stringtranslate.com

Carbón

El carbón es una roca sedimentaria combustible de color negro o marrón-negro , formada como estratos rocosos llamados vetas de carbón . El carbón es principalmente carbono con cantidades variables de otros elementos , principalmente hidrógeno , azufre , oxígeno y nitrógeno . [1] El carbón es un tipo de combustible fósil , que se forma cuando la materia vegetal muerta se descompone en turba que se convierte en carbón por el calor y la presión del entierro profundo durante millones de años. [2] Vastos depósitos de carbón se originan en antiguos humedales llamados bosques de carbón que cubrían gran parte de las áreas terrestres tropicales de la Tierra durante los tiempos Carbonífero tardío ( Pensilvaniano ) y Pérmico . [3] [4]

El carbón se utiliza principalmente como combustible. Si bien el carbón se conoce y se utiliza desde hace miles de años, su uso fue limitado hasta la Revolución Industrial . Con la invención de la máquina de vapor , el consumo de carbón aumentó. [5] En 2020, el carbón suministró aproximadamente una cuarta parte de la energía primaria del mundo y más de un tercio de su electricidad . [6] Algunos procesos industriales, como la fabricación de hierro y acero, queman carbón.

La extracción y quema de carbón daña el medio ambiente , causando muerte prematura y enfermedades, [7] y es la mayor fuente antropogénica de dióxido de carbono que contribuye al cambio climático . Catorce mil millones de toneladas de dióxido de carbono se emitieron por la quema de carbón en 2020, [8] lo que representa el 40% de las emisiones totales de combustibles fósiles [9] y más del 25% de las emisiones totales mundiales de gases de efecto invernadero . [10] Como parte de la transición energética mundial , muchos países han reducido o eliminado su uso de energía a base de carbón . [11] [12] El Secretario General de las Naciones Unidas pidió a los gobiernos que dejaran de construir nuevas plantas de carbón para 2020. [13]

El uso mundial de carbón fue de 8.300 millones de toneladas en 2022, [14] y se prevé que se mantenga en niveles récord en 2023. [15] Para cumplir el objetivo del Acuerdo de París de mantener el calentamiento global por debajo de los 2 °C (3,6 °F), el uso de carbón debe reducirse a la mitad entre 2020 y 2030, [16] y la "reducción gradual" del carbón se acordó en el Pacto Climático de Glasgow .

El mayor consumidor e importador de carbón en 2020 fue China , que representa casi la mitad de la producción anual mundial de carbón, seguida de India con aproximadamente una décima parte. Indonesia y Australia son los que más exportan, seguidos de Rusia . [17] [18]

Etimología

La palabra originalmente tomó la forma col en inglés antiguo , del protogermánico reconstruido * kula ( n ), de la raíz protoindoeuropea * g ( e ) u-lo- "carbón vivo". [19] Los cognados germánicos incluyen el frisón antiguo kole , el holandés medio cole , el holandés kool , el alto alemán antiguo chol , el alemán Kohle y el nórdico antiguo kol . El irlandés gual también es un cognado a través de la raíz indoeuropea. [19]

Formación del carbón

Ejemplo de estructura química del carbón

La conversión de la vegetación muerta en carbón se denomina carbonización. En varias épocas del pasado geológico, la Tierra tuvo bosques densos [20] en áreas bajas. En estos humedales, el proceso de carbonización comenzó cuando la materia vegetal muerta se protegió de la oxidación , generalmente con barro o agua ácida, y se convirtió en turba . Las turberas resultantes , que atraparon inmensas cantidades de carbono, finalmente fueron enterradas profundamente por sedimentos. Luego, durante millones de años, el calor y la presión del enterramiento profundo causaron la pérdida de agua, metano y dióxido de carbono y aumentaron la proporción de carbono. [21] El grado de carbón producido dependía de la presión y temperatura máximas alcanzadas, con lignito (también llamado "carbón pardo") producido en condiciones relativamente suaves, y carbón subbituminoso , carbón bituminoso o carbón antracita (también llamado "carbón duro" o "carbón negro") producido a su vez con el aumento de la temperatura y la presión. [2] [22]

De los factores que intervienen en la carbonización, la temperatura es mucho más importante que la presión o el tiempo de enterramiento. [23] El carbón subbituminoso puede formarse a temperaturas tan bajas como 35 a 80 °C (95 a 176 °F), mientras que la antracita requiere una temperatura de al menos 180 a 245 °C (356 a 473 °F). [24]

Aunque se conoce carbón de la mayoría de los períodos geológicos , el 90% de todos los yacimientos de carbón se depositaron en los períodos Carbonífero y Pérmico . [25] Paradójicamente, esto fue durante la cámara de hielo del Paleozoico tardío , una época de glaciación global . Sin embargo, la caída del nivel del mar global que acompañó a la glaciación expuso plataformas continentales que anteriormente habían estado sumergidas, y a estas se agregaron amplios deltas fluviales producidos por el aumento de la erosión debido a la caída del nivel de base . Estas áreas extendidas de humedales proporcionaron condiciones ideales para la formación de carbón. [26] La rápida formación de carbón terminó con la brecha de carbón en el evento de extinción del Pérmico-Triásico , donde el carbón es raro. [27]

La geografía favorable por sí sola no explica los extensos yacimientos de carbón del Carbonífero. [28] Otros factores que contribuyeron a la rápida deposición de carbón fueron los altos niveles de oxígeno , superiores al 30%, que promovieron intensos incendios forestales y la formación de carbón que era prácticamente indigerible para los organismos en descomposición; los altos niveles de dióxido de carbono que promovieron el crecimiento de las plantas; y la naturaleza de los bosques del Carbonífero, que incluían árboles de licofitas cuyo crecimiento determinado significaba que el carbono no estaba ligado al duramen de los árboles vivos durante largos períodos. [29]

Una teoría sugirió que hace unos 360 millones de años, algunas plantas desarrollaron la capacidad de producir lignina , un polímero complejo que hizo que sus tallos de celulosa fueran mucho más duros y leñosos. La capacidad de producir lignina condujo a la evolución de los primeros árboles . Pero las bacterias y los hongos no desarrollaron inmediatamente la capacidad de descomponer la lignina, por lo que la madera no se descompuso por completo, sino que quedó enterrada bajo sedimentos y finalmente se convirtió en carbón. Hace unos 300 millones de años, los hongos y otros hongos desarrollaron esta capacidad, poniendo fin al principal período de formación de carbón de la historia de la Tierra. [30] [31] [32] Aunque algunos autores señalaron alguna evidencia de degradación de lignina durante el Carbonífero y sugirieron que los factores climáticos y tectónicos eran una explicación más plausible, [33] la reconstrucción de enzimas ancestrales mediante análisis filogenético corroboró la hipótesis de que las enzimas degradadoras de lignina aparecieron en hongos aproximadamente hace 200 MYa. [34]

Un factor tectónico probable fue la cordillera Pangea central , una enorme cadena montañosa que corre a lo largo del ecuador y que alcanzó su mayor elevación cerca de esta época. Los modelos climáticos sugieren que la cordillera Pangea central contribuyó a la deposición de grandes cantidades de carbón a finales del Carbonífero. Las montañas crearon una zona de fuertes precipitaciones durante todo el año, sin una estación seca típica de un clima monzónico . Esto es necesario para la preservación de la turba en los pantanos de carbón. [35]

Se sabe que el carbón proviene de estratos precámbricos , anteriores a las plantas terrestres. Se presume que este carbón se originó a partir de residuos de algas. [36] [37]

A veces, las vetas de carbón (también conocidas como capas de carbón) se intercalan con otros sedimentos en un ciclotema . Se cree que los ciclotemas tienen su origen en ciclos glaciares que produjeron fluctuaciones en el nivel del mar , que alternativamente expusieron y luego inundaron grandes áreas de la plataforma continental. [38]

Química de la carbonificación

El tejido leñoso de las plantas está compuesto principalmente de celulosa, hemicelulosa y lignina. La turba moderna es principalmente lignina, con un contenido de celulosa y hemicelulosa que varía de 5% a 40%. También están presentes varios otros compuestos orgánicos, como ceras y compuestos que contienen nitrógeno y azufre. [39] La lignina tiene una composición de peso de aproximadamente 54% de carbono, 6% de hidrógeno y 30% de oxígeno, mientras que la celulosa tiene una composición de peso de aproximadamente 44% de carbono, 6% de hidrógeno y 49% de oxígeno. El carbón bituminoso tiene una composición de aproximadamente 84,4% de carbono, 5,4% de hidrógeno, 6,7% de oxígeno, 1,7% de nitrógeno y 1,8% de azufre, en base al peso. [40] El bajo contenido de oxígeno del carbón muestra que la carbonización eliminó la mayor parte del oxígeno y gran parte del hidrógeno, un proceso llamado carbonización . [41]

La carbonización se produce principalmente por deshidratación , descarboxilación y desmetanización. La deshidratación elimina las moléculas de agua del carbón en maduración mediante reacciones como [42]

2R–OH → R–O–R + H2O

La descarboxilación elimina el dióxido de carbono del carbón en maduración: [42]

RCOOH → RH + CO2

Mientras que la desmetanización procede por reacción tal como

2R-CH3 R-CH2 - R + CH4
R-CH2 - CH2 - CH2 - R → R-CH=CH-R + CH4

En estas fórmulas, R representa el resto de una molécula de celulosa o lignina a la que están unidos los grupos reactivos.

La deshidratación y la descarboxilación tienen lugar al principio de la carbonización, mientras que la desmetanización comienza solo después de que el carbón ya ha alcanzado el rango bituminoso. [43] El efecto de la descarboxilación es reducir el porcentaje de oxígeno, mientras que la desmetanización reduce el porcentaje de hidrógeno. La deshidratación hace ambas cosas y (junto con la desmetanización) reduce la saturación de la cadena principal de carbono (aumentando el número de enlaces dobles entre el carbono).

A medida que avanza la carbonización, los compuestos alifáticos se convierten en compuestos aromáticos . De manera similar, los anillos aromáticos se fusionan en compuestos poliaromáticos (anillos enlazados de átomos de carbono). [44] La estructura se asemeja cada vez más al grafeno , el elemento estructural del grafito.

Los cambios químicos van acompañados de cambios físicos, como la disminución del tamaño medio de los poros. [45]

Macerales

Los macerales son partes de plantas carbonizadas que conservan la morfología y algunas propiedades de la planta original. En muchas carbonizadas, los macerales individuales se pueden identificar visualmente. Algunos macerales incluyen: [46]

En la carbonización, la huminita se reemplaza por vitrinita vítrea (brillante) . [47] La ​​maduración del carbón bituminoso se caracteriza por la bitumenización , en la que parte del carbón se convierte en betún , un gel rico en hidrocarburos. [48] La maduración a antracita se caracteriza por la desbitumenización (a partir de la desmetanización) y la creciente tendencia de la antracita a romperse con una fractura concoidea , similar a la forma en que se rompe el vidrio grueso. [49]

Tipos

Exposición costera de la veta de Point Aconi en Nueva Escocia
Sistema de clasificación del carbón utilizado por el Servicio Geológico de los Estados Unidos

A medida que los procesos geológicos aplican presión sobre el material biótico muerto a lo largo del tiempo, en condiciones adecuadas, su grado o rango metamórfico aumenta sucesivamente en:

Existen varias normas internacionales para el carbón. [50] La clasificación del carbón se basa generalmente en el contenido de volátiles . Sin embargo, la distinción más importante es entre el carbón térmico (también conocido como carbón vapor), que se quema para generar electricidad a través del vapor; y el carbón metalúrgico (también conocido como carbón de coque), que se quema a alta temperatura para fabricar acero .

La ley de Hilt es una observación geológica que establece que (dentro de un área pequeña) cuanto más profundo se encuentre el carbón, mayor será su rango (o grado). Se aplica si el gradiente térmico es completamente vertical; sin embargo, el metamorfismo puede causar cambios laterales de rango, independientemente de la profundidad. Por ejemplo, algunas de las vetas de carbón del yacimiento de carbón de Madrid, Nuevo México, se convirtieron parcialmente en antracita por metamorfismo de contacto a partir de un umbral ígneo , mientras que el resto de las vetas permanecieron como carbón bituminoso. [51]

Historia

Mineros de carbón chinos en una ilustración de la enciclopedia Tiangong Kaiwu , publicada en 1637

El uso más antiguo reconocido es del área de Shenyang en China, donde hacia el 4000 a. C. los habitantes neolíticos habían comenzado a tallar adornos de lignito negro. [52] El carbón de la mina Fushun en el noreste de China se utilizó para fundir cobre ya en el año 1000 a. C. [53] Marco Polo , el italiano que viajó a China en el siglo XIII, describió el carbón como "piedras negras... que arden como troncos", y dijo que el carbón era tan abundante que la gente podía tomar tres baños calientes a la semana. [54] En Europa, la primera referencia al uso del carbón como combustible es del tratado geológico Sobre las piedras (Lap. 16) del científico griego Teofrasto (c. 371-287 a. C.): [55] [56]

Entre los materiales que se extraen por su utilidad, los llamados carbones , que están hechos de tierra y, una vez encendidos, arden como el carbón vegetal. Se encuentran en Liguria... y en Élide, cuando se llega a Olimpia por el camino de la montaña; y los utilizan quienes trabajan los metales.

—  Teofrasto, Sobre las piedras (16) [57]

El carbón de afloramiento se utilizó en Gran Bretaña durante la Edad del Bronce (3000-2000 a. C.), donde formaba parte de piras funerarias . [58] [59] En la Britania romana , con la excepción de dos campos modernos, "los romanos explotaban carbón en todos los principales yacimientos de carbón de Inglaterra y Gales a fines del siglo II d. C.". [60] Se han encontrado evidencias de comercio de carbón, que datan de aproximadamente el año 200 d. C., en el asentamiento romano de Heronbridge , cerca de Chester ; y en Fenlands de East Anglia , donde el carbón de Midlands se transportaba a través del Car Dyke para su uso en el secado de grano. [61] Se han encontrado cenizas de carbón en los hogares de villas y fortalezas romanas , particularmente en Northumberland , que datan de alrededor del año 400 d. C. En el oeste de Inglaterra, los escritores contemporáneos describieron la maravilla de un brasero permanente de carbón en el altar de Minerva en Aquae Sulis (la actual Bath ), aunque de hecho el carbón de superficie de fácil acceso de lo que se convirtió en el yacimiento de carbón de Somerset era de uso común en viviendas bastante humildes a nivel local. [62] Se ha encontrado evidencia del uso del carbón para trabajar el hierro en la ciudad durante el período romano. [63] En Eschweiler , Renania , los romanos usaban depósitos de carbón bituminoso para la fundición de mineral de hierro . [60]

Minero de carbón en Gran Bretaña, 1942

No existe evidencia de que el carbón fuera de gran importancia en Gran Bretaña antes de aproximadamente el año 1000 d. C., la Alta Edad Media . [64] El carbón comenzó a denominarse "carbón marino" en el siglo XIII; el muelle donde llegaba el material a Londres se conocía como Seacoal Lane, identificado así en una carta del rey Enrique III otorgada en 1253. [65] Inicialmente, el nombre se dio porque mucho carbón se encontraba en la costa, habiendo caído de las vetas de carbón expuestas en los acantilados de arriba o arrastrado por afloramientos de carbón submarinos, [64] pero en la época de Enrique VIII , se entendió que derivaba de la forma en que era llevado a Londres por mar. [66] En 1257-1259, el carbón de Newcastle upon Tyne fue enviado a Londres para los herreros y caleros que construían la Abadía de Westminster . [64] Seacoal Lane y Newcastle Lane, donde el carbón se descargaba en los muelles a lo largo del río Fleet , todavía existen. [67]

Estas fuentes de fácil acceso se habían agotado en gran medida (o no podían satisfacer la creciente demanda) en el siglo XIII, cuando se desarrolló la extracción subterránea mediante pozos o galerías . [58] El nombre alternativo era "carbón de pozo", porque provenía de minas.

Producción mundial de carbón en 1908 según la presentación del Atlas y el Gazetter de Harmsworth

Cocinar y calentar el hogar con carbón (además de leña o en lugar de ella) se ha hecho en varias épocas y lugares a lo largo de la historia de la humanidad, especialmente en épocas y lugares donde el carbón superficial estaba disponible y la leña era escasa, pero una dependencia generalizada del carbón para los hogares domésticos probablemente nunca existió hasta que tal cambio en los combustibles ocurrió en Londres a fines del siglo XVI y principios del XVII. [68] La historiadora Ruth Goodman ha rastreado los efectos socioeconómicos de ese cambio y su posterior propagación por toda Gran Bretaña [68] y ha sugerido que su importancia en la conformación de la adopción industrial del carbón ha sido subestimada anteriormente. [68] : xiv–xix 

El desarrollo de la Revolución Industrial condujo al uso a gran escala del carbón, ya que la máquina de vapor sustituyó a la rueda hidráulica . En 1700, cinco sextas partes del carbón del mundo se extraían en Gran Bretaña. Gran Bretaña se habría quedado sin sitios adecuados para molinos de agua en la década de 1830 si el carbón no hubiera estado disponible como fuente de energía. [69] En 1947 había unos 750.000 mineros en Gran Bretaña, [70] pero la última mina de carbón profunda en el Reino Unido cerró en 2015. [71]

Un grado entre el carbón bituminoso y la antracita se conocía antiguamente como "carbón de vapor", ya que se utilizaba ampliamente como combustible para locomotoras de vapor . En este uso especializado, a veces se lo conoce como "carbón marino" en los Estados Unidos. [72] El "carbón de vapor" pequeño, también llamado carbón de vapor pequeño seco (DSSN), se utilizaba como combustible para calentar agua doméstica .

El carbón desempeñó un papel importante en la industria en los siglos XIX y XX. La predecesora de la Unión Europea , la Comunidad Europea del Carbón y del Acero , se basaba en el comercio de este producto. [73]

El carbón sigue llegando a las playas de todo el mundo, tanto por la erosión natural de las vetas de carbón expuestas como por los derrames provocados por el viento desde los buques de carga. Muchos hogares de esas zonas recogen este carbón como fuente importante, y a veces primaria, de combustible para calefacción. [74]

Composición

El carbón está constituido principalmente por una mezcla negra de diversos compuestos orgánicos y polímeros. Por supuesto, existen varios tipos de carbón, con colores oscuros variables y composiciones variables. Los carbones jóvenes (lignito, lignito) no son negros. Los dos principales carbones negros son el bituminoso, que es más abundante, y el antracita. El porcentaje de carbono en el carbón sigue el orden antracita > bituminoso > lignito > lignito. El valor combustible del carbón varía en el mismo orden. Algunos depósitos de antracita contienen carbono puro en forma de grafito .

En el caso del carbón bituminoso, la composición elemental en base seca y sin cenizas es de 84,4 % de carbono, 5,4 % de hidrógeno, 6,7 % de oxígeno, 1,7 % de nitrógeno y 1,8 % de azufre, en base al peso. [40] Esta composición refleja en parte la composición de las plantas precursoras. La segunda fracción principal del carbón es la ceniza, una mezcla indeseable y no combustible de minerales inorgánicos. La composición de la ceniza se suele analizar en términos de óxidos obtenidos después de la combustión en el aire:

De particular interés es el contenido de azufre del carbón, que puede variar desde menos del 1% hasta tanto como el 4%. La mayor parte del azufre y la mayor parte del nitrógeno se incorpora a la fracción orgánica en forma de compuestos organosulfurados y compuestos organonitrógenos . Este azufre y nitrógeno están fuertemente ligados dentro de la matriz de hidrocarburos. Estos elementos se liberan como SO2 y NOx durante la combustión. No se pueden eliminar, al menos económicamente, de otra manera. Algunos carbones contienen azufre inorgánico, principalmente en forma de pirita de hierro (FeS2 ) . Al ser un mineral denso, se puede eliminar del carbón por medios mecánicos, por ejemplo, mediante flotación por espuma . Algo de sulfato se presenta en el carbón, especialmente en muestras meteorizadas. No se volatiliza y se puede eliminar mediante lavado. [46]

Los componentes menores incluyen:

El Hg, el As y el Se son minerales que no suponen ningún problema para el medio ambiente, sobre todo porque son solo componentes traza. Sin embargo, se vuelven móviles (volátiles o solubles en agua) cuando se queman.

Usos

Aunque la mayor parte del carbón se utiliza como combustible, existen otras aplicaciones a gran escala.

Coque

Horno de coque en una planta de combustible sin humo en Gales , Reino Unido

El coque es un residuo carbonoso sólido derivado del carbón de coque (un carbón bituminoso con bajo contenido de cenizas y azufre, [79] también conocido como carbón metalúrgico ), que se utiliza en la fabricación de acero y otros productos que contienen hierro. [79] El coque se produce cuando el carbón de coque se cuece en un horno sin oxígeno a temperaturas de hasta 1000 °C, eliminando los componentes volátiles y fusionando el carbono fijo y la ceniza residual. El coque metalúrgico se utiliza como combustible y como agente reductor en la fundición de mineral de hierro en un alto horno . [80] El monóxido de carbono producido por su combustión reduce la hematita (un óxido de hierro ) a hierro.

2Fe 2 O 3 + 6 CO → 4Fe + 6 CO 2 )

También se produce arrabio , que es demasiado rico en carbono disuelto.

El coque debe ser lo suficientemente fuerte como para resistir el peso de la capa de recubrimiento en el alto horno, por lo que el carbón de coque es tan importante para fabricar acero mediante la ruta convencional. El coque de carbón es gris, duro y poroso y tiene un poder calorífico de 29,6 MJ/kg. Algunos procesos de fabricación de coque generan subproductos, entre ellos alquitrán de hulla , amoníaco , aceites ligeros y gas de hulla .

El coque de petróleo (petcoke) es el residuo sólido obtenido en la refinación del petróleo , que se parece al coque pero contiene demasiadas impurezas para ser útil en aplicaciones metalúrgicas.

Producción de productos químicos

Producción de productos químicos a partir del carbón

Desde la década de 1950 se han producido productos químicos a partir del carbón. El carbón se puede utilizar como materia prima en la producción de una amplia gama de fertilizantes químicos y otros productos químicos. La principal ruta para estos productos era la gasificación del carbón para producir gas de síntesis . Los productos químicos primarios que se producen directamente a partir del gas de síntesis incluyen metanol , hidrógeno y monóxido de carbono , que son los bloques químicos a partir de los cuales se fabrica todo un espectro de productos químicos derivados, incluidas olefinas , ácido acético , formaldehído , amoníaco, urea y otros. La versatilidad del gas de síntesis como precursor de productos químicos primarios y productos derivados de alto valor brinda la opción de usar carbón para producir una amplia gama de productos básicos. Sin embargo, en el siglo XXI, el uso de metano de lecho de carbón está cobrando mayor importancia. [81]

Dado que la gama de productos químicos que se pueden fabricar mediante la gasificación del carbón también puede utilizar, en general, materias primas derivadas del gas natural y del petróleo , la industria química tiende a utilizar las materias primas que resulten más rentables. Por lo tanto, el interés por el uso del carbón tendió a aumentar cuando los precios del petróleo y del gas natural aumentaron y durante períodos de alto crecimiento económico mundial que podrían haber afectado a la producción de petróleo y gas.

Los procesos de transformación de carbón en productos químicos requieren cantidades sustanciales de agua. [82] Gran parte de la producción de carbón en productos químicos se realiza en China [83] [84], donde las provincias que dependen del carbón, como Shanxi, luchan por controlar su contaminación. [85]

Licuefacción

El carbón se puede convertir directamente en combustibles sintéticos equivalentes a la gasolina o al diésel mediante hidrogenación o carbonización . [86] La licuefacción del carbón emite más dióxido de carbono que la producción de combustible líquido a partir del petróleo crudo . La mezcla con biomasa y el uso de CCS emitirían ligeramente menos que el proceso del petróleo, pero a un alto costo. [87] La ​​empresa estatal China Energy Investment tiene una planta de licuefacción de carbón y planea construir dos más. [88]

La licuefacción del carbón también puede referirse al peligro de la carga durante el transporte de carbón. [89]

Gasificación

La gasificación de carbón, como parte de una central eléctrica de carbón de ciclo combinado de gasificación integrada (IGCC), se utiliza para producir gas de síntesis , una mezcla de monóxido de carbono (CO) e hidrógeno (H 2 ) gaseoso para alimentar turbinas de gas y producir electricidad. El gas de síntesis también se puede convertir en combustibles para el transporte, como gasolina y diésel , mediante el proceso Fischer-Tropsch ; como alternativa, el gas de síntesis se puede convertir en metanol , que se puede mezclar directamente en combustible o convertir en gasolina mediante el proceso de metanol a gasolina. [90] La gasificación combinada con la tecnología Fischer-Tropsch fue utilizada por la empresa química Sasol de Sudáfrica para fabricar productos químicos y combustibles para vehículos de motor a partir de carbón. [91]

Durante la gasificación, el carbón se mezcla con oxígeno y vapor mientras se calienta y se presuriza. Durante la reacción, las moléculas de oxígeno y agua oxidan el carbón y lo convierten en monóxido de carbono (CO), al tiempo que liberan gas hidrógeno (H2 ) . Esto solía hacerse en minas de carbón subterráneas y también para producir gas de ciudad , que se enviaba por tuberías a los clientes para quemarlo para iluminación, calefacción y cocina.

3C ( como carbón ) + O 2 + H 2 O → H 2 + 3CO

Si la refinería quiere producir gasolina, el gas de síntesis se envía a una reacción de Fischer-Tropsch, conocida como licuefacción indirecta del carbón. Sin embargo, si el producto final deseado es hidrógeno, el gas de síntesis se introduce en la reacción de conversión de agua en gas , donde se libera más hidrógeno:

CO2 + H2OCO2 + H2

Generación de electricidad

Densidad de energía

La densidad energética del carbón es de aproximadamente 24 megajulios por kilogramo [92] (aproximadamente 6,7 kilovatios-hora por kg). Para una central eléctrica de carbón con una eficiencia del 40%, se necesitan aproximadamente 325 kg (717 lb) de carbón para alimentar una bombilla de 100 W durante un año. [93]

En 2017, el 27,6% de la energía mundial fue suministrada por carbón y Asia utilizó casi tres cuartas partes de ella. [94]

Tratamiento de precombustión

El carbón refinado es el producto de una tecnología de mejora del carbón que elimina la humedad y ciertos contaminantes de los carbones de menor rango, como el carbón subbituminoso y el lignito (marrón). Es una forma de varios tratamientos y procesos de precombustión para el carbón que modifican las características del carbón antes de que se queme. Se pueden lograr mejoras en la eficiencia térmica mediante un presecado mejorado (especialmente relevante con combustibles con alto contenido de humedad, como el lignito o la biomasa). [95] Los objetivos de las tecnologías de precombustión del carbón son aumentar la eficiencia y reducir las emisiones cuando se quema el carbón. La tecnología de precombustión a veces se puede utilizar como complemento de las tecnologías de poscombustión para controlar las emisiones de las calderas alimentadas con carbón.

Combustión en plantas de energía

Central eléctrica Castle Gate cerca de Helper, Utah, EE. UU.
Vagones de carbón
Bulldozer empujando carbón en la central eléctrica de Ljubljana , Eslovenia

El carbón que se quema como combustible sólido en las centrales eléctricas de carbón para generar electricidad se denomina carbón térmico . El carbón también se utiliza para producir temperaturas muy altas mediante la combustión. Se ha estimado que las muertes prematuras debido a la contaminación del aire son 200 por GW-año, sin embargo, pueden ser más altas alrededor de las centrales eléctricas donde no se utilizan depuradores o más bajas si están lejos de las ciudades. [96] Los esfuerzos en todo el mundo para reducir el uso del carbón han llevado a algunas regiones a cambiar al gas natural y la electricidad de fuentes con menos carbono.

Cuando se utiliza carbón para generar electricidad , normalmente se pulveriza y luego se quema en un horno con una caldera (véase también Caldera de carbón pulverizado ). [97] El calor del horno convierte el agua de la caldera en vapor , que luego se utiliza para hacer girar turbinas que hacen girar generadores y crean electricidad. [98] La eficiencia termodinámica de este proceso varía entre aproximadamente el 25% y el 50% dependiendo del tratamiento de precombustión, la tecnología de la turbina (por ejemplo, generador de vapor supercrítico ) y la edad de la planta. [99] [100]

Se han construido algunas plantas de energía de ciclo combinado de gasificación integrada (IGCC), que queman carbón de manera más eficiente. En lugar de pulverizar el carbón y quemarlo directamente como combustible en la caldera generadora de vapor, el carbón se gasifica para crear gas de síntesis , que se quema en una turbina de gas para producir electricidad (al igual que el gas natural se quema en una turbina). Los gases de escape calientes de la turbina se utilizan para generar vapor en un generador de vapor de recuperación de calor que alimenta una turbina de vapor complementaria . La eficiencia general de la planta cuando se utiliza para proporcionar calor y energía combinados puede alcanzar hasta el 94%. [101] Las plantas de energía IGCC emiten menos contaminación local que las plantas convencionales alimentadas con carbón pulverizado; sin embargo, la tecnología para la captura y almacenamiento de carbono (CCS) después de la gasificación y antes de la quema ha demostrado hasta ahora ser demasiado cara para usar con carbón. [102] [103] Otras formas de utilizar el carbón son como combustible de lechada de carbón y agua (CWS), que se desarrolló en la Unión Soviética , o en un ciclo de cobertura MHD . Sin embargo, estos no se utilizan ampliamente debido a la falta de ganancias.

En 2017, el 38% de la electricidad mundial procedía del carbón, el mismo porcentaje que 30 años antes. [104] En 2018, la capacidad instalada mundial fue de 2 TW (de los cuales 1 TW está en China), lo que representó el 30% de la capacidad total de generación de electricidad. [105] El país más dependiente es Sudáfrica, con más del 80% de su electricidad generada por carbón; [106] pero China por sí sola genera más de la mitad de la electricidad generada a partir de carbón del mundo. [107]

El uso máximo de carbón se alcanzó en 2013. [108] En 2018, el factor de capacidad de las centrales eléctricas a carbón promedió el 51%, es decir, funcionaron durante aproximadamente la mitad de sus horas operativas disponibles. [109]

Industria del carbón

Minería

Mineros de carbón en la región de los Apalaches en 1974

Anualmente se producen alrededor de 8.000 Mt de carbón, de las cuales aproximadamente el 90% es carbón duro y el 10% lignito. A partir de 2018, poco más de la mitad proviene de minas subterráneas. [110] La industria minera del carbón emplea a casi 2,7 millones de trabajadores. [111] Ocurren más accidentes durante la minería subterránea que en la minería a cielo abierto. No todos los países publican estadísticas de accidentes mineros , por lo que las cifras mundiales son inciertas, pero se cree que la mayoría de las muertes ocurren en accidentes de minería de carbón en China : en 2017 hubo 375 muertes relacionadas con la minería de carbón en China. [112] La mayor parte del carbón extraído es carbón térmico (también llamado carbón de vapor, ya que se utiliza para producir vapor para generar electricidad), pero el carbón metalúrgico (también llamado "carbón metálico" o "carbón de coque", ya que se utiliza para hacer coque para fabricar hierro) representa entre el 10% y el 15% del uso mundial de carbón. [113]

Como mercancía comercializada

Amplios muelles de carbón en Toledo, Ohio , 1895

China extrae casi la mitad del carbón del mundo, seguida por la India con aproximadamente una décima parte. [114] Australia representa aproximadamente un tercio de las exportaciones mundiales de carbón, seguida por Indonesia y Rusia , [18] mientras que los mayores importadores son Japón y la India. Rusia está orientando cada vez más sus exportaciones de carbón de Europa a Asia a medida que Europa hace la transición a la energía renovable y somete a Rusia a sanciones por su invasión de Ucrania. [18]

El precio del carbón metalúrgico es volátil [115] y mucho más alto que el precio del carbón térmico porque el carbón metalúrgico debe tener un menor contenido de azufre y requiere más limpieza. [116] Los contratos de futuros de carbón proporcionan a los productores de carbón y a la industria de energía eléctrica una herramienta importante para la cobertura y la gestión de riesgos .

En algunos países, la nueva generación de energía eólica o solar terrestre ya cuesta menos que la energía a carbón de las plantas existentes. [117] [118] Sin embargo, en el caso de China, esto se prevé para principios de la década de 2020 [119] y en el sudeste asiático, no hasta finales de esa década. [120] En la India, construir nuevas plantas no es rentable y, a pesar de estar subvencionadas, las plantas existentes están perdiendo cuota de mercado frente a las energías renovables. [121]

En muchos países del Norte global se está dejando de lado el uso del carbón y los antiguos sitios mineros se están utilizando como atracción turística. [122]

Tendencias del mercado

De los países productores de carbón , China es el que más extrae, casi la mitad del carbón mundial, seguida por la India, con menos del 10%. China es también, con diferencia, el mayor consumidor de carbón. Por tanto, las tendencias del mercado internacional dependen de la política energética china . [123] Aunque el esfuerzo del gobierno por reducir la contaminación del aire en China significa que la tendencia mundial a largo plazo es quemar menos carbón, las tendencias a corto y medio plazo pueden diferir, en parte debido a la financiación china de nuevas centrales eléctricas a carbón en otros países. [105]

Principales productores

Producción de carbón por regiones

Se muestran los países con una producción anual superior a 300 millones de toneladas.

Grandes consumidores

Se muestran los países con un consumo anual superior a 500 millones de toneladas. Las proporciones se basan en datos expresados ​​en toneladas equivalentes de petróleo.

Principales exportadores

Los exportadores corren el riesgo de una reducción de la demanda de importaciones de India y China. [130] [18]

Principales importadores

Daños a la salud humana

Las muertes causadas como resultado del uso de combustibles fósiles, especialmente carbón (áreas de rectángulos en el gráfico) superan ampliamente las resultantes de la producción de energía renovable (rectángulos apenas visibles en el gráfico). [133]

El uso de carbón como combustible causa problemas de salud y muertes. [134] La minería y el procesamiento del carbón causan contaminación del aire y del agua. [135] Las plantas alimentadas con carbón emiten óxidos de nitrógeno, dióxido de azufre, contaminación por partículas y metales pesados, que afectan negativamente a la salud humana. [135] La extracción de metano de los yacimientos de carbón es importante para evitar accidentes mineros.

El smog mortal de Londres fue causado principalmente por el uso excesivo de carbón. Se estima que a nivel mundial el carbón causa 800.000 muertes prematuras cada año, [136] principalmente en India [137] y China. [138] [139] [140]

La quema de carbón contribuye en gran medida a las emisiones de dióxido de azufre , que crea partículas PM2.5 , la forma más peligrosa de contaminación del aire. [141]

Las emisiones de las chimeneas de carbón causan asma , accidentes cerebrovasculares , reducción de la inteligencia , bloqueos arteriales , ataques cardíacos , insuficiencia cardíaca congestiva , arritmias cardíacas , envenenamiento por mercurio , oclusión arterial y cáncer de pulmón . [142] [143]

Se estima que los costes sanitarios anuales en Europa derivados del uso de carbón para generar electricidad pueden alcanzar los 43.000 millones de euros. [144]

En China, las mejoras en la calidad del aire y la salud humana aumentarían con políticas climáticas más estrictas, principalmente porque la energía del país depende en gran medida del carbón, y habría un beneficio económico neto. [145]

Un estudio de 2017 publicado en el Economic Journal concluyó que, en Gran Bretaña, durante el período 1851-1860, "un aumento de una desviación estándar en el uso de carbón aumentó la mortalidad infantil entre un 6 y un 8 % y que el uso de carbón industrial explica aproximadamente un tercio de la penalización por mortalidad urbana observada durante este período". [146]

La inhalación de polvo de carbón provoca neumoconiosis o "pulmón negro", llamada así porque el polvo de carbón literalmente vuelve negros los pulmones. [147] Solo en los EE. UU., se estima que 1.500 ex empleados de la industria del carbón mueren cada año por los efectos de la inhalación de polvo de las minas de carbón. [148]

Anualmente se producen enormes cantidades de cenizas de carbón y otros desechos. El uso de carbón genera cientos de millones de toneladas de cenizas y otros productos de desecho cada año. Estos incluyen cenizas volantes , cenizas de fondo y lodos de desulfuración de gases de combustión , que contienen mercurio , uranio , torio , arsénico y otros metales pesados , junto con no metales como el selenio . [149]

Alrededor del 10% del carbón es ceniza. [150] La ceniza de carbón es peligrosa y tóxica para los seres humanos y otros seres vivos. [151] La ceniza de carbón contiene los elementos radiactivos uranio y torio . La ceniza de carbón y otros subproductos sólidos de la combustión se almacenan localmente y se liberan de diversas formas que exponen a quienes viven cerca de las plantas de carbón a la radiación y a los tóxicos ambientales. [152]

Daños al medio ambiente

Fotografía aérea del lugar del derrame de cenizas volantes de carbón de la planta fósil de Kingston tomada el día después del evento.

La minería del carbón , los desechos de la combustión del carbón y los gases de combustión están causando importantes daños ambientales. [153] [154]

Los sistemas hídricos se ven afectados por la minería de carbón. [155] Por ejemplo, la minería de carbón afecta los niveles de las aguas subterráneas y del nivel freático y la acidez. Los derrames de cenizas volantes, como el derrame de lodo de cenizas volantes de carbón de la planta fósil de Kingston , también pueden contaminar la tierra y las vías fluviales y destruir viviendas. Las centrales eléctricas que queman carbón también consumen grandes cantidades de agua. Esto puede afectar los flujos de los ríos y tiene impactos consecuentes en otros usos de la tierra. En áreas de escasez de agua , como el desierto de Thar en Pakistán , la minería de carbón y las centrales eléctricas de carbón contribuyen al agotamiento de los recursos hídricos. [156]

Uno de los primeros impactos conocidos del carbón en el ciclo del agua fue la lluvia ácida . En 2014, se liberaron aproximadamente 100 Tg /S de dióxido de azufre (SO2 ) , más de la mitad de los cuales se originaron por la quema de carbón. [157] Después de la liberación, el dióxido de azufre se oxida a H2SO4 que dispersa la radiación solar, por lo que su aumento en la atmósfera ejerce un efecto de enfriamiento sobre el clima. Esto enmascara de manera beneficiosa parte del calentamiento causado por el aumento de los gases de efecto invernadero. Sin embargo, el azufre se precipita fuera de la atmósfera como lluvia ácida en cuestión de semanas, [ 158] mientras que el dióxido de carbono permanece en la atmósfera durante cientos de años. La liberación de SO2 también contribuye a la acidificación generalizada de los ecosistemas. [159]

Las minas de carbón abandonadas también pueden causar problemas. Pueden producirse hundimientos por encima de los túneles, lo que provoca daños a la infraestructura o a las tierras de cultivo. La minería del carbón también puede provocar incendios duraderos, y se ha estimado que en un momento dado se están produciendo miles de incendios en vetas de carbón . [160] Por ejemplo, Brennender Berg lleva ardiendo desde 1668 y sigue ardiendo en el siglo XXI. [161]

La producción de coque a partir de carbón produce amoníaco, alquitrán de hulla y compuestos gaseosos como subproductos que, si se descargan en la tierra, el aire o las vías fluviales, pueden contaminar el medio ambiente. [162] La acería de Whyalla es un ejemplo de una instalación de producción de coque en la que se descargaba amoníaco líquido al medio marino. [163]

Intensidad de emisión

La intensidad de las emisiones es el gas de efecto invernadero emitido durante la vida útil de un generador por unidad de electricidad generada. La intensidad de las emisiones de las centrales eléctricas de carbón es alta, ya que emiten alrededor de 1000 g de CO2eq por cada kWh generado, mientras que el gas natural tiene una intensidad de emisiones media, alrededor de 500 g de CO2eq por kWh. La intensidad de las emisiones del carbón varía según el tipo y la tecnología del generador y supera los 1200 g por kWh en algunos países. [164]

Incendios subterráneos

Miles de incendios de carbón arden en todo el mundo. [165] Los que arden bajo tierra pueden ser difíciles de localizar y muchos no se pueden extinguir. Los incendios pueden hacer que el suelo se hunda, sus gases de combustión son peligrosos para la vida y, al salir a la superficie, pueden iniciar incendios forestales superficiales . Las vetas de carbón pueden incendiarse por combustión espontánea o por contacto con un incendio en una mina o en la superficie. Los rayos son una fuente importante de ignición. El carbón continúa ardiendo lentamente de regreso a la veta hasta que el oxígeno (aire) ya no puede llegar al frente de la llama. Un incendio de pasto en una zona de carbón puede incendiar docenas de vetas de carbón. [166] [167] Los incendios de carbón en China queman aproximadamente 120 millones de toneladas de carbón al año, emitiendo 360 millones de toneladas métricas de CO 2 , lo que equivale al 2-3% de la producción mundial anual de CO 2 de combustibles fósiles . [168] [169] En Centralia, Pensilvania (un distrito ubicado en la región carbonífera de los EE. UU.), una veta expuesta de antracita se incendió en 1962 debido a un incendio de basura en el vertedero del distrito, ubicado en una mina de antracita abandonada . Los intentos de extinguir el incendio no tuvieron éxito y continúa ardiendo bajo tierra hasta el día de hoy . Originalmente se creía que la Montaña Ardiente australiana era un volcán, pero el humo y las cenizas provienen de un incendio de carbón que ha estado ardiendo durante unos 6000 años. [170]

En Kuh i Malik, en el valle de Yagnob , Tayikistán , los depósitos de carbón han estado ardiendo durante miles de años, creando vastos laberintos subterráneos llenos de minerales únicos, algunos de ellos muy hermosos.

La roca de limo rojiza que cubre muchas crestas y colinas en la cuenca del río Powder en Wyoming y en el oeste de Dakota del Norte se llama porcelanita , que se parece al "clinker" de desecho de la quema de carbón o a la " escoria " volcánica. [171] El clinker es una roca que se ha fundido por la quema natural de carbón. En la cuenca del río Powder se quemaron aproximadamente entre 27 y 54 mil millones de toneladas de carbón en los últimos tres millones de años. [ 172] La expedición de Lewis y Clark, así como los exploradores y colonos de la zona, informaron sobre incendios forestales de carbón en la zona . [173]

Cambio climático

La influencia del calentamiento (llamada forzamiento radiativo ) de los gases de efecto invernadero de larga duración casi se ha duplicado en 40 años, siendo el dióxido de carbono el impulsor dominante del calentamiento global. [174]

El efecto más importante y de más largo plazo del uso del carbón es la liberación de dióxido de carbono, un gas de efecto invernadero que causa el cambio climático . Las centrales eléctricas a carbón fueron las principales contribuyentes al crecimiento de las emisiones globales de CO2 en 2018, [175] el 40% de las emisiones totales de combustibles fósiles, [9] y más de una cuarta parte de las emisiones totales. [8] [nota 1] La minería del carbón puede emitir metano, otro gas de efecto invernadero. [176] [177]

En 2016, las emisiones brutas mundiales de dióxido de carbono derivadas del uso del carbón fueron de 14,5 gigatoneladas. [178] Por cada megavatio-hora generado, la generación de energía eléctrica a partir de carbón emite alrededor de una tonelada de dióxido de carbono, que es el doble de los aproximadamente 500 kg de dióxido de carbono liberados por una planta eléctrica a gas natural . [179] En 2013, el director de la agencia climática de la ONU recomendó que la mayoría de las reservas de carbón del mundo deberían dejarse en el suelo para evitar un calentamiento global catastrófico. [180] Para mantener el calentamiento global por debajo de 1,5 °C o 2 °C, será necesario retirar de forma anticipada cientos, o posiblemente miles, de plantas de energía a carbón. [181]

Mitigación de la contaminación

Controles de emisiones en una central eléctrica de carbón

La mitigación de la contaminación por carbón , a veces denominada carbón limpio, es una serie de sistemas y tecnologías que buscan mitigar el impacto en la salud y el medio ambiente de la quema de carbón para generar energía. La quema de carbón libera sustancias nocivas que contribuyen a la contaminación del aire, la lluvia ácida y las emisiones de gases de efecto invernadero . La mitigación incluye enfoques de precombustión, como la limpieza del carbón, y enfoques de poscombustión, como la desulfuración de gases de combustión , la reducción catalítica selectiva , los precipitadores electrostáticos y la reducción de cenizas volantes . Estas medidas tienen como objetivo reducir el impacto del carbón en la salud humana y el medio ambiente.

La combustión del carbón libera diversos productos químicos al aire. Los principales productos son agua y dióxido de carbono, al igual que la combustión del petróleo. También se liberan dióxido de azufre y óxidos de nitrógeno, así como algo de mercurio. El residuo que queda después de la combustión, la ceniza de carbón , a menudo contiene arsénico, mercurio y plomo. Finalmente, la quema de carbón, especialmente antracita , puede liberar materiales radiactivos. [182]

Ciencias económicas

En 2018, se invirtieron 80 mil millones de dólares en el suministro de carbón, pero casi todo para mantener los niveles de producción en lugar de abrir nuevas minas. [183] ​​A largo plazo, el carbón y el petróleo podrían costarle al mundo billones de dólares por año. [184] [185] El carbón solo puede costarle a Australia miles de millones, [186] mientras que los costos para algunas empresas o ciudades más pequeñas podrían ser del orden de millones de dólares. [187] Las economías más dañadas por el carbón (a través del cambio climático) pueden ser India y los EE. UU., ya que son los países con el mayor costo social del carbono . [188] Los préstamos bancarios para financiar el carbón son un riesgo para la economía india. [137]

China es el mayor productor de carbón del mundo y el mayor consumidor de energía del mundo, y el carbón en China suministra el 60% de su energía primaria. Sin embargo, se estima que dos quintas partes de las centrales eléctricas de carbón de China son deficitarias. [119]

La contaminación del aire causada por el almacenamiento y la manipulación del carbón le cuesta a los Estados Unidos casi 200 dólares por cada tonelada adicional almacenada, debido a las PM2,5. [189] La contaminación por carbón le cuesta a los EE. UU . 43.000 millones de euros cada año. [190] Las medidas para reducir la contaminación del aire benefician económicamente a las personas y a las economías de países [191] [192] como China. [193]

Subvenciones

Los subsidios para el carbón en 2021 se han estimado en US$19 mil millones , sin incluir los subsidios a la electricidad, y se espera que aumenten en 2022. [194] A partir de 2019, los países del G20 proporcionan al menos US$63,9 mil millones [175] de apoyo gubernamental por año para la producción de carbón, incluida la energía a base de carbón: muchos subsidios son imposibles de cuantificar [195] pero incluyen US$27,6 mil millones en finanzas públicas nacionales e internacionales, US$15,4 mil millones en apoyo fiscal y US$20,9 mil millones en inversiones de empresas estatales (SOE) por año. [175] En la UE, la ayuda estatal a nuevas plantas de carbón está prohibida a partir de 2020, y a las plantas de carbón existentes a partir de 2025. [196] A partir de 2018, la financiación gubernamental para nuevas plantas de energía a carbón fue proporcionada por el Banco Exim de China , [197] el Banco Japonés para la Cooperación Internacional y los bancos del sector público indio. [198] El carbón en Kazajstán fue el principal beneficiario de subsidios al consumo de carbón por un total de 2 mil millones de dólares en 2017. [199] El carbón en Turquía se benefició de subsidios sustanciales en 2021. [200]

Activos varados

Algunas centrales eléctricas de carbón podrían convertirse en activos varados ; por ejemplo , China Energy Investment , la mayor empresa eléctrica del mundo, corre el riesgo de perder la mitad de su capital. [119] Sin embargo, las empresas eléctricas estatales como Eskom en Sudáfrica, Perusahaan Listrik Negara en Indonesia, Sarawak Energy en Malasia, Taipower en Taiwán, EGAT en Tailandia, Vietnam Electricity y EÜAŞ en Turquía están construyendo o planificando nuevas plantas. [201] A partir de 2021, esto puede estar ayudando a provocar una burbuja de carbono que podría causar inestabilidad financiera si estalla. [202] [203] [204]

Política

Los países que construyen o financian nuevas centrales eléctricas de carbón, como China, India, Indonesia, Vietnam, Turquía y Bangladesh, enfrentan crecientes críticas internacionales por obstruir los objetivos del Acuerdo de París . [105] [205] [206] En 2019, las naciones insulares del Pacífico (en particular Vanuatu y Fiji ) criticaron a Australia por no reducir sus emisiones a un ritmo más rápido que ellos, citando preocupaciones sobre las inundaciones y la erosión costeras. [207] En mayo de 2021, los miembros del G7 acordaron poner fin al nuevo apoyo gubernamental directo a la generación internacional de energía a carbón. [208]

Protesta contra los daños a la Gran Barrera de Coral causados ​​por el cambio climático en Australia

Uso cultural

El carbón es el mineral oficial del estado de Kentucky , [209] y la roca oficial del estado de Utah [210] y Virginia Occidental . [211] Estos estados de EE. UU. tienen un vínculo histórico con la minería del carbón.

Algunas culturas sostienen que los niños que se portan mal recibirán únicamente un trozo de carbón de Papá Noel en sus medias de Navidad, en lugar de regalos.

En Escocia y el norte de Inglaterra también es costumbre y se considera que trae buena suerte regalar carbón el día de Año Nuevo . Esto se hace como parte del inicio del año y representa calidez para el año que comienza.

Véase también

Notas

  1. ^ 14,4 gigatoneladas de carbón/50 gigatoneladas en total

Referencias

  1. ^ Blander, M. "Cálculos de la influencia de los aditivos en los depósitos de combustión de carbón" (PDF) . Argonne National Laboratory. pág. 315. Archivado desde el original (PDF) el 28 de mayo de 2010 . Consultado el 17 de diciembre de 2011 .
  2. ^ ab "El carbón explicado". Energy Explained . Administración de Información Energética de Estados Unidos . 21 de abril de 2017. Archivado desde el original el 8 de diciembre de 2017 . Consultado el 13 de noviembre de 2017 .
  3. ^ Cleal, CJ; Thomas, BA (2005). "Selvas tropicales paleozoicas y su efecto en los climas globales: ¿es el pasado la clave del presente?". Geobiología . 3 (1): 13–31. Bibcode :2005Gbio....3...13C. doi :10.1111/j.1472-4669.2005.00043.x. ISSN  1472-4669. S2CID  129219852.
  4. ^ Sahney, S.; Benton, MJ; Falcon-Lang, HJ (2010). "El colapso de la selva tropical desencadenó la diversificación de los tetrápodos de Pensilvania en Euramérica". Geología . 38 (12): 1079–1082. Bibcode :2010Geo....38.1079S. doi :10.1130/G31182.1.
  5. ^ Wilde, Robert (30 de junio de 2019). «Cómo la demanda de carbón impactó la revolución industrial». ThoughtCo . Consultado el 2 de mayo de 2024 .
  6. ^ "Datos energéticos mundiales". Agencia Internacional de Energía .
  7. ^ ab "Carbón de lignito: efectos sobre la salud y recomendaciones del sector de la salud" (PDF) . Health and Environment Alliance. Diciembre de 2018. Archivado desde el original (PDF) el 11 de diciembre de 2018 . Consultado el 12 de febrero de 2024 .
  8. ^ ab Ritchie, Hannah ; Roser, Max (11 de mayo de 2020). «Emisiones de CO2 por combustible». Our World in Data . Consultado el 22 de enero de 2021 .
  9. ^ ab "La exportación desenfrenada de carbón por parte de China pone en peligro los objetivos climáticos" . Consultado el 7 de diciembre de 2018 .
  10. ^ "Destronar al rey carbón: cómo una fuente de combustible que alguna vez fue dominante está perdiendo rápidamente popularidad". Resilience . 24 de enero de 2020 . Consultado el 8 de febrero de 2020 .
  11. ^ "Análisis: El parque mundial de carbón se redujo por primera vez en los registros en 2020". Carbon Brief . 3 de agosto de 2020 . Consultado el 9 de noviembre de 2021 .
  12. ^ Simon, Frédéric (21 de abril de 2020). «Suecia se suma a la creciente lista de estados sin carbón en Europa». www.euractiv.com . Consultado el 9 de noviembre de 2021 .
  13. ^ "Impuestos al carbono, no a las personas: el jefe de la ONU lanza un llamamiento climático desde la 'primera línea' del Pacífico". The Guardian . 15 de mayo de 2019.
  14. ^ Anmar Frangoul (27 de julio de 2023). "La AIE afirma que el uso de carbón alcanzó un máximo histórico el año pasado y la demanda mundial se mantendrá cerca de niveles récord". CNBC . Consultado el 10 de septiembre de 2023 .
  15. ^ Frangoul, Frangoul (27 de julio de 2023). "La demanda mundial de carbón se mantendrá en niveles récord en 2023". iea . Consultado el 12 de septiembre de 2023 .
  16. ^ "Análisis: Por qué el uso del carbón debe desplomarse en esta década para mantener el calentamiento global por debajo de 1,5 °C". Carbon Brief . 6 de febrero de 2020 . Consultado el 8 de febrero de 2020 .
  17. ^ "Exportaciones - Información sobre el carbón: descripción general - análisis". IEA . Consultado el 20 de enero de 2022 .
  18. ^ abcd Overland, Indra; Loginova, Julia (1 de agosto de 2023). "La industria del carbón rusa en un mundo incierto: ¿finalmente girando hacia Asia?". Investigación energética y ciencias sociales . 102 : 103150. Bibcode :2023ERSS..10203150O. doi : 10.1016/j.erss.2023.103150 . ISSN  2214-6296.
  19. ^ ab Harper, Douglas. "carbón". Diccionario Etimológico Online .
  20. ^ "Cómo se forma el carbón". Archivado desde el original el 18 de enero de 2017.
  21. ^ "Carbón". British Geological Survey . Marzo de 2010.
  22. ^ Taylor, Thomas N; Taylor, Edith L; Krings, Michael (2009). Paleobotánica: la biología y evolución de las plantas fósiles. Academic Press. ISBN 978-0-12-373972-8Archivado desde el original el 16 de mayo de 2016.
  23. ^ "Calor, tiempo, presión y carbonificación". Servicio Geológico de Kentucky . Universidad de Kentucky . Consultado el 28 de noviembre de 2020 .
  24. ^ "Temperaturas de enterramiento a partir de carbón". Servicio Geológico de Kentucky . Universidad de Kentucky . Consultado el 28 de noviembre de 2020 .
  25. ^ McGhee, George R. (2018). Gigantes carboníferos y extinción masiva: el mundo de la Edad de Hielo del Paleozoico Tardío . Nueva York: Columbia University Press. pág. 98. ISBN 9780231180979.
  26. ^ McGhee 2018, págs. 88–92.
  27. ^ Retallack, GJ; Veevers, JJ; Morante, R. (1996). "Brecha global del carbón entre las extinciones del Pérmico-Triásico y la recuperación del Triásico medio de las plantas formadoras de turba". Boletín GSA . 108 (2): 195–207. Código Bibliográfico :1996GSAB..108..195R. doi :10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2.
  28. ^ McGhee 2018, pág. 99.
  29. ^ McGhee 2018, págs. 98-102.
  30. ^ Koonin, Steven E. (2021). Inestable: qué nos dice la ciencia del clima, qué no nos dice y por qué es importante . Dallas: BenBella Books. pág. 44. ISBN 9781953295248.
  31. ^ Fludas, Dimitrios; Carpeta, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A.; Henrissat, Bernard; Martínez, Ángel T.; Otillar, Robert; Spatáfora, Joseph W.; Yadav, Jagjit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Álex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M.; de Vries, Ronald P.; Ferreira, Patricia; Findley, Keisha; Fomentar, Brian; Gaskell, Jill; Glotzer, Dylan; Górecki, Paweł; Heitman, José; Hesse, cedro; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A.; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kües, Úrsula; Kumar, TK Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F.; Lindquist, Erika; Ling, Albee; Lombardo, Vicente; Lucas, Susan; Lundell, Taina; Martín, Raquel; McLaughlin, David J.; Morgenstern, Ingo; Morín, Emanuelle; Murat, Claude; Nagy, Laszlo G.; Nolan, Matt; Oh, Robin A.; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Dueñas, Francisco J.; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Ranura, Jason C.; San Juan, Francisco; Stenlid, enero; Sol, Hui; Sol, Sheng; Syed, Khajamohiddin; Tsang, Adrián; Wiebenga, anuncio; Joven, Darcy; Pisabarro, Antonio; Eastwood, Daniel C.; Martín, Francisco; Cullen, Dan; Grigoriev, Ígor V.; Hibbett, David S. (29 de junio de 2012). "El origen paleozoico de la descomposición enzimática de la lignina reconstruido a partir de 31 genomas fúngicos". Science . 336 (6089): 1715–1719. Bibcode :2012Sci...336.1715F. doi :10.1126/ ciencia.1221748. hdl : 10261/60626 . PMID  22745431. S2CID  37121590.
  32. ^ "Los hongos de podredumbre blanca ralentizaron la formación de carbón". Scientific American .
  33. ^ Nelsen, Matthew P.; DiMichele, William A.; Peters, Shanan E.; Boyce, C. Kevin (19 de enero de 2016). "La evolución fúngica retrasada no causó el pico paleozoico en la producción de carbón". Actas de la Academia Nacional de Ciencias . 113 (9): 2442–2447. Bibcode :2016PNAS..113.2442N. doi : 10.1073/pnas.1517943113 . ISSN  0027-8424. PMC 4780611 . PMID  26787881. 
  34. ^ Ayuso-Fernandez I, Ruiz-Duenas FJ, Martinez AT: Convergencia evolutiva en enzimas degradadoras de lignina. Proc Natl Acad Sci USA 2018, 115:6428-6433.
  35. ^ Otto-Bliesner, Bette L. (15 de septiembre de 1993). "Montañas tropicales y formación de carbón: un estudio del modelo climático de Westfalia (306 MA)". Geophysical Research Letters . 20 (18): 1947–1950. Código Bibliográfico :1993GeoRL..20.1947O. doi :10.1029/93GL02235.
  36. ^ Tyler, S.A.; Barghoorn, E.S.; Barrett, L.P. (1957). "Anthracitic Coal from Precambrian Upper Huronian Black Shale of the Iron River District, Northern Michigan". Geological Society of America Bulletin. 68 (10): 1293. Bibcode:1957GSAB...68.1293T. doi:10.1130/0016-7606(1957)68[1293:ACFPUH]2.0.CO;2. ISSN 0016-7606.
  37. ^ Mancuso, J.J.; Seavoy, R.E. (1981). "Precambrian coal or anthraxolite; a source for graphite in high-grade schists and gneisses". Economic Geology. 76 (4): 951–54. Bibcode:1981EcGeo..76..951M. doi:10.2113/gsecongeo.76.4.951.
  38. ^ Stanley, Steven M. Earth System History. New York: W.H. Freeman and Company, 1999. ISBN 0-7167-2882-6 (p. 426)
  39. ^ Andriesse, J. P. (1988). "The Main Characteristics of Tropical Peats". Nature and Management of Tropical Peat Soils. Rome: Food and Agriculture Organization of the United Nations. ISBN 92-5-102657-2.
  40. ^ a b Reid, William (1973). "Chapter 9: Heat Generation, Transport, and Storage". In Robert Perry; Cecil Chilton (eds.). Chemical Engineers' Handbook (5 ed.).
  41. ^ Ulbrich, Markus; Preßl, Dieter; Fendt, Sebastian; Gaderer, Matthias; Spliethoff, Hartmut (December 2017). "Impact of HTC reaction conditions on the hydrochar properties and CO2 gasification properties of spent grains". Fuel Processing Technology. 167: 663–669. doi:10.1016/j.fuproc.2017.08.010.
  42. ^ a b Hatcher, Patrick G.; Faulon, Jean Loup; Wenzel, Kurt A.; Cody, George D. (November 1992). "A structural model for lignin-derived vitrinite from high-volatile bituminous coal (coalified wood)". Energy & Fuels. 6 (6): 813–820. doi:10.1021/ef00036a018.
  43. ^ "Coal Types, Formation and Methods of Mining". Eastern Pennsylvania Coalition for Abandoned Mine Reclamation. Retrieved 29 November 2020.
  44. ^ Ibarra, JoséV.; Muñoz, Edgar; Moliner, Rafael (June 1996). "FTIR study of the evolution of coal structure during the coalification process". Organic Geochemistry. 24 (6–7): 725–735. Bibcode:1996OrGeo..24..725I. doi:10.1016/0146-6380(96)00063-0.
  45. ^ Li, Yong; Zhang, Cheng; Tang, Dazhen; Gan, Quan; Niu, Xinlei; Wang, Kai; Shen, Ruiyang (October 2017). "Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China". Fuel. 206: 352–363. Bibcode:2017Fuel..206..352L. doi:10.1016/j.fuel.2017.06.028.
  46. ^ a b Hower, James (2016). "Coal". Kirk-Othmer Encyclopedia of Chemical Technology. pp. 1–63. doi:10.1002/0471238961.0315011222151818.a01.pub3. ISBN 978-0-471-48494-3.
  47. ^ "Sub-Bituminous Coal". Kentucky Geological Survey. University of Kentucky. Retrieved 29 November 2020.
  48. ^ "Bituminous Coal". Kentucky Geological Survey. University of Kentucky. Retrieved 29 November 2020.
  49. ^ "Anthracitic Coal". Kentucky Geological Survey. University of Kentucky. Retrieved 29 November 2020.
  50. ^ "Standards catalogue 73.040 – Coals". ISO.
  51. ^ Darton, Horatio Nelson (1916). "Guidebook of the Western United States: Part C - The Santa Fe Route, with a side trip to Grand Canyon of the Colorado". U.S. Geological Survey Bulletin. 613: 81. doi:10.3133/b613. hdl:2027/hvd.32044055492656.
  52. ^ Golas, Peter J and Needham, Joseph (1999) Science and Civilisation in China. Cambridge University Press. pp. 186–91. ISBN 0-521-58000-5
  53. ^ coal Archived 2 May 2015 at the Wayback Machine. Encyclopædia Britannica.
  54. ^ Marco Polo In China. Facts and Details. Retrieved on 11 May 2013. Archived 21 September 2013 at the Wayback Machine
  55. ^ Carol, Mattusch (2008). Oleson, John Peter (ed.). Metalworking and Tools. The Oxford Handbook of Engineering and Technology in the Classical World. Oxford University Press. pp. 418–38 (432). ISBN 978-0-19-518731-1.
  56. ^ Irby-Massie, Georgia L.; Keyser, Paul T. (2002). Greek Science of the Hellenistic Era: A Sourcebook. Routledge. 9.1 "Theophrastos", p. 228. ISBN 978-0-415-23847-2. Archived from the original on 5 February 2016.
  57. ^ "το δ' εκ της κατακαύσεως ὅμοιον γίνεται γη κεκαυμένη. οὓς δε καλοῦσιν ευθὺς ἄνθρακας των ὀρυττομένων δια την χρείαν εισί γεώδεις, ἐκκαίονται δε και πυροῦνται καθάπερ οἱ ἄνθρακες. εισὶ δε περί τε την Λιγυστικὴν ὅπου και το ἤλεκτρον, και εν τη Ήλεία βαδιζόντων Όλυμπίαζε την δι' ὄρους, οΐς και οἱ χαλκεΐς χρῶνται." ΠΕΡΙ ΛΙΘΩΝ, p. 21.
  58. ^ a b Britannica 2004: Coal mining: ancient use of outcropping coal
  59. ^ Needham, Joseph; Golas, Peter J (1999). Science and Civilisation in China. Cambridge University Press. pp. 186–91. ISBN 978-0-521-58000-7.
  60. ^ a b Smith, A.H.V. (1997). "Provenance of Coals from Roman Sites in England and Wales". Britannia. 28: 297–324 (322–24). doi:10.2307/526770. JSTOR 526770. S2CID 164153278.
  61. ^ Salway, Peter (2001). A History of Roman Britain. Oxford University Press. ISBN 978-0-19-280138-8.
  62. ^ Forbes, RJ (1966): Studies in Ancient Technology. Brill Academic Publishers, Boston.
  63. ^ Cunliffe, Barry W. (1984). Roman Bath Discovered. London: Routledge. pp. 14–15, 194. ISBN 978-0-7102-0196-6.
  64. ^ a b c Cantril, T.C. (1914). Coal Mining. Cambridge: Cambridge University Press. pp. 3–10. OCLC 156716838.
  65. ^ "coal, 5a". Oxford English Dictionary. Oxford University Press. 1 December 2010.
  66. ^ John Caius, quoted in Cantril (1914).
  67. ^ Trench, Richard; Hillman, Ellis (1993). London Under London: A Subterranean Guide (Second ed.). London: John Murray. p. 33. ISBN 978-0-7195-5288-5.
  68. ^ a b c Goodman, Ruth (2020), The Domestic Revolution: How the Introduction of Coal Into Victorian Homes Changed Everything, Liveright, ISBN 978-1631497636.
  69. ^ Wrigley, EA (1990). Continuity, Chance and Change: The Character of the Industrial Revolution in England. Cambridge University Press. ISBN 978-0-521-39657-8.
  70. ^ "The fall of King Coal". BBC News. 6 December 1999. Archived from the original on 6 March 2016.
  71. ^ "UK's last deep coal mine Kellingley Colliery capped off". BBC. 14 March 2016.
  72. ^ Funk and Wagnalls, quoted in "sea-coal". Oxford English Dictionary (2 ed.). Oxford University Press. 1989.
  73. ^ "The European Coal and Steel Community". EU Learning. Carleton University School of European Studies. Archived from the original on 17 April 2015. Retrieved 14 August 2021.
  74. ^ Bolton, Aaron; Homer, KBBI- (22 March 2018). "Cost of Cold: Staying warm in Homer". Alaska Public Media. Retrieved 25 January 2019.
  75. ^ Combines with other oxides to make sulfates.
  76. ^ Ya. E. Yudovich, M.P. Ketris (21 April 2010). "Mercury in coal: a review; Part 1. Geochemistry" (PDF). labtechgroup.com. Archived from the original (PDF) on 1 September 2014. Retrieved 22 February 2013.
  77. ^ "Arsenic in Coal" (PDF). pubs.usgs.gov. 28 March 2006. Archived (PDF) from the original on 9 May 2013. Retrieved 22 February 2013.
  78. ^ Lakin, Hubert W. (1973). "Selenium in Our Enviroment [sic]". Selenium in Our Environment – Trace Elements in the Environment. Advances in Chemistry. Vol. 123. p. 96. doi:10.1021/ba-1973-0123.ch006. ISBN 978-0-8412-0185-9.
  79. ^ a b "How is Steel Produced?". World Coal Association. 28 April 2015. Archived from the original on 12 April 2017. Retrieved 8 April 2017.
  80. ^ Blast furnace steelmaking cost model Archived 14 January 2016 at the Wayback Machine. Steelonthenet.com. Retrieved on 24 August 2012.
  81. ^ "Coal India begins process of developing Rs 2,474 crore CBM projects | Hellenic Shipping News Worldwide". www.hellenicshippingnews.com. Retrieved 31 May 2020.
  82. ^ "Coal-to-Chemicals: Shenhua's Water Grab". China Water Risk. Retrieved 31 May 2020.
  83. ^ Rembrandt (2 August 2012). "China's Coal to Chemical Future" (Blog post by expert). The Oil Drum.Com. Retrieved 3 March 2013.
  84. ^ Yin, Ken (27 February 2012). "China develops coal-to-olefins projects, which could lead to ethylene self-sufficiency". ICIS Chemical Business. Retrieved 3 March 2013.
  85. ^ "Smog war casualty: China coal city bears brunt of pollution crackdown". Reuters. 27 November 2018.
  86. ^ "Direct Liquefaction Processes". National Energy Technology Laboratory. Archived from the original on 25 July 2014. Retrieved 16 July 2014.
  87. ^ Liu, Weiguo; Wang, Jingxin; Bhattacharyya, Debangsu; Jiang, Yuan; Devallance, David (2017). "Economic and environmental analyses of coal and biomass to liquid fuels". Energy. 141: 76–86. Bibcode:2017Ene...141...76L. doi:10.1016/j.energy.2017.09.047.
  88. ^ "CHN Energy to build new coal-to-liquid production lines". Xinhua News Agency. 13 August 2018.
  89. ^ "New IMSBC Code requirements aim to control liquefaction of coal cargoes". Hellenic Shipping News Worldwide. 29 November 2018. Archived from the original on 3 August 2020. Retrieved 1 December 2018.
  90. ^ "Conversion of Methanol to Gasoline". National Energy Technology Laboratory. Archived from the original on 17 July 2014. Retrieved 16 July 2014.
  91. ^ "Sasol Is Said to Plan Sale of Its South Africa Coal Mining Unit". Bloomberg.com. 18 September 2019. Retrieved 31 May 2020.
  92. ^ Fisher, Juliya (2003). "Energy Density of Coal". The Physics Factbook. Archived from the original on 7 November 2006. Retrieved 25 August 2006.
  93. ^ "How much coal is required to run a 100-watt light bulb 24 hours a day for a year?". Howstuffworks. 3 October 2000. Archived from the original on 7 August 2006. Retrieved 25 August 2006.
  94. ^ "Primary energy". BP. Retrieved 5 December 2018.
  95. ^ "The Niederraussem Coal Innovation Centre" (PDF). RWE. Archived (PDF) from the original on 22 July 2013. Retrieved 21 July 2014.
  96. ^ "Coal in China: Estimating Deaths per GW-year". Berkeley Earth. 18 November 2016. Retrieved 1 February 2020.
  97. ^ Total World Electricity Generation by Fuel (2006) Archived 22 October 2015 at the Wayback Machine. Source: IEA 2008.
  98. ^ "Fossil Power Generation". Siemens AG. Archived from the original on 29 September 2009. Retrieved 23 April 2009.
  99. ^ J. Nunn, A. Cottrell, A. Urfer, L. Wibberley y P. Scaife, "A Lifecycle Assessment of the Victorian Energy Grid" Archivado el 2 de septiembre de 2016 en Wayback Machine , Centro de Investigación Cooperativa sobre el Carbón en el Desarrollo Sostenible, febrero de 2003, pág. 7.
  100. ^ "Neurath F y G establecen nuevos puntos de referencia" (PDF) . Alstom. Archivado (PDF) del original el 1 de abril de 2015 . Consultado el 21 de julio de 2014 .
  101. ^ Avedøreværket Archivado el 29 de enero de 2016 en Wayback Machine . Ipaper.ipapercms.dk. Recuperado el 11 de mayo de 2013.
  102. ^ "El Departamento de Energía de Estados Unidos invirtió miles de millones de dólares en I+D de energía fósil en proyectos de captura y almacenamiento de carbono. La mayoría fracasó". PowerMag . 9 de octubre de 2018.
  103. ^ Jennie C. Stephens; Bob van der Zwaan (otoño de 2005). "El caso de la captura y almacenamiento de carbono". Issues in Science and Technology . Vol. XXII, no. 1.
  104. ^ "El gráfico energético más deprimente del año". Vox. 15 de junio de 2018. Consultado el 30 de octubre de 2018 .
  105. ^ abc Cornot-Gandolfe, Sylvie (mayo de 2018). Una revisión de las tendencias y políticas del mercado del carbón en 2017 (PDF) . Ifri. Archivado (PDF) del original el 15 de noviembre de 2018.
  106. ^ "Revolución energética: una perspectiva global" (PDF) . Drax. Archivado (PDF) del original el 9 de febrero de 2019 . Consultado el 7 de febrero de 2019 .
  107. ^ "China generó más de la mitad de la energía generada a carbón en el mundo en 2020: estudio". Reuters . 28 de marzo de 2021 . Consultado el 14 de septiembre de 2021 . China generó el 53% de la energía generada a carbón en el mundo en 2020, nueve puntos porcentuales más que cinco años antes
  108. ^ "Panorama de la información sobre el carbón 2019" (PDF) . Agencia Internacional de la Energía . p. 3. Archivado desde el original (PDF) el 30 de septiembre de 2020 . Consultado el 28 de marzo de 2020 . pico de producción en 2013
  109. ^ Shearer, Christine; Myllyvirta, Lauri; Yu, Aiqun; Aitken, Greig; Mathew-Shah, Neha; Dallos, Gyorgy; Nace, Ted (marzo de 2020). Auge y caída de 2020: seguimiento de la cartera mundial de centrales de carbón (PDF) (informe). Global Energy Monitor . Archivado desde el original (PDF) el 27 de marzo de 2020. Consultado el 27 de abril de 2020 .
  110. ^ "Minería del carbón". Asociación Mundial del Carbón . 28 de abril de 2015. Consultado el 5 de diciembre de 2018 .
  111. ^ "La industria del carbón se enfrenta a la pérdida de un millón de puestos de trabajo debido a la transición energética mundial, según un estudio". Reuters . 10 de octubre de 2023.
  112. ^ "China: siete mineros mueren al caer un contenedor en el pozo de una mina". The Guardian . Agence France-Presse. 16 de diciembre de 2018.
  113. ^ "El único mercado que sin duda ayudará al carbón". Forbes . 12 de agosto de 2018.
  114. ^ ab "BP Statistical review of world energy 2016" (XLS) . British Petroleum. Archivado desde el original el 2 de diciembre de 2016. Consultado el 8 de febrero de 2017 .
  115. ^ "Carbón 2017" (PDF) . AIE . Archivado (PDF) del original el 20 de junio de 2018 . Consultado el 26 de noviembre de 2018 .
  116. ^ "Precios del carbón y perspectivas". Administración de Información Energética de Estados Unidos.
  117. ^ "Los costos de generación de energía eólica y solar son inferiores a los de las plantas de carbón existentes". Financial Times . Consultado el 8 de noviembre de 2018 .
  118. ^ "Análisis del costo nivelado de la energía (LCOE) de Lazard: versión 12.0" (PDF) . Archivado (PDF) del original el 9 de noviembre de 2018 . Consultado el 9 de noviembre de 2018 .
  119. ^ abc "El 40% de las centrales eléctricas de carbón de China están perdiendo dinero". Carbon Tracker. 11 de octubre de 2018. Consultado el 11 de noviembre de 2018 .
  120. ^ "Riesgos económicos y financieros de la energía a base de carbón en Indonesia, Vietnam y Filipinas". Carbon Tracker . Consultado el 9 de noviembre de 2018 .
  121. ^ "La paradoja del carbón en la India". 5 de enero de 2019.
  122. ^ Pukowiec-Kurda, Katarzyna; Apollo, Michal (27 de agosto de 2024). "Del carbón al turismo: un cambio radical en el proceso de transición sostenible". Revista de futuros turísticos . doi :10.1108/JTF-05-2024-0086. ISSN  2055-5911.
  123. ^ "Carbón 2018: Resumen ejecutivo". Agencia Internacional de Energía . 2018. Archivado desde el original el 18 de diciembre de 2018. Consultado el 18 de diciembre de 2018 .
  124. ^ "Revisión estadística de BP sobre la energía mundial en 2012". British Petroleum. Archivado desde el original (XLS) el 19 de junio de 2012. Consultado el 18 de agosto de 2011 .
  125. ^ "BP Statistical Review of World Energy 2018" (PDF) . British Petroleum. Archivado (PDF) del original el 6 de diciembre de 2018 . Consultado el 6 de diciembre de 2018 .
  126. ^ "Datos energéticos mundiales". Agencia Internacional de Energía .
  127. ^ EIA International Energy Annual – Consumo total de carbón (miles de toneladas cortas, convertidas al sistema métrico) Archivado el 9 de febrero de 2016 en Wayback Machine . Eia.gov. Consultado el 11 de mayo de 2013.
  128. ^ Consumo de carbón
  129. ^ "Exportaciones primarias de carbón". Administración de Información Energética de Estados Unidos . Consultado el 12 de mayo de 2023 .
  130. ^ ¿Qué significa el "pico del carbón" para los exportadores internacionales de carbón? (PDF) . 2018. Archivado (PDF) del original el 1 de noviembre de 2018.
  131. ^ "Importaciones primarias de carbón". Administración de Información Energética de Estados Unidos . Consultado el 26 de julio de 2020 .
  132. ^ "Informes anuales de estadísticas energéticas". Oficina de Energía de Taiwán, Ministerio de Asuntos Económicos . 4 de mayo de 2012. Archivado desde el original el 29 de octubre de 2019. Consultado el 26 de julio de 2020 .
  133. ^ Ritchie, Hannah; Roser, Max (2021). "¿Cuáles son las fuentes de energía más seguras y limpias?". Our World in Data . Archivado desde el original el 15 de enero de 2024.Fuentes de datos: Markandya y Wilkinson (2007); UNSCEAR (2008; 2018); Sovacool et al. (2016); IPCC AR5 (2014); Pehl et al. (2017); Ember Energy (2021).
  134. ^ Aire tóxico: argumentos a favor de la limpieza de las centrales eléctricas de carbón. Asociación Estadounidense del Pulmón (marzo de 2011) Archivado el 26 de enero de 2012 en Wayback Machine.
  135. ^ ab Hendryx, Michael; Zullig, Keith J.; Luo, Juhua (8 de enero de 2020). "Impactos del uso del carbón en la salud". Revista anual de salud pública . 41 : 397–415. doi : 10.1146/annurev-publhealth-040119-094104 . ISSN:  0163-7525. PMID:  31913772.
  136. ^ "Salud". Endcoal. Archivado desde el original el 22 de diciembre de 2017. Consultado el 3 de diciembre de 2018 .
  137. ^ ab "India demuestra lo difícil que es dejar atrás los combustibles fósiles". The Economist . 2 de agosto de 2018.
  138. ^ Prevención de enfermedades mediante entornos saludables: una evaluación global de la carga de enfermedades derivadas de los riesgos ambientales Archivado el 30 de julio de 2016 en Wayback Machine . Organización Mundial de la Salud (2006)
  139. ^ Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks (PDF). World Health Organization. 2009. ISBN 978-92-4-156387-1. Archived (PDF) from the original on 14 February 2012.
  140. ^ "WHO – Ambient (outdoor) air quality and health". who.int. Archived from the original on 4 January 2016. Retrieved 7 January 2016.
  141. ^ "Global SO2 emission hotspot database" (PDF). Greenpeace. August 2019. Archived (PDF) from the original on 3 October 2019.
  142. ^ Coal Pollution Damages Human Health at Every Stage of Coal Life Cycle, Reports Physicians for Social Responsibility Archived 31 July 2015 at the Wayback Machine. Physicians for Social Responsibility. psr.org (18 November 2009)
  143. ^ Burt, Erica; Orris, Peter and Buchanan, Susan (April 2013) Scientific Evidence of Health Effects from Coal Use in Energy Generation Archived 14 July 2015 at the Wayback Machine. University of Illinois at Chicago School of Public Health, Chicago, Illinois, US
  144. ^ "The Unpaid Health Bill – How coal power plants make us sick". Health and Environment Alliance. 7 March 2013. Retrieved 15 December 2018.
  145. ^ "Health benefits will offset cost of China's climate policy". MIT. 23 April 2018. Retrieved 15 December 2018.
  146. ^ Beach, Brian; Hanlon, W. Walker (2018). "Coal Smoke and Mortality in an Early Industrial Economy". The Economic Journal. 128 (615): 2652–2675. doi:10.1111/ecoj.12522. ISSN 1468-0297. S2CID 7406965.
  147. ^ "Black Lung Disease-Topic Overview". WebMD. Archived from the original on 10 July 2015.
  148. ^ "Black Lung". umwa.org. Archived from the original on 3 February 2016. Retrieved 7 January 2016.
  149. ^ World Coal Association "Environmental impact of Coal Use" Archived 23 February 2009 at the Wayback Machine
  150. ^ "Coal". U.S. Environmental Protection Agency. 5 February 2014. Archived from the original on 20 July 2015.
  151. ^ "Coal Ash: Toxic – and Leaking". psr.org. Archived from the original on 15 July 2015.
  152. ^ Hvistendahl, Mara (13 December 2007). "Coal Ash Is More Radioactive than Nuclear Waste". Scientific American. Archived from the original on 10 July 2015.
  153. ^ "Coal and the environment". U.S. Energy Information Administration (EIA). Retrieved 27 January 2023.
  154. ^ Zagoruichyk, Anastasiia (6 July 2022). "Emissions from mining cause 'up to £2.5tn' in environmental damages each year". Carbon Brief. Retrieved 27 January 2023.
  155. ^ Tiwary, R. K. (2001). "Environmental Impact of Coal Mining on Water Regime and Its Management". Water, Air, & Soil Pollution. 132: 185–99. Bibcode:2001WASP..132..185T. doi:10.1023/a:1012083519667. S2CID 91408401.
  156. ^ "Pakistan's Coal Trap". Dawn. 4 February 2018.
  157. ^ Zhong, Qirui; Shen, Huizhong; Yun, Xiao; Chen, Yilin; Ren, Yu'ang; Xu, Haoran; Shen, Guofeng; Du, Wei; Meng, Jing; Li, Wei; Ma, Jianmin (2 June 2020). "Global Sulfur Dioxide Emissions and the Driving Forces". Environmental Science & Technology. 54 (11): 6508–6517. Bibcode:2020EnST...54.6508Z. doi:10.1021/acs.est.9b07696. ISSN 0013-936X. PMID 32379431. S2CID 218556619.
  158. ^ Barrie, L.A.; Hoff, R.M. (1984). "The oxidation rate and residence time of sulphur dioxide in the arctic atmosphere". Atmospheric Environment. 18 (12): 2711–2722. Bibcode:1984AtmEn..18.2711B. doi:10.1016/0004-6981(84)90337-8.
  159. ^ Human Impacts on Atmospheric Chemistry, by PJ Crutzen and J Lelieveld, Annual Review of Earth and Planetary Sciences, Vol. 29: 17–45 (Volume publication date May 2001)
  160. ^ Cray, Dan (23 July 2010). "Deep Underground, Miles of Hidden Wildfires Rage". Time. Archived from the original on 28 July 2010.
  161. ^ "Das Naturdenkmal Brennender Berg bei Dudweiler" [The natural monument Burning Mountain in Dudweiler]. Mineralienatlas (in German). Retrieved 3 October 2016.
  162. ^ "World Of Coke: Coke is a High Temperature Fuel". www.ustimes.com. Archived from the original on 27 November 2015. Retrieved 16 January 2016.
  163. ^ Rajaram, Vasudevan; Parameswaran, Krishna; Dutta, Subijoy (2005). Sustainable Mining Practices: A Global Perspective. CRC Press. p. 113. ISBN 978-1-4398-3423-7.
  164. ^ Tranberg, Bo; Corradi, Olivier; Lajoie, Bruno; Gibon, Thomas; Staffell, Iain; Andresen, Gorm Bruun (2019). "Real-Time Carbon Accounting Method for the European Electricity Markets". Energy Strategy Reviews. 26: 100367. arXiv:1812.06679. Bibcode:2019EneSR..2600367T. doi:10.1016/j.esr.2019.100367. S2CID 125361063.
  165. ^ "Sino German Coal fire project". Archived from the original on 30 August 2005. Retrieved 9 September 2005.
  166. ^ "Committee on Resources-Index". Archived from the original on 25 August 2005. Retrieved 9 September 2005.
  167. ^ "Snapshots 2003" (PDF). fire.blm.gov. Archived from the original (PDF) on 18 February 2006. Retrieved 9 September 2005.
  168. ^ "EHP 110-5, 2002: Forum". Archived from the original on 31 July 2005. Retrieved 9 September 2005.
  169. ^ "Overview about ITC's activities in China". Archived from the original on 16 June 2005. Retrieved 9 September 2005.
  170. ^ "Fire in The Hole". Archived from the original on 14 October 2009. Retrieved 5 June 2011.
  171. ^ "North Dakota's Clinker". Archived from the original on 14 September 2005. Retrieved 9 September 2005.
  172. ^ "BLM-Environmental Education – The High Plains". Archived from the original on 12 March 2005. Retrieved 9 September 2005.
  173. ^ Lyman, Robert M.; Volkmer, John E. (March 2001). "Pyrophoricity (spontaneous combustion) of Powder River Basin coals: Considerations for coalbed methane development" (PDF). Archived from the original (PDF) on 12 September 2005. Retrieved 9 September 2005.
  174. ^ "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA.gov. National Oceanic and Atmospheric Administration (NOAA). Spring 2023. Archived from the original on 24 May 2023.
  175. ^ a b c Gençsü (2019), p. 8
  176. ^ "China's Coal Plants Haven't Cut Methane Emissions as Required, Study Finds". The New York Times. 29 January 2019.
  177. ^ Gabbatiss, Josh (24 March 2020). "Coal mines emit more methane than oil-and-gas sector, study finds". Carbon Brief. Retrieved 29 March 2020.
  178. ^ "Emissions". Global Carbon Atlas. Retrieved 6 November 2018.
  179. ^ "How much carbon dioxide is produced when different fuels are burned?". eia.gov. Archived from the original on 12 January 2016. Retrieved 7 January 2016.
  180. ^ Vidal, John; Readfearn, Graham (18 November 2013). "Leave coal in the ground to avoid climate catastrophe, UN tells industry". The Guardian. Archived from the original on 2 January 2017.
  181. ^ "We have too many fossil-fuel power plants to meet climate goals". Environment. 1 July 2019. Archived from the original on 2 July 2019. Retrieved 30 September 2019.
  182. ^ Hower, James (2016). "Coal". Kirk-Othmer Encyclopedia of Chemical Technology. pp. 1–63. doi:10.1002/0471238961.0315011222151818.a01.pub3. ISBN 978-0-471-48494-3.
  183. ^ "World Energy Investment 2019" (PDF). webstore.iea.org. Archived from the original (PDF) on 22 June 2020. Retrieved 14 July 2019.
  184. ^ Carrington, Damian (10 December 2018). "Tackle climate or face financial crash, say world's biggest investors". The Guardian. ISSN 0261-3077. Retrieved 22 July 2019.
  185. ^ Kompas, Tom; Pham, Van Ha; Che, Tuong Nhu (2018). "The Effects of Climate Change on GDP by Country and the Global Economic Gains From Complying With the Paris Climate Accord". Earth's Future. 6 (8): 1153–1173. Bibcode:2018EaFut...6.1153K. doi:10.1029/2018EF000922. hdl:1885/265534. ISSN 2328-4277.
  186. ^ "Labor opposes plan to indemnify new coal plants and warns it could cost billions". The Guardian. 24 October 2018.
  187. ^ "Superfund Scandal Leads to Prison Time for Coal Lobbyist, Lawyer". Sierra Club. 24 October 2018.
  188. ^ Ricke, Katharine; Drouet, Laurent; Caldeira, Ken; Tavoni, Massimo (2018). "Country-level social cost of carbon". Nature Climate Change. 8 (10): 895–900. Bibcode:2018NatCC...8..895R. doi:10.1038/s41558-018-0282-y. hdl:11311/1099986. S2CID 135079412.
  189. ^ Jha, Akshaya; Muller, Nicholas Z. (2018). "The local air pollution cost of coal storage and handling: Evidence from U.S. power plants". Journal of Environmental Economics and Management. 92: 360–396. Bibcode:2018JEEM...92..360J. doi:10.1016/j.jeem.2018.09.005. S2CID 158803149.
  190. ^ "The human cost of coal in the UK: 1600 deaths a year". New Scientist. Archived from the original on 24 April 2015.
  191. ^ "Environmentalism". The Economist. 4 February 2014. Archived from the original on 28 January 2016. Retrieved 7 January 2016.
  192. ^ "Air Pollution and Health in Bulgaria" (PDF). HEAL. Archived (PDF) from the original on 27 December 2015. Retrieved 26 October 2018.
  193. ^ Sun, Dong; Fang, Jing; Sun, Jingqi (2018). "Health-related benefits of air quality improvement from coal control in China: Evidence from the Jing-Jin-Ji region". Resources, Conservation and Recycling. 129: 416–423. Bibcode:2018RCR...129..416S. doi:10.1016/j.resconrec.2016.09.021.
  194. ^ "Support for fossil fuels almost doubled in 2021, slowing progress toward international climate goals, according to new analysis from OECD and IEA - OECD". www.oecd.org. Retrieved 27 September 2022.
  195. ^ "MANAGING THE PHASE-OUT OF COAL A COMPARISON OF ACTIONS IN G20 COUNTRIES" (PDF). Climate Transparency. May 2019. Archived (PDF) from the original on 24 May 2019.
  196. ^ "Deal reached on EU energy market design, incl end of coal subsidies License: CC0 Creative Commons". Renewables Now. 19 December 2018.
  197. ^ "Regional Briefings for the 2018 Coal Plant Developers List" (PDF). Urgewald. Retrieved 27 November 2018.
  198. ^ "The World Needs to Quit Coal. Why Is It So Hard?". The New York Times. 24 November 2018. Archived from the original on 1 January 2022.
  199. ^ "Fossil-fuel subsidies". IEA. Retrieved 16 November 2018.
  200. ^ "Turkey". Ember. 28 March 2021. Archived from the original on 27 October 2021. Retrieved 9 October 2021.
  201. ^ "Regional Briefings for the 2018 Coal Plant Developers List" (PDF). Urgewald. Retrieved 27 November 2018.
  202. ^ "'Stranded' fossil fuel assets may prompt $4 trillion crisis". Cosmos. 4 June 2018. Retrieved 30 September 2019.
  203. ^ Carrington, Damian (8 September 2021). "How much of the world's oil needs to stay in the ground?". The Guardian. Archived from the original on 8 September 2021. Retrieved 10 September 2021.
  204. ^ Welsby, Dan; Price, James; Pye, Steve; Ekins, Paul (8 September 2021). "Unextractable fossil fuels in a 1.5 °C world". Nature. 597 (7875): 230–234. Bibcode:2021Natur.597..230W. doi:10.1038/s41586-021-03821-8. ISSN 1476-4687. PMID 34497394.
  205. ^ "5 Asian countries building 80% of new coal power – Carbon Tracker".
  206. ^ "EGEB: 76% of proposed coal plants have been canceled since 2015". 14 September 2021.
  207. ^ "Pacific nations under climate threat urge Australia to abandon coal within 12 years". The Guardian. 13 December 2018.
  208. ^ Fiona, Harvey (21 May 2021). "Richest nations agree to end support for coal production overseas". The Guardian. Retrieved 22 May 2021.
  209. ^ "Kentucky: Secretary of State – State Mineral". 20 October 2009. Archived from the original on 27 May 2011. Retrieved 7 August 2011.
  210. ^ "Utah State Rock – Coal". Pioneer: Utah's Online Library. Utah State Library Division. Archived from the original on 2 October 2011. Retrieved 7 August 2011.
  211. ^ "WVGES Frequently Asked Questions". www.wvgs.wvnet.edu. Retrieved 25 September 2023.

Sources

Further reading

External links