stringtranslate.com

Retroceso de los glaciares desde 1850

Ejemplo de retroceso de un glaciar de montaña : Glaciar White Chuck, Washington

El retroceso de los glaciares desde 1850 es un efecto bien documentado del cambio climático . El retroceso de los glaciares de montaña proporciona evidencia del aumento de las temperaturas globales desde fines del siglo XIX. Los ejemplos incluyen glaciares de montaña en el oeste de América del Norte, Asia, los Alpes en Europa central y regiones tropicales y subtropicales de América del Sur y África. Dado que la masa glacial se ve afectada por cambios climáticos a largo plazo, por ejemplo, precipitación , temperatura media y cobertura de nubes , los cambios en la masa glacial son uno de los indicadores más sensibles del cambio climático . El retroceso de los glaciares también es una de las principales razones del aumento del nivel del mar . Excluyendo los glaciares periféricos de las capas de hielo , las pérdidas glaciales globales acumuladas totales durante los 26 años de 1993 a 2018 fueron probablemente de 5500 gigatoneladas, o 210 gigatoneladas por año. [1] : 1275 

En la Tierra, el 99% del hielo glacial se encuentra dentro de vastas capas de hielo (también conocidas como "glaciares continentales") en las regiones polares . También existen glaciares en las cadenas montañosas de todos los continentes, excepto Australia, incluidos los países insulares oceánicos de alta latitud de Oceanía, como Nueva Zelanda . Los cuerpos glaciares de más de 50.000 km2 ( 19.000 millas cuadradas) se denominan capas de hielo . [2] Tienen varios kilómetros de profundidad y ocultan la topografía subyacente.

La desglaciación se produce de forma natural al final de las eras glaciales , pero el retroceso actual de los glaciares se ve acelerado por el calentamiento global debido a las emisiones de gases de efecto invernadero provocadas por el hombre . Las actividades humanas desde el comienzo de la era industrial han aumentado la concentración de dióxido de carbono y otros gases de efecto invernadero que atrapan el calor en el aire, lo que provoca el calentamiento global actual. [3] La influencia humana es el principal impulsor de los cambios en la criosfera , de la que forman parte los glaciares. [3]

El balance de masa de los glaciares es el factor determinante de la salud de un glaciar. Si la cantidad de precipitación congelada en la zona de acumulación supera la cantidad de hielo glaciar que la zona de ablación perdió debido al derretimiento, el glaciar avanzará. Si la acumulación es menor que la ablación, el glaciar retrocederá. Los glaciares en retroceso tendrán balances de masa negativos. Con el tiempo, desaparecerán si no alcanzan un equilibrio entre la acumulación y la ablación.

Las cadenas montañosas de latitudes medias muestran algunas de las mayores pérdidas proporcionales de glaciares. Ejemplos de estas cadenas montañosas son el Himalaya en Asia, las Montañas Rocosas y la Cordillera de las Cascadas en América del Norte, los Alpes en Europa, los Alpes del Sur en Nueva Zelanda, los Andes meridionales en América del Sur, así como cumbres tropicales aisladas como el monte Kilimanjaro en África.

El hielo glacial es la mayor reserva de agua dulce de la Tierra, y contiene junto con las capas de hielo alrededor del 69 por ciento del agua dulce del mundo. [4] [5] El retroceso de los glaciares tiene impactos a corto plazo en la disponibilidad de agua dulce para beber y para riego . Por ejemplo, en los Andes y el Himalaya, la desaparición de los glaciares afectará el suministro de agua para la población de esa región. [6] El derretimiento de los glaciares también provoca el aumento del nivel del mar.

Escala a nivel global

El derretimiento de los glaciares de montaña entre 1994 y 2017 (6,1 billones de toneladas) constituyó aproximadamente el 22% de la pérdida de hielo de la Tierra durante ese período. [7]

Excluyendo los glaciares periféricos de las capas de hielo , las pérdidas glaciares globales acumuladas totales durante los 26 años de 1993 a 2018 fueron probablemente de 5500 gigatoneladas, o 210 gigatoneladas por año. [1] : 1275 

Cronología

La Pequeña Edad de Hielo fue un período que se extendió desde aproximadamente 1550 hasta 1850, cuando ciertas regiones experimentaron temperaturas relativamente más frías en comparación con el período anterior y posterior. Posteriormente, hasta aproximadamente 1940, los glaciares de todo el mundo retrocedieron a medida que el clima se calentaba sustancialmente. El retroceso de los glaciares se ralentizó e incluso se revirtió temporalmente, en muchos casos, entre 1950 y 1980, a medida que las temperaturas globales se enfriaban ligeramente . [8]

Desde 1980, el cambio climático ha provocado que el retroceso de los glaciares sea cada vez más rápido y omnipresente, hasta el punto de que algunos glaciares han desaparecido por completo y la existencia de muchos de los glaciares restantes está amenazada. [9]

Causas

Proyecciones: El derretimiento de la masa glacial está relacionado aproximadamente de manera lineal con el aumento de la temperatura. [11] Según las promesas actuales, se proyecta que la temperatura media global aumentará en +2,7 °C, lo que causaría la pérdida de aproximadamente la mitad de los glaciares de la Tierra para el año 2100 con un aumento del nivel del mar de 115 ± 40 milímetros. [11]

El balance de masa, o diferencia entre acumulación y ablación (fusión y sublimación ), de un glaciar es crucial para su supervivencia. [12] El cambio climático puede causar variaciones tanto en la temperatura como en las nevadas, lo que resulta en cambios en el balance de masa. Un glaciar con un balance negativo sostenido pierde el equilibrio y retrocede. Un balance positivo sostenido también está fuera de equilibrio y avanzará para restablecer el equilibrio. Actualmente, casi todos los glaciares tienen un balance de masa negativo y están retrocediendo. [13]

El retroceso de los glaciares provoca la pérdida de la región de baja elevación del glaciar. Dado que las elevaciones más altas son más frías, la desaparición de la porción más baja disminuye la ablación general, lo que aumenta el balance de masa y potencialmente restablece el equilibrio. Si el balance de masa de una porción significativa de la zona de acumulación del glaciar es negativo, está en desequilibrio con el clima y se derretirá sin un clima más frío y/o un aumento de la precipitación congelada. [14] [15]

Por ejemplo, el glaciar Easton, en el estado de Washington (EE. UU.), probablemente se reducirá a la mitad de su tamaño, pero a un ritmo más lento, y se estabilizará en ese tamaño a pesar del aumento de la temperatura durante unas décadas. Sin embargo, el glaciar Grinnell , en Montana (EE. UU.), se reducirá a un ritmo cada vez mayor hasta desaparecer. La diferencia es que la sección superior del glaciar Easton sigue estando sana y cubierta de nieve, mientras que incluso la sección superior del glaciar Grinnell está desnuda, se está derritiendo y ha perdido espesor. Los glaciares pequeños con un rango de altitud mínimo son los más propensos a entrar en desequilibrio con el clima. [15]

Técnicas de medición

Los métodos para medir el retroceso incluyen la localización del extremo , el mapeo de posicionamiento global , el mapeo aéreo y la altimetría láser . [14] [16] El síntoma clave del desequilibrio es el adelgazamiento a lo largo de toda la longitud del glaciar. Esto indica una disminución de la zona de acumulación. El resultado es una recesión marginal del margen de la zona de acumulación, no solo del extremo. En efecto, el glaciar ya no tiene una zona de acumulación consistente y sin una zona de acumulación no puede sobrevivir. [15] [17]

Impactos

Aumento del nivel del mar

La escorrentía de agua de los glaciares derretidos provoca el aumento del nivel del mar a nivel mundial , un fenómeno que el IPCC denomina un evento de "inicio lento". [18]

El potencial de un aumento importante del nivel del mar depende principalmente de un derretimiento significativo de los casquetes polares de Groenlandia y la Antártida, ya que es donde se encuentra la gran mayoría del hielo glacial. Si todo el hielo de los casquetes polares se derritiera, los océanos del mundo aumentarían aproximadamente 70 m (230 pies). [19] Aunque anteriormente se pensaba que los casquetes polares no contribuían en gran medida al aumento del nivel del mar (IPCC 2007), estudios recientes han confirmado que tanto la Antártida como Groenlandia contribuyen con 0,5 milímetros (0,020 pulgadas) al año cada uno al aumento global del nivel del mar. [20] [21] [22] El glaciar Thwaites por sí solo, en la Antártida occidental, es "actualmente responsable de aproximadamente el 4 por ciento del aumento global del nivel del mar. Contiene suficiente hielo para elevar el océano mundial un poco más de 2 pies (65 centímetros) y retiene los glaciares vecinos que aumentarían los niveles del mar otros 8 pies (2,4 metros) si se perdiera todo el hielo". [23] [24] El hecho de que las estimaciones del IPCC no incluyeran la rápida descomposición de la capa de hielo en sus predicciones del nivel del mar hace difícil determinar una estimación plausible del aumento del nivel del mar, pero un estudio de 2008 encontró que el aumento mínimo del nivel del mar será de alrededor de 0,8 metros (2,6 pies) para el año 2100. [25]

Abastecimiento de agua

El continuo retroceso de los glaciares tendrá una serie de efectos cuantitativos diferentes. En las zonas que dependen en gran medida del agua de escorrentía de los glaciares que se derriten durante los meses más cálidos del verano, una continuación del retroceso actual acabará agotando el hielo glaciar y reducirá sustancialmente o eliminará la escorrentía. Una reducción de la escorrentía afectará a la capacidad de regar los cultivos y reducirá los caudales de los arroyos de verano necesarios para mantener las presas y los embalses reabastecidos. Esta situación es particularmente grave para el riego en América del Sur, donde numerosos lagos artificiales se llenan casi exclusivamente con el deshielo de los glaciares. [26] Los países de Asia central también han dependido históricamente del agua de deshielo estacional de los glaciares para el riego y el suministro de agua potable. En Noruega, los Alpes y el noroeste del Pacífico de América del Norte, la escorrentía de los glaciares es importante para la energía hidroeléctrica .

En el Himalaya , el retroceso de los glaciares podría reducir los flujos de agua de verano hasta en dos tercios. En la zona del Ganges , esto provocaría una escasez de agua para 500 millones de personas. [27] En la zona del Hindu Kush del Himalaya, alrededor de 1.400 millones de personas dependen de los cinco ríos principales de las montañas del Himalaya. [28] Aunque el impacto variará de un lugar a otro, es probable que la cantidad de agua de deshielo aumente al principio a medida que los glaciares se retraigan. Luego disminuirá gradualmente debido a la caída de la masa glaciar. [29] [30]

Ecosistemas

Paisaje producido por el retroceso de un glaciar

Muchas especies de plantas y animales de agua dulce y salada dependen de las aguas alimentadas por los glaciares para garantizar el hábitat de agua fría al que se han adaptado. Algunas especies de peces de agua dulce necesitan agua fría para sobrevivir y reproducirse, y esto es especialmente cierto en el caso del salmón y la trucha degollada . La reducción de la escorrentía glaciar puede provocar que el caudal de los arroyos sea insuficiente para permitir que estas especies prosperen. Las alteraciones de las corrientes oceánicas , debido al aumento de los aportes de agua dulce procedentes del deshielo de los glaciares, y las posibles alteraciones de la circulación termohalina de los océanos , pueden afectar a las pesquerías existentes de las que también dependen los seres humanos. [31]

Entre 1994 y 2017, la Tierra perdió 28 billones de toneladas de hielo, y el derretimiento del hielo terrestre (capas de hielo y glaciares) elevó el nivel global del mar en 34,6 ± 3,1 mm. [7] La ​​tasa de pérdida de hielo ha aumentado un 57% desde la década de 1990, de 0,8 a 1,2 billones de toneladas por año. [7]

Desbordes de lagos glaciares

Una de las principales preocupaciones es el aumento del riesgo de inundaciones repentinas de lagos glaciares (GLOF), que en el pasado han tenido un gran efecto sobre las vidas y las propiedades. [32] El agua de deshielo de los glaciares que deja atrás el glaciar en retirada a menudo es retenida por morrenas que pueden ser inestables y se sabe que colapsan si se rompen o se desplazan por terremotos, deslizamientos de tierra o avalanchas. [33] Si la morrena terminal no es lo suficientemente fuerte como para contener el agua que sube detrás de ella, puede estallar, lo que lleva a una inundación localizada masiva. La probabilidad de tales eventos está aumentando debido a la creación y expansión de lagos glaciares resultantes del retroceso de los glaciares. [32] Las inundaciones pasadas han sido mortales y han provocado enormes daños a la propiedad. Las ciudades y pueblos en valles estrechos y empinados que están río abajo de lagos glaciares son los que corren el mayor riesgo. En 1892, un GLOF liberó unos 200.000 m3 ( 260.000 yd3) de agua del lago del glaciar Tête Rousse , lo que provocó la muerte de 200 personas en la ciudad francesa de Saint-Gervais-les-Bains . [34] Se sabe que los GLOF ocurren en todas las regiones del mundo donde hay glaciares. Se espera que el continuo retroceso de los glaciares cree y amplíe los lagos glaciares, lo que aumenta el peligro de futuros GLOF.

Latitud media

Los glaciares de latitudes medias se encuentran entre el Trópico de Cáncer y el Círculo Polar Ártico , o entre el Trópico de Capricornio y el Círculo Antártico . [35] Ambas áreas albergan hielo glaciar de glaciares de montaña, glaciares de valle e incluso casquetes polares más pequeños, que suelen estar ubicados en regiones montañosas más altas. [16] Todos están ubicados en cadenas montañosas, en particular el Himalaya ; los Alpes ; los Pirineos ; las Montañas Rocosas ; las cordilleras del Cáucaso y la Costa del Pacífico de América del Norte; los Andes patagónicos en América del Sur; y las cadenas montañosas de Nueva Zelanda. [36] Los glaciares en estas latitudes están más extendidos y tienden a tener mayor masa cuanto más cerca están de las regiones polares. Son los más estudiados en los últimos 150 años. Al igual que con los ejemplos ubicados en la zona tropical, prácticamente todos los glaciares en las latitudes medias se encuentran en un estado de balance de masa negativo y están retrocediendo. [16]

Hemisferio norte – Eurasia

Europa

Todos los glaciares de los Alpes franceses están retrocediendo. En el Mont Blanc , el pico más alto de los Alpes, el glaciar Argentière ha retrocedido 1.150 m (3.770 pies) desde 1870. [37] Otros glaciares del Mont Blanc también han estado retrocediendo, incluido el Mer de Glace , que es el glaciar más grande de Francia con 12 km (7,5 mi) de longitud, pero retrocedió 500 m (1.600 pies) entre 1994 y 2008. [38] Se espera que los glaciares Argentière y Mer de Glace desaparezcan por completo a fines del siglo XXI si persisten las tendencias climáticas actuales. [39] El glaciar Bossons se extendía desde la cumbre del Mont Blanc a 4.807 m (15.771 pies) hasta una elevación de 1.050 m (3.440 pies) en 1900. Para 2008, el glaciar Bossons había retrocedido a un punto que estaba a 1.400 m (4.600 pies) sobre el nivel del mar. [40]

Otros investigadores han descubierto que los glaciares de los Alpes parecen estar retrocediendo a un ritmo más rápido que hace unas décadas. En un artículo publicado en 2009 por la Universidad de Zúrich, el estudio de glaciares suizos de 89 glaciares encontró que 76 estaban retrocediendo, 5 estacionarios y 8 avanzando desde donde estaban en 1973. [41] El glaciar Trift tuvo el mayor retroceso registrado, perdiendo 350 m (1.150 pies) de su longitud entre los años 2003 y 2005. [41] El glaciar Grosser Aletsch es el glaciar más grande de Suiza y ha sido estudiado desde fines del siglo XIX. El glaciar Aletsch retrocedió 2,8 km (1,7 mi) entre 1880 y 2009. [42] Esta tasa de retroceso también ha aumentado desde 1980, y el 30 %, u 800 m (2600 pies), del retroceso total se produjo en el último 20 % del período de tiempo. [42]

El glaciar Morteratsch , en Suiza, ha sido objeto de uno de los períodos de estudio científico más largos, con mediciones anuales de su longitud a partir de 1878. El retroceso total desde 1878 hasta 1998 ha sido de 2 km (1,2 mi), con una tasa media anual de retroceso de aproximadamente 17 m (56 ft) por año. Este promedio a largo plazo se superó notablemente en los últimos años, con un retroceso del glaciar de 30 m (98 ft) por año durante el período entre 1999 y 2005. De manera similar, de los glaciares de los Alpes italianos, solo alrededor de un tercio estaban en retroceso en 1980, mientras que en 1999, el 89% de estos glaciares estaban retrocediendo. En 2005, la Comisión Italiana de Glaciares descubrió que 123 glaciares en Lombardía estaban retrocediendo. [43] Un estudio aleatorio del glaciar Sforzellina en los Alpes italianos indicó que la tasa de retroceso entre 2002 y 2006 fue mucho mayor que en los 35 años anteriores. [44] Para estudiar los glaciares ubicados en las regiones alpinas de Lombardía, los investigadores compararon una serie de imágenes aéreas y terrestres tomadas desde la década de 1950 hasta principios del siglo XXI y dedujeron que entre los años 1954 y 2003 los glaciares en su mayoría más pequeños que se encontraron allí perdieron más de la mitad de su área. [45] La fotografía repetida de los glaciares en los Alpes indica que ha habido un retroceso significativo desde que comenzaron los estudios. [46]

Una investigación publicada en 2019 por la ETH de Zúrich afirma que dos tercios del hielo de los glaciares de los Alpes está condenado a derretirse a finales de siglo debido al cambio climático. [47] [48] En el escenario más pesimista, los Alpes estarán casi completamente libres de hielo en 2100, y solo quedarán parches de hielo aislados a gran altitud. [49]

Glaciares Morteratsch (derecha) y Pers (izquierda) en 2005

Aunque los glaciares de los Alpes han recibido más atención de los glaciólogos que en otras áreas de Europa, la investigación indica que los glaciares en el norte de Europa también están retrocediendo. Desde el final de la Segunda Guerra Mundial, Storglaciären en Suecia ha sido objeto del estudio de balance de masa continuo más largo del mundo realizado desde la estación de investigación de Tarfala . En las montañas Kebnekaise del norte de Suecia , un estudio de 16 glaciares entre 1990 y 2001 encontró que 14 glaciares estaban retrocediendo, uno estaba avanzando y uno era estable. [50] En Noruega, se han realizado estudios de glaciares desde principios del siglo XIX, con estudios sistemáticos realizados regularmente desde la década de 1990. Los glaciares interiores han tenido un balance de masa generalmente negativo, mientras que durante la década de 1990, los glaciares marítimos mostraron un balance de masa positivo y avanzaron. [51] Los avances marítimos se han atribuido a las fuertes nevadas en el período 1989-1995. [51] Sin embargo, la reducción de las nevadas desde entonces ha provocado que la mayoría de los glaciares noruegos retrocedan significativamente. [51] Un estudio de 31 glaciares noruegos en 2010 indicó que 27 estaban en retroceso, uno no había sufrido cambios y tres habían avanzado. [52] De manera similar, en 2013, de los 33 glaciares noruegos estudiados, 26 estaban en retroceso, cuatro no mostraron cambios y tres avanzaron. [52]

El glaciar Engabreen en Noruega, un glaciar de salida del manto glaciar Svartisen , tuvo varios avances en el siglo XX, aunque retrocedió 200 m (660 pies) entre 1999 y 2014. [53] El glaciar Brenndalsbreen retrocedió 56 m (184 pies) entre los años 2000 y 2014, mientras que el glaciar Rembesdalsskåka, que ha retrocedido 2 km (1,2 millas) desde el final de la Pequeña Edad de Hielo, retrocedió 200 m (660 pies) entre 1997 y 2007. [54] El glaciar Briksdalsbreen retrocedió 230 m (750 pies) entre 1996 y 2004, con 130 m (430 pies) de eso en el último año de ese estudio; el mayor retroceso anual registrado en ese glaciar desde que comenzaron los estudios allí en 1900. [55] Esta cifra se superó en 2006 con cinco glaciares que retrocedieron más de 100 m (330 pies) desde el otoño de 2005 hasta el otoño de 2006. Cuatro salidas del casquete glaciar Jostedalsbreen , la mayor masa de hielo de la Europa continental, Kjenndalsbreen , Brenndalsbreen, Briksdalsbreen y Bergsetbreen tuvieron un retroceso frontal de más de 100 m (330 pies). [56] En general, de 1999 a 2005, Briksdalsbreen retrocedió 336 metros (1102 pies). [56] Gråfjellsbrea, un glaciar de salida del casquete glaciar Folgefonna , tuvo un retroceso de casi 100 m (330 pies). [56]

En 2014, el glaciar Engabreen, en Noruega, se extendió hasta los 7 m (23 pies) sobre el nivel del mar, la altitud más baja de cualquier glaciar en Europa fuera de Svalbard. Durante el siglo XX llegó al agua.

En los Pirineos españoles , estudios recientes han mostrado importantes pérdidas en extensión y volumen de los glaciares del macizo de la Maladeta durante el período 1981-2005. Estas incluyen una reducción en área del 35,7%, de 2,41 km2 ( 600 acres) a 1,55 km2 ( 380 acres), una pérdida en el volumen total de hielo de 0,0137 km3 ( 0,0033 mi3) y un aumento en la altitud media de los extremos glaciares de 43,5 m (143 pies). [57] Para los Pirineos en su conjunto, el 50-60% de la superficie glaciar se ha perdido desde 1991. Los glaciares Balaitus, Perdigurero y La Munia han desaparecido en este período. El glaciar Monte Perdido se ha reducido de 90 hectáreas a 40 hectáreas. [58]

Como causa inicial del retroceso de los glaciares en los Alpes desde 1850, se puede señalar una disminución del albedo de los glaciares , causada por el carbono negro industrial . Según un informe, esto puede haber acelerado el retroceso de los glaciares en Europa que, de lo contrario, podrían haber seguido expandiéndose hasta aproximadamente el año 1910. [59]

Asia occidental

Todos los glaciares de Turquía están en retroceso y los glaciares han estado desarrollando lagos proglaciares en sus extremos terminales a medida que los glaciares se adelgazan y retroceden. [60] [61] Entre los años 1970 y 2013, los glaciares de Turquía perdieron la mitad de su área, pasando de 25 km2 ( 9,7 millas cuadradas) en los años 1970 a 10,85 km2 ( 4,19 millas cuadradas) en 2013. De los 14 glaciares estudiados, cinco habían desaparecido por completo. [62] El monte Ararat tiene el glaciar más grande de Turquía, y se prevé que desaparezca por completo para 2065. [63]

Siberia y el Lejano Oriente ruso

Siberia se clasifica típicamente como una región polar, debido a la sequedad del clima invernal y tiene glaciares solo en las altas montañas de Altai , la cordillera Verkhoyansk , la cordillera Cherskiy y la cordillera Suntar-Khayata , además de posiblemente unos pocos glaciares muy pequeños en las cordilleras cercanas al lago Baikal , que nunca han sido monitoreados y pueden haber desaparecido por completo desde 1989. [64] [65] [66] Entre los años 1952 y 2006, los glaciares encontrados en la región de la cuenca de Aktru se redujeron en un 7,2 por ciento. [64] Esta contracción se ha producido principalmente en la zona de ablación de los glaciares, observándose una recesión de varios cientos de metros en algunos glaciares. La región de Altai también ha experimentado un aumento general de la temperatura de 1,2 grados Celsius en los últimos 120 años según un informe de 2006, y la mayor parte de ese aumento se ha producido desde finales del siglo XX. [64]

En el Lejano Oriente ruso , más marítimo y generalmente más húmedo , Kamchatka , expuesta durante el invierno a la humedad de las Bajas Aleutianas , tiene una glaciación mucho más extensa que totaliza alrededor de 906 km2 ( 350 millas cuadradas) con 448 glaciares conocidos a partir de 2010. [66] [67] A pesar de las nevadas invernales generalmente fuertes y las temperaturas frescas en verano, las altas precipitaciones de verano de las islas Kuriles más meridionales y Sakhalin en tiempos históricos las tasas de derretimiento han sido demasiado altas para un balance de masa positivo incluso en los picos más altos. En la península de Chukotskiy hay numerosos glaciares alpinos pequeños, pero la extensión de la glaciación, aunque mayor que más al oeste, es mucho menor que en Kamchatka, totalizando alrededor de 300 kilómetros cuadrados (120 millas cuadradas). [65]

Los detalles sobre el retroceso de los glaciares de Siberia y el Lejano Oriente ruso han sido menos adecuados que en la mayoría de las demás áreas glaciares del mundo. Hay varias razones para esto, la principal es que desde la caída del comunismo ha habido una gran reducción en el número de estaciones de monitoreo. [68] Otro factor es que en las cordilleras Verkhoyansk y Cherskiy se creía que no había glaciares antes de que se descubrieran durante la década de 1940, mientras que en las ultra remotas Kamchatka y Chukotka, aunque la existencia de glaciares se conocía antes, el monitoreo de su tamaño no se remonta a antes del final de la Segunda Guerra Mundial. [66] No obstante, los registros disponibles indican un retroceso general de todos los glaciares en las montañas de Altai con la excepción de los glaciares volcánicos en Kamchatka. Los glaciares de Sajá , con una superficie total de setenta kilómetros cuadrados, se han reducido alrededor de un 28 por ciento desde 1945, alcanzando varios por ciento anualmente en algunos lugares, mientras que en las montañas de Altai y Chukotkan y las áreas no volcánicas de Kamchatka, la reducción es considerablemente mayor. [68]

Himalaya y Asia Central

Esta imagen de la NASA muestra la formación de numerosos lagos glaciares en los extremos de los glaciares en retroceso en Bután - Himalaya .

El Himalaya y otras cadenas montañosas de Asia central albergan grandes regiones glaciares. Se estima que en el Himalaya mayor hay unos 15.000 glaciares, el doble de esa cantidad en las cordilleras Hindu Kush, Karakoram y Tien Shan, y constituyen la región glaciar más grande fuera de los polos. [69] Estos glaciares proporcionan suministros de agua críticos a países áridos como Mongolia , China occidental, Pakistán , Afganistán e India . Al igual que ocurre con los glaciares de todo el mundo, los de la región del Himalaya mayor están experimentando una disminución de masa, y los investigadores afirman que entre principios de la década de 1970 y principios de la década de 2000, se había producido una reducción del 9 por ciento en la masa de hielo, [70] mientras que ha habido un aumento significativo en la pérdida de masa desde la Pequeña Edad de Hielo con un aumento de 10 veces en comparación con las tasas observadas actualmente. [71] El cambio de temperatura ha provocado el derretimiento y la formación y expansión de lagos glaciares, lo que podría causar un aumento en el número de inundaciones repentinas de lagos glaciares (GLOF). Si las tendencias actuales persisten, la masa de hielo se reducirá gradualmente y afectará la disponibilidad de recursos hídricos, aunque no se espera que la pérdida de agua cause problemas durante muchas décadas. [72]

En el Corredor Wakhan de Afganistán, 28 de los 30 glaciares examinados retrocedieron significativamente entre 1976 y 2003, con un retroceso promedio de 11 m (36 pies) por año. [73] Uno de estos glaciares, el glaciar Zemestan, retrocedió 460 m (1.510 pies) durante este período, menos del 10% de su longitud de 5,2 km (3,2 mi). [74] Al examinar 612 glaciares en China entre 1950 y 1970, el 53% de los glaciares estudiados estaban retrocediendo. Después de 1990, se midió que el 95% de estos glaciares estaban retrocediendo, lo que indica que el retroceso de estos glaciares se estaba volviendo más generalizado. [75] Los glaciares en la región del Monte Everest del Himalaya están todos en un estado de retroceso. El glaciar Rongbuk , que drena el lado norte del monte Everest hacia el Tíbet , ha estado retrocediendo 20 m (66 pies) por año. En la región de Khumbu de Nepal a lo largo del frente del Himalaya principal de 15 glaciares examinados entre 1976 y 2007, todos retrocedieron significativamente y el retroceso promedio fue de 28 m (92 pies) por año. [76] El más famoso de estos, el glaciar Khumbu, retrocedió a una tasa de 18 m (59 pies) por año desde 1976 hasta 2007. [76] En la India, el glaciar Gangotri retrocedió 1.147 m (3.763 pies) entre los años 1936 y 1996, y 850 m (2.790 pies) de ese retroceso ocurrieron en los últimos 25 años del siglo XX. [77] [78] Sin embargo, el glaciar todavía tiene más de 30 km (19 mi) de largo. [78] En Sikkim , 26 glaciares examinados entre los años 1976 y 2005 estaban retrocediendo a una tasa promedio de 13,02 m (42,7 pies) por año. [79] En general, los glaciares en la región del Gran Himalaya que han sido estudiados están retrocediendo un promedio de entre 18 y 20 m (59 y 66 pies) anualmente. [80] La única región en el Gran Himalaya que ha visto avances glaciares está en la Cordillera del Karakórum y solo en los glaciares de mayor elevación, pero esto se ha atribuido posiblemente al aumento de las precipitaciones, así como a las oleadas glaciares correlacionadas, donde la lengua glaciar avanza debido a la acumulación de presión de la nieve y la acumulación de hielo más arriba en el glaciar. Entre los años 1997 y 2001, el glaciar Biafo, de 68 km (42 mi) de largo, se engrosó entre 10 y 25 m (33 a 82 pies) a mitad del glaciar, sin embargo no avanzó. [81]

Retroceso de los glaciares en Nanga Parbat , Pakistán

Con el retroceso de los glaciares en el Himalaya, se han creado varios lagos glaciares. Una preocupación creciente es el potencial de los GLOF; los investigadores estiman que 21 lagos glaciares en Nepal y 24 en Bután plantean peligros para las poblaciones humanas si sus morrenas terminales fallan. [82] Un lago glaciar identificado como potencialmente peligroso es Raphstreng Tsho de Bután, que medía 1,6 km (0,99 mi) de largo, 0,96 km (0,60 mi) de ancho y 80 m (260 pies) de profundidad en 1986. Para 1995, el lago había crecido a una longitud de 1,94 km (1,21 mi), 1,13 km (0,70 mi) de ancho y una profundidad de 107 m (351 pies). [83] En 1994, un GLOF procedente de Luggye Tsho, un lago glacial adyacente a Raphstreng Tsho, mató a 23 personas río abajo. [84]

Los glaciares de la cordillera Ak-shirak en Kirguistán experimentaron una ligera pérdida entre 1943 y 1977 y una pérdida acelerada del 20% de su masa restante entre 1977 y 2001. [85] En las montañas de Tien Shan , que Kirguistán comparte con China y Kazajstán , estudios en las áreas del norte de esa cordillera muestran que los glaciares que ayudan a suministrar agua a esta región árida, perdieron casi 2 km3 ( 0,48 millas cúbicas) de hielo por año entre 1955 y 2000. El estudio de la Universidad de Oxford también informó que se había perdido un promedio de 1,28% del volumen de estos glaciares por año entre 1974 y 1990. [86]

La cordillera del Pamir , situada principalmente en Tayikistán , tiene aproximadamente ocho mil glaciares, muchos de los cuales se encuentran en un estado general de retroceso. [87] Durante el siglo XX, los glaciares de Tayikistán perdieron 20 km3 ( 4,8 millas cúbicas) de hielo. [87] El glaciar Fedchenko de 70 km (43 millas) de largo , que es el más grande de Tayikistán y el glaciar no polar más grande de la Tierra, retrocedió 1 km (0,62 millas) entre los años 1933 y 2006, y perdió 44 km2 ( 17 millas cuadradas) de su superficie debido a la contracción entre los años 1966 y 2000. [87] Tayikistán y los países vecinos de la cordillera del Pamir dependen en gran medida de la escorrentía glaciar para garantizar el flujo de los ríos durante las sequías y las estaciones secas que se experimentan cada año. La continua pérdida de hielo de los glaciares provocará un aumento a corto plazo, seguido de una disminución a largo plazo, del agua de deshielo glacial que fluye hacia los ríos y arroyos. [88]

Hemisferio norte – América del Norte

El glaciar Lewis, Parque Nacional North Cascades, después de derretirse en 1990

Los glaciares de América del Norte se encuentran principalmente a lo largo de la columna vertebral de las Montañas Rocosas en los Estados Unidos y Canadá, y las cordilleras de la costa del Pacífico que se extienden desde el norte de California hasta Alaska . Si bien Groenlandia está asociada geológicamente con América del Norte, también es parte de la región del Ártico. Aparte de los pocos glaciares de marea como el glaciar Taku , en la etapa avanzada de su ciclo de glaciares de marea prevaleciente a lo largo de la costa de Alaska, prácticamente todos los de América del Norte están en un estado de retroceso. Esta tasa ha aumentado rápidamente desde aproximadamente 1980, y en general cada década desde entonces ha visto mayores tasas de retroceso que la anterior. También hay pequeños glaciares remanentes dispersos por las montañas de Sierra Nevada de California y Nevada . [89] [90]

Cordillera de las Cascadas

La cordillera de las Cascadas, en el oeste de Norteamérica, se extiende desde el sur de la Columbia Británica , en Canadá, hasta el norte de California. Con excepción de Alaska, aproximadamente la mitad de la superficie glacial de los Estados Unidos se encuentra dentro de los más de 700 glaciares de las Cascadas del Norte , una parte de los cuales se encuentran entre la frontera entre Canadá y los Estados Unidos y la I-90 en el centro de Washington . Estos glaciares contienen tanta agua como la que se encuentra en todos los lagos y embalses del resto del estado, y proporcionan gran parte del caudal de los arroyos y ríos en los meses secos de verano, aproximadamente unos 870 000 m 3 (1 140 000 yd3). [91]

El glaciar Boulder retrocedió 450 m (1.480 pies) entre 1987 y 2003.
El glaciar Easton retrocedió 255 m (837 pies) entre 1990 y 2005.

Tan solo en 1975, muchos glaciares de North Cascade estaban avanzando debido al clima más frío y al aumento de las precipitaciones que se produjeron entre 1944 y 1976. En 1987, los glaciares de North Cascade estaban retrocediendo y el ritmo había aumentado cada década desde mediados de la década de 1970. Entre 1984 y 2005, los glaciares de North Cascade perdieron un promedio de más de 12,5 metros (41 pies) de espesor y entre el 20 y el 40 por ciento de su volumen. [15]

Los glaciólogos que investigan las North Cascades descubrieron que los 47 glaciares monitoreados están retrocediendo, mientras que cuatro glaciares ( el glaciar Spider , el glaciar Lewis , el glaciar Milk Lake y el glaciar Mt. David) han desaparecido casi por completo. El glaciar White Chuck (cerca de Glacier Peak ) es un ejemplo particularmente dramático. El área del glaciar se redujo de 3,1 km2 ( 1,2 millas cuadradas) en 1958 a 0,9 km2 ( 0,35 millas cuadradas) en 2002. Entre 1850 y 1950, el glaciar Boulder en el flanco sureste del monte Baker retrocedió 8700 pies (2700 m). William Long, del Servicio Forestal de los Estados Unidos, observó que el glaciar comenzaba a avanzar debido al clima más frío y húmedo en 1953. A esto le siguió un avance de 743 metros (2438 pies) en 1979. [92] El glaciar volvió a retroceder 450 m (1480 pies) entre 1987 y 2005, dejando atrás un terreno árido. Este retroceso se ha producido durante un período de reducción de las nevadas invernales y temperaturas estivales más altas. En esta región de las Cascadas, la capa de nieve invernal ha disminuido un 25% desde 1946, y las temperaturas estivales han aumentado 0,7  °C (1,2  °F ) durante el mismo período. La reducción de la capa de nieve se ha producido a pesar de un pequeño aumento de las precipitaciones invernales; por lo tanto, refleja temperaturas invernales más cálidas que provocan precipitaciones y derretimiento de los glaciares incluso durante el invierno. En 2005, el 67% de los glaciares de la Cascada Norte observados se encontraban en desequilibrio y no sobrevivirían a la continuación del clima actual. Estos glaciares acabarían desapareciendo a menos que las temperaturas bajen y las precipitaciones congeladas aumenten. Se espera que los glaciares restantes se estabilicen, a menos que el clima siga calentándose, pero su tamaño se reducirá considerablemente. [93]

Montañas Rocosas de Estados Unidos

En las laderas protegidas de los picos más altos del Parque Nacional Glaciar en Montana , los glaciares homónimos están disminuyendo rápidamente. El área de cada glaciar ha sido cartografiada durante décadas por el Servicio de Parques Nacionales y el Servicio Geológico de los Estados Unidos. La comparación de fotografías de mediados del siglo XIX con imágenes contemporáneas proporciona amplia evidencia de que han retrocedido notablemente desde 1850. Las fotografías repetidas desde entonces muestran claramente que los glaciares como el glaciar Grinnell están retrocediendo. Los glaciares más grandes tienen ahora aproximadamente un tercio de su tamaño anterior cuando se estudiaron por primera vez en 1850, y numerosos glaciares más pequeños han desaparecido por completo. En 1993, solo el 27% de los 99 km2 ( 38 millas cuadradas) del área del Parque Nacional Glaciar que estaban cubiertos por glaciares en 1850 seguían cubiertos. [94] Los investigadores creen que entre el año 2030 y el 2080, parte del hielo glaciar del Parque Nacional Glaciar desaparecerá a menos que los patrones climáticos actuales reviertan su curso. [95] El glaciar Grinnell es solo uno de los muchos glaciares del Parque Nacional Glaciar que han sido bien documentados mediante fotografías durante muchas décadas. Las fotografías a continuación demuestran claramente el retroceso de este glaciar desde 1938.

El clima semiárido de Wyoming aún logra soportar alrededor de una docena de pequeños glaciares dentro del Parque Nacional Grand Teton , que muestran evidencia de retroceso en los últimos 50 años. El glaciar Schoolroom está ubicado ligeramente al suroeste de Grand Teton y es uno de los glaciares de más fácil acceso en el parque y se espera que desaparezca para 2025. La investigación entre 1950 y 1999 demostró que los glaciares en el Bosque Nacional Bridger-Teton y el Bosque Nacional Shoshone en la Cordillera Wind River se redujeron en más de un tercio de su tamaño durante ese período. Las fotografías indican que los glaciares hoy tienen solo la mitad del tamaño que cuando fueron fotografiados por primera vez a fines de la década de 1890. [96] La investigación también indica que el retroceso glaciar fue proporcionalmente mayor en la década de 1990 que en cualquier otra década durante los últimos 100 años. El glaciar Gannett en la ladera noreste del pico Gannett es el glaciar individual más grande en las Montañas Rocosas al sur de Canadá. Se dice que ha perdido más del 50% de su volumen desde 1920, y casi la mitad de esa pérdida se produjo desde 1980. Los glaciólogos creen que los glaciares restantes en Wyoming desaparecerán a mediados del siglo XXI si continúan los patrones climáticos actuales. [97] [98]

Montañas Rocosas y costeras canadienses y montañas de Columbia

El glaciar Valdez se ha adelgazado 90 m (300 pies) durante el último siglo, dejando al descubierto un terreno estéril cerca de los márgenes glaciares. [34]

En las Montañas Rocosas canadienses , los glaciares son generalmente más grandes y están más extendidos que en el sur de las Montañas Rocosas. Uno de los más accesibles en las Montañas Rocosas canadienses es el glaciar Athabasca , que es un glaciar de salida del campo de hielo Columbia de 325 km² (125 millas cuadradas) . El glaciar Athabasca ha retrocedido 1500 m (4900 pies) desde fines del siglo XIX. Su tasa de retroceso ha aumentado desde 1980, después de un período de retroceso lento desde 1950 a 1980. El glaciar Peyto en Alberta cubre un área de aproximadamente 12 km2 ( 4,6 millas cuadradas), y retrocedió rápidamente durante la primera mitad del siglo XX, se estabilizó en 1966 y reanudó su contracción en 1976. [99] El glaciar Illecillewaet en el Parque Nacional Glaciar de Columbia Británica (Canadá) , parte de las montañas Selkirk (al oeste de las Montañas Rocosas) ha retrocedido 2 km (1,2 millas) desde que fue fotografiado por primera vez en 1887.

En el Parque Provincial Garibaldi , en el suroeste de la Columbia Británica, más de 505 km2 ( 195 millas cuadradas), o el 26% del parque, estaban cubiertos por hielo glaciar a principios del siglo XVIII. La cubierta de hielo disminuyó a 297 km2 ( 115 millas cuadradas) en 1987-1988 y a 245 km2 ( 95 millas cuadradas) en 2005, el 50% de la superficie de 1850. La pérdida de 50 km2 ( 19 millas cuadradas) en los últimos 20 años coincide con un balance de masa negativo en la región. Durante este período, los nueve glaciares examinados se han retirado significativamente. [100]

Alaska

Mapa de la bahía de los Glaciares. Las líneas rojas muestran las posiciones y fechas de los extremos glaciares durante el retroceso del glaciar de la Pequeña Edad de Hielo.

En Alaska hay miles de glaciares, pero sólo unos pocos han recibido nombre. El glaciar Columbia, cerca de Valdez, en Prince William Sound, retrocedió 15 km en los 25 años transcurridos entre 1980 y 2005. Sus icebergs desprendidos causaron en parte el derrame de petróleo del Exxon Valdez , cuando el petrolero cambió de rumbo para evitar las puntas de hielo. El glaciar Valdez se encuentra en la misma zona y, aunque no se despega, también ha retrocedido significativamente. "Un estudio aéreo de los glaciares costeros de Alaska realizado en 2005 identificó más de una docena de glaciares, muchos de ellos antiguos glaciares de marea y glaciares en proceso de desprendimiento , incluidos los glaciares Grand Plateau, Alsek , Bear y Excelsior, que están retrocediendo rápidamente. De los 2.000 glaciares observados, el 99% están retrocediendo". [34] La bahía Icy en Alaska está alimentada por tres grandes glaciares: Guyot , Yahtse y Tyndall , todos los cuales han experimentado una pérdida de longitud y espesor y, en consecuencia, una pérdida de área. El glaciar Tyndall se separó del glaciar Guyot en retirada en la década de 1960 y ha retrocedido 24 km (15 mi) desde entonces, con un promedio de más de 500 m (1600 pies) por año. [101]

El Programa de Investigación del Campo de Hielo de Juneau ha monitoreado los glaciares de salida del Campo de Hielo de Juneau desde 1946. En el lado oeste del campo de hielo, el extremo del glaciar Mendenhall , que desemboca en los suburbios de Juneau, Alaska , ha retrocedido 580 m (1900 pies). De los diecinueve glaciares del Campo de Hielo de Juneau, dieciocho están retrocediendo y uno, el glaciar Taku, está avanzando. Once de los glaciares han retrocedido más de 1 km (0,62 mi) desde 1948: el glaciar Antler, 5,4 km (3,4 mi); el glaciar Gilkey, 3,5 km (2,2 mi); el glaciar Norris, 1,1 km (0,68 mi) y el glaciar Lemon Creek, 1,5 km (0,93 mi). [102] El glaciar Taku ha estado avanzando desde al menos 1890, cuando el naturalista John Muir observó un gran frente de desprendimiento de iceberg. Para 1948, el fiordo adyacente se había rellenado, y el glaciar ya no se desprendía y pudo continuar su avance. Para 2005, el glaciar estaba a solo 1,5 km (0,93 mi) de alcanzar Taku Point y bloquear Taku Inlet . El avance del glaciar Taku promedió 17 m (56 pies) por año entre 1988 y 2005. El balance de masa fue muy positivo para el período 1946-88, lo que impulsó el avance; sin embargo, desde 1988 el balance de masa ha sido ligeramente negativo, lo que en el futuro debería frenar el avance de este poderoso glaciar. [103]

Mapas que muestran el retroceso del glaciar Muir entre 1941 y 1982

Los registros de balance de masa a largo plazo del glaciar Lemon Creek en Alaska muestran un balance de masa ligeramente decreciente con el tiempo. [104] El balance anual medio para este glaciar fue de -0,23 m (0,75 pies) cada año durante el período de 1957 a 1976. El balance anual medio ha sido cada vez más negativo con un promedio de -1,04 m (3,4 pies) por año desde 1990 hasta 2005. La altimetría glaciar repetida, o medición de altitud, para 67 glaciares de Alaska encuentra que las tasas de adelgazamiento han aumentado en más de un factor de dos al comparar los períodos de 1950 a 1995 (0,7 m (2,3 pies) por año) y 1995 a 2001 (1,8 m (5,9 pies) por año). [105] Esta es una tendencia sistémica con pérdida de masa equivalente a pérdida de espesor, lo que lleva a un retroceso creciente: los glaciares no solo están retrocediendo, sino que también se están volviendo mucho más delgados. En el Parque Nacional Denali , todos los glaciares monitoreados están retrocediendo, con un retroceso promedio de 20 m (66 pies) por año. El término del glaciar Toklat ha estado retrocediendo 26 m (85 pies) por año y el glaciar Muldrow ha adelgazado 20 m (66 pies) desde 1979. [106] Bien documentados en Alaska están los glaciares emergentes que se sabe que avanzan rápidamente, incluso hasta 100 m (330 pies) por día. Variegated , Black Rapids, Muldrow , Susitna y Yanert son ejemplos de glaciares emergentes en Alaska que han avanzado rápidamente en el pasado. Todos estos glaciares están en retroceso, interrumpidos por cortos períodos de avance.

Hemisferio sur

En total, alrededor del 25 por ciento del hielo que se derritió entre 2003 y 2010 se produjo en América (excluida Groenlandia) (datos de 2012).

Andes y Tierra del Fuego

Retroceso del Glaciar San Rafael entre 1990 y 2000. Al fondo se muestra el Glaciar San Quintín .

Una gran parte de la población que rodea los Andes centrales y meridionales de Argentina y Chile reside en zonas áridas que dependen del suministro de agua procedente de los glaciares que se derriten. El agua de los glaciares también abastece a los ríos que, en algunos casos, han sido represados ​​para generar energía hidroeléctrica . Algunos investigadores creen que, para 2030, muchos de los grandes casquetes polares de los Andes más altos habrán desaparecido si continúan las tendencias climáticas actuales. En la Patagonia, en el extremo sur del continente, los grandes casquetes polares han retrocedido 1 km desde principios de los años 1990 y 10 km desde finales del siglo XIX. También se ha observado que los glaciares patagónicos están retrocediendo a un ritmo más rápido que en cualquier otra región del mundo. [107] El Campo de Hielo Patagónico Norte perdió 93 km2 de superficie glaciar durante los años entre 1945 y 1975, y 174 km2 de 1975 a 1996, lo que indica que la tasa de retroceso está aumentando. Esto representa una pérdida del 8% del campo de hielo, con todos los glaciares experimentando un retroceso significativo. El Campo de Hielo Patagónico Sur ha exhibido una tendencia general de retroceso en 42 glaciares, mientras que cuatro glaciares estaban en equilibrio y dos avanzaron durante los años entre 1944 y 1986. El mayor retroceso fue en el glaciar O'Higgins , que durante el período 1896-1995 retrocedió 14,6 km2. El glaciar Perito Moreno tiene 30 km (19 mi) de largo y es un importante glaciar de salida de la capa de hielo patagónica, así como el glaciar más visitado de la Patagonia. El glaciar Perito Moreno está en equilibrio, pero ha sufrido frecuentes oscilaciones en el período 1947-96, con una ganancia neta de 4,1 km (2,5 mi). Este glaciar ha avanzado desde 1947 y ha sido esencialmente estable desde 1992. El glaciar Perito Moreno es uno de los tres glaciares de la Patagonia que se sabe que han avanzado, en comparación con varios cientos más en retroceso. [108] [109] Los dos glaciares principales del Campo de Hielo Patagónico Sur al norte de Moreno, Upsala y Viedma, han retrocedido 4,6 km (2,9 mi) en 21 años y 1 km (0,62 mi) en 13 años respectivamente. [110] En la cuenca del río Aconcagua , el retroceso de los glaciares ha provocado una pérdida del 20% de su superficie, pasando de 151 km2 ( 58 millas cuadradas) a 121 km2 ( 47 millas cuadradas). [111] El glaciar Marinelli en Tierra del Fuego ha estado en retroceso desde al menos 1960 hasta 2008.

Oceanía

Estos glaciares de Nueva Zelanda han seguido retrocediendo rápidamente en los últimos años. Observe los lagos terminales más grandes, el retroceso del hielo blanco (hielo sin cobertura de morrena) y las paredes de morrena más altas debido al adelgazamiento del hielo. Foto.

En Nueva Zelanda, los glaciares de montaña han estado en retroceso general desde 1890, con una aceleración desde 1920. La mayoría se han adelgazado y reducido de tamaño de manera mensurable, y las zonas de acumulación de nieve han aumentado en elevación a medida que avanzaba el siglo XX. Entre 1971 y 1975, el glaciar Ivory retrocedió 30 m (98 pies) desde el término glaciar, y se perdió aproximadamente el 26% de su superficie. Desde 1980, se formaron numerosos lagos glaciares pequeños detrás de las nuevas morrenas terminales de varios de estos glaciares. Glaciares como Classen, Godley y Douglas ahora tienen nuevos lagos glaciares debajo de sus ubicaciones terminales debido al retroceso glaciar en los últimos 20 años. Las imágenes satelitales indican que estos lagos continúan expandiéndose. Se han producido pérdidas significativas y continuas de volumen de hielo en los glaciares más grandes de Nueva Zelanda, incluidos los glaciares Tasman , Ivory, Classen, Mueller , Maud, Hooker , Grey, Godley, Ramsay, Murchison , Therma, Volta y Douglas. El retroceso de estos glaciares se ha caracterizado por la expansión de los lagos proglaciares y el adelgazamiento de la región terminal. La pérdida del volumen total de hielo de los Alpes del Sur entre 1976 y 2014 es del 34 por ciento del total. [112]

Varios glaciares, en particular los muy visitados glaciares Fox y Franz Josef en la costa oeste de Nueva Zelanda , han avanzado periódicamente, especialmente durante la década de 1990, pero la escala de estos avances es pequeña en comparación con el retroceso del siglo XX. Ambos son más de 2,5 km (1,6 mi) más cortos que hace un siglo. Estos glaciares grandes, de rápido flujo y situados en pendientes pronunciadas han sido muy reactivos a pequeños cambios en el balance de masa. Unos pocos años de condiciones favorables para el avance de los glaciares, como vientos más occidentales y un aumento resultante en las nevadas, se reflejan rápidamente en un avance correspondiente, seguido de un retroceso igualmente rápido cuando terminan esas condiciones favorables. [113]

Regiones polares

Glaciar de la meseta de Geikie en Groenlandia .

A pesar de su proximidad e importancia para las poblaciones humanas, los glaciares de montaña y valle de los glaciares tropicales y de latitudes medias representan sólo una pequeña fracción del hielo glacial de la Tierra. Alrededor del 99 por ciento de todo el hielo de agua dulce se encuentra en las grandes capas de hielo de la Antártida polar y subpolar y Groenlandia . Estas capas de hielo continuas a escala continental, de 3 km (1,9 mi) o más de espesor, cubren gran parte de las masas terrestres polares y subpolares. Como ríos que fluyen desde un enorme lago, numerosos glaciares de desagüe transportan hielo desde los márgenes de la capa de hielo hasta el océano. [114]

América del norte

Tierra Verde

Retroceso del glaciar Helheim, Groenlandia

En Groenlandia , se ha observado un retroceso de los glaciares en los glaciares de salida, lo que da como resultado un aumento de la tasa de flujo de hielo y la desestabilización del balance de masa de la capa de hielo que es su fuente. La pérdida neta en volumen y, por lo tanto, la contribución del nivel del mar de la capa de hielo de Groenlandia (GIS) se ha duplicado en los últimos años de 90 km 3 (22 mi3) por año en 1996 a 220 km 3 (53 mi3) por año en 2005. [115] Los investigadores también notaron que la aceleración fue generalizada y afectó a casi todos los glaciares al sur de 70 N en 2005. El período desde 2000 ha provocado el retroceso de varios glaciares muy grandes que habían sido estables durante mucho tiempo. Tres glaciares que se han investigado ( el glaciar Helheim , el glaciar Kangerdlugssuaq y el Jakobshavn Isbræ ) drenan conjuntamente más del 16% de la capa de hielo de Groenlandia . En el caso del glaciar Helheim, los investigadores utilizaron imágenes satelitales para determinar el movimiento y el retroceso del glaciar. Las imágenes satelitales y las fotografías aéreas de los años 1950 y 1970 muestran que el frente del glaciar había permanecido en el mismo lugar durante décadas. En 2001, el glaciar comenzó a retroceder rápidamente y, en 2005, había retrocedido un total de 7,2 km (4,5 mi), acelerando de 20 m (66 pies) por día a 35 m (115 pies) por día durante ese período. [116]

El glaciar Jakobshavn Isbræ, en el oeste de Groenlandia, un importante glaciar de salida de la capa de hielo de Groenlandia, fue el glaciar que se desplazó más rápido del mundo durante el último medio siglo. Se había estado moviendo continuamente a velocidades de más de 24 m (79 pies) por día con un extremo estable desde al menos 1950. En 2002, el extremo flotante de 12 km (7,5 millas) de largo del glaciar entró en una fase de rápido retroceso, con el frente de hielo rompiéndose y el extremo flotante desintegrándose y acelerándose a una tasa de retroceso de más de 30 m (98 pies) por día. Ya no es así. El glaciar ha "frenado de golpe" y ahora se está haciendo más grueso (creciendo en altura) 20 metros cada año. [117]

En una escala de tiempo más corta, se midió que partes del tronco principal del glaciar Kangerdlugssuaq que fluían a un ritmo de 15 m (49 pies) por día entre 1988 y 2001 fluían a un ritmo de 40 m (130 pies) por día en el verano de 2005. El Kangerdlugssuaq no sólo ha retrocedido, sino que también se ha adelgazado en más de 100 m (330 pies). [118]

El rápido adelgazamiento, aceleración y retroceso de los glaciares Helheim, Jakobshavns y Kangerdlugssuaq en Groenlandia, todos en estrecha asociación entre sí, sugiere un mecanismo desencadenante común, como el derretimiento mejorado de la superficie debido al calentamiento climático regional o un cambio en las fuerzas en el frente del glaciar. Se ha observado que el derretimiento mejorado que conduce a la lubricación de la base del glaciar causa un pequeño aumento de la velocidad estacional y la liberación de lagos de agua de deshielo también ha llevado a solo pequeñas aceleraciones de corto plazo. [119] Las aceleraciones significativas observadas en los tres glaciares más grandes comenzaron en el frente de desprendimiento y se propagaron hacia el interior y no son de naturaleza estacional. [120] Por lo tanto, la fuente principal de aceleración de los glaciares de salida ampliamente observada en los glaciares de desprendimiento pequeños y grandes en Groenlandia es impulsada por cambios en las fuerzas dinámicas en el frente del glaciar, no por una lubricación mejorada por agua de deshielo. [120] Terence Hughes, de la Universidad de Maine, lo denominó efecto Jakobshavns en 1986. [121] De hecho, un estudio publicado en 2015 sobre la topografía submarina de los glaciares en tres sitios encontró cavidades, debido a la intrusión de agua subglacial cálida, que se ha identificado como una posible fuerza dominante para la ablación (erosión superficial). Por lo tanto, sugiere que la temperatura del océano controla la escorrentía superficial de la capa de hielo en sitios específicos. Estos hallazgos también muestran que los modelos subestiman la sensibilidad de los glaciares de Groenlandia al calentamiento del océano y la escorrentía resultante de la capa de hielo. Por lo tanto, sin un mejor modelado, las nuevas observaciones sugieren que las proyecciones anteriores de la atribución del aumento del nivel del mar a partir de la capa de hielo de Groenlandia requieren una revisión al alza. [122]

Según un estudio, entre 2002 y 2019 Groenlandia perdió 4.550 gigatoneladas de hielo, 268 gigatoneladas al año, en promedio. En 2019, Groenlandia perdió 600 gigatoneladas de hielo en dos meses, lo que contribuyó con 2,2 mm al aumento global del nivel del mar [123]

Canadá

Capa de hielo de Bylot en la isla Bylot, una de las islas árticas canadienses , 14 de agosto de 1975 (USGS)

Las islas árticas canadienses contienen la mayor superficie y volumen de hielo terrestre de la Tierra fuera de las capas de hielo de Groenlandia y la Antártida [124] [125] y albergan una serie de importantes capas de hielo, incluidas las capas de hielo de Penny y Barnes en la isla de Baffin , la capa de hielo de Bylot en la isla de Bylot y la capa de hielo de Devon en la isla de Devon . Los glaciares del Ártico canadiense estuvieron cerca del equilibrio entre 1960 y 2000, perdiendo 23 Gt de hielo por año entre 1995 y 2000. [126] Desde entonces, los glaciares del Ártico canadiense han experimentado un marcado aumento en la pérdida de masa en respuesta a las temperaturas más cálidas del verano, perdiendo 92 Gt por año entre 2007 y 2009. [127]

Otros estudios muestran que entre 1960 y 1999, la capa de hielo de Devon perdió 67 km3 ( 16 millas cúbicas) de hielo, principalmente por adelgazamiento. Todos los principales glaciares de salida a lo largo del margen oriental de la capa de hielo de Devon han retrocedido de 1 km (0,62 millas) a 3 km (1,9 millas) desde 1960. [128] En la meseta de Hazen de la isla de Ellesmere , la capa de hielo de Simmon ha perdido el 47% de su área desde 1959. [129] Si las condiciones climáticas actuales continúan, el hielo glaciar restante en la meseta de Hazen desaparecerá alrededor de 2050. El 13 de agosto de 2005, la plataforma de hielo de Ayles se desprendió de la costa norte de la isla de Ellesmere. La plataforma de hielo de 66 km2 ( 25 millas cuadradas) se desplazó hacia el océano Ártico. [130] Esto se produjo después de la división de la plataforma de hielo Ward Hunt en 2002. Ward Hunt ha perdido el 90% de su superficie en el último siglo. [131]

Europa del Norte

Las islas árticas al norte de Noruega, Finlandia y Rusia han mostrado evidencia de retroceso de los glaciares. En el archipiélago de Svalbard , la isla de Spitsbergen tiene numerosos glaciares. Las investigaciones indican que Hansbreen (glaciar Hans) en Spitsbergen retrocedió 1,4 km (0,87 mi) entre 1936 y 1982 y otros 400 m (1.300 pies) durante el período de 16 años de 1982 a 1998. [132] Blomstrandbreen, un glaciar en el área de King's Bay de Spitsbergen, ha retrocedido aproximadamente 2 km (1,2 mi) en los últimos 80 años. Desde 1960, el retroceso medio de Blomstrandbreen ha sido de unos 35 m (115 pies) al año, y este promedio se ha visto reforzado debido a una tasa acelerada de retroceso desde 1995. [133] De manera similar, Midre Lovenbreen retrocedió 200 m (660 pies) entre 1977 y 1995. [134] En el archipiélago de Novaya Zemlya , al norte de Rusia, las investigaciones indican que en 1952 había 208 km (129 mi) de hielo glaciar a lo largo de la costa. Para 1993, esto se había reducido en un 8% a 198 km (123 mi) de costa glaciar. [135]

Islandia

Laguna de hielo Jökulsárlón al pie del glaciar Vatnajökull , Islandia , 2023

La nación insular del Atlántico norte de Islandia alberga el Vatnajökull , que es el casquete glaciar más grande de Europa. El glaciar Breiðamerkurjökull es uno de los glaciares de salida del Vatnajökull y retrocedió hasta 2 km (1,2 mi) entre 1973 y 2004. A principios del siglo XX, Breiðamerkurjökull se extendía hasta 250 m (820 pies) del océano, pero en 2004 su extremo se había retirado 3 km (1,9 mi) más tierra adentro. Este retroceso del glaciar expuso una laguna en rápida expansión, Jökulsárlón , que está llena de icebergs desprendidos de su frente. El Jökulsárlón tiene una profundidad de 110 m (360 pies) y casi duplicó su tamaño entre 1994 y 2004. Las mediciones del balance de masa de los glaciares de Islandia muestran un balance de masa positivo y negativo alternado durante el período 1987-1995, pero el balance de masa ha sido predominantemente negativo desde entonces. En el casquete glaciar de Hofsjökull, el balance de masa ha sido negativo cada año desde 1995 hasta 2005. [136]

La mayoría de los glaciares islandeses retrocedieron rápidamente durante las décadas cálidas de 1930 a 1960, disminuyendo su velocidad a medida que el clima se enfrió durante la década siguiente, y comenzaron a avanzar después de 1970. La tasa de avance alcanzó su punto máximo en la década de 1980, después de lo cual se desaceleró hasta aproximadamente 1990. Como consecuencia del rápido calentamiento del clima que ha tenido lugar desde mediados de la década de 1980, la mayoría de los glaciares en Islandia comenzaron a retroceder después de 1990, y para el año 2000 todos los glaciares de tipo no oleaje monitoreados en Islandia estaban retrocediendo. Un promedio de 45 glaciares no oleaje fueron monitoreados cada año por la Sociedad Glaciológica Islandesa desde 2000 a 2005. [137]

Antártida

Ubicación y diagrama del lago Vostok , un importante lago subglacial debajo de la capa de hielo de la Antártida Oriental .

La capa de hielo de la Antártida es la mayor masa de hielo conocida. Abarca casi 14 millones de km2 y unos 30 millones de km3 de hielo. Alrededor del 90% del agua dulce de la superficie del planeta se encuentra en esta zona y, si se derritiera, el nivel del mar aumentaría 58 metros. [138] La tendencia de la temperatura media de la superficie continental de la Antártida es positiva y significativa, con >0,05 °C/década desde 1957. [139]

La capa antártica está dividida por las montañas Transantárticas en dos secciones desiguales conocidas como la capa de hielo de la Antártida Oriental (EAIS) y la capa de hielo de la Antártida Occidental (WAIS), más pequeña. La EAIS descansa sobre una gran masa de tierra, pero el lecho de la WAIS está, en algunos lugares, a más de 2.500 metros por debajo del nivel del mar . Sería lecho marino si la capa de hielo no estuviera allí. La WAIS está clasificada como una capa de hielo de base marina, lo que significa que su lecho se encuentra por debajo del nivel del mar y sus bordes desembocan en plataformas de hielo flotantes. La WAIS está delimitada por la plataforma de hielo Ross , la plataforma de hielo Ronne y los glaciares de salida que desembocan en el mar de Amundsen .

El glaciar Dakshin Gangotri , un pequeño glaciar de salida de la capa de hielo antártica, retrocedió a una tasa promedio de 0,7 m (2,3 pies) por año desde 1983 hasta 2002. En la península Antártica, que es la única sección de la Antártida que se extiende bastante al norte del Círculo Antártico, hay cientos de glaciares en retroceso. En un estudio de 244 glaciares en la península, 212 retrocedieron un promedio de 600 m (2000 pies) desde donde estaban cuando se midieron por primera vez en 1953. [140]

El glaciar Pine Island es un glaciar saliente de la Antártida que desemboca en el mar de Amundsen . Un estudio de 1998 concluyó que el glaciar perdió 3,5 m (11 pies) ± 0,9 m (3,0 pies) por año y retrocedió un total de 5 km (3,1 mi) en 3,8 años. El extremo del glaciar Pine Island es una plataforma de hielo flotante, y el punto en el que comienza a flotar retrocedió 1,2 km (0,75 mi) por año entre 1992 y 1996. Este glaciar drena una parte sustancial de la capa de hielo de la Antártida occidental . [141]

Un estudio publicado en 2014 encontró un rápido retroceso de la línea de base en los años 1992-2011. [142] Según un estudio de 2005, el mayor retroceso se observó en el glaciar Sjogren, que ahora está 13 km (8,1 mi) más tierra adentro que donde estaba en 1953. Hay 32 glaciares que se midieron que avanzaron; sin embargo, estos glaciares mostraron solo un avance modesto con un promedio de 300 m (980 pies) por glaciar, que es significativamente menor que el retroceso masivo observado. [143]

El glaciar Thwaites , que también ha mostrado evidencia de adelgazamiento, ha sido considerado como la parte más débil de la capa de hielo de la Antártida occidental. [141] Un estudio publicado en 2014 encontró un rápido retroceso de la línea de base en los años 1992-2011. [142] Más recientemente, nuevos datos de imágenes satelitales llevaron a cálculos de una "tasa de derretimiento de la plataforma de hielo del glaciar Thwaites de 207 m/año en 2014-2017, que es la tasa de derretimiento de la plataforma de hielo más alta registrada en la Antártida". [24]

El glaciar Totten es un gran glaciar que drena una parte importante de la capa de hielo de la Antártida Oriental. Un estudio de 2008 concluyó que el glaciar Totten está perdiendo masa en la actualidad. [144] Un estudio publicado en 2015 concluyó que el glaciar Totten tiene la mayor contribución a la tasa de adelgazamiento del hielo en el continente antártico oriental, y que el adelgazamiento es impulsado por un mayor derretimiento basal, debido a los procesos oceánicos, y afectado por la actividad de polinias . Además, se ha observado agua profunda circumpolar cálida durante los meses de verano e invierno en la plataforma continental cercana por debajo de 400 a 500 metros de agua superficial antártica fría. [145]

Un estudio de 2019 mostró que la Antártida está perdiendo hielo seis veces más rápido que hace 40 años. Otro estudio mostró que dos glaciares, Pine Island y Thwaites, se están derritiendo cinco veces más rápido que "a principios de la década de 1990". [146]

En febrero de 2020, se informó desde la Base Esperanza que la península Antártica alcanzó una temperatura de 18,3 °C (64,9 °F), la más alta registrada hasta la fecha en la Antártida continental. En los últimos 50 años, las temperaturas en la península Antártica han aumentado 5 grados y alrededor del 87% de los glaciares a lo largo de la costa oeste de la península han retrocedido. [147] [148] [149]

Plataformas de hielo

Las plataformas de hielo no son estables cuando se produce el derretimiento de la superficie. En las últimas décadas, los glaciólogos han observado disminuciones constantes en la extensión de las plataformas de hielo a través del derretimiento, el desprendimiento y la desintegración completa de algunas plataformas. Ejemplos bien estudiados incluyen las alteraciones de la plataforma de hielo Thwaites , la plataforma de hielo Larsen , la plataforma de hielo Filchner-Ronne (las tres en la Antártida) y la alteración de la plataforma de hielo Ellesmere en el Ártico.

Zona tropical

Los glaciares tropicales se encuentran entre el Trópico de Cáncer y el Trópico de Capricornio , en la región que se encuentra a 23° 26′ 22″ al norte o al sur del ecuador . Estrictamente, un glaciar tropical se encuentra dentro de los trópicos astronómicos ; el área donde la variación anual de temperatura es menor que la variación diaria, y se encuentra dentro del área de oscilación de la Zona de Convergencia Intertropical . [150]

Los glaciares tropicales son los menos comunes de todos por diversas razones. En primer lugar, estas regiones son la parte más cálida del planeta. En segundo lugar, el cambio estacional es mínimo y las temperaturas son cálidas durante todo el año, lo que da como resultado la falta de una estación invernal más fría en la que se pueda acumular nieve y hielo. En tercer lugar, en estas regiones existen pocas montañas altas en las que exista suficiente aire frío para el establecimiento de glaciares. En general, los glaciares tropicales son más pequeños que los que se encuentran en otras partes y son los glaciares con más probabilidades de mostrar una respuesta rápida a los patrones climáticos cambiantes. Un pequeño aumento de temperatura de solo unos pocos grados puede tener un efecto adverso casi inmediato en los glaciares tropicales. [151]

Cerca del ecuador, todavía se encuentra hielo en África oriental, los Andes de América del Sur y Nueva Guinea. El retroceso de los glaciares ecuatoriales se ha documentado mediante mapas y fotografías que abarcan el período desde finales del siglo XIX hasta casi la actualidad. [152] El 99,64% de los glaciares tropicales se encuentran en las montañas andinas de América del Sur, el 0,25% en los glaciares africanos de Rwenzori, el monte Kenia y el Kilimanjaro, y el 0,11% en la región de Irian Jaya en Nueva Guinea. [153]

África

El glaciar Furtwängler en la cima del Kilimanjaro en primer plano y los campos de nieve y los Campos de Hielo del Norte más allá

Casi toda África se encuentra en zonas climáticas tropicales y subtropicales . Sus glaciares se encuentran solo en dos cordilleras aisladas y en la cordillera Ruwenzori . El Kilimanjaro, a 5.895 m (19.341 pies), es el pico más alto del continente. De 1912 a 2006, la cubierta glaciar en la cumbre del Kilimanjaro aparentemente retrocedió un 75%, y el volumen de hielo glaciar disminuyó un 80% con respecto a su valor de 1912 debido tanto al retroceso como al adelgazamiento. [154] En el período de 14 años de 1984 a 1998, una sección del glaciar en la cima de la montaña retrocedió 300 m (980 pies). [155] Un estudio de 2002 determinó que si las condiciones continuaban, los glaciares en la cima del Kilimanjaro desaparecerían en algún momento entre 2015 y 2020. [156] Al Gore predijo en 2006 que dentro de la década no habría más nieve en el Kilimanjaro. [157] Un informe de marzo de 2005 indicó que casi no quedaba hielo glacial en la montaña, y el documento señaló que esta era la primera vez en 11.000 años que se había expuesto suelo estéril en partes de la cumbre. [158] Los investigadores informaron que el retroceso de los glaciares del Kilimanjaro se debía a una combinación de mayor sublimación y disminución de la caída de nieve. [12]

El glaciar Furtwängler se encuentra cerca de la cumbre del Kilimanjaro. Entre 1976 y 2000, la superficie del glaciar Furtwängler se redujo casi a la mitad, pasando de 113.000 m2 ( 1.220.000 pies cuadrados) a 60.000 m2 ( 650.000 pies cuadrados). [159] Durante el trabajo de campo realizado a principios de 2006, los científicos descubrieron un gran agujero cerca del centro del glaciar. Se esperaba que este agujero, que se extendía a través de los 6 m (20 pies) de espesor restante del glaciar hasta la roca subyacente, creciera y dividiera el glaciar en dos en 2007. [154]

Al norte del Kilimanjaro se encuentra el monte Kenia , que con 5.199 m (17.057 pies) es la segunda montaña más alta del continente. El monte Kenia tiene una serie de pequeños glaciares que han perdido al menos el 45% de su masa desde mediados del siglo XX. Según la investigación compilada por el Servicio Geológico de Estados Unidos (USGS), había dieciocho glaciares en la cima del monte Kenia en 1900, y para 1986 solo quedaban once. El área total cubierta por glaciares era de 1,6 km2 ( 0,62 millas cuadradas) en 1900, sin embargo, para el año 2000 solo quedaba alrededor del 25%, o 0,4 km2 ( 0,15 millas cuadradas). [160] Al oeste de los montes Kilimanjaro y Kenia, la cordillera Ruwenzori se eleva a 5.109 m (16.762 pies). Las evidencias fotográficas indican una marcada reducción de las áreas cubiertas por glaciares durante el siglo pasado. En el período de 35 años entre 1955 y 1990, los glaciares de las montañas Rwenzori retrocedieron alrededor del 40%. Se espera que, debido a su proximidad a la gran humedad de la región del Congo , los glaciares de la cordillera Ruwenzori puedan retroceder a un ritmo más lento que los del Kilimanjaro o de Kenia. [161]

Sudamerica

Un estudio realizado por glaciólogos en dos pequeños glaciares de América del Sur revela otro retroceso. Más del 80% de todo el hielo glaciar de los Andes del norte se concentra en los picos más altos de pequeñas llanuras de aproximadamente 1 km2 ( 0,39 millas cuadradas) de tamaño. Una observación realizada entre 1992 y 1998 en el glaciar Chacaltaya en Bolivia y el glaciar Antizana en Ecuador indica que se perdieron entre 0,6 m (2,0 pies) y 1,9 m (6,2 pies) de hielo por año en cada glaciar. Las cifras correspondientes al Chacaltaya muestran una pérdida del 67% de su volumen y del 40% de su espesor durante el mismo período. El glaciar Chacaltaya ha perdido el 90% de su masa desde 1940 y se esperaba que desapareciera por completo en algún momento entre 2010 y 2015. También se informa que Antizana perdió el 40% de su superficie entre 1979 y 2007. [162] La investigación también indica que desde mediados de la década de 1980, la tasa de retroceso de ambos glaciares ha ido aumentando. [163] En Colombia , los glaciares en la cima del Nevado del Ruiz han perdido más de la mitad de su área en los últimos 40 años. [164]

Más al sur en Perú , los Andes están a una altitud mayor en general y albergan alrededor del 70% de todos los glaciares tropicales. Un inventario de glaciares de 1988 basado en datos de 1970 estimó que, en ese momento, los glaciares cubrían un área de 2600 km2 ( 1000 millas cuadradas). [165] [166] Entre 2000 y 2016, se perdió el 29% del área glaciarizada, y el área restante se estima en alrededor de 1300 km2 ( 500 millas cuadradas). [166] El casquete glaciar Quelccaya es el segundo casquete glaciar tropical más grande del mundo después del casquete glaciar Coropuna , [167] y todos los glaciares de salida del casquete glaciar están retrocediendo. [168] En el caso del glaciar Qori Kalis , que es uno de los glaciares de salida de Quelccayas, la tasa de retroceso había alcanzado 155 m (509 pies) por año durante el período de tres años de 1995 a 1998. El hielo derretido ha formado un gran lago en el frente del glaciar desde 1983, y el suelo desnudo ha quedado expuesto por primera vez en miles de años. [169]

Oceanía

Mapa animado de la extensión de los glaciares de la cordillera Carstensz desde 1850 hasta 2003
Casquete de hielo del Monte Carstensz 1936 USGS
Glaciares de Puncak Jaya, 1972. De izquierda a derecha: Northwall Firn, glaciar Meren y glaciar Carstensz. USGS. También imagen y animación de mediados de 2005 .

Jan Carstensz's 1623 report of glaciers covering the equatorial mountains of New Guinea was originally met with ridicule, but in the early 20th century at least five subranges of the Maoke Mountains (meaning "Snowy Mountains") were indeed still found to be covered with large ice caps. Due to the location of the island within the tropical zone, there is little to no seasonal variation in temperature. The tropical location has a predictably steady level of rain and snowfall, as well as cloud cover year round, and there has been no noticeable change in the amount of moisture which has fallen during the 20th century.

In 1913, 4,550 m (14,930 ft) high Prins Hendrik peaks (now Puncak Yamin) was named and reported to have "eternal" snow, but this observation was never repeated.[170] The ice cap of 4,720 m (15,490 ft) Wilhelmina Peaks, which reached below 4,400 m (14,400 ft) in 1909, vanished between 1939 and 1963.[171] The Mandala / Juliana ice cap disappeared in the 1990s.[172] and the Idenburg glacier on Ngga Pilimsit dried up in 2003. This leaves only the remnants of the once continuous icecap on New Guinea's highest mountain, Mount Carstensz with the 4,884 m (16,024 ft) high Puncak Jaya summit, which is estimated to have had an area of 20 km2 (7.7 sq mi) in 1850.

For this mountain there is photographic evidence of massive glacial retreat since the region was first extensively explored by airplane in 1936 in preparation for the peak's first ascent. Between then and 2010, the mountain lost 80 percent of its ice—two-thirds of which since another scientific expedition in the 1970s.[173] That research between 1973 and 1976 showed glacier retreat for the Meren Glacier of 200 m (660 ft) while the Carstensz Glacier lost 50 m (160 ft). The Northwall Firn, the largest remnant of the icecap that once was atop Puncak Jaya, has itself split into two separate glaciers after 1942. IKONOS satellite imagery of the New Guinean glaciers indicated that by 2002 only 2.1 km2 (0.81 sq mi) glacial area remained, that in the two years from 2000 to 2002, the East Northwall Firn had lost 4.5%, the West Northwall Firn 19.4% and the Carstensz 6.8% of their glacial mass, and that sometime between 1994 and 2000, the Meren Glacier had disappeared altogether.[174] An expedition to the remaining glaciers on Puncak Jaya in 2010 discovered that the ice on the glaciers there is about 32 metres (105 ft) thick and thinning at a rate of 7 metres (23 ft) annually. At that rate, the remaining glaciers were expected to last only to the year 2015.[175] A 2019 study predicted their disappearance within a decade.[176]

Management approaches

Reducing greenhouse gas emissions (i.e. climate change mitigation measures) is the only solution that addresses the root cause of glacier retreat since industrialization.

To retard melting of the glaciers some Austrian ski resorts partially covered portions of the Stubai and Pitztal Glaciers with plastic.[177] In Switzerland plastic sheeting is also used to reduce the melt of glacial ice used as ski slopes.[178] While covering glaciers with plastic sheeting may prove advantageous to ski resorts on a small scale, this practice is not expected to be economically practical on a much larger scale.

See also

References

  1. ^ a b Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. Hemer, R.E. Kopp, G.  Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. Slangen, and Y. Yu, 2021: Chapter 9: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, doi:10.1017/9781009157896.011.
  2. ^ "Glossary of Meteorology". American Meteorological Society. Archived from the original on 2012-06-23. Retrieved 2013-01-04.
  3. ^ a b "The Causes of Climate Change". climate.nasa.gov. NASA. 2019. Archived from the original on 2019-12-21.
  4. ^ "Ice, Snow, and Glaciers and the Water Cycle". www.usgs.gov. Retrieved 2021-05-25.
  5. ^ Brown, Molly Elizabeth; Ouyang, Hua; Habib, Shahid; Shrestha, Basanta; Shrestha, Mandira; Panday, Prajjwal; Tzortziou, Maria; Policelli, Frederick; Artan, Guleid; Giriraj, Amarnath; Bajracharya, Sagar R.; Racoviteanu,, Adina (November 2010). "HIMALA: Climate Impacts on Glaciers, Snow, and Hydrology in the Himalayan Region". Mountain Research and Development. 30 (4). International Mountain Society: 401–404. doi:10.1659/MRD-JOURNAL-D-10-00071.1. hdl:2060/20110015312. S2CID 129545865.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Lee, Ethan; Carrivick, Jonathan L.; Quincey, Duncan J.; Cook, Simon J.; James, William H. M.; Brown, Lee E. (2021-12-20). "Accelerated mass loss of Himalayan glaciers since the Little Ice Age". Scientific Reports. 11 (1): 24284. Bibcode:2021NatSR..1124284L. doi:10.1038/s41598-021-03805-8. ISSN 2045-2322. PMC 8688493. PMID 34931039.
  7. ^ a b c Slater, Thomas; Lawrence, Isobel R.; Otosaka, Inès N.; Shepherd, Andrew; et al. (25 January 2021). "Review article: Earth's ice imbalance". The Cryosphere. 15 (1): 233–246. Bibcode:2021TCry...15..233S. doi:10.5194/tc-15-233-2021. ISSN 1994-0416. Abstract; Fig. 4.
  8. ^ Pelto, Mauri. "Recent Global Glacier Retreat Overview". North Cascade Glacier Climate Project. Retrieved February 14, 2015.
  9. ^ Hugonnet, Romain; McNabb, Robert; Berthier, Etienne; Menounos, Brian; Nuth, Christopher; Girod, Luc; Farinotti, Daniel; Huss, Matthias; Dussaillant, Ines; Brun, Fanny; Kääb, Andreas (2021). "Accelerated global glacier mass loss in the early twenty-first century". Nature. 592 (7856): 726–731. Bibcode:2021Natur.592..726H. doi:10.1038/s41586-021-03436-z. ISSN 1476-4687. PMID 33911269. S2CID 233446479.
  10. ^ "Global Glacier State". World Glacier Monitoring Service ("under the auspices of: ISC (WDS), IUGG (IACS), UN environment, UNESCO, WMO"). 2024. Archived from the original on 15 July 2024.
  11. ^ a b Rounce, David R.; Hock, Regine; Maussion, Fabien; Hugonnet, Romain; et al. (5 January 2023). "Global glacier change in the 21st century: Every increase in temperature matters". Science. 379 (6627): 78–83. Bibcode:2023Sci...379...78R. doi:10.1126/science.abo1324. PMID 36603094. S2CID 255441012.
  12. ^ a b Mote, Philip W.; Kaser, Georg (2007). "The Shrinking Glaciers of Kilimanjaro: Can Global Warming Be Blamed?". American Scientist. 95 (4): 318–325. doi:10.1511/2007.66.318. Retrieved November 23, 2020.
  13. ^ Alex S. Gardner; Geir Moholdt; J. Graham Cogley; Bert Wouters; Anthony A. Arendt; John Wahr; Etienne Berthier; Regine Hock; W. Tad Pfeffer; Georg Kaser; Stefan R. M. Ligtenberg; Tobias Bolch; Martin J. Sharp; Jon Ove Hagen; Michiel R. van den Broeke; Frank Paul (May 17, 2013). "A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009" (PDF). Science. 340 (6134): 852–857. Bibcode:2013Sci...340..852G. doi:10.1126/science.1234532. PMID 23687045. S2CID 206547524. Retrieved November 23, 2020.
  14. ^ a b Hubbard, Bryn; Neil F. Glasser (May 20, 2005). Field Techniques in Glaciology and Glacial Geomorphology. Wiley. pp. 179–198. ISBN 978-0470844274. Retrieved November 23, 2020.
  15. ^ a b c d Pelto, M.S. (2010). "Forecasting temperate alpine glacier survival from accumulation zone observations". The Cryosphere. 4 (1): 67–75. Bibcode:2010TCry....4...67P. doi:10.5194/tc-4-67-2010. Retrieved November 23, 2020.
  16. ^ a b c Clark, Peter U. (September 28, 2009). Abrupt Climate Change: Final Report, Synthesis and Assessment Product. DIANE Publishing Company. pp. 39–45. ISBN 9781437915693.
  17. ^ "2013 State of the climate: Mountain glaciers". NOAA. July 12, 2014. Retrieved November 23, 2020.
  18. ^ "IPCC AR6 WGII Summary for Policymakers" (PDF). ipcc.ch. Intergovernmental Panel on Climate Change (IPCC). 2022. Archived (PDF) from the original on 22 January 2023.
  19. ^ "How would sea level change if all glaciers melted? | U.S. Geological Survey". www.usgs.gov. Retrieved 2023-04-23.
  20. ^ Rahmstorf S, et al. (May 2007). "Recent climate observations compared to projections". Science. 316 (5825): 709. Bibcode:2007Sci...316..709R. doi:10.1126/science.1136843. PMID 17272686. S2CID 34008905.
  21. ^ Velicogna, I. (2009). "Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE". Geophysical Research Letters. 36 (19): L19503. Bibcode:2009GeoRL..3619503V. CiteSeerX 10.1.1.170.8753. doi:10.1029/2009GL040222. S2CID 14374232.
  22. ^ Cazenave, A.; Dominh, K.; Guinehut, S.; Berthier, E.; Llovel, W.; Ramillien, G.; Ablain, M.; Larnicol, G. (2009). "Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo". Global and Planetary Change. 65 (1): 83–88. Bibcode:2009GPC....65...83C. doi:10.1016/j.gloplacha.2008.10.004. S2CID 6054006.
  23. ^ Team, By Carol Rasmussen, NASA's Earth Science News. "Huge cavity in Antarctic glacier signals rapid decay". Climate Change: Vital Signs of the Planet. Retrieved 2019-02-05.{{cite web}}: CS1 maint: multiple names: authors list (link)
  24. ^ a b Prats-Iraola, P.; Bueso-Bello, J.; Mouginot, J.; Scheuchl, B.; Rizzoli, P.; Rignot, E.; Milillo, P. (2019-01-01). "Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica". Science Advances. 5 (1): eaau3433. Bibcode:2019SciA....5.3433M. doi:10.1126/sciadv.aau3433. ISSN 2375-2548. PMC 6353628. PMID 30729155.
  25. ^ Pfeffer WT, Harper JT, O'Neel S (September 2008). "Kinematic constraints on glacier contributions to 21st-century sea-level rise". Science. 321 (5894): 1340–3. Bibcode:2008Sci...321.1340P. doi:10.1126/science.1159099. PMID 18772435. S2CID 15284296.
  26. ^ "Melting glaciers threaten Peru". BBC News. October 9, 2003. Retrieved January 7, 2021.
  27. ^ "Water crisis looms as Himalayan glaciers retreat". wwf.panda.org. Archived from the original on 11 March 2021. Retrieved 2020-11-07.
  28. ^ Immerzeel, Walter W.; Beek, Ludovicus P. H. van; Bierkens, Marc F. P. (2010-06-11). "Climate Change Will Affect the Asian Water Towers". Science. 328 (5984): 1382–1385. Bibcode:2010Sci...328.1382I. doi:10.1126/science.1183188. ISSN 0036-8075. PMID 20538947. S2CID 128597220. Archived from the original on 20 March 2021. Retrieved 25 March 2021.
  29. ^ Miller, James D.; Immerzeel, Walter W.; Rees, Gwyn (November 2012). "Climate Change Impacts on Glacier Hydrology and River Discharge in the Hindu Kush–Himalayas". Mountain Research and Development. 32 (4): 461–467. doi:10.1659/MRD-JOURNAL-D-12-00027.1. ISSN 0276-4741.
  30. ^ Wester, Philippus; Mishra, Arabinda; Mukherji, Aditi; Shrestha, Arun Bhakta, eds. (2019). The Hindu Kush Himalaya Assessment. Springer. doi:10.1007/978-3-319-92288-1. hdl:10023/17268. ISBN 978-3-319-92287-4. S2CID 199491088. Archived from the original on 9 March 2021. Retrieved 25 March 2021.
  31. ^ The Economics of Adapting Fisheries to Climate Change. OECD Publishing. 2011. pp. 47–55. ISBN 978-92-64-09036-1. Retrieved 2011-10-15.
  32. ^ a b "Global Warming Triggers Glacial Lakes Flood Threat" (Press release). United Nations Environment Programme. 16 April 2002. Archived from the original on 26 May 2005. Retrieved 14 November 2015.
  33. ^ An Overview of Glaciers, Glacier Retreat, and Subsequent Impacts in Nepal, India and China (PDF) (Report). WWF Nepal Program. March 2005. p. 3.
  34. ^ a b c Mauri S. Pelto. "Recent Global Glacier Retreat Overview". Retrieved August 7, 2016.
  35. ^ Schultz, Jürgen (September 7, 2005). The Ecozones of the World: The Ecological Divisions of the Geosphere (2 ed.). Springer. ISBN 978-3540200147.
  36. ^ Hensen, Robert (October 30, 2006). The Rough Guide to Climate Change. DK. ISBN 9781843537113.
  37. ^ White, Christopher (September 3, 2013). The Melting World: A Journey Across America's Vanishing Glaciers. St. Martin's Press. p. 133. ISBN 978-0312546281.
  38. ^ Fort, Monique (2014). Landscapes and Landforms in France. Springer Netherlands. p. 172. ISBN 9789400770218.
  39. ^ Vaughn, Adam (September 18, 2019). "Special report: How climate change is melting France's largest glacier". New Scientist. Retrieved February 3, 2021.
  40. ^ "Glacier des Bossons and Glacier de Taconnaz". Glaciers Online. Swiss Education. March 7, 2011. Retrieved March 1, 2015.
  41. ^ a b "The Swiss Glaciers Glaciological Report (Glacier) No. 125/126" (PDF). University of Zurich. 2009. pp. 14–17. Retrieved April 11, 2015.
  42. ^ a b Jouvet, Guillaume; Matthias Huss; Martin Funk; Heinz Blatter (2011). "Modelling the retreat of Grosser Aletschgletscher, Switzerland, in a changing climate" (PDF). Journal of Glaciology. 57 (206): 1033–1045. Bibcode:2011JGlac..57.1033J. doi:10.3189/002214311798843359. S2CID 55879630. Retrieved April 11, 2015.
  43. ^ Malinverni, Eva; Croci, Claudia; Sgroi, Fabrizio (February 2008). "Glacier Monitoring by Remote Sensing and GIS Techniques in Open Source Environment" (PDF). EARSeL eProceedings. Archived from the original (PDF) on February 14, 2019. Retrieved April 18, 2015.
  44. ^ Cannone, Nicoletta; Diolaiuti, G; Guglielmin, M; Smiraglia, C (2008). "Accelerating Climate Change Impacts on Alpine Glacier Forefield Ecosystems in the European Alps" (PDF). Ecological Applications. 18 (3): 637–648. Bibcode:2008EcoAp..18..637C. doi:10.1890/07-1188.1. hdl:11383/16260. PMID 18488623. Archived from the original (PDF) on April 18, 2015. Retrieved April 18, 2015.
  45. ^ Diolaiuti, Guglielmina; Maragno, D.; d'Agata, C.; Smiraglia, C.; Bocchiola, D. (April 2011). "Glacier retreat and climate change: Documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosdè Piazzi glaciers (Lombardy Alps, Italy)". Progress in Physical Geography. 35 (2): 161–182. Bibcode:2011PrPG...35..161D. doi:10.1177/0309133311399494. S2CID 129844246.
  46. ^ "Glaciers Online". Swiss Education. Retrieved April 18, 2015.
  47. ^ Two-thirds of glacier ice in the Alps 'will melt by 2100'
  48. ^ Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble
  49. ^ "Almost all glaciers in the Alps could disappear by 2100: study". Deutsche Welle. Retrieved February 2, 2021.
  50. ^ Wikland, Maria; Holmlund, Per (2002). "Swedish Glacier front monitoring program – compilation of data from 1990 to 2001" (PDF). Stockholm: Tarfala Research Station, University of Stockholm. pp. 37–40. Retrieved June 28, 2015.
  51. ^ a b c Nesje, Atle; Bakke, Jostein; Dahl, Svein Olaf; Lie, Øyvind; Matthews, John A. (2008). "Norwegian mountain glaciers in the past, present and future" (PDF). Global and Planetary Change. 60 (1): 10–27. Bibcode:2008GPC....60...10N. doi:10.1016/j.gloplacha.2006.08.004. Archived from the original (PDF) on 2016-11-07. Retrieved 2015-05-25.
  52. ^ a b "Glacier length change observations". Norwegian Water Resources and Energy Directorate. September 16, 2014. Archived from the original on May 26, 2015. Retrieved May 25, 2015.
  53. ^ "Engabreen". Norwegian Water Resources and Energy Directorate. September 16, 2014. Archived from the original on May 26, 2015. Retrieved May 25, 2015.
  54. ^ "Hardangerjøkulen". Norwegian Water Resources and Energy Directorate. September 16, 2014. Archived from the original on May 26, 2015. Retrieved May 25, 2015.
  55. ^ Nesje, Atle (December 2005). "Briksdalsbreen in western Norway: AD 1900–2004 frontal fluctuations as a combined effect of variations in winter precipitation and summer temperature". The Holocene. 15 (8): 1245–1252. Bibcode:2005Holoc..15.1245N. doi:10.1191/0959683605hl897rr. S2CID 129921361.
  56. ^ a b c Nussbaumer, Samuel U.; Nesje, Atle; Zumbühl, Heinz J. (May 2011). "Historical glacier fluctuations of Jostedalsbreen and Folgefonna (southern Norway) reassessed by new pictorial and written evidence". The Holocene. 21 (3): 455–471. Bibcode:2011Holoc..21..455N. doi:10.1177/0959683610385728. S2CID 128490189.
  57. ^ J. Chuecaia; López-Moreno (2007). "Recent evolution (1981–2005) of the Maladeta glaciers, Pyrenees, Spain: extent and volume losses and their relation with climatic and topographic factors". Journal of Glaciology. 53 (183): 547–557. Bibcode:2007JGlac..53..547C. doi:10.3189/002214307784409342.
  58. ^ Serrano, E.; E. Martinez; F. Lampre (2004). "Desaparición de Glaciares Pirenaicos Españoles". Retrieved July 1, 2015.
  59. ^ Painter, Thomas; Flanner, Mark; Kaser, Georg; Marzeion, Ben; VanCuren, Richard; Abdalati, Waleed (September 17, 2013). "End of the Little Ice Age in the Alps forced by industrial black carbon". Proceedings of the National Academy of Sciences. 110 (88): 15216–15221. Bibcode:2013PNAS..11015216P. doi:10.1073/pnas.1302570110. PMC 3780880. PMID 24003138.
  60. ^ "Glacier loss may cost political instability". Anadolu Agency. Retrieved 2020-04-15.
  61. ^ "Glaciers melting faster in southeast Turkey, sparking concerns". Daily Sabah. 2019-07-30. Retrieved 2020-04-15.
  62. ^ Rocchio, Laura (July 1, 2015). "Turkish glaciers shrink by half". NASA. Retrieved November 23, 2020.
  63. ^ Yalcin, Mustafa (2020). "A GIS-Based Multi-Criteria Decision Analysis Model for Determining Glacier Vulnerability". ISPRS International Journal of Geo-Information. 9 (3): 180. Bibcode:2020IJGI....9..180Y. doi:10.3390/ijgi9030180.
  64. ^ a b c Surazakov, A.B.; Aizem, V.B.; Aizem, E.M.; Nikitin, S.A. (2007). "Glacier Changes in the Siberian Altai Mountains, Ob river basin, (1952–2006) estimated with high resolution imagery". Environmental Research Letters. 2 (4): 045017. Bibcode:2007ERL.....2d5017S. doi:10.1088/1748-9326/2/4/045017.
  65. ^ a b Dyurgerov, Mark B.; Meier, Mark F. (2005). "Glaciers and the Changing Earth System: A 2004 Snapshot" (PDF). University of Colorado. Archived from the original (PDF) on September 30, 2009. Retrieved July 6, 2015.
  66. ^ a b c Ananicheva, M.D.; Krenke, A.N.; Barry, R.G. (October 6, 2010). "The Northeast Asia mountain glaciers in the near future by AOGCM scenarios". The Cryosphere. 4 (4): 435–445. Bibcode:2010TCry....4..435A. doi:10.5194/tc-4-435-2010.
  67. ^ Jones, Vivienne; Solomina, Olga (June 6, 2015). "The geography of Kamchatka". Global and Planetary Change. 134 (132): 3–9. Bibcode:2015GPC...134....3J. doi:10.1016/j.gloplacha.2015.06.003.
  68. ^ a b "Global Glacier Changes: facts and figures Northern Asia" (PDF). United Nations Environment Programme. Archived from the original (PDF) on September 24, 2015. Retrieved July 17, 2015.
  69. ^ "Himalayas Facts". Nature. February 11, 2011. Retrieved August 26, 2015.
  70. ^ Laghari, Javaid (November 11, 2013). "Climate change: Melting glaciers bring energy uncertainty". Nature. 502 (7473): 617–618. doi:10.1038/502617a. PMID 24180016.
  71. ^ Lee, Ethan; Carrivick, Jonathan L.; Quincey, Duncan J.; Cook, Simon J.; James, William H. M.; Brown, Lee E. (2021-12-20). "Accelerated mass loss of Himalayan glaciers since the Little Ice Age". Scientific Reports. 11 (1): 24284. Bibcode:2021NatSR..1124284L. doi:10.1038/s41598-021-03805-8. ISSN 2045-2322. PMC 8688493. PMID 34931039.
  72. ^ "Narrowing the Knowledge Gap on Glaciers in High Mountain Asia". International Symposium on Glaciology in High Mountain Asia. International Centre for Integrated Mountain Development. March 9, 2015. Retrieved August 26, 2015.
  73. ^ Haritashya, Umesh K.; Bishop, Michael P.; Shroder, John F.; Bush, Andrew B. G.; Bulley, Henry N. N. (2009). "Space-based assessment of glacier fluctuations in the Wakhan Pamir, Afghanistan" (PDF). Climate Change. 94 (1–2): 5–18. Bibcode:2009ClCh...94....5H. doi:10.1007/s10584-009-9555-9. S2CID 155024036.
  74. ^ Pelto, Mauri (December 23, 2009). "Zemestan Glacier, Afghanistan Retreats". American Geophysical Union. Retrieved November 15, 2015.
  75. ^ Sandeep Chamling Rai; Trishna Gurung ia; et al. "An Overview of Glaciers, Glacier Retreat and Subsequent Impacts in Nepal, India and China" (PDF). WWF Nepal Program. Retrieved November 15, 2015.
  76. ^ a b Bajracharya, Mool. "Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal" (PDF). International Centre for Integrated Mountain Development. Archived from the original (PDF) on January 24, 2014. Retrieved January 10, 2010.
  77. ^ Naithani, Ajay K.; Nainwal, H. C.; Sati, K. K.; Prasad, C. (2001). "Geomorphological evidences of retreat of the Gangotri Glacier and its characteristics" (PDF). Current Science. 80 (1): 87–94. Retrieved November 15, 2015.
  78. ^ a b "Retreat of the Gangotri Glacier". NASA Earth Observatory. June 23, 2004. Retrieved November 15, 2015.
  79. ^ Raina, V. K. (2010). "Himalayan Glaciers A State-of-Art Review of Glacial Studies, Glacial Retreat and Climate Change" (PDF). Ministry of Environment and Forests. Retrieved November 15, 2015.
  80. ^ Anthwal, Ashish; Joshi, Varun; Sharma, Archana; Anthwal, Smriti (2006). "Retreat of Himalayan Glaciers – Indicator of Climate Change". Nature and Science. 4 (4): 53–59. Retrieved November 16, 2015.
  81. ^ Hewitt, Kenneth (2006). "The Karakoram Anomaly? Glacier Expansion and the 'Elevation Effect,' Karakoram Himalaya". Mountain Research and Development. 25 (4): 332–340. doi:10.1659/0276-4741(2005)025[0332:tkagea]2.0.co;2. S2CID 55060060.
  82. ^ "Glacial Lakes and Glacial Lake Outburst Floods in Nepal" (PDF). International Centre for Integrated Mountain Development. 2011. p. 31. Archived from the original (PDF) on January 24, 2014. Retrieved November 22, 2015.
  83. ^ Qader Mirza, M. Monirul (July 13, 2005). Climate Change and Water Resources in South Asia. Taylor & Francis Ltd. p. 143. ISBN 978-0203020777. Retrieved November 22, 2015.
  84. ^ United Nations Environment Programme. "Global Warming Triggers Glacial Lakes Flood Threat – April 16, 2002". UNEP News Release 2002/20. Archived from the original on June 3, 2016. Retrieved November 22, 2015.
  85. ^ T. E. Khromova, M. B. Dyurgerov and R. G. Barry (2003). "Late-twentieth century changes in glacier extent in the Ak-shirak Range, Central Asia, determined from historical data and ASTER imagery". Geophysical Research Letters. 30 (16): 1863. Bibcode:2003GeoRL..30.1863K. doi:10.1029/2003gl017233. OSTI 813623.
  86. ^ Kirby, Alex (September 4, 2003). "Kazakhstan's glaciers 'melting fast'". BBC News.
  87. ^ a b c Kayumov, A. "Glaciers Resources of Tajikistan in Condition of the Climate Change" (PDF). State Agency for Hydrometeorology of Committee for Environmental Protection under the Government of the Republic of Tajikistan. Retrieved January 31, 2016.
  88. ^ Novikov, V. "Tajikistan 2002, State of the Environment Report". Climate Change. Research Laboratory for Nature Protection (Tajikistan). Archived from the original on September 28, 2011. Retrieved January 31, 2016.
  89. ^ Huegel, Tony (2008). Sierra Nevada Byways: 51 of the Sierra Nevada's Best Backcountry Drives (Backcountry Byways). Wilderness Press. p. 2. ISBN 978-0-89997-473-6. Retrieved 2011-10-15.
  90. ^ Price, Jonathan G. (2004). "Geology of Nevada". In Stephen B. Castor; Keith G. Papke; Richard O. Meeuwig (eds.). Proceedings of the 39th Forum on the Geology of Industrial Minerals, Nevada. Nevada Bureau of Mines and Geology. p. 192. Retrieved 2011-10-15.
  91. ^ Pelto, Mauri S. "Recent Global Glacier Retreat Overview". Retrieved 2011-10-15.
  92. ^ Mauri S. Pelto; Cliff Hedlund (2001). "Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A". Journal of Glaciology. 47 (158): 497–506. Bibcode:2001JGlac..47..497P. doi:10.3189/172756501781832098.
  93. ^ Mauri S. Pelto. "North Cascade Glacier Terminus Behavior". Nichols College. Retrieved August 7, 2016.
  94. ^ U.S. Geological Survey. "Glacier Monitoring in Glacier National Park". Archived from the original on February 18, 2013. Retrieved April 25, 2003.
  95. ^ U.S. Geological Survey, U.S. Department of the Interior. "Glacier Retreat in Glacier National Park, Montana". Retrieved January 21, 2020.
  96. ^ DeVisser, Mark H.; Fountain, Andrew G. (24 October 2014). "A century of glacier change in the Wind River Range, WY" (PDF). Geomorphology. 232: 103–116. doi:10.1016/j.geomorph.2014.10.017.
  97. ^ Wyoming Water Resources Data System Library (July 11, 1990). "Glacial Icemelt in the Wind River Range, Wyoming".
  98. ^ Storrow, Benjamin (2017-09-13). "The Rocky Mountains' Largest Glaciers Are Melting with Little Fanfare". Scientific American. Retrieved 2023-09-27.
  99. ^ Canadian Cryospheric Information Network. "Past Variability of Canadian Glaciers". Retrieved February 14, 2006.
  100. ^ J. Koch, B. Menounos & J. Clague (2009). "Glacier change in Garibaldi Provincial Park, southern Coast Mountains, British Columbia, since the Little Ice Age". Global and Planetary Change. 66. (3–4) 161–178 (3–4): 161–178. Bibcode:2009GPC....66..161K. doi:10.1016/j.gloplacha.2008.11.006.
  101. ^ Bruce F. Molnia. "Fast-flow advance and parallel rapid retreat of non-surging tidewater glaciers in Icy Bay and Yakutat Bay, Alaska 1888–2003". Archived from the original on November 25, 2003. Retrieved September 6, 2003.
  102. ^ Mauri S. Pelto & Maynard M. Miller. "Terminus Behavior of Juneau Icefield Glaciers 1948–2005". North Cascade Glacier Climate Project. Retrieved August 7, 2016.
  103. ^ Mauri S. Pelto; et al. (2008). "The equilibrium flow and mass balance of the Taku Glacier, Alaska 1950–2006". The Cryosphere. 2 (2): 147–157. Bibcode:2008TCry....2..147P. doi:10.5194/tc-2-147-2008.
  104. ^ Maynard M. Miller; Mauri S. Pelto. "Mass Balance Measurements of the Lemon Creek Glacier, Juneau Icefield, Alaska, 1953–2005". Archived from the original on August 13, 2016. Retrieved August 7, 2016.
  105. ^ Anthony A. Arendt; et al. (July 19, 2002). "Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level". Science. 297 (5580): 382–386. Bibcode:2002Sci...297..382A. doi:10.1126/science.1072497. PMID 12130781. S2CID 16796327.
  106. ^ Guy W. Adema; et al. "Melting Denali: Effects of Climate Change on the Glaciers of Denali National Park and Preserve" (PDF). Retrieved September 9, 2007.
  107. ^ "Patagonian ice in rapid retreat". BBC News. April 27, 2004. Retrieved January 7, 2021.
  108. ^ Skvarca, P. & R. Naruse (1997). "Dynamic behavior of glaciar Perito Moreno, Southern Patagonia". Annals of Glaciology. 24 (1): 268–271. Bibcode:1997AnGla..24..268S. doi:10.1017/S0260305500012283.
  109. ^ Casassa, G.; H. Brecher; A. Rivera; M. Aniya (1997). "A century-long record of glacier O'Higgins, Patagonia". Annals of Glaciology. 24 (1): 106–110. doi:10.1017/S0260305500012015.
  110. ^ EORC (July 15, 2005). "Huge glaciers retreat on a large scale in Patagonia, South America". Earth Observation research Center. Retrieved June 13, 2009.
  111. ^ Francisca Bown F, Rivera A, Acuña C (2008). "Recent glaciers variations at the Aconcagua Basin, central Chilean Andes". Annals of Glaciology. 48 (2): 43–48. Bibcode:2008AnGla..48...43B. doi:10.3189/172756408784700572. S2CID 6319942.
  112. ^ Salinger, Jim; Fitzharris, Blair; Chinn, Trevor (July 29, 2014), "New Zealand's Southern Alps have lost a third of their ice", The Conversation, retrieved February 18, 2015
  113. ^ United States Department of the Interior (May 4, 2000). "Glaciers of New Zealand". Archived from the original on June 3, 2008. Retrieved January 16, 2006.
  114. ^ Kusky, Timothy (2010). Encyclopedia of Earth and Space Science. Facts on File. p. 343. ISBN 978-0-8160-7005-3. Retrieved 2011-10-15.
  115. ^ Rignot, E. & Kanagaratnam, P. (February 17, 2006). "Changes in the Velocity Structure of the Greenland Ice Sheet". Science. 311 (5763): 986–990. Bibcode:2006Sci...311..986R. doi:10.1126/science.1121381. PMID 16484490. S2CID 22389368.
  116. ^ Ian Howat. "Rapidly accelerating glaciers may increase how fast the sea level rises". UC Santa Cruz, November 14–27, 2005 Vol. 10, No. 14. Retrieved November 27, 2007.
  117. ^ Jonathan Amos (14 May 2019). "Jakobshavn Isbrae: Mighty Greenland glacier slams on brakes". BBC. Retrieved 1 July 2019. Where previously this was dropping in height by 20m a year, it's now thickening by 20m a year.
  118. ^ M Truffer; M Fahnestock. "The Dynamics of Glacier System Response: Tidewater Glaciers and the Ice Streams and Outlet Glaciers of Greenland and Antarctica I". Archived from the original on April 22, 2006.
  119. ^ Das SB, Joughin I, Behn MD, Howat IM, King MA, Lizarralde D, Bhatia MP (9 May 2008). "Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage". Science. 320 (5877): 778–781. Bibcode:2008Sci...320..778D. doi:10.1126/science.1153360. hdl:1912/2506. PMID 18420900. S2CID 41582882.
  120. ^ a b M. Pelto (18 April 2008). "Moulins, Calving Fronts and Greenland Outlet Glacier Acceleration". Retrieved August 7, 2016.
  121. ^ T. Hughes (1986). "The Jakobshanvs effect". Geophysical Research Letters. 13 (1): 46–48. Bibcode:1986GeoRL..13...46H. doi:10.1029/GL013i001p00046.
  122. ^ Eric Rignot; Ian Fenty; Yun Xu; Cilan Cai; Chris Kemp (2015). "Undercutting of marine-terminating glaciers in West Greenland". Geophysical Research Letters. 42 (14): 5909–5917. Bibcode:2015GeoRL..42.5909R. doi:10.1002/2015GL064236. PMC 6473555. PMID 31031446.
  123. ^ "Greenland Lost 600 Billion Tons of Ice In 2 Months, Enough to Raise Global Sea Levels 2.2mm". SciTechDaily. UNIVERSITY OF CALIFORNIA – IRVINE. 20 April 2020. Retrieved 10 July 2020.
  124. ^ Radić, V.; Hock, R. (2010). "Regional and global volumes of glaciers derived from statistical upscaling ofglacier inventory data". J. Geophys. Res. 115 (F1): F01010. Bibcode:2010JGRF..115.1010R. doi:10.1029/2009jf001373. S2CID 39219770.
  125. ^ Sharp, M.; Burgess, D. O.; Cogley, J. G.; Ecclestone, M.; Labine, C.; Wolken, G. J. (2011). "Extreme melt onCanada's Arctic ice caps in the 21st century". Geophys. Res. Lett. 38 (11): L11501. Bibcode:2011GeoRL..3811501S. doi:10.1029/2011gl047381. S2CID 130713775.
  126. ^ W. Abdalatiia; et al. (2004). "Elevation changes of ice caps in the Canadian Arctic Archipelago" (PDF). Journal of Geophysical Research. 109 (F4): F04007. Bibcode:2004JGRF..109.4007A. doi:10.1029/2003JF000045. hdl:2060/20040171503. Archived from the original (PDF) on 2023-07-11. Retrieved 2019-10-19.
  127. ^ Gardner, A. S.; Moholdt, G.; Wouters, B.; Wolken, G. J.; Burgess, D. O.; Sharp, M. J.; Cogley, J. G.; Braun, C. (2011). "Sharply increased mass loss from glaciers and ice caps in theCanadian Arctic Archipelago". Nature. 473 (7347): 357–360. Bibcode:2011Natur.473..357G. doi:10.1038/nature10089. PMID 21508960. S2CID 205224896.[permanent dead link]
  128. ^ David O. Burgess & Martin J. Sharpa (2004). "Recent Changes in Areal Extent of the Devon Ice Cap, Nunavut, Canada". Arctic, Antarctic, and Alpine Research. 36 (2): 261–271. doi:10.1657/1523-0430(2004)036[0261:RCIAEO]2.0.CO;2. ISSN 1523-0430. S2CID 130350311.
  129. ^ Braun, Carsten; Hardy, D.R. & Bradley, R.S. (2004). "Mass balance and area changes of four High Arctic plateau ice caps, 1959–2002" (PDF). Geografiska Annaler. 86 (A): 43–52. Bibcode:2004GeAnA..86...43B. doi:10.1111/j.0435-3676.2004.00212.x. S2CID 7512251.
  130. ^ National Geographic. "Giant Ice Shelf Breaks Off in Canadian Arctic". Archived from the original on January 1, 2007. Retrieved August 7, 2016.
  131. ^ Mueller DR, Vincent WF, Jeffries MO (October 2003). "Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake". Geophysical Research Letters. 30 (20): 2031. Bibcode:2003GeoRL..30.2031M. doi:10.1029/2003GL017931. S2CID 16548879.
  132. ^ Glowacki, Piotr. "Glaciology and environmental monitoring". Research in Hornsund. Archived from the original on September 4, 2005. Retrieved February 14, 2006.
  133. ^ GreenPeace (2002). "Arctic environment melts before our eyes". Global Warming—Greenpeace Pictures in Spitsbergen. Archived from the original on June 3, 2016. Retrieved February 14, 2006.
  134. ^ Rippin D, Willis I, Arnold N, Hodson A, Moore J, Kohler J, Bjornsson H (2003). "Changes in Geometry and Subglacial Drainage of Midre Lovenbreen, Svalbard, Determined from Digital Elevation Models" (PDF). Earth Surface Processes and Landforms. 28 (3): 273–298. Bibcode:2003ESPL...28..273R. doi:10.1002/esp.485. S2CID 140630489.
  135. ^ Aleksey I. Sharov (2005). "Studying changes of ice coasts in the European Arctic" (PDF). Geo-Marine Letters. 25 (2–3): 153–166. Bibcode:2005GML....25..153S. doi:10.1007/s00367-004-0197-7. S2CID 131523457. Archived from the original (PDF) on 2012-03-05. Retrieved 2006-02-08.
  136. ^ Sveinsson, Óli Gretar Blondal (August 11–13, 2008). "XXV Nordic Hydrological Conference" (PDF). Nordic Association for Hydrology. Retrieved 2011-10-15.
  137. ^ Sigurdsson O, Jonsson T, Johannesson T. "Relation between glacier-termini variations and summer temperature in Iceland since 1930" (PDF). Hydrological Service, National Energy Authority. Archived from the original (PDF) on 2007-09-28. Retrieved September 7, 2007.
  138. ^ "Physical characteristics of ice on Earth, Climate Change 2001: Working Group I: The Scientific Basis. Intergovernmental Panel on Climate Change (IPCC)". Archived from the original on 2007-12-16. Retrieved 2015-05-22.
  139. ^ Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009). "Warming of the Antarctic ice-sheet surface since the 1957". Nature. 457 (7228): 459–62. Bibcode:2009Natur.457..459S. doi:10.1038/nature07669. PMID 19158794. S2CID 4410477.
  140. ^ "New Study in Science Finds Glaciers in Retreat on Antarctic Peninsula". American Association for the Advancement of Science. April 21, 2005. Archived from the original on October 21, 2017. Retrieved March 10, 2006.
  141. ^ a b Rignot, E. J. (July 24, 1998). "Fast Recession of a West Antarctic Glacier". Science. 281 (5376): 549–551. Bibcode:1998Sci...281..549R. doi:10.1126/science.281.5376.549. PMID 9677195. S2CID 35745570.
  142. ^ a b Rignot, E.; Mouginot, J.; Morlighem, M.; Seroussi, H.; Scheuchl, B. (2014). "Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011". Geophysical Research Letters. 41 (10): 3502–3509. Bibcode:2014GeoRL..41.3502R. doi:10.1002/2014GL060140. S2CID 55646040.
  143. ^ "Antarctic glaciers show retreat". BBC News. April 21, 2005.
  144. ^ Rignot, Eric; et al. (2008). "Recent {Antarctic} ice mass loss from radar interferometry and regional climate modelling". Nature Geoscience. 1 (2): 106–110. Bibcode:2008NatGe...1..106R. doi:10.1038/ngeo102. S2CID 784105.
  145. ^ Greenbaum, J. S.; Blankenship, D. D.; Young, D. A.; Richter, T. G.; Roberts, J. L.; Aitken, A. R. A.; Legresy, B.; Schroeder, D. M.; Warner, R. C.; Van Ommen, T. D.; Siegert, M. J. (2012). "Ocean access to a cavity beneath Totten Glacier in East Antarctica". Nature Geoscience. 8 (4): 294–298. Bibcode:2015NatGe...8..294G. doi:10.1038/ngeo2388.
  146. ^ Rosane, Olivia (May 16, 2019). "Antarctica's Ice Is Melting 5 Times Faster Than in the 90s". Ecowatch. Retrieved 19 May 2019.
  147. ^ "Antarctica logs hottest temperature on record with a reading of 18.3C". The Guardian. Retrieved January 7, 2021.
  148. ^ "Antarctica just hit 65 degrees, its warmest temperature ever recorded". Washington Post. February 7, 2020. Retrieved January 7, 2021.
  149. ^ "An Antarctic base recorded a temperature of 64.9 degrees F. If confirmed, it's a record high". NBC News. February 7, 2020. Retrieved January 7, 2021.
  150. ^ Kaser and Osmaton (2002). Tropical Glaciers. Cambridge. pp. 17–18. ISBN 978-0-521-63333-8.
  151. ^ Pierrehumbert, Raymond (May 23, 2005). "Tropical Glacier Retreat". RealClimate. Retrieved March 8, 2010.
  152. ^ Hastenrath, Stefan (2008). Recession of equatorial glaciers : a photo documentation. Madison, Wis.: Sundog Publishing. p. 142. ISBN 978-0-9729033-3-2. Archived from the original on 2013-05-15.
  153. ^ Osmaton and Kaser (2002). Tropical Glaciers. New York: Cambridge. p. 19. ISBN 978-0-521-63333-8.
  154. ^ a b "Snows of Kilimanjaro Disappearing, Glacial Ice Loss Increasing". Ohio State University. Archived from the original on September 1, 2006. Retrieved August 31, 2006.
  155. ^ Andrew Wielochowski (October 6, 1998). "Glacial recession on Kilimanjaro". Archived from the original on February 15, 2011. Retrieved January 7, 2006.
  156. ^ Lonnie G. Thompson; et al. (October 18, 2002). "Kilimanjaro Ice Core Records: Evidence of Holocene Climate Change in Tropical Africa". Science. 298 (5593): 589–593. Bibcode:2002Sci...298..589T. doi:10.1126/science.1073198. PMID 12386332. S2CID 32880316.
    Ohio State University. "African Ice Core Analysis reveals catastrophic droughts, shrinking ice fields and civilization shifts". Ohio State Research News. Archived from the original on March 13, 2004. Retrieved October 3, 2002.
  157. ^ Town, Jane Flanagan. "Staying power of Kilimanjaro snow defies al Gore's gloomy forecast".
  158. ^ Unlimited, Guardian (March 14, 2005). "The peak of Mt Kilimanjaro as it has not been seen for 11,000 years". The Guardian.
    Tyson, Peter. "Vanishing into Thin Air". Volcano Above the Clouds. NOVA. Retrieved August 7, 2016.
  159. ^ Thompson, Lonnie G.; et al. (2002). "Kilimanjaro Ice Core Records: Evidence of Holocene Climate Change in Tropical Africa" (PDF). Science. 298 (5593): 589–93. Bibcode:2002Sci...298..589T. doi:10.1126/science.1073198. PMID 12386332. S2CID 32880316. Retrieved August 31, 2006.
  160. ^ U.S. Geological Survey. "Glaciers of Africa" (PDF). U.S. Geological Survey Professional Paper 1386-G-3. Archived from the original (PDF) on 2012-10-18. Retrieved 2006-01-30.
  161. ^ Andrew Wielochowski. "Glacial recession in the Rwenzori". Retrieved July 20, 2007.
  162. ^ Tegel, Simeon (2012-07-17). "Antisana's Glaciers: Victims of Climate Change". GlobalPost. Retrieved 13 August 2012.
  163. ^ Bernard Francou. "Small Glaciers Of The Andes May Vanish In 10–15 Years". UniSci, International Science News. Archived from the original on March 9, 2021. Retrieved January 22, 2001.
  164. ^ Huggel, Cristian; Ceballos, Jorge Luis; Pulgarín, Bernardo; Ramírez, Jair; Thouret, Jean-Claude (2007). "Review and reassessment of hazards owing to volcano–glacier interactions in Colombia". Annals of Glaciology. 45 (1): 128–136. Bibcode:2007AnGla..45..128H. doi:10.3189/172756407782282408. S2CID 18144817.
  165. ^ U.S. Geological Survey, U.S. Department of the Interior. "Glaciers of South America – Glaciers of Peru". Retrieved October 15, 2019.
  166. ^ a b Seehaus, Thorsten; Malz, Phillip; Lipp, Stefan; Cochachin, Alejo; Braun, Matthias (September 2019). "Changes of the tropical glaciers throughout Peru between 2000 and 2016 – mass balance and area fluctuations". The Cryosphere. 13 (10): 2537–2556. Bibcode:2019TCry...13.2537S. doi:10.5194/tc-13-2537-2019.
  167. ^ Kochtitzky, William H.; Edwards, Benjamin R.; Enderlin, Ellyn M.; Marino, Jersy; Marinque, Nelida (2018). "Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru". Journal of Glaciology. 64 (244): 175–184. Bibcode:2018JGlac..64..175K. doi:10.1017/jog.2018.2. ISSN 0022-1430.
  168. ^ In Sign of Warming, 1,600 Years of Ice in Andes Melted in 25 Years April 4, 2013 New York Times
  169. ^ Byrd Polar Research Center, The Ohio State University. "Peru – Quelccaya (1974–1983)". Ice Core Paleoclimatology Research Group. Retrieved February 10, 2006.
  170. ^ E.J. Brill, Tijdschrift van het Koninklijk Nederlandsch Aardrijkskundig Genootschap, 1913, p. 180.
  171. ^ Ian Allison & James A. Peterson. "Glaciers of Irian Jaya, Indonesia and New Zealand". U.S. Geological Survey, U.S. Department of the Interior. Archived from the original on May 12, 2008. Retrieved April 28, 2009.
  172. ^ Klein, A.G.; Kincaid, J.L. (2008). "On the disappearance of the Puncak Mandala ice cap, Papua". Journal of Glaciology. 54 (184): 195–198. Bibcode:2008JGlac..54..195K. doi:10.3189/S0022143000209994.
  173. ^ McDowell, Robin (July 1, 2010). "Indonesia's Last Glacier Will Melt 'Within Years'". Jakarta Globe. Archived from the original on August 16, 2011. Retrieved 2011-10-23.
  174. ^ Joni L. Kincaid & Andrew G. Klein. "Retreat of the Irian Jaya Glaciers from 2000 to 2002 as Measured from IKONOS Satellite Images" (PDF). 61st Eastern Snow Conference Portland, Maine, USA 2004. pp. 153–155. Retrieved August 7, 2016.
  175. ^ Jakarta Globe (July 2, 2010). "Papua Glacier's Secrets Dripping Away: Scientists". Archived from the original on August 11, 2011. Retrieved 2010-09-14.
  176. ^ Permana, D. S.; et al. (2019). "Disappearance of the last tropical glaciers in the Western Pacific Warm Pool (Papua, Indonesia) appears imminent". Proc. Natl. Acad. Sci. USA. 116 (52): 26382–26388. Bibcode:2019PNAS..11626382P. doi:10.1073/pnas.1822037116. PMC 6936586. PMID 31818944.
  177. ^ M. Olefs & A. Fischer. "Comparative study of technical measures to reduce snow and ice ablation in Alpine glacier ski resorts" (PDF). in "Cold Regions Science and Technology, 2007". Archived from the original (PDF) on August 18, 2011. Retrieved September 6, 2009.
  178. ^ ENN (July 15, 2005). "Glacial Cover-Up Won't Stop Global Warming, But It Keeps Skiers Happy". Environmental News Network. Archived from the original on February 17, 2006.