto de los precios del mercado mundial; la demanda estadounidense de petróleo crudo y de importaciones de productos ha disminuido debido a los problemas económicos de Estados Unidos; y la producción interna de petróleo no convencional de Estados Unidos (la producción de petróleo de esquisto mediante fracturación hidráulica ) está creciendo rápidamente. Estados Unidos reanudó la exportación de petróleo crudo en 2016; a principios de 2019, Estados Unidos producía tanto petróleo como consumía, y el petróleo de esquisto desplazaba las importaciones canadienses.

Para beneficio de los comercializadores de petróleo, en 2004 los productores del oeste de Canadá crearon un nuevo crudo de referencia llamado Western Canadian Select (WCS), una mezcla de crudo pesado derivado del betún que es similar en sus características de transporte y refinación a los crudos pesados ​​de California, México Maya o Venezuela. Este crudo pesado tiene una gravedad API de 19-21 y, a pesar de contener grandes cantidades de betún y petróleo crudo sintético, fluye bien a través de oleoductos y está clasificado como "petróleo pesado convencional" por los gobiernos. Hay varios cientos de miles de barriles por día de esta mezcla que se importan a los EE. UU., además de mayores cantidades de betún crudo y petróleo crudo sintético (SCO) de las arenas petrolíferas.

La demanda de las refinerías estadounidenses se orienta cada vez más hacia el betún no refinado en lugar del SCO. La Junta Nacional de Energía de Canadá (NEB) espera que los volúmenes de SCO se dupliquen hasta alrededor de 1.900.000 bbl/d (300.000 m3 / d) para 2035, pero no seguirán el ritmo del aumento total de la producción de betún. Se prevé que la parte de la producción de arenas petrolíferas que se refina a SCO disminuya del 49% en 2010 al 37% en 2035. Esto implica que más de 3.200.000 bbl/d (510.000 m3 / d) de betún tendrán que mezclarse con diluyente para su entrega al mercado.

Asia

La demanda de petróleo en Asia ha estado creciendo mucho más rápido que en América del Norte o Europa. En 2013, China reemplazó a Estados Unidos como el mayor importador mundial de petróleo crudo, y su demanda continúa creciendo mucho más rápido que su producción. El principal impedimento para las exportaciones canadienses a Asia es la capacidad de los oleoductos: el único oleoducto capaz de entregar la producción de arenas petrolíferas a la costa del Pacífico de Canadá es el oleoducto Trans Mountain de Edmonton a Vancouver, que actualmente está operando a su capacidad de 300.000 bbl/d (48.000 m3 / d) y abastece a refinerías en Columbia Británica y el estado de Washington. Sin embargo, una vez completado, se espera que el oleoducto Northern Gateway y la expansión de Trans Mountain, actualmente en revisión gubernamental, entreguen entre 500.000 bbl/d (79.000 m3/d) y 1.100.000 bbl/d (170.000 m3/d) adicionales a los buques petroleros en la costa del Pacífico, desde donde podrían entregarlo a cualquier parte del mundo. Existe suficiente capacidad de refinación de petróleo pesado en China y la India para refinar el volumen adicional canadiense, posiblemente con algunas modificaciones en las refinerías. [108] En los últimos años, las compañías petroleras chinas como China Petrochemical Corporation (Sinopec), China National Offshore Oil Corporation (CNOOC) y PetroChina han comprado más de 30 mil millones de dólares en activos en proyectos de arenas petrolíferas canadienses, por lo que probablemente les gustaría exportar parte de su petróleo recién adquirido a China. [109]

Ciencias económicas

Los mayores yacimientos de bitumen del mundo se encuentran en Canadá, aunque los yacimientos de crudo extrapesado de Venezuela son aún mayores. Canadá posee vastos recursos energéticos de todo tipo y su base de recursos de petróleo y gas natural sería lo suficientemente grande como para satisfacer las necesidades canadienses durante generaciones si la demanda se mantuviera. Los abundantes recursos hidroeléctricos representan la mayor parte de la producción eléctrica de Canadá y muy poca electricidad se produce a partir del petróleo.

En 2013, la Junta Nacional de Energía (NEB) informó que, si los precios del petróleo superaban los 100 dólares, Canadá tendría energía más que suficiente para satisfacer sus crecientes necesidades. El exceso de producción de petróleo de las arenas petrolíferas podría exportarse. El principal país importador probablemente seguiría siendo Estados Unidos, aunque antes de los acontecimientos de 2014, había una creciente demanda de petróleo, en particular de petróleo pesado, por parte de países asiáticos como China y la India. [110]

Canadá posee abundantes recursos de betún y petróleo crudo, con un potencial restante estimado de recursos en 54 mil millones de metros cúbicos (340 mil millones de barriles). De este total, el betún de arenas petrolíferas representa el 90 por ciento. Actualmente, Alberta representa todos los recursos de betún de Canadá. Los "recursos" se convierten en "reservas" solo después de que se demuestra que se puede lograr una recuperación económica. A precios de 2013 utilizando la tecnología actual, Canadá tenía reservas de petróleo restantes de 27 mil millones de m3 ( 170 mil millones de barriles), de los cuales el 98 por ciento se atribuía al betún de arenas petrolíferas. Esto colocó a sus reservas en el tercer lugar del mundo, detrás de Venezuela y Arabia Saudita . A los precios mucho más bajos de 2015, las reservas son mucho menores. [ cita requerida ]

Costos

Los costos de producción y transporte de petróleo vendible de arenas petrolíferas son típicamente significativamente más altos que los de fuentes globales convencionales. [111] [112] Por lo tanto, la viabilidad económica de la producción de arenas petrolíferas es más vulnerable al precio del petróleo . El precio del petróleo West Texas Intermediate (WTI) de referencia en Cushing, Oklahoma por encima de los US$100/bbl que prevaleció hasta fines de 2014 fue suficiente para promover un crecimiento activo en la producción de arenas petrolíferas. Las principales compañías petroleras canadienses habían anunciado planes de expansión y las compañías extranjeras estaban invirtiendo cantidades significativas de capital, en muchos casos formando asociaciones con compañías canadienses. La inversión se había estado desplazando hacia proyectos de drenaje gravitacional asistido por vapor (SAGD) in situ y alejándose de los proyectos de minería y mejoramiento, ya que los operadores de arenas petrolíferas prevén mejores oportunidades de vender betún y petróleo pesado directamente a las refinerías que de mejorarlo a petróleo crudo sintético . Las estimaciones de costos para Canadá incluyen los efectos de la minería cuando las minas se devuelven al medio ambiente en "tan buenas como o mejores condiciones que las originales". La limpieza de los productos finales del consumo es responsabilidad de las jurisdicciones consumidoras, que en su mayoría se encuentran en provincias o países distintos al de producción.

El gobierno de Alberta estimó que en 2012, el costo de suministro de las nuevas operaciones mineras de arenas petrolíferas era de 70 a 85 dólares por barril, mientras que el costo de los nuevos proyectos SAGD era de 50 a 80 dólares por barril. [97] Estos costos incluían costos de capital y operativos, regalías e impuestos, más una ganancia razonable para los inversores. Dado que el precio del WTI subió a 100 dólares por barril a partir de 2011, [113] se esperaba que la producción de arenas petrolíferas fuera altamente rentable suponiendo que el producto pudiera entregarse a los mercados. El mercado principal eran los enormes complejos de refinería en la Costa del Golfo de Estados Unidos, que generalmente son capaces de procesar bitumen canadiense y petróleo extrapesado venezolano sin mejorarlo.

El Instituto Canadiense de Investigación Energética (CERI) realizó un análisis y estimó que en 2012 los costos promedio de salida de planta (incluyendo un margen de ganancia del 10%, pero excluyendo la mezcla y el transporte) de la recuperación primaria fueron de 30,32 dólares/bbl, de la SAGD fueron de 47,57 dólares/bbl, de la minería y el mejoramiento fueron de 99,02 dólares/bbl, y de la minería sin mejoramiento fueron de 68,30 dólares/bbl. [114] Por lo tanto, se esperaba que todos los tipos de proyectos de arenas petrolíferas, excepto los nuevos proyectos de minería con mejoradores integrados, fueran consistentemente rentables a partir de 2011, siempre que los precios mundiales del petróleo se mantuvieran favorables. Dado que las refinerías más grandes y sofisticadas preferían comprar bitumen crudo y petróleo pesado en lugar de petróleo crudo sintético, los nuevos proyectos de arenas petrolíferas evitaron los costos de construir nuevos mejoradores. Aunque la recuperación primaria como la que se hace en Venezuela es más barata que la SAGD, solo recupera alrededor del 10% del petróleo en el lugar, frente al 60% o más de la SAGD y más del 99% de la minería. Las compañías petroleras canadienses estaban en un mercado más competitivo y tenían acceso a más capital que en Venezuela, y preferían gastar ese dinero extra en SAGD o minería para recuperar más petróleo.

Luego, a fines de 2014, el dramático aumento de la producción estadounidense de formaciones de esquisto, combinado con un malestar económico mundial que redujo la demanda, hizo que el precio del WTI cayera por debajo de los 50 dólares, donde se mantuvo a fines de 2015. [115] En 2015, el Instituto Canadiense de Investigación Energética (CERI) reestimó los costos promedio de salida de planta (nuevamente incluyendo un margen de ganancia del 10%) de SAGD en 58,65 dólares/bbl, y 70,18 dólares/bbl para minería sin mejoramiento. Incluyendo los costos de mezcla y transporte, los costos de suministro equivalentes de WTI para entrega a Cushing pasan a ser de 80,06 dólares/bbl para proyectos SAGD, y de 89,71 dólares/bbl para una mina independiente. [111] En este entorno económico, los planes para un mayor desarrollo de la producción de arenas petrolíferas se han ralentizado o aplazado, [116] [117] o incluso abandonados durante la construcción. [118] La producción de crudo sintético de las operaciones mineras puede continuar con pérdidas debido a los costos de cierre y reinicio, así como a los compromisos con los contratos de suministro. [119] Durante la guerra de precios del petróleo entre Rusia y Arabia Saudita en 2020 , el precio del crudo pesado canadiense cayó por debajo de los 5 dólares por barril. [120]

Previsiones de producción

Las previsiones de producción de arenas petrolíferas publicadas por la Asociación Canadiense de Productores de Petróleo (CAPP), el Regulador de Energía de Alberta (AER) y el Instituto Canadiense de Investigación Energética (CERI) son comparables a las proyecciones de la Junta Nacional de Energía (NEB), en términos de producción total de betún. Ninguna de estas previsiones tiene en cuenta las probables limitaciones internacionales que se impondrán a la combustión de todos los hidrocarburos para limitar el aumento de la temperatura global, dando lugar a una situación denominada " burbuja de carbono ". [121] Si se ignoran dichas limitaciones, y también se supone que el precio del petróleo se recupera de su caída a finales de 2014, la lista de proyectos propuestos actualmente, muchos de los cuales están en las primeras etapas de planificación, sugeriría que para 2035 la producción canadiense de betún podría alcanzar potencialmente hasta 1,3 millones de m3 / d (8,3 millones de barriles por día) si la mayoría de ellos se pusieran en marcha. En el mismo supuesto, un escenario más probable es que para 2035, la producción de bitumen de las arenas petrolíferas canadienses alcance los 800.000 m3 / d (5,0 millones de barriles/día), 2,6 veces la producción de 2012. La mayor parte del crecimiento probablemente se produciría en la categoría in situ, ya que los proyectos in situ suelen tener mejores resultados económicos que los proyectos mineros. Además, el 80% de las reservas de arenas petrolíferas de Canadá son adecuadas para la extracción in situ, frente al 20% para los métodos de extracción.

Un supuesto adicional es que habría suficiente infraestructura de oleoductos para entregar el aumento de la producción de petróleo canadiense a los mercados de exportación. Si este fuera un factor limitante, podría haber impactos en los precios del petróleo crudo canadiense, restringiendo el crecimiento futuro de la producción. Otro supuesto es que los mercados estadounidenses seguirán absorbiendo el aumento de las exportaciones canadienses. El rápido crecimiento de la producción de petróleo de esquisto en los EE. UU., el principal mercado de exportación de petróleo de Canadá, ha reducido en gran medida la dependencia estadounidense del crudo importado . El potencial de las exportaciones de petróleo canadiense a mercados alternativos como Asia también es incierto. Hay cada vez más obstáculos políticos para construir nuevos oleoductos para entregar petróleo en Canadá y los EE. UU. En noviembre de 2015, el presidente estadounidense Barack Obama rechazó la propuesta de construir el oleoducto Keystone XL desde Alberta hasta Steele City, Nebraska. [122] A falta de nueva capacidad de oleoductos, las empresas envían cada vez más betún a los mercados estadounidenses por ferrocarril, barcazas fluviales, buques cisterna y otros métodos de transporte. Aparte de los buques cisterna, estas alternativas son todas más caras que los oleoductos. [112]

En las arenas petrolíferas canadienses se produjo una escasez de trabajadores cualificados durante los períodos de rápido desarrollo de nuevos proyectos. En ausencia de otras limitaciones para un mayor desarrollo, la industria del petróleo y el gas tendría que cubrir decenas de miles de puestos vacantes en los próximos años como resultado de los niveles de actividad de la industria, así como de la deserción relacionada con la edad. A largo plazo, en un escenario de precios más altos del petróleo y el gas, la escasez de mano de obra seguiría empeorando. Una posible escasez de mano de obra puede aumentar los costos de construcción y desacelerar el ritmo de desarrollo de las arenas petrolíferas. [110]

La escasez de trabajadores calificados fue mucho más grave en Venezuela debido a que la empresa petrolera controlada por el gobierno, PDVSA, despidió a la mayoría de sus expertos en petróleo pesado después de la huelga general venezolana de 2002-03 , y redujo la producción de orimulsión , que era el principal producto de sus arenas petrolíferas. Después de eso, el gobierno renacionalizó la industria petrolera venezolana y aumentó los impuestos sobre ella. El resultado fue que las empresas extranjeras abandonaron Venezuela, al igual que la mayoría de sus expertos técnicos de élite en petróleo pesado. En los últimos años, la producción de petróleo pesado de Venezuela ha estado cayendo y el país ha incumplido sistemáticamente sus objetivos de producción.

A fines de 2015, el desarrollo de nuevos proyectos de arenas petrolíferas se vio frenado por el precio del WTI por debajo de los 50 dólares, que apenas es suficiente para sostener la producción de las operaciones existentes. [116] La recuperación de la demanda se vio frenada por problemas económicos que pueden seguir acosando indefinidamente tanto a la Comunidad Europea como a China. La producción de bajo costo de la OPEP continuó a máxima capacidad, la eficiencia de la producción de esquisto estadounidense siguió mejorando y las exportaciones rusas se impusieron incluso por debajo del costo de producción, como su única fuente de divisas. [123] También existe la posibilidad de que surja un acuerdo internacional para introducir medidas para restringir la combustión de hidrocarburos en un esfuerzo por limitar el aumento de la temperatura global a los 2 °C nominales que se prevé consensualmente que limitarán el daño ambiental a niveles tolerables. [124] Se están logrando rápidos avances tecnológicos para reducir el costo de las fuentes de energía renovables que compiten entre sí. [125] Por lo tanto, no hay consenso sobre cuándo, si es que alguna vez, los precios del petróleo pagados a los productores podrán recuperarse sustancialmente. [123] [125] [126]

Un estudio académico detallado de las consecuencias para los productores de los diversos combustibles de hidrocarburos concluyó a principios de 2015 que un tercio de las reservas mundiales de petróleo, la mitad de las reservas de gas y más del 80% de las reservas actuales de carbón deberían permanecer bajo tierra entre 2010 y 2050 para cumplir con el objetivo de 2 °C. Por lo tanto, la exploración o el desarrollo continuo de las reservas sería ajeno a las necesidades. Para cumplir con el objetivo de 2 °C, se necesitarían medidas enérgicas para suprimir la demanda, como un impuesto sustancial al carbono que dejara un precio más bajo para los productores de un mercado más pequeño. El impacto en los productores de Canadá sería mucho mayor que en los EE. UU. La minería a cielo abierto de betún natural en Canadá pronto caería a niveles insignificantes después de 2020 en todos los escenarios considerados porque es considerablemente menos económica que otros métodos de producción. [127] [128] [129]

Cuestiones medioambientales

Las imágenes de satélite muestran el crecimiento de las minas a cielo abierto en las arenas petrolíferas de Canadá entre 1984 y 2011.
Manifestación ciudadana contra las arenas bituminosas y el oleoducto Keystone .

En su informe encargado en 2011 titulado "Desarrollo prudente: realización del potencial de los abundantes recursos de gas natural y petróleo de América del Norte", el Consejo Nacional del Petróleo , un comité asesor del Secretario de Energía de los EE. UU., reconoció las preocupaciones de salud y seguridad con respecto a las arenas petrolíferas que incluyen "volúmenes de agua necesarios para generar problemas de abastecimiento de agua; la eliminación de la sobrecarga para la minería a cielo abierto puede fragmentar el hábitat de la vida silvestre y aumentar el riesgo de erosión del suelo o eventos de escorrentía superficial a los sistemas de agua cercanos; GEI y otras emisiones atmosféricas de la producción". [130]

La extracción de arenas petrolíferas puede afectar la tierra cuando se extrae inicialmente el betún, los recursos hídricos por su requerimiento de grandes cantidades de agua durante la separación del petróleo y la arena, y el aire debido a la liberación de dióxido de carbono y otras emisiones. [131] Los metales pesados ​​como el vanadio , níquel , plomo , cobalto , mercurio , cromo , cadmio , arsénico , selenio , cobre , manganeso , hierro y zinc están presentes de forma natural en las arenas petrolíferas y pueden concentrarse durante el proceso de extracción. [132] El impacto ambiental causado por la extracción de arenas petrolíferas es frecuentemente criticado por grupos ambientalistas como Greenpeace , Climate Reality Project , Pembina Institute , 350.org , MoveOn.org , League of Conservation Voters , Patagonia , Sierra Club y Energy Action Coalition . [133] [134] En particular, se ha encontrado contaminación por mercurio alrededor de la producción de arenas petrolíferas en Alberta, Canadá. [135] La Unión Europea ha indicado que podría votar para etiquetar el petróleo de arenas petrolíferas como "altamente contaminante". Aunque las exportaciones de arenas petrolíferas a Europa son mínimas, la cuestión ha causado fricción entre la UE y Canadá. [136] Según la consultora Jacobs , con sede en California , la Unión Europea utilizó datos inexactos e incompletos al asignar una alta calificación de gases de efecto invernadero a la gasolina derivada de las arenas petrolíferas de Alberta. Además, Irán, Arabia Saudita, Nigeria y Rusia no proporcionan datos sobre la cantidad de gas natural que se libera mediante la quema o el venteo en el proceso de extracción de petróleo. El informe de Jacobs señaló que las emisiones adicionales de carbono del crudo de arenas petrolíferas son un 12 por ciento más altas que las del crudo regular, aunque la UE le asignó una calificación de GEI un 22 por ciento por encima del punto de referencia convencional. [137] [138]

En 2014, los resultados de un estudio publicado en las Actas de la Academia Nacional de Ciencias mostraron que los informes oficiales sobre emisiones no eran lo suficientemente altos. Los autores del informe señalaron que "las emisiones de sustancias orgánicas con toxicidad potencial para los seres humanos y el medio ambiente son una preocupación importante en torno al rápido desarrollo industrial en la región de arenas petrolíferas de Athabasca (AOSR)". Este estudio encontró que los estanques de relaves eran una vía indirecta de transporte de liberaciones no controladas de emisiones por evaporación de tres hidrocarburos aromáticos policíclicos (HAP) representativos ( fenantreno , pireno y benzo(a)pireno ) y que estas emisiones no se habían informado anteriormente. [139] [140]

Gestión de la contaminación del aire

El gobierno de Alberta calcula un Índice de Salud y Calidad del Aire (AQHI, por sus siglas en inglés) a partir de sensores en cinco comunidades de la región de las arenas petrolíferas, operado por un "socio" llamado Asociación Ambiental Wood Buffalo (WBEA, por sus siglas en inglés). Cada una de sus 17 estaciones de monitoreo continuo mide de 3 a 10 parámetros de calidad del aire, entre ellos monóxido de carbono (CO), sulfuro de hidrógeno ( H
2
S ),
azufre total reducido (TRS), amoniaco ( NH
3
), óxido nítrico (NO), dióxido de nitrógeno ( NO
2
), óxidos de nitrógeno (NO x ), ozono ( O
3
), partículas en suspensión (PM2,5), dióxido de azufre ( SO
2
), hidrocarburos totales (THC) e hidrocarburos metano /no metano ( CH
4
/NMHC). [141] Se dice que estos AQHI indican una calidad del aire de "riesgo bajo" más del 95% del tiempo. [142] Antes de 2012, el monitoreo del aire mostró aumentos significativos en los excesos de sulfuro de hidrógeno ( H
2
S
) tanto en el área de Fort McMurray como cerca de los mejoradores de arenas petrolíferas. [143] En 2007, el gobierno de Alberta emitió una orden de protección ambiental a Suncor en respuesta a numerosas ocasiones en las que se detectó concentración a nivel del suelo de H
2
S
) excedieron los estándares. [144] El Sistema de Gestión de Datos del Aire Ambiental de Alberta (AAADMS) de la Clean Air Strategic Alliance [145] (también conocido como CASA Data Warehouse) registra que, durante el año que finalizó el 1 de noviembre de 2015, hubo 6 informes por hora de valores que excedieron el límite de 10 ppb para H
2
S
, y 4 en 2013, en comparación con 11 en 2014 y 73 en 2012. [146]

In September 2015, the Pembina Institute published a brief report about "a recent surge of odour and air quality concerns in northern Alberta associated with the expansion of oilsands development", contrasting the responses to these concerns in Peace River and Fort McKay. In Fort McKay, air quality is actively addressed by stakeholders represented in the WBEA, whereas the Peace River community must rely on the response of the Alberta Energy Regulator. In an effort to identify the sources of the noxious odours in the Fort McKay community, a Fort McKay Air Quality Index was established, extending the provincial Air Quality Health Index to include possible contributors to the problem: SO
2
, TRS, and THC. Despite these advantages, more progress was made in remediating the odour problems in the Peace River community, although only after some families had already abandoned their homes. The odour concerns in Fort McKay were reported to remain unresolved.[147]

Land use and waste management

A large part of oil sands mining operations involves clearing trees and brush from a site and removing the overburden—topsoil, muskeg, sand, clay and gravel—that sits atop the oil sands deposit.[148] Approximately 2.5 tons of oil sands are needed to produce one barrel of oil (roughly 18 of a ton).[149] As a condition of licensing, projects are required to implement a reclamation plan.[150] The mining industry asserts that the boreal forest will eventually colonize the reclaimed lands, but their operations are massive and work on long-term timeframes. As of 2013, about 715 square kilometres (276 sq mi) of land in the oil sands region have been disturbed, and 72 km2 (28 sq mi) of that land is under reclamation.[151] In March 2008, Alberta issued the first-ever oil sands land reclamation certificate to Syncrude for the 1.04 square kilometres (0.40 sq mi) parcel of land known as Gateway Hill approximately 35 kilometres (22 mi) north of Fort McMurray.[152] Several reclamation certificate applications for oil sands projects are expected within the next 10 years.[153]

Water management

Between 2 and 4.5 volume units of water are used to produce each volume unit of synthetic crude oil in an ex-situ mining operation. According to Greenpeace, the Canadian oil sands operations use 349×10^6 m3/a (12.3×10^9 cu ft/a) of water, twice the amount of water used by the city of Calgary.[154] However, in SAGD operations, 90–95% of the water is recycled and only about 0.2 volume units of water is used per volume unit of bitumen produced.[155]

For the Athabasca oil sand operations water is supplied from the Athabasca River, the ninth longest river in Canada.[156] The average flow just downstream of Fort McMurray is 633 m3/s (22,400 cu ft/s) with its highest daily average measuring 1,200 m3/s (42,000 cu ft/s).[157][158] Oil sands industries water license allocations totals about 1.8% of the Athabasca river flow. Actual use in 2006 was about 0.4%.[159] In addition, according to the Water Management Framework for the Lower Athabasca River, during periods of low river flow water consumption from the Athabasca River is limited to 1.3% of annual average flow.[160]

In December 2010, the Oil Sands Advisory Panel, commissioned by former environment minister Jim Prentice, found that the system in place for monitoring water quality in the region, including work by the Regional Aquatic Monitoring Program, the Alberta Water Research Institute, the Cumulative Environmental Management Association and others, was piecemeal and should become more comprehensive and coordinated.[161][162]

Greenhouse gas emissions

The production of bitumen and synthetic crude oil emits more greenhouse gases than the production of conventional crude oil. A 2009 study by the consulting firm IHS CERA estimated that production from Canada's oil sands emits "about 5% to 15% more carbon dioxide, over the "well-to-wheels" (WTW) lifetime analysis of the fuel, than average crude oil."[163] Author and investigative journalist David Strahan that same year stated that IEA figures show that carbon dioxide emissions from the oil sands are 20% higher than average emissions from the petroleum production.[164]

A Stanford University study commissioned by the EU in 2011 found that oil sands crude was as much as 22% more carbon-intensive than other fuels.[165][166] According to the "Carnegie Endowment for International Peace" analysis, oil sands emit 31% more GHG that the average North American crude oil.[167] In 2023 a federal study found that the real emissions from oil sands are 65% higher than reported by the industry.[168]

Greenpeace says the oil sands industry has been identified as the largest contributor to greenhouse gas emissions growth in Canada, as it accounts for 40 million tons of CO
2
emissions per year.[169]

According to the Canadian Association of Petroleum Producers and Environment Canada the industrial activity undertaken to produce oil sands make up about 5% of Canada's greenhouse gas emissions, or 0.1% of global greenhouse gas emissions. It predicts the oil sands will grow to make up 8% of Canada's greenhouse gas emissions by 2015.[170] While the production industrial activity emissions per barrel of bitumen produced decreased 26% over the decade 1992–2002, total emissions from production activity were expected to increase due to higher production levels.[171][172] As of 2006, to produce one barrel of oil from the oil sands released almost 75 kilograms (165 lb) of greenhouse gases with total emissions estimated to be 67 megatonnes (66,000,000 long tons; 74,000,000 short tons) per year by 2015.[173] A study by IHS CERA found that fuels made from Canadian oil sands resulted in significantly lower greenhouse gas emissions than many commonly cited estimates.[174] A 2012 study by Swart and Weaver estimated that if only the economically viable reserve of 170 Gbbl (27×10^9 m3) oil sands was burnt, the global mean temperature would increase by 0.02 to 0.05 °C. If the entire oil-in-place of 1.8 trillion barrels were to be burnt, the predicted global mean temperature increase is 0.24 to 0.50 °C.[175] Bergerson et al. found that while the WTW emissions can be higher than crude oil, the lower emitting oil sands cases can outperform higher emitting conventional crude cases.[176]

To offset greenhouse gas emissions from the oil sands and elsewhere in Alberta, sequestering carbon dioxide emissions inside depleted oil and gas reservoirs has been proposed. This technology is inherited from enhanced oil recovery methods.[177] In July 2008, the Alberta government announced a C$2 billion fund to support sequestration projects in Alberta power plants and oil sands extraction and upgrading facilities.[178][179][180]

In November 2014, Fatih Birol, the chief economist of the International Energy Agency, described additional greenhouse gas emissions from Canada's oil sands as "extremely low". The IEA forecasts that in the next 25 years oil sands production in Canada will increase by more than 3 million barrels per day (480,000 m3/d), but Dr. Birol said "the emissions of this additional production is equal to only 23 hours of emissions of China — not even one day." The IEA is charged with responsibility for battling climate change, but Dr. Birol said he spends little time worrying about carbon emissions from oil sands. "There is a lot of discussion on oil sands projects in Canada and the United States and other parts of the world, but to be frank, the additional CO2 emissions coming from the oil sands is extremely low." Dr. Birol acknowledged that there is tremendous difference of opinion on the course of action regarding climate change, but added, "I hope all these reactions are based on scientific facts and sound analysis."[181][182]

In 2014, the U.S. Congressional Research Service published a report in preparation for the decision about permitting construction of the Keystone XL pipeline. The report states in part: "Canadian oil sands crudes are generally more GHG emission-intensive than other crudes they may displace in U.S. refineries, and emit an estimated 17% more GHGs on a life-cycle basis than the average barrel of crude oil refined in the United States".[183]

According to Natural Resources Canada (NRCan), by 2017, the 23 percent increase in GHG emissions in Canada from 2005 to 2017, was "largely from increased oil sands production, particularly in-situ extraction".[8]

Aquatic life deformities

There is conflicting research on the effects of the oil sands development on aquatic life. In 2007, Environment Canada completed a study that shows high deformity rates in fish embryos exposed to the oil sands. David W. Schindler, a limnologist from the University of Alberta, co-authored a study on Alberta's oil sands' contribution of aromatic polycyclic compounds, some of which are known carcinogens, to the Athabasca River and its tributaries.[184] Scientists, local doctors, and residents supported a letter sent to the Prime Minister in September 2010 calling for an independent study of Lake Athabasca (which is downstream of the oil sands) to be initiated due to the rise of deformities and tumors found in fish caught there.[185]

The bulk of the research that defends the oil sands development is done by the Regional Aquatics Monitoring Program (RAMP), whose steering committee is composed largely of oil and gas companies. RAMP studies show that deformity rates are normal compared to historical data and the deformity rates in rivers upstream of the oil sands.[186][187][188]

Public health impacts

In 2007, it was suggested that wildlife has been negatively affected by the oil sands; for instance, moose were found in a 2006 study to have as high as 453 times the acceptable levels of arsenic in their systems, though later studies lowered this to 17 to 33 times the acceptable level (although below international thresholds for consumption).[189]

Concerns have been raised concerning the negative impacts that the oil sands have on public health, including higher than normal rates of cancer among residents of Fort Chipewyan.[190] However, John O'Connor, the doctor who initially reported the higher cancer rates and linked them to the oil sands development, was subsequently investigated by the Alberta College of Physicians and Surgeons. The College later reported that O'Connor's statements consisted of "mistruths, inaccuracies and unconfirmed information".[191]

In 2010, the Royal Society of Canada released a report stating that "there is currently no credible evidence of environmental contaminant exposures from oil sands reaching Fort Chipewyan at levels expected to cause elevated human cancer rates."[191]

In August 2011, the Alberta government initiated a provincial health study to examine whether a link exists between the higher rates of cancer and the oil sands emissions.[192]

In a report released in 2014, Alberta's Chief Medical Officer of Health, Dr. James Talbot, stated that "There isn't strong evidence for an association between any of these cancers and environmental exposure [to oil sands]." Rather, Talbot suggested that the cancer rates at Fort Chipewyan, which were slightly higher compared with the provincial average, were likely due to a combination of factors such as high rates of smoking, obesity, diabetes, and alcoholism as well as poor levels of vaccination.[191]

See also

Notes

  1. ^ The "Middle East onshore market" was the "cheapest source of new oil volumes globally" with the "North American tight oil"—which includes onshore shale oil in the United States—in second place.The breakeven price for North American shale oil was US$68 a barrel in 2015, making it one of the most expensive to produce. By 2019, the "average Brent breakeven price for tight oil was about US$46 per barrel. The breakeven price of oil from Saudi Arabia and other Middle Eastern countries was US$42, in comparison.

References

  1. ^ a b c d Pierre-René Bauquis (16 February 2006). "What the future for extra heavy oil and bitumen: the Orinoco case". World Energy Council. Archived from the original on 2 April 2007. Retrieved 10 July 2007.
  2. ^ a b c Alberta's Oil Sands: Opportunity, Balance. Government of Alberta. March 2008. ISBN 978-0-7785-7348-7. Retrieved 13 May 2008.
  3. ^ "About Tar Sands". Archived from the original on 4 September 2014. Retrieved 14 May 2008.
  4. ^ "Bitumen and heavy crudes: The energy security problem solved?". Oil and Energy Trends. 31 (6): 3–5. 2006. doi:10.1111/j.1744-7992.2006.310603.x.
  5. ^ "What Are The Oil Sands?". Canada's Oil Sands. Calgary, AB: Canadian Association of Petroleum Producers. Retrieved 28 February 2016. Oil sands are a mixture of sand, water, clay and bitumen. Bitumen is oil that is too heavy or thick to flow or be pumped without being diluted or heated. *** Bitumen is so viscous that at room temperature it acts much like cold molasses.
  6. ^ a b c d e f g Dusseault, M. B. (12–14 June 2001). "Comparing Venezuelan and Canadian Heavy Oil and Tar Sands" (PDF). Canadian International Petroleum Conference. Proceedings of Petroleum Society's Canadian International Conference. Vol. 61. doi:10.2118/2001-061. Archived from the original (PDF) on 24 October 2011. Retrieved 4 June 2014.
  7. ^ "The Real GHG trend". Pembina. 4 October 2017.
  8. ^ a b "Energy and Greenhouse Gas Emissions (GHG)s". Natural Resources Canada (NRCan). 6 October 2017. Retrieved 28 January 2020.
  9. ^ Bilkadi, Zayn (November–December 1984). "Bitumen – A History". Saudi Aramco World. pp. 2–9. Retrieved 1 January 2011.
  10. ^ Hirst, K. Kris (2009). "Bitumen – A Smelly but Useful Material of Interest". Archaeology. About.com. Retrieved 23 October 2009.
  11. ^ "Pechelbronn petroleum museum" (in French). Archived from the original on 12 March 2012. Retrieved 30 December 2007.
  12. ^ "The oil wells of Alsace" (PDF). The New York Times. 23 February 1880. Retrieved 11 February 2012.
  13. ^ Mackenzie, Sir Alexander (1970). Lamb, W. Kaye (ed.). The Journals and Letters of Alexander Mackenzie. Cambridge: Hakluyt Society. p. 129. ISBN 978-0-521-01034-4.
  14. ^ a b "Rystad Energy ranks the cheapest sources of supply in the oil industry" (Press release). 9 May 2019. Retrieved 29 January 2020.
  15. ^ "Canada is betting on climate failure". The National Observer. 22 May 2019. Retrieved 29 January 2020.
  16. ^ Mouawad, Jad (3 March 2008), "Oil Prices Pass Record Set in 1980s, but Then Recede", New York Times, retrieved 17 February 2016
  17. ^ "Oil futures bounce on OPEC deal speculation". CNCB via Reuters. 16 February 2016. Retrieved 17 February 2016.
  18. ^ Marsh, James H. (1999). The Canadian Encyclopedia. The Canadian Encyclopedia. ISBN 9780771020995.
  19. ^ "Coal Tar". City of Kingston, Ontario. 2007. Retrieved 13 May 2008.
  20. ^ a b "Alberta's oil sands". Government of Alberta. 2007. Archived from the original on 10 April 2008.
  21. ^ Dembicki, Geoff (25 April 2011). "Tar Sands vs Oil Sands Political Flap Misguided?". Retrieved 22 April 2013.
  22. ^ Evans, John (November 2006). "Sand banks: If unconventional sources of oil, such as oil sands, could be transformed into crude we could still have a 300-year supply left. The problem is extracting it". Chemistry and Industry: 18–36. Archived from the original on 18 May 2013. Retrieved 7 October 2009.
  23. ^ "Initial Oil-in-Place - an overview | ScienceDirect Topics".
  24. ^ "OPEC : Annual Statistical Bulletin".
  25. ^ a b Dusseault, Maurice (March 2002). "14.1 Appendix 1: Canada's Oil Sands and Heavy Oil deposits" (PDF). Cold Heavy Oil Production with Sand in the Canadian Heavy Oil Industry (Report). Alberta Department of Energy. Retrieved 22 April 2014.
  26. ^ a b c Hein, Fran. "Geology of the Oil Sands" (PDF). Association of Petroleum Engineers and Geoscientists of Alberta. Archived from the original (PDF) on 7 May 2013. Retrieved 4 June 2014.
  27. ^ Turgeon, Andrew; Morse, Elizabeth (19 October 2023). "Petroleum". National Geographic. Education. National Geographic Society. Retrieved 6 February 2024.
  28. ^ a b c d e f Bakx, Kyle (12 October 2023). "Canada could lead the world in oil production growth in 2024". CBC News. Retrieved 6 February 2024.
  29. ^ "Trans Mountain mulling how to remove 'obstruction' causing newest construction delay". Canadian Press. 1 February 2024. Retrieved 6 February 2024 – via CBC News.
  30. ^ "Ecocide must be listed alongside genocide as an international crime". The Guardian. 22 June 2021. ISSN 0261-3077. Retrieved 21 June 2023.
  31. ^ "Tar sands: tearing the flesh from the Earth". theecologist.org. 18 August 2009. Retrieved 21 June 2023.
  32. ^ "Indigenous groups say Big Oil's pollution threatens their existence in Canadian forest". NBC News. 22 November 2021. Retrieved 21 June 2023.
  33. ^ "Trudeau Is Betting $9 Billion on a Plan to Clean Up the World's Dirtiest Oil". Bloomberg.com. 5 June 2023. Retrieved 21 June 2023.
  34. ^ Weisbrod, Katelyn (21 November 2021). "Canada's Tar Sands: Destruction So Vast and Deep It Challenges the Existence of Land and People". Inside Climate News. Retrieved 21 June 2023.
  35. ^ "The terrible toll of tar sands mining on Canada's Native people". Mother Jones. Retrieved 21 June 2023.
  36. ^ "Alberta's Oil Sands 2006" (PDF). Government of Alberta. 2007. Archived from the original (PDF) on 27 February 2008. Retrieved 17 February 2008.
  37. ^ O.P. Strausz. "The Chemistry of the Alberta Oil Sand Bitumen" (PDF). University of Alberta. Archived from the original (PDF) on 1 June 2010. Retrieved 18 April 2014.
  38. ^ a b c Alberta Oil Sands Quarterly Update (PDF) (Report). Government of Alberta. Winter 2013.
  39. ^ "Premium Petroleum Corp. Increases Lands Position to 11,520 Acres". Premium Petroleum Corp. 19 September 2007. Retrieved 22 June 2010.
  40. ^ "Survey of Energy Resources 2007: Natural Bitument - Resource Quantities and Geographical Distribution". World Energy Council. 2007. Archived from the original on 24 August 2010.
  41. ^ Shawn, Munro (25 November 2013). Peace River proceeding no. 1769924 (PDF) (Report). Phase II submissions. Vol. 4. Calgary, Alberta. Archived from the original (PDF) on 23 February 2014. Retrieved 18 February 2014.
  42. ^ Christopher J. Schenk; Troy A. Cook; Ronald R. Charpentier; Richard M. Pollastro; Timothy R. Klett; Marilyn E. Tennyson; Mark A. Kirschbaum; Michael E. Brownfield & Janet K. Pitman. (11 January 2010). "An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt, Venezuela" (PDF). USGS. Retrieved 23 January 2010.
  43. ^ a b Vassiliou, M.S. (2 March 2009). Historical Dictionary of the Petroleum Industry. Scarecrow Press. p. 216. ISBN 978-0810859937.
  44. ^ "Secure Fuels from Domestic Resources" (PDF).
  45. ^ a b U.S. Department of the Interior, Bureau of Land Management (BLM) (2008). "Tar sands basics". Argonne National Laboratory. Archived from the original on 4 September 2014. Retrieved 14 May 2008.
  46. ^ "HeavyOil Russia" (PDF). Rigzone. Summer 2006.[permanent dead link]
  47. ^ "Madagascar Produces First 45 Barrels of Oil". BBC Monitoring Africa. 14 March 2008.
  48. ^ "Madagascar Oil raises $85M for exploration, opens new head office". Rigzone. 29 March 2007.
  49. ^ "Canadian Energy Overview 2007". National Energy Board of Canada. May 2007. Retrieved 23 July 2008.
  50. ^ "Fort Hills Oilsands". Oilweek.com. Retrieved 4 May 2011.
  51. ^ a b 2012 Tailings Management Assessment Report: Oil Sands Mining Industry (PDF), Calgary, Alberta: Energy Resources Conservation Board (ERCB), June 2013, archived from the original (PDF) on 25 February 2014, retrieved 12 April 2014
  52. ^ "Ecocide must be listed alongside genocide as an international crime". The Guardian. 22 June 2021. ISSN 0261-3077. Retrieved 21 June 2023.
  53. ^ "Tar sands: tearing the flesh from the Earth". theecologist.org. 18 August 2009. Retrieved 21 June 2023.
  54. ^ "Indigenous groups say Big Oil's pollution threatens their existence in Canadian forest". NBC News. 22 November 2021. Retrieved 21 June 2023.
  55. ^ "Trudeau Is Betting $9 Billion on a Plan to Clean Up the World's Dirtiest Oil". Bloomberg.com. 5 June 2023. Retrieved 21 June 2023.
  56. ^ Weisbrod, Katelyn (21 November 2021). "Canada's Tar Sands: Destruction So Vast and Deep It Challenges the Existence of Land and People". Inside Climate News. Retrieved 21 June 2023.
  57. ^ "The terrible toll of tar sands mining on Canada's Native people". Mother Jones. Retrieved 21 June 2023.
  58. ^ Stillger, Nicole (23 October 2022). "Alberta's oil production booming but majority of revenue leaving province". Global News. Retrieved 1 December 2023.
  59. ^ Bakx, Kyle (12 October 2023). "Canada could lead the world in oil production growth in 2024". CBC. Retrieved 1 December 2023.
  60. ^ Garcia-Navarro, Lulu (5 July 2016). "Venezuela Is In Crisis. Its Economy Is In A Tailspin". US National Public Radio. Retrieved 6 July 2016. Things are very, very bad. I have been covering Venezuela for a long time. And frankly, I was shocked at the situation as I see it here at the moment.
  61. ^ "Eni and the Republic of Congo launch a new integrated model of cooperation" (Press release). Point Noire, Congo: Eni. 19 May 2008.
  62. ^ "The oil sands story: in situ".
  63. ^ Maurice Dusseault (March 2002). "Cold Heavy Oil Production with Sand in the Canadian Heavy Oil Industry". Alberta Energy. Archived from the original on 29 March 2008. Retrieved 21 May 2008.
  64. ^ "Jackpine mine". Westernoilsands.com. Retrieved 4 May 2011.
  65. ^ "Canada, United States: SOLAR Power Process Transform Oil Sands Tailings", Mena Report, 26 September 2014, archived from the original on 29 March 2015, retrieved 2 December 2014
  66. ^ a b c "Fact Sheet Tailings" (PDF), Government of Alberta, September 2013, archived from the original (PDF) on 25 March 2014, retrieved 12 April 2014
  67. ^ Safe dam constructions – Seminar on safe tailings dam constructions (PDF), Gallivare: Swedish Mining Association, Natur Vards Verket, European Commission, 19–20 September 2001, retrieved 25 February 2014
  68. ^ "GL 97-02 Guidelines for the Application of Oil Byproducts to Municipal Roads in Saskatchewen" (PDF). Saskatchewan Energy and Mines. 1997. Retrieved 21 May 2008.
  69. ^ Beattie, C. I.; Boberg, T. C.; McNab, G. S. (5 April 1989). "Reservoir Simulation of Cyclic Steam Stimulation in the Cold Lake Oil Sands". All Days. OnePetro. doi:10.2118/18752-MS.
  70. ^ a b Butler, Roger (1991). Thermal Recovery of Oil and Bitumen. Englewood Cliffs: Prentice-Hall. p. 104.
  71. ^ "Operations – Oil sands – Foster Creek". Cenovus.com. Retrieved 18 February 2011.
  72. ^ "Operations – Oil sands – Christina Lake". Cenovus.com. Retrieved 18 February 2011.
  73. ^ "Natural Resources Canada team investigates solvent extraction process for oil sand bitumen; non-aqueous alternative to hot water processing with reduced environmental impacts". Green Car Congress. BioAge Group, LLC. 16 January 2012.
  74. ^ "VAPEX and Solvent Technology". Oil Sands Developers Group. Retrieved 11 July 2012.
  75. ^ "The THAI Process". Petrobank Energy and Resources Ltd. Archived from the original on 28 August 2008. Retrieved 7 December 2008.
  76. ^ "A new method of extracting heavy oil: Toe to Heel Air Injection (THAI)". The Oil Drum. 27 August 2007. Retrieved 7 December 2008.
  77. ^ "EROI update: preliminary results using Toe-to-Heel Air Injection". The Oil Drum. 18 March 2009. Retrieved 19 March 2009.
  78. ^ "Petrobank announces first THAI/CAPRI production". Petrobank. 22 September 2008. Retrieved 7 December 2008.
  79. ^ Cooper, Dave (29 November 2008). "Petrobank wins approval for heavy-oil project expansion". The Edmonton Journal. Retrieved 7 December 2008.
  80. ^ Chandler, Graham (September 2008). "What lies beneath". Oilweek. Retrieved 7 December 2008.
  81. ^ Healing, Dan (September 2013). "Petrobank cuts budget on production setback". The Calgary Herald. Retrieved 13 August 2013.
  82. ^ Chandler, Graham (March 2009). "Excelsior to test COGD bitumen production". Schlumberger. Retrieved 8 April 2010.
  83. ^ Rao, Feng; Liu, Qi (19 December 2013). "Froth Treatment in Athabasca Oil Sands Bitumen Recovery Process: A Review". Energy and Fuels. 27 (12): 7199–7207. doi:10.1021/ef4016697. ISSN 0887-0624.
  84. ^ a b "Froth Treatment". CanmetENERGY via NRCan. Devon, Alberta. 19 January 2016. Retrieved 29 January 2020.
  85. ^ "Appendix VI – Fact Sheets" (PDF). Alberta Oil Sands Consultations Multistakeholder Committee Interim Report. Government of Alberta. 30 November 2006. p. 14. Archived from the original (PDF) on 7 March 2007. Retrieved 17 August 2007.
  86. ^ Canada's Oil Sands – Opportunities and Challenges to 2015: An Update (PDF) (Report). National Energy Board. June 2006. p. 17. Retrieved 14 August 2007.
  87. ^ "Technology".
  88. ^ Martínez-Palou, Rafael; Mosqueira, María de Lourdes; Zapata-Rendón, Beatriz; Mar-Juárez, Elizabeth; Bernal-Huicochea, César; de la Cruz Clavel-López, Juan; Aburto, Jorge (1 January 2011). "Transportation of heavy and extra-heavy crude oil by pipeline: A review". Journal of Petroleum Science and Engineering. 75 (3): 274–282. doi:10.1016/j.petrol.2010.11.020. ISSN 0920-4105.
  89. ^ "Alberta Oil Sands Bitumen Valuation Methodology", CAPP, Technical Publication, 20 November 2013, retrieved 13 December 2013
  90. ^ "WCS at Cushing: The emerging US trading center for Canada's heavy sour crude", Argus, Argus White Paper, Argus Media, 2012, archived from the original on 2 April 2015, retrieved 24 March 2015
  91. ^ Natural Resources Canada (May 2011). Canadian Crude Oil, Natural Gas and Petroleum Products: Review of 2009 & Outlook to 2030 (PDF) (Report). Ottawa, ON: Government of Canada. ISBN 978-1-100-16436-6. Archived from the original (PDF) on 3 October 2013. Retrieved 24 March 2015.
  92. ^ "Platts Assesses Ex-Cushing Western Canadian Select at $70.78 per Barrel: Brings transparency to the US value of Canadian Oil as Seaway Takes Oil to Gulf", Platts, Houston, Texas, 1 June 2012
  93. ^ "Western Canadian Select Heavy Oil blend", TMX/Shorcan Energy Brokers
  94. ^ Mohr, Patricia (20 February 2014), Scotiabank Commodity Price Index (PDF), Scotiabank, archived from the original (PDF) on 8 December 2014, retrieved 22 February 2014
  95. ^ "Cost Analysis and Reporting Enhancement – Glossary of Terms" (PDF), Alberta Energy, 4 May 2011, retrieved 25 December 2014
  96. ^ Gray, Murray. "Tutorial on Upgrading of Oilsands Bitumen" (PDF). ualberta.ca. University of Alberta. Retrieved 28 April 2014.
  97. ^ a b "ST98-2013: Alberta's Energy Reserves 2012 and Supply/Demand Outlook 2013–2022" (PDF). Alberta Energy Regulator. May 2013. Retrieved 23 April 2015.
  98. ^ "Upgrading and Refining" (PDF). energy.alberta.ca. Government of Alberta. Retrieved 28 April 2014.
  99. ^ Healing, Dan (3 April 2014). "Bitumen diluent demand expected to double by 2020". calgaryherald.com. Calgary Herald. Retrieved 28 April 2014.
  100. ^ "At the Wellhead: Venezuela's upgraders are maxed out to handle its heavy oil". platts.com. Platts, McGraw Hill Financial. Retrieved 6 May 2014.
  101. ^ Ancheyta Jorge; Rana Mohan S.; Furimsky Edward (30 November 2005). "Hydroprocessing of heavy petroleum feeds: Tutorial". Catalysis Today. 109 (1–4): 3–15. doi:10.1016/j.cattod.2005.08.025. ISSN 0920-5861.
  102. ^ "Upgrading and Refining" (PDF). Alberta Department of Energy. 10 February 2014. Retrieved 5 May 2014.
  103. ^ Howell, David (21 January 2015). "Other projects' layoffs expected to help Sturgeon Refinery". Edmonton Journal. Edmonton, Alberta.
  104. ^ "Company Profile". North West Upgrading. 2015. Retrieved 16 April 2015.
  105. ^ "A better way to move oil by rail". Pacific Future Energy. Retrieved 6 July 2016.
  106. ^ "China overtakes US as the biggest importer of oil". BBC News. 10 October 2013. Retrieved 11 May 2014.
  107. ^ "US Imports from Canada of Crude Oil and Petroleum Products". U.S. Energy Information Administration. 29 April 2014. Retrieved 28 May 2014.
  108. ^ Hackett, David; Noda, Leigh; Moore, Michal C.; Winter, Jennifer (February 2013). "Pacific Basin Heavy Oil Refining Capacity" (PDF). SPP Research Papers. University of Calgary School of Public Policy. Retrieved 22 May 2014.
  109. ^ Luneau, Kate (8 August 2012). "Our Chinese oil sands". Maclean's Magazine. Retrieved 28 May 2014.
  110. ^ a b "Canada's Energy Future 2013 – Energy Supply and Demand Projections to 2035 – An Energy Market Assessment". neb-one.gc.ca. National Energy Board of Canada (NEB). November 2013. Retrieved 20 April 2014.
  111. ^ a b Millington, Dinara; Murillo, Carlos A. (August 2015). "Canadian Oil Sands Supply Costs and Development Projects (2015–2046)" (PDF). ceri.ca. Canadian Energy Research Institute. Retrieved 6 November 2015.
  112. ^ a b CERI Commodity Report — Crude Oil (PDF) (Report). Canadian Energy Research Institute. June 2015. Retrieved 6 November 2015.
  113. ^ "Cushing, OK Crude Oil Future Contract 1". eia.gov. U.S. Energy Information Administration. Retrieved 24 December 2014.
  114. ^ Millington, Dinara; Murillo, Carlos A. (May 2013). "Canadian Oil Sands Supply Costs and Development Projects (2012–2046)" (PDF). ceri.ca. Canadian Energy Research Institute. Retrieved 24 April 2014.
  115. ^ Pope, Carl (8 July 2015). "Why You Should Short Public Oil Companies". Bloomberg News. Bloomberg L.P. Retrieved 6 November 2015.
  116. ^ a b Penty, Rebecca; van Loon, Jeremy (17 June 2015). "Oil-Sands Megaproject Era Wanes as Suncor Scales Back". Bloomberg News. Bloomberg L.P. Retrieved 6 November 2015.
  117. ^ Austen, Ian (12 October 2015). "Oil Sands Boom Dries Up in Alberta, Taking Thousands of Jobs With It". International New York Times. Retrieved 7 November 2015.
  118. ^ Dawson, Chester (27 October 2015). "Royal Dutch Shell to Abandon Carmon Creek Oil-Sands Project". The Wall Street Journal. Dow Jones & Company. Retrieved 7 November 2015.
  119. ^ Williams, Nia (19 August 2015). "Even losing $6 per barrel, top Canada oil sands project unlikely to close". Reuters. Archived from the original on 21 August 2015. Retrieved 7 November 2015.
  120. ^ Morgan, Geoffrey (27 March 2020). "Canadian heavy oil collapses another 28% to under $5 as oilsands face shut-ins | Financial Post". Financial Post. Archived from the original on 30 March 2020.
  121. ^ McElwee, Sean; Daly, Lew (23 December 2013). Beware of the Carbon Bubble (Report). Demos. Retrieved 6 November 2015.
  122. ^ Koring, Paul (6 November 2015). "Obama rejects TransCanada's Keystone XL pipeline". The Globe and Mail. Archived from the original on 20 January 2016. Retrieved 6 November 2015.
  123. ^ a b Shilling, A. Gary (20 August 2015). "A Funny Thing Happened on the Way to $80 Oil". Bloomberg News. Bloomberg L.P. Retrieved 6 November 2015.
  124. ^ Kolbert, Elizabeth (24 August 2015). "The Weight of the World". The New Yorker. Condé Nast. Retrieved 6 November 2015.
  125. ^ a b Sussams, Luke; Leaton, James; Drew, Tom (21 October 2015). Lost in Transition: How the energy sector is missing potential demand destruction (Report). Carbon Tracker. Retrieved 6 November 2015.
  126. ^ Dale, Spencer (13 October 2015). New Economics of Oil (PDF) (Report). BP. Retrieved 6 November 2015.
  127. ^ Dyer, Evan (7 January 2015). "Climate change study says most of Canada's oil reserves should be left underground". cbc.ca/news. Canadian Broadcasting Corporation. Retrieved 6 November 2015.
  128. ^ Jacob, Michael; Hilaire, Jérȏme (January 2015). "Unburnable fossil-fuel reserves". Nature. 517 (7533). Macmillan Publishers: 150–2. Bibcode:2015Natur.517..150J. doi:10.1038/517150a. PMID 25567276. S2CID 4449048.
  129. ^ McGlade, Christophe; Ekins, Paul (January 2015). "The geographical distribution of fossil fuels unused when limiting global warming to 2°C" (PDF). Nature. 517 (7533). Macmillan Publishers: 187–90. Bibcode:2015Natur.517..187M. doi:10.1038/nature14016. PMID 25567285. S2CID 4454113.
  130. ^ Prudent Development: Realizing the Potential of North America's Abundant Natural Gas and Oil Resources (PDF), National Petroleum Council, 2011, p. 22, retrieved 12 April 2014
  131. ^ R. Smandych and R. Kueneman, "The Canadian-Alberta Tar Sands: A Case Study of State-Corporate Environmental Crime" in R. White (ed.) Global Environmental Harm. Cullompton: willan, 2010
  132. ^ Kelly, EN; Schindler, DW; Hodson, PV; Short, JW; Radmanovich, R; Nielsen, CC (14 September 2010). "Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries". PNAS. 107 (37): 16178–83. Bibcode:2010PNAS..10716178K. doi:10.1073/pnas.1008754107. PMC 2941314. PMID 20805486.
  133. ^ "Stop the Tar sands to curb Canada's growing greenhouse gas emissions". Greenpeace Canada. 2011. Archived from the original on 25 October 2007. Retrieved 9 September 2011.
  134. ^ "Alberta Tar Sands: A North American Overview". TreeHugger. Archived from the original on 30 August 2011. Retrieved 18 April 2008.
  135. ^ Researchers find 7,300-sq-mile ring of mercury around tar sands in Canada http://america.aljazeera.com/articles/2013/12/29/7-500-mile-ring-ofmercuryfoundaroundcanadastarsands.html
  136. ^ Carrington, Damian (20 February 2012). "Canada threatens trade war with EU over tar sands". The Guardian. London. Retrieved 21 February 2012.
  137. ^ Vincent McDermott (11 May 2012). "Oilsands less polluting than EU claims: report". Fort McMurray Today.
  138. ^ Barbara Lewis, David Ljunggren & Jeffrey Jones (10 May 2012). "Canada's Tar Sands Battle With Europe". huffington post. Reuters.
  139. ^ Parajulee, Abha; Wania, Frank (3 February 2014). "Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model". Proceedings of the National Academy of Sciences. 111 (9): 3344–3349. Bibcode:2014PNAS..111.3344P. doi:10.1073/pnas.1319780111. PMC 3948256. PMID 24596429.
  140. ^ Visconti, Grace C. (23 February 2014), Op-Ed: University of Toronto researchers share oil sands study results, Scarborough, Ontario, retrieved 24 February 2014{{citation}}: CS1 maint: location missing publisher (link)
  141. ^ "Continuous Monitoring". Wood Buffalo Environmental Association. Retrieved 6 November 2015.
  142. ^ "Alberta's Oil Sands: Air". Government of Alberta Environment and Water. Retrieved 6 November 2015.
  143. ^ "Air Quality and the Oil Sands". Government of Alberta Environment and Water. Retrieved 16 January 2012.
  144. ^ "Province orders Suncor to address excessive H2S emissions" (Press release). Government of Alberta. 18 December 2007.
  145. ^ "About CASA". Archived from the original on 3 February 2015. Retrieved 7 November 2015.
  146. ^ "Exceedance Reports". Clean Air Strategic Alliance. Retrieved 6 November 2015.
  147. ^ Odour issues in Alberta (PDF) (Report). Pembina Institute. September 2015. Retrieved 6 November 2015.
  148. ^ "Does oil sands "mining" affect the environment?". Oil sands frequently asked questions. Government of Alberta Energy ministry. Archived from the original on 18 October 2017. Retrieved 9 April 2009.
  149. ^ Mosher, Dave (6 November 2015). "Fly over an environmental nightmare the US just avoided". Business Insider Inc. Retrieved 6 November 2015.
  150. ^ "Environmental Protection" (PDF).
  151. ^ "Reclamation". Government of Alberta Environment ministry. Archived from the original on 25 September 2014. Retrieved 10 December 2013.
  152. ^ "Alberta issues first-ever oil sands land reclamation certificate" (Press release). Government of Alberta. 19 March 2008. Retrieved 11 February 2012.
  153. ^ "Land reclamation" (PDF). Alberta oil sands consultations.
  154. ^ "Water depletion". Greenpeace Canada. 25 October 2007. Retrieved 12 February 2012.
  155. ^ Canada's oil sands – opportunities and challenges to 2015: an update (Report). National Energy Board. June 2006. p. 38. Retrieved 14 August 2007.
  156. ^ "Longest rivers in Canada". Environment Canada.
  157. ^ "Athabasca river water management framework" (PDF). 2 October 2007.
  158. ^ "Typical river flows". Environment Canada.
  159. ^ "Environmental aspects of oil sands development". Canadian Association of Petroleum Producers. Archived from the original on 11 December 2008. Retrieved 16 April 2008.
  160. ^ "Athabasca River water management framework". Government of Alberta Environment ministry. Archived from the original on 14 May 2007. Retrieved 16 April 2008.
  161. ^ "A Foundation for the Future: Building an Environmental Monitoring System for the Oil Sands". Monitoring Organizations in the Oil Sands Area. Environment Canada. Retrieved 4 April 2011.
  162. ^ "Monitoring of oilsands impact inadequate: panel". CBC. 9 March 2011. Retrieved 4 April 2011.
  163. ^ Gardner, Timothy (19 May 2009). "Canada oil sands emit more CO2 than average: report". Reuters. Retrieved 4 May 2011.
  164. ^ "Who's afraid of the tar sands?". Davidstrahan.com. 8 December 2009. Retrieved 4 May 2011.
  165. ^ Lewis, Barbara; Ljunggren, David; Jones, Jeffrey (10 May 2012). "Insight: Canada's oil sand battle with Europe". Reuters. Archived from the original on 30 June 2016. Retrieved 27 August 2013.
  166. ^ Brandt, Adam R. (18 January 2011). Upstream greenhouse gas (GHG) emissions from Canadian oil sands as a feedstock for European refineries (PDF) (Report). Retrieved 30 January 2020.
  167. ^ Israel, Benjamin; Gorski, Jan; Simpson-Marran, Morrigan (October 2018). The oilsands in a decarbonizing Canada (PDF). Pembina Institute. p. 2. Retrieved 1 December 2023.
  168. ^ Weber, Bob (24 April 2023). "Oilsands emissions 65% higher than tallied by current measuring methods, study suggests". CBC. Retrieved 1 December 2023.
  169. ^ "Climate change". Greenpeace Canada. 25 October 2007. Archived from the original on 14 January 2012. Retrieved 21 March 2013.
  170. ^ "Environmental challenges and progress in Canada's oil sands". CAPP. April 2008.
  171. ^ "Climate change plan for Canada" (PDF). November 2002.
  172. ^ "Oil sands fever: the environmental implications of Canada's oil sands rush" (PDF). Pembina Institute. 2005.
  173. ^ "Canada's oil sands: opportunities and challenges to 2015: An update" (PDF). National Energy Board. June 2006.
  174. ^ IHS (21 September 2010). "Oil Sands Greenhouse Gas Emissions are Lower than Commonly Perceived, IHS CERA Analysis Finds". (Information Handling Services). Retrieved 19 October 2010.
  175. ^ Neil C. Swart; Andrew J. Weaver (19 February 2012). "The Alberta oil sands and climate". Nature Climate Change. 2 (3): 134. Bibcode:2012NatCC...2..134S. doi:10.1038/nclimate1421. (supplement)
  176. ^ Bergerson, Joule A. et al., Life Cycle Greenhouse Gas Emissions of Current Oil Sands Technologies: Surface Mining and In Situ Applications, Environmental Science & Technology 46 (14), pp. 7865–7874, 2012.
  177. ^ "Accelerating Carbon Capture and Storage Implementation in Alberta, Final Report" (PDF). Alberta Carbon Capture and Storage Development Council. 24 July 2009.
  178. ^ "Alberta surges ahead with climate change action plan" (Press release). Government of Alberta Environment ministry. 8 July 2008. Retrieved 9 April 2009.
  179. ^ "Alberta Energy: Carbon Capture and Storage". Government of Alberta Energy ministry. Retrieved 9 April 2009.
  180. ^ "Aspen Institute announces winners of the second annual Aspen Institute Energy and Environment Awards" (Press release). Aspen Institute. 18 March 2009.
  181. ^ Yadullah, Hussain (27 November 2014). "New emissions from Canada's oil sands "extremely low," says IEA's chief economist". National Post. Retrieved 28 November 2014.
  182. ^ McCarthy, Shawn (17 November 2014). "Oil sands not a major source of climate change: IEA economist". The Globe and Mail. Retrieved 28 November 2014.
  183. ^ Lattanzio, Richard K. (14 March 2014). Canadian Oil Sands: Life-Cycle Assessments of Greenhouse Gas Emissions (PDF) (Report). Congressional Research Service. Retrieved 7 November 2015.
  184. ^ EN Kelly; JW Short; DW Schindler; PV Hodson; M Ma; AK Kwan; BL Fortin (2009). "Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributarie". Proceedings of the National Academy of Sciences of the United States of America. 106 (52): 22346–22351. Bibcode:2009PNAS..10622346K. doi:10.1073/pnas.0912050106. PMC 2789758. PMID 19995964.
  185. ^ Weber, Bob (17 September 2010). "Deformed fish found in lake downstream from oilsands". Toronto Star. Retrieved 19 September 2010.
  186. ^ "RAMP Steering Committee Membership - Regional Aquatics Monitoring Program (RAMP)". www.ramp-alberta.org. Retrieved 8 June 2021.
  187. ^ "RAMP responds to a request for comment on Dr. David Schindler's press conference regarding the high incidence of fish abnormalities". Regional Aquatics Monitoring Program (RAMP). 16 September 2010. Retrieved 18 February 2011.
  188. ^ "Frequently Asked Questions". Regional Aquatics Monitoring Program (RAMP). Retrieved 18 February 2011.
  189. ^ "Mixed reports on safety of eating northern Alberta game". CBC News. 3 April 2007.
  190. ^ "High cancer rates confirmed near Canada's oil sands". Reuters. 6 February 2009. Archived from the original on 9 February 2009.
  191. ^ a b c Oil sands foes ignore the facts as cancer claims dealt a blow by study by Claudia Cattaneo, Financial Post, March 24, 2014.
  192. ^ "Cancer rates downstream from oil sands to be probed". CBC News. 19 August 2011. Archived from the original on 20 August 2011.

Further reading

External links