En el caos cuántico , la conjetura de Bohigas–Giannoni–Schmit (BGS) afirma que las estadísticas espectrales de los sistemas cuánticos cuyas contrapartes clásicas exhiben un comportamiento caótico se describen mediante la teoría de matrices aleatorias. [3]
En óptica cuántica , las transformaciones descritas por matrices unitarias aleatorias son cruciales para demostrar la ventaja de la computación cuántica sobre la clásica (ver, por ejemplo, el modelo de muestreo de bosones ). [5] Además, dichas transformaciones unitarias aleatorias se pueden implementar directamente en un circuito óptico, al mapear sus parámetros a los componentes del circuito óptico (es decir, divisores de haz y desfasadores). [6]
En las estadísticas multivariadas , las matrices aleatorias fueron introducidas por John Wishart , quien buscó estimar matrices de covarianza de muestras grandes. [15] Las desigualdades de tipo Chernoff , Bernstein y Hoeffding generalmente se pueden fortalecer cuando se aplican al valor propio máximo (es decir, el valor propio de mayor magnitud) de una suma finita de matrices hermíticas aleatorias . [16] La teoría de matrices aleatorias se utiliza para estudiar las propiedades espectrales de matrices aleatorias, como las matrices de covarianza de muestras, lo que es de particular interés en las estadísticas de alta dimensión . La teoría de matrices aleatorias también tuvo aplicaciones en redes neuronales [17] y aprendizaje profundo , con trabajos recientes que utilizan matrices aleatorias para demostrar que los ajustes de hiperparámetros se pueden transferir de forma económica entre redes neuronales grandes sin la necesidad de volver a entrenar. [18]
En el análisis numérico , las matrices aleatorias se han utilizado desde el trabajo de John von Neumann y Herman Goldstine [19] para describir errores de cálculo en operaciones como la multiplicación de matrices . Aunque las entradas aleatorias son entradas "genéricas" tradicionales para un algoritmo, la concentración de medida asociada con las distribuciones de matrices aleatorias implica que las matrices aleatorias no probarán grandes porciones del espacio de entrada de un algoritmo. [20]
La relación de la probabilidad libre con las matrices aleatorias [22] es una razón clave para el amplio uso de la probabilidad libre en otras materias. Voiculescu introdujo el concepto de libertad alrededor de 1983 en un contexto de álgebra de operadores; al principio no existía ninguna relación con las matrices aleatorias. Esta conexión fue revelada recién en 1991 por Voiculescu; [23] estaba motivado por el hecho de que la distribución límite que encontró en su teorema del límite central libre había aparecido antes en la ley del semicírculo de Wigner en el contexto de las matrices aleatorias.
Neurociencia computacional
En el campo de la neurociencia computacional, las matrices aleatorias se utilizan cada vez más para modelar la red de conexiones sinápticas entre neuronas en el cerebro. Se ha demostrado que los modelos dinámicos de redes neuronales con matrices de conectividad aleatorias presentan una transición de fase al caos [24] cuando la varianza de los pesos sinápticos cruza un valor crítico, en el límite del tamaño infinito del sistema. Los resultados sobre matrices aleatorias también han demostrado que la dinámica de los modelos de matrices aleatorias es insensible a la fuerza de conexión media. En cambio, la estabilidad de las fluctuaciones depende de la variación de la fuerza de conexión [25] [26] y el tiempo hasta la sincronía depende de la topología de la red. [27] [28]
En el análisis de datos masivos como fMRI , se ha aplicado la teoría de matrices aleatorias con el fin de realizar reducción de dimensión. Al aplicar un algoritmo como PCA , es importante poder seleccionar el número de componentes significativos. Los criterios para seleccionar componentes pueden ser múltiples (basados en varianza explicada, método de Kaiser, autovalor, etc.). La teoría de matrices aleatorias en este contenido tiene como representante la distribución de Marchenko-Pastur , que garantiza los límites superior e inferior teóricos de los autovalores asociados a una matriz de covarianza de variables aleatorias. Esta matriz calculada de esta manera se convierte en la hipótesis nula que permite encontrar los autovalores (y sus autovectores) que se desvían del rango aleatorio teórico. Los componentes así excluidos se convierten en el espacio dimensional reducido (ver ejemplos en fMRI [29] [30] ).
Control óptimo
En la teoría de control óptimo , la evolución de n variables de estado a través del tiempo depende en cada momento de sus propios valores y de los valores de k variables de control. Con la evolución lineal, aparecen matrices de coeficientes en la ecuación de estado (ecuación de evolución). En algunos problemas los valores de los parámetros en estas matrices no se conocen con certeza, en cuyo caso hay matrices aleatorias en la ecuación de estado y el problema se conoce como uno de control estocástico . [31] : cap. 13 [32] Un resultado clave en el caso del control lineal-cuadrático con matrices estocásticas es que el principio de equivalencia de certeza no se aplica: mientras que en ausencia de incertidumbre del multiplicador (es decir, con solo incertidumbre aditiva) la política óptima con una función de pérdida cuadrática coincide con lo que se decidiría si se ignorara la incertidumbre, la política óptima puede diferir si la ecuación de estado contiene coeficientes aleatorios.
Mecánica computacional
En mecánica computacional , las incertidumbres epistémicas subyacentes a la falta de conocimiento sobre la física del sistema modelado dan lugar a operadores matemáticos asociados al modelo computacional, que son deficientes en cierto sentido. Dichos operadores carecen de ciertas propiedades vinculadas a la física no modelada. Cuando dichos operadores se discretizan para realizar simulaciones computacionales, su precisión está limitada por la física faltante. Para compensar esta deficiencia del operador matemático, no basta con hacer aleatorios los parámetros del modelo, es necesario considerar un operador matemático que sea aleatorio y pueda así generar familias de modelos computacionales con la esperanza de que uno de estos capture la física faltante. Las matrices aleatorias se han utilizado en este sentido, [33] con aplicaciones en vibroacústica, propagación de ondas, ciencia de materiales, mecánica de fluidos, transferencia de calor, etc.
Ingeniería
La teoría de matrices aleatorias se puede aplicar a los esfuerzos de investigación en ingeniería eléctrica y de comunicaciones para estudiar, modelar y desarrollar sistemas de radio masivos de entrada múltiple y salida múltiple ( MIMO ). [ cita requerida ]
Las distribuciones de matrices aleatorias que se estudian con más frecuencia son los conjuntos gaussianos: GOE, GUE y GSE. Suelen denotarse por su índice de Dyson , β = 1 para GOE, β = 2 para GUE y β = 4 para GSE. Este índice cuenta el número de componentes reales por elemento de la matriz.
Definiciones
El conjunto unitario gaussiano se describe mediante la medida gaussiana con densidad
en el espacio de matrices hermíticas . Aquí
hay una constante de normalización, elegida de modo que la integral de la densidad sea igual a uno. El término unitario se refiere al hecho de que la distribución es invariante bajo conjugación unitaria. El conjunto unitario gaussiano modela hamiltonianos que carecen de simetría de inversión temporal.
El conjunto ortogonal gaussiano se describe mediante la medida gaussiana con densidad
en el espacio de n × n matrices simétricas reales H = ( H ij )n i , j = 1Su distribución es invariante bajo conjugación ortogonal y modela hamiltonianos con simetría de inversión temporal. De manera equivalente, se genera mediante , donde es una matriz con muestras IID de la distribución normal estándar.
El conjunto simpléctico gaussiano se describe mediante la medida gaussiana con densidad
en el espacio de matrices cuaterniónicas hermíticas n × n , por ejemplo matrices cuadradas simétricas compuestas de cuaterniones , H = ( H ij )n i , j = 1Su distribución es invariante bajo la conjugación por el grupo simpléctico , y modela hamiltonianos con simetría de inversión temporal pero sin simetría rotacional.
Funciones de correlación de puntos
Los conjuntos tal como se definen aquí tienen elementos de matriz distribuidos gaussianamente con media ⟨ H ij ⟩ = 0 y correlaciones de dos puntos dadas por de
las cuales se siguen todas las correlaciones superiores según el teorema de Isserlis .
donde Z β , n es una constante de normalización que se puede calcular explícitamente, véase la integral de Selberg . En el caso de GUE ( β = 2), la fórmula (1) describe un proceso puntual determinante . Los valores propios se repelen ya que la densidad de probabilidad conjunta tiene un cero (de orden th) para valores propios coincidentes .
La distribución del valor propio más grande para GOE y GUE se puede resolver explícitamente. [35] Convergen a la distribución de Tracy-Widom después de desplazarse y escalarse adecuadamente.
Convergencia a la distribución semicircular de Wigner
El espectro, dividido por , converge en distribución a la distribución semicircular en el intervalo : . Aquí está la varianza de las entradas fuera de la diagonal. La varianza de las entradas en la diagonal no importa.
Distribución de espaciamientos de niveles
A partir de la secuencia ordenada de valores propios , se definen los espaciamientos normalizados , donde es el espaciamiento medio. La distribución de probabilidad de los espaciamientos está dada aproximadamente por,
para el conjunto ortogonal GOE ,
para el conjunto unitario GUE y
para el conjunto simpléctico GSE .
Las constantes numéricas son tales que se normaliza:
y el espaciamiento medio es,
para .
Generalizaciones
Las matrices de Wigner son matrices hermíticas aleatorias tales que las entradas
por encima de la diagonal principal son variables aleatorias independientes con media cero y tienen segundos momentos idénticos.
Los conjuntos de matrices invariantes son matrices hermíticas aleatorias con densidad en el espacio de matrices hermíticas simétricas/hermíticas/cuaterniónicas reales, que es de la forma donde la función V se denomina potencial.
Los conjuntos gaussianos son los únicos casos especiales comunes de estas dos clases de matrices aleatorias. Esto es una consecuencia de un teorema de Porter y Rosenzweig. [36] [37]
Teoría espectral de matrices aleatorias
La teoría espectral de matrices aleatorias estudia la distribución de los valores propios a medida que el tamaño de la matriz tiende al infinito. [38]
Medida espectral empírica
La medida espectral empírica μ H de H se define por
Dado un conjunto de matrices, decimos que sus medidas espectrales convergen débilmente a sy-s para cualquier conjunto medible , el promedio del conjunto converge: Convergencia débilmente casi con seguridad : Si tomamos muestras independientemente del conjunto, entonces con probabilidad 1, para cualquier conjunto medible .
En otro sentido , la convergencia casi segura débil significa que muestreamos , no de forma independiente, sino por "crecimiento" (un proceso estocástico ), luego con probabilidad 1, para cualquier conjunto medible .
Por ejemplo, podemos "hacer crecer" una secuencia de matrices a partir del conjunto gaussiano de la siguiente manera:
Muestrear una secuencia infinita doblemente infinita de variables aleatorias estándar .
Define cada una donde está la matriz formada por entradas .
Tenga en cuenta que los conjuntos de matrices genéricos no nos permiten crecer, pero la mayoría de los comunes, como los tres conjuntos gaussianos, sí nos permiten crecer.
Régimen global
En el régimen global , uno está interesado en la distribución de estadísticas lineales de la forma .
El límite de la medida espectral empírica de conjuntos de matrices invariantes se describe mediante una cierta ecuación integral que surge de la teoría potencial . [41]
Fluctuaciones
Para las estadísticas lineales N f , H = n −1 Σ f ( λ j ) , también nos interesan las fluctuaciones alrededor de ∫ f ( λ ) dN ( λ ). Para muchas clases de matrices aleatorias, se conoce un teorema de límite central de la forma
. [42] [43]
El problema variacional de los conjuntos unitarios
Considere la medida
donde es el potencial del conjunto y sea la medida espectral empírica.
Podemos reescribir con como
La medida de probabilidad ahora tiene la forma
¿Dónde está la función anterior dentro de los corchetes?
Vamos ahora
sea el espacio de medidas de probabilidad unidimensionales y considere el minimizador
La medida de equilibrio tiene la siguiente densidad de Radon-Nikodym
[44]
Régimen mesoscópico
[45] [46] El enunciado típico de la ley semicircular de Wigner es equivalente al siguiente enunciado: Para cada intervalo fijo centrado en un punto , a medida que , el número de dimensiones del conjunto gaussiano aumenta, la proporción de los valores propios que caen dentro del intervalo converge a , donde es la densidad de la distribución semicircular.
Si se permite que disminuya a medida que aumenta, entonces obtenemos teoremas estrictamente más fuertes, llamados "leyes locales" o "régimen mesoscópico".
El régimen mesoscópico es intermedio entre el local y el global. En el régimen mesoscópico , uno está interesado en la distribución límite de valores propios en un conjunto que se contrae a cero, pero lo suficientemente lento, de modo que el número de valores propios dentro de .
Por ejemplo, el conjunto de Ginibre tiene una ley mesoscópica: para cualquier secuencia de discos que se encogen con áreas dentro del disco unitario, si los discos tienen un área , la distribución condicional del espectro dentro de los discos también converge a una distribución uniforme. Es decir, si cortamos los discos que se encogen junto con el espectro que cae dentro de los discos, luego escalamos los discos hasta el área unitaria, veríamos que los espectros convergen a una distribución plana en los discos. [46]
Régimen local
En el régimen local , uno está interesado en la distribución límite de valores propios en un conjunto que se contrae tan rápido que el número de valores propios permanece .
Por lo general, esto significa el estudio de los espaciamientos entre valores propios y, de manera más general, en la distribución conjunta de valores propios en un intervalo de longitud de orden 1/ n . Se distingue entre estadísticas de volumen , pertenecientes a intervalos dentro del soporte de la medida espectral límite, y estadísticas de borde , pertenecientes a intervalos cerca del límite del soporte.
Estadísticas masivas
Formalmente, fijemos en el interior del soporte de . Luego consideremos el proceso puntual
donde son los valores propios de la matriz aleatoria.
El proceso puntual captura las propiedades estadísticas de los valores propios en la vecindad de . Para los conjuntos gaussianos, el límite de es conocido; [4] por lo tanto, para GUE es un proceso puntual determinante con el núcleo
(el núcleo seno ).
El principio de universalidad postula que el límite de as debe depender únicamente de la clase de simetría de la matriz aleatoria (y no del modelo específico de matrices aleatorias ni de ). Se conocen pruebas rigurosas de universalidad para conjuntos de matrices invariantes [47] [48] y matrices de Wigner. [49] [50]
Como otro ejemplo, considere el conjunto de Ginibre. Puede ser real o complejo. El conjunto de Ginibre real tiene entradas gaussianas estándar iid y el conjunto de Ginibre complejo tiene entradas gaussianas complejas estándar iid .
Ahora, sea una muestra del conjunto real o complejo, y sea el valor absoluto de su valor propio máximo: Tenemos el siguiente teorema para las estadísticas de borde: [51]
Estadísticas de aristas del conjunto de Ginibre — Para y como arriba, con probabilidad uno,
Además, si y
entonces converge en distribución a la ley de Gumbel , es decir, la medida de probabilidad en con función de distribución acumulativa .
Este teorema perfecciona la ley circular del conjunto de Ginibre . En otras palabras, la ley circular dice que el espectro de casi seguramente cae de manera uniforme sobre el disco unitario. y el teorema de estadística de aristas establece que el radio del disco casi unitario es de aproximadamente , y fluctúa en una escala de , según la ley de Gumbel.
Funciones de correlación
La densidad de probabilidad conjunta de los valores propios de matrices hermíticas aleatorias , con funciones de partición de la forma
donde
y es la medida de Lebesgue estándar en el espacio de matrices hermíticas, está dada por
Las funciones de correlación de un punto (o distribuciones marginales ) se definen como
que son funciones antisimétricas de sus variables. En particular, la función de correlación de un punto, o densidad de estados , es
Su integral sobre un conjunto de Borel da el número esperado de valores propios contenidos en :
El siguiente resultado expresa estas funciones de correlación como determinantes de las matrices formadas a partir de la evaluación del núcleo integral apropiado en los pares de puntos que aparecen dentro del correlador.
Teorema [Dyson-Mehta] Para cualquier , la función de correlación de punto se puede escribir como determinante
donde es el núcleo de Christoffel-Darboux
asociado a , escrito en términos de los cuasipolinomios
donde es una secuencia completa de polinomios mónicos, de los grados indicados, que satisfacen las condiciones de ortogonilidad.
Otras clases de matrices aleatorias
Matrices de Wishart
Las matrices de Wishart son matrices aleatorias n × n de la forma H = X X * , donde X es una matriz aleatoria n × m ( m ≥ n ) con entradas independientes, y X * es su transpuesta conjugada . En el importante caso especial considerado por Wishart, las entradas de X son variables aleatorias gaussianas distribuidas de manera idéntica (ya sean reales o complejas).
Mehta, ML (2004). Matrices aleatorias . Ámsterdam: Elsevier/Academic Press. ISBN 0-12-088409-7.
Anderson, GW; Guionnet, A.; Zeitouni, O. (2010). Introducción a las matrices aleatorias . Cambridge: Cambridge University Press. ISBN 978-0-521-19452-5.
Akemann, G.; Baik, J.; Di Francesco, P. (2011). Manual de Oxford de teoría de matrices aleatorias . Oxford: Oxford University Press. ISBN 978-0-19-957400-1.
Potters, Marc; Bouchaud, Jean-Philippe (30 de noviembre de 2020). Un primer curso de teoría de matrices aleatorias: para físicos, ingenieros y científicos de datos . Cambridge University Press. doi :10.1017/9781108768900. ISBN 978-1-108-76890-0.
Artículos de encuesta
Edelman, A.; Rao, NR (2005). "Teoría de matrices aleatorias". Acta Numerica . 14 : 233–297. Código Bibliográfico :2005AcNum..14..233E. doi :10.1017/S0962492904000236. S2CID 16038147.
Pastur, LA (1973). "Espectros de operadores aleatorios autoadjuntos". Russ. Math. Surv . 28 (1): 1–67. Bibcode :1973RuMaS..28....1P. doi :10.1070/RM1973v028n01ABEH001396. S2CID 250796916.
Diaconis, Persi (2003). "Patrones en valores propios: la 70.ª conferencia de Josiah Willard Gibbs". Boletín de la American Mathematical Society . Nueva serie. 40 (2): 155–178. doi : 10.1090/S0273-0979-03-00975-3 . MR 1962294.
Eynard, Bertrand; Kimura, Taro; Ribault, Sylvain (15 de octubre de 2015). "Matrices aleatorias". arXiv : 1510.04430v2 [math-ph].
Obras históricas
Wigner, E. (1955). "Vectores característicos de matrices con borde y dimensiones infinitas". Anales de Matemáticas . 62 (3): 548–564. doi :10.2307/1970079. JSTOR 1970079.
Wishart, J. (1928). "Distribución generalizada del momento del producto en muestras". Biometrika . 20A (1–2): 32–52. doi :10.1093/biomet/20a.1-2.32.
von Neumann, J.; Goldstine, HH (1947). "Inversión numérica de matrices de orden superior". Bull. Amer. Math. Soc . 53 (11): 1021–1099. doi : 10.1090/S0002-9904-1947-08909-6 .
Referencias
^ ab Wigner, Eugene P. (1955). "Vectores característicos de matrices con bordes y dimensiones infinitas". Anales de Matemáticas . 62 (3): 548–564. doi :10.2307/1970079. ISSN 0003-486X. JSTOR 1970079.
^ ab Block, RC; Good, WM; Harvey, JA; Schmitt, HW; Trammell, GT, eds. (1 de julio de 1957). Conferencia sobre física de neutrones por tiempo de vuelo celebrada en Gatlinburg, Tennessee, el 1 y 2 de noviembre de 1956 (informe ORNL-2309). Oak Ridge, Tennessee: Oak Ridge National Lab. doi :10.2172/4319287. OSTI 4319287.
^ ab Bohigas, O.; Giannoni, MJ; Schmit, Schmit (1984). "Caracterización de espectros cuánticos caóticos y universalidad de leyes de fluctuación de nivel". Phys. Rev. Lett . 52 (1): 1–4. Código Bibliográfico :1984PhRvL..52....1B. doi :10.1103/PhysRevLett.52.1.
^Por Mehta 2004
^ Aaronson, Scott; Arkhipov, Alex (2013). "La complejidad computacional de la óptica lineal". Theory of Computing . 9 : 143–252. doi : 10.4086/toc.2013.v009a004 .
^ Russell, Nicholas; Chakhmakhchyan, Levon; O'Brien, Jeremy; Laing, Anthony (2017). "Marcación directa de matrices unitarias aleatorias de Haar". New J. Phys . 19 (3): 033007. arXiv : 1506.06220 . Código Bibliográfico :2017NJPh...19c3007R. doi :10.1088/1367-2630/aa60ed. S2CID 46915633.
^ Verbaarschot JJ, Wettig T (2000). "Teoría de matrices aleatorias y simetría quiral en QCD". Annu. Rev. Nucl. Part. Sci . 50 : 343–410. arXiv : hep-ph/0003017 . Código Bibliográfico : 2000ARNPS..50..343V. doi : 10.1146/annurev.nucl.50.1.343. S2CID 119470008.
^ Franchini F, Kravtsov VE (octubre de 2009). "Horizonte en la teoría de matrices aleatorias, la radiación de Hawking y el flujo de átomos fríos". Phys. Rev. Lett . 103 (16): 166401. arXiv : 0905.3533 . Bibcode :2009PhRvL.103p6401F. doi :10.1103/PhysRevLett.103.166401. PMID 19905710. S2CID 11122957.
^ Sánchez D, Büttiker M (septiembre de 2004). "Asimetría del campo magnético del transporte mesoscópico no lineal". Phys. Rev. Lett . 93 (10): 106802. arXiv : cond-mat/0404387 . Código Bibliográfico :2004PhRvL..93j6802S. doi :10.1103/PhysRevLett.93.106802. PMID 15447435. S2CID 11686506.
^ Rychkov VS, Borlenghi S, Jaffres H, Fert A, Waintal X (agosto de 2009). "Par de giro y ondulación en multicapas magnéticas: un puente entre la teoría de Valet-Fert y los enfoques cuánticos". Phys. Rev. Lett . 103 (6): 066602. arXiv : 0902.4360 . Código Bibliográfico :2009PhRvL.103f6602R. doi :10.1103/PhysRevLett.103.066602. PMID 19792592. S2CID 209013.
^ Callaway DJE (abril de 1991). "Matrices aleatorias, estadísticas fraccionarias y el efecto Hall cuántico". Phys. Rev. B . 43 (10): 8641–8643. Bibcode :1991PhRvB..43.8641C. doi :10.1103/PhysRevB.43.8641. PMID 9996505.
^ Janssen M, Pracz K (junio de 2000). "Matrices de bandas aleatorias correlacionadas: transiciones de localización-deslocalización". Phys. Rev. E . 61 (6 Pt A): 6278–86. arXiv : cond-mat/9911467 . Código Bibliográfico :2000PhRvE..61.6278J. doi :10.1103/PhysRevE.61.6278. PMID 11088301. S2CID 34140447.
^ Zumbühl DM, Miller JB, Marcus CM, Campman K, Gossard AC (diciembre de 2002). "Acoplamiento espín-órbita, antilocalización y campos magnéticos paralelos en puntos cuánticos". Phys. Rev. Lett . 89 (27): 276803. arXiv : cond-mat/0208436 . Código Bibliográfico :2002PhRvL..89A6803Z. doi :10.1103/PhysRevLett.89.276803. PMID 12513231. S2CID 9344722.
^ Bahcall SR (diciembre de 1996). "Modelo de matriz aleatoria para superconductores en un campo magnético". Phys. Rev. Lett . 77 (26): 5276–5279. arXiv : cond-mat/9611136 . Código Bibliográfico :1996PhRvL..77.5276B. doi :10.1103/PhysRevLett.77.5276. PMID 10062760. S2CID 206326136.
^ Wishart 1928
^ Tropp, J. (2011). "Límites de cola fáciles de usar para sumas de matrices aleatorias". Fundamentos de las matemáticas computacionales . 12 (4): 389–434. arXiv : 1004.4389 . doi :10.1007/s10208-011-9099-z. S2CID 17735965.
^ Pennington, Jeffrey; Bahri, Yasaman (2017). "Geometría de superficies de pérdida de redes neuronales mediante teoría de matrices aleatorias". ICML'17: Actas de la 34.ª Conferencia internacional sobre aprendizaje automático . 70. S2CID 39515197.
^ Yang, Greg (2022). "Programas tensoriales V: ajuste de redes neuronales grandes mediante transferencia de hiperparámetros de disparo cero". arXiv : 2203.03466v2 [cs.LG].
^ von Neumann y Goldstine 1947
^ Edelman y Rao 2005
^ Keating, Jon (1993). "La función zeta de Riemann y la caología cuántica". Proc. Internat. School of Phys. Enrico Fermi . CXIX : 145–185. doi :10.1016/b978-0-444-81588-0.50008-0. ISBN .9780444815880.
^ Mingo, James A.; Speicher, Roland (2017): Probabilidad libre y matrices aleatorias. Fields Institute Monographs, vol. 35, Springer, Nueva York
^ Voiculescu, Dan (1991): "Leyes límite para matrices aleatorias y productos libres". Invenciones matemáticas 104.1: 201-220
^ Sompolinsky, H.; Crisanti, A.; Sommers, H. (julio de 1988). "Caos en redes neuronales aleatorias". Physical Review Letters . 61 (3): 259–262. Bibcode :1988PhRvL..61..259S. doi :10.1103/PhysRevLett.61.259. PMID 10039285. S2CID 16967637.
^ Rajan, Kanaka; Abbott, L. (noviembre de 2006). "Espectros de valores propios de matrices aleatorias para redes neuronales". Physical Review Letters . 97 (18): 188104. Bibcode :2006PhRvL..97r8104R. doi :10.1103/PhysRevLett.97.188104. PMID 17155583.
^ Wainrib, Gilles; Touboul, Jonathan (marzo de 2013). "Complejidad topológica y dinámica de redes neuronales aleatorias". Physical Review Letters . 110 (11): 118101. arXiv : 1210.5082 . Código Bibliográfico :2013PhRvL.110k8101W. doi :10.1103/PhysRevLett.110.118101. PMID 25166580. S2CID 1188555.
^ Timme, Marc; Wolf, Fred; Geisel, Theo (febrero de 2004). "Límites de velocidad topológicos para la sincronización de redes". Physical Review Letters . 92 (7): 074101. arXiv : cond-mat/0306512 . Código Bibliográfico :2004PhRvL..92g4101T. doi :10.1103/PhysRevLett.92.074101. PMID 14995853. S2CID 5765956.
^ Muir, Dylan; Mrsic-Flogel, Thomas (2015). "Límites del espectro propio para matrices semialeatorias con estructura modular y espacial para redes neuronales" (PDF) . Phys. Rev. E . 91 (4): 042808. Bibcode :2015PhRvE..91d2808M. doi :10.1103/PhysRevE.91.042808. PMID 25974548.
^ Vergani, Alberto A.; Martinelli, Samuele; Binaghi, Elisabetta (julio de 2019). "Análisis de fMRI en estado de reposo utilizando algoritmos de aprendizaje no supervisado". Métodos informáticos en biomecánica e ingeniería biomédica: imágenes y visualización . 8 (3). Taylor&Francis: 2168–1171. doi :10.1080/21681163.2019.1636413.
^ Burda, Z; Kornelsen, J; Nowak, MA; Porebski, B; Sboto-Frankenstein, U; Tomanek, B; Tyburczyk, J (2013). "Correlaciones colectivas del estudio de resonancia magnética funcional de las áreas de Brodmann con RMT-Denoising". Acta Física Polonica B. 44 (6): 1243. arXiv : 1306.3825 . Código Bib : 2013AcPPB..44.1243B. doi :10.5506/APhysPolB.44.1243.
^ Chow, Gregory P. (1976). Análisis y control de sistemas económicos dinámicos . Nueva York: Wiley. ISBN0-471-15616-7.
^ Turnovsky, Stephen (1974). "Las propiedades de estabilidad de las políticas económicas óptimas". American Economic Review . 64 (1): 136–148. JSTOR 1814888.
^ Soize, C. (8 de abril de 2005). "Teoría de matrices aleatorias para modelar incertidumbres en mecánica computacional" (PDF) . Métodos informáticos en mecánica aplicada e ingeniería . 194 (12–16): 1333–1366. Bibcode :2005CMAME.194.1333S. doi :10.1016/j.cma.2004.06.038. ISSN 1879-2138. S2CID 58929758.
^ Bohigas, Oriol; Weidenmuller, Hans (2015). Akemann, Gernot; Baik, Jinho; Di Francesco, Philippe (eds.). "Historia: una visión general". academic.oup.com . págs. 15–40. doi :10.1093/oxfordhb/9780198744191.013.2. ISBN978-0-19-874419-1. Recuperado el 22 de abril de 2024 .
^ Chiani M (2014). "Distribución del valor propio más grande para matrices aleatorias reales de Wishart y Gauss y una aproximación simple para la distribución de Tracy-Widom". Journal of Multivariate Analysis . 129 : 69–81. arXiv : 1209.3394 . doi :10.1016/j.jmva.2014.04.002. S2CID 15889291.
^ Porter, CE; Rosenzweig, N. (1 de enero de 1960). "PROPIEDADES ESTADÍSTICAS DE LOS ESPECTROS ATÓMICOS Y NUCLEARES". Ann. Acad. Sci. Fennicae. Ser. A VI . 44. OSTI 4147616 .
^ Livan, Giacomo; Novaes, Marcel; Vivo, Pierpaolo (2018), Livan, Giacomo; Novaes, Marcel; Vivo, Pierpaolo (eds.), "Material clasificado", Introducción a las matrices aleatorias: teoría y práctica , SpringerBriefs in Mathematical Physics, vol. 26, Cham: Springer International Publishing, págs. 15-21, doi :10.1007/978-3-319-70885-0_3, ISBN978-3-319-70885-0, consultado el 17 de mayo de 2023
^ Meckes, Elizabeth (8 de enero de 2021). "Los valores propios de matrices aleatorias". arXiv : 2101.02928 [math.PR].
^ ab . Marčenko, VA; Pastur, LA (1967). "Distribución de valores propios para algunos conjuntos de matrices aleatorias". Matemáticas de la URSS-Sbornik . 1 (4): 457–483. Código Bibliográfico :1967SbMat...1..457M. doi :10.1070/SM1967v001n04ABEH001994.
^ Pastur 1973
^ Pastur, L.; Shcherbina, M. (1995). "Sobre el enfoque de la mecánica estadística en la teoría de matrices aleatorias: densidad integrada de estados". J. Stat. Phys . 79 (3–4): 585–611. Bibcode :1995JSP....79..585D. doi :10.1007/BF02184872. S2CID 120731790.
^ Johansson, K. (1998). "Sobre fluctuaciones de valores propios de matrices hermíticas aleatorias". Duke Math. J. 91 ( 1): 151–204. doi :10.1215/S0012-7094-98-09108-6.
^ Pastur, LA (2005). "Un enfoque simple para el régimen global de conjuntos gaussianos de matrices aleatorias". Ukrainian Math. J. 57 ( 6): 936–966. doi :10.1007/s11253-005-0241-4. S2CID 121531907.
^ Harnad, John (15 de julio de 2013). Matrices aleatorias, procesos aleatorios y sistemas integrables . Springer. pp. 263–266. ISBN.978-1461428770.
^ Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer (abril de 2009). "Ley del semicírculo local y deslocalización completa para matrices aleatorias de Wigner". Communications in Mathematical Physics . 287 (2): 641–655. arXiv : 0803.0542 . Código Bibliográfico :2009CMaPh.287..641E. doi :10.1007/s00220-008-0636-9. ISSN 0010-3616.
^ ab Bourgade, Paul; Yau, Horng-Tzer; Yin, Jun (1 de agosto de 2014). "Ley circular local para matrices aleatorias". Teoría de la probabilidad y campos relacionados . 159 (3): 545–595. arXiv : 1206.1449 . doi :10.1007/s00440-013-0514-z. ISSN 1432-2064.
^ Pastur, L.; Shcherbina, M. (1997). "Universalidad de las estadísticas de valores propios locales para una clase de conjuntos de matrices aleatorias unitarias invariantes". Journal of Statistical Physics . 86 (1–2): 109–147. Bibcode :1997JSP....86..109P. doi :10.1007/BF02180200. S2CID 15117770.
^ Deift, P.; Kriecherbauer, T.; McLaughlin, KT-R.; Venakides, S.; Zhou, X. (1997). "Asintótica para polinomios ortogonales con respecto a pesos exponenciales variables". International Mathematics Research Notices . 1997 (16): 759–782. doi : 10.1155/S1073792897000500 .
^ Erdős, L.; Péché, S. ; Ramírez, JA; Schlein, B.; Yau, HT (2010). "Universalidad en masa para matrices de Wigner". Communications on Pure and Applied Mathematics . 63 (7): 895–925. arXiv : 0905.4176 . doi :10.1002/cpa.20317.
^ Tao, Terence ; Vu, Van H. (2010). "Matrices aleatorias: universalidad de las estadísticas de valores propios locales hasta el borde". Communications in Mathematical Physics . 298 (2): 549–572. arXiv : 0908.1982 . Bibcode :2010CMaPh.298..549T. doi :10.1007/s00220-010-1044-5. S2CID 16594369.
^ Rider, B (28 de marzo de 2003). "Un teorema límite en el borde de un conjunto de matrices aleatorias no hermíticas". Journal of Physics A: Mathematical and General . 36 (12): 3401–3409. Bibcode :2003JPhA...36.3401R. doi :10.1088/0305-4470/36/12/331. ISSN 0305-4470.
Enlaces externos
Fyodorov, Y. (2011). "Teoría de matrices aleatorias". Scholarpedia . 6 (3): 9886. Bibcode :2011SchpJ...6.9886F. doi : 10.4249/scholarpedia.9886 .
Weisstein, EW "Matriz aleatoria". Wolfram MathWorld.