stringtranslate.com

Electroencefalografía

La electroencefalografía ( EEG ) [1] es un método para registrar un electrograma de la actividad eléctrica espontánea del cerebro . Se ha demostrado que las bioseñales detectadas por EEG representan los potenciales postsinápticos de las neuronas piramidales en el neocórtex y el alocórtex . [2] Por lo general, no es invasiva, con los electrodos de EEG colocados a lo largo del cuero cabelludo (comúnmente llamado "EEG del cuero cabelludo") utilizando el sistema internacional 10-20 , o variaciones de este. La electrocorticografía , que implica la colocación quirúrgica de electrodos, a veces se denomina "EEG intracraneal" . La interpretación clínica de los registros de EEG se realiza con mayor frecuencia mediante la inspección visual del trazado o el análisis cuantitativo del EEG .

Las fluctuaciones de voltaje medidas por el bioamplificador y los electrodos del EEG permiten la evaluación de la actividad cerebral normal . Como la actividad eléctrica monitoreada por el EEG se origina en neuronas en el tejido cerebral subyacente , los registros hechos por los electrodos en la superficie del cuero cabelludo varían de acuerdo con su orientación y distancia a la fuente de la actividad. Además, el valor registrado está distorsionado por los tejidos intermediarios y los huesos, que actúan de manera similar a las resistencias y los capacitores en un circuito eléctrico . Esto significa que no todas las neuronas contribuirán por igual a una señal de EEG, y que un EEG refleja predominantemente la actividad de las neuronas corticales cerca de los electrodos en el cuero cabelludo. Las estructuras profundas dentro del cerebro más alejadas de los electrodos no contribuirán directamente a un EEG; estas incluyen la base del giro cortical , las paredes mesiales de los lóbulos principales , el hipocampo , el tálamo y el tronco encefálico . [3]

Un electroencefalograma de una persona sana mostrará ciertos patrones de actividad que se correlacionan con el grado de vigilia de la persona. El rango de frecuencias que se observa está entre 1 y 30 Hz, y las amplitudes varían entre 20 y 100 μV. Las frecuencias observadas se subdividen en varios grupos: alfa (8-13 Hz), beta (13-30 Hz), delta (0,5-4 Hz) y theta (4-7 Hz). Las ondas alfa se observan cuando una persona está en un estado de vigilia relajada y son principalmente prominentes en los sitios parietal y occipital. Durante la actividad mental intensa , las ondas beta son más prominentes en las áreas frontales, así como en otras regiones. Si se le dice a una persona relajada que abra los ojos, se observa una disminución de la actividad alfa y un aumento de la actividad beta. Las ondas theta y delta no se ven generalmente en la vigilia ; si se ven, es un signo de disfunción cerebral. [3]

El EEG puede detectar descargas eléctricas anormales , como ondas agudas , picos o complejos de pico y onda , como los que se observan en personas con epilepsia ; por lo tanto, a menudo se utiliza para informar el diagnóstico médico . El EEG puede detectar el inicio y la evolución espaciotemporal (ubicación y tiempo) de las convulsiones y la presencia de estado epiléptico . También se utiliza para ayudar a diagnosticar trastornos del sueño , profundidad de la anestesia , coma , encefalopatías , hipoxia cerebral después de un paro cardíaco y muerte cerebral . El EEG solía ser un método de primera línea de diagnóstico para tumores , accidentes cerebrovasculares y otros trastornos cerebrales focales, [4] [5] pero este uso ha disminuido con el advenimiento de técnicas de imágenes anatómicas de alta resolución, como la resonancia magnética (IRM) y la tomografía computarizada (TC). A pesar de su resolución espacial limitada, el EEG sigue siendo una herramienta valiosa para la investigación y el diagnóstico. Es una de las pocas técnicas móviles disponibles y ofrece una resolución temporal de rango de milisegundos, lo que no es posible con TC, PET o RMN. [6] [7]

Los derivados de la técnica EEG incluyen los potenciales evocados (PE), que implican promediar la actividad EEG bloqueada en el tiempo a la presentación de un estímulo de algún tipo (visual, somatosensorial o auditivo). Los potenciales relacionados con eventos ( PRE ) se refieren a respuestas EEG promediadas que están bloqueadas en el tiempo a un procesamiento más complejo de estímulos; esta técnica se utiliza en la ciencia cognitiva , la psicología cognitiva y la investigación psicofisiológica .

Usos

Epilepsia

Una configuración de registro de EEG que utiliza el sistema 10-10 de colocación de electrodos.

El EEG es el procedimiento diagnóstico de referencia para confirmar la epilepsia . Se ha informado que la sensibilidad de un EEG de rutina para detectar descargas epileptiformes interictales en los centros de epilepsia está en el rango del 29 al 55 %. [8] Dada la sensibilidad baja a moderada, un EEG de rutina (normalmente con una duración de 20 a 30 minutos) puede ser normal en personas que tienen epilepsia. Cuando un EEG muestra descargas epileptiformes interictales (por ejemplo, ondas agudas, puntas, punta y onda , etc.) es confirmatorio de epilepsia en casi todos los casos (alta especificidad ), sin embargo, hasta el 3,5 % de la población general puede tener anomalías epileptiformes en un EEG sin haber tenido nunca una convulsión (baja tasa de falsos positivos ) [8] o con un riesgo muy bajo de desarrollar epilepsia en el futuro. [9]

Cuando un EEG de rutina es normal y existe una alta sospecha o necesidad de confirmar epilepsia, se puede repetir o realizar con una duración más prolongada en la unidad de monitorización de epilepsia (UME) o en el domicilio con un EEG ambulatorio. Además, existen maniobras activadoras como la estimulación fótica, la hiperventilación y la privación del sueño que pueden aumentar el rendimiento diagnóstico del EEG. [8]

Unidad de Monitoreo de Epilepsia (UME)

En ocasiones, un EEG de rutina no es suficiente para establecer el diagnóstico o determinar el mejor curso de acción en términos de tratamiento. En este caso, se pueden intentar realizar registros de EEG mientras se produce una convulsión . Esto se conoce como registro ictal , a diferencia de un registro interictal, que se refiere al registro de EEG entre convulsiones. Para obtener un registro ictal, se realiza típicamente un EEG prolongado acompañado de una grabación de video y audio sincronizada en el tiempo. Esto se puede hacer de forma ambulatoria (en casa) o durante un ingreso hospitalario, preferiblemente en una Unidad de Monitoreo de Epilepsia (UME) con enfermeras y otro personal capacitado en el cuidado de pacientes con convulsiones. Los EEG de video ambulatorios para pacientes ambulatorios suelen durar de uno a tres días. Un ingreso en una Unidad de Monitoreo de Epilepsia suele durar varios días, pero puede durar una semana o más. Mientras está en el hospital, los medicamentos anticonvulsivos generalmente se retiran para aumentar las probabilidades de que ocurra una convulsión durante el ingreso. Por razones de seguridad, los medicamentos no se retiran durante un EEG fuera del hospital. Por lo tanto, los video EEG ambulatorios tienen la ventaja de ser convenientes y son menos costosos que una internación hospitalaria, pero también tienen la desventaja de una menor probabilidad de registrar un evento clínico. [10]

La monitorización de la epilepsia se considera a menudo cuando los pacientes siguen teniendo eventos a pesar de estar tomando medicamentos anticonvulsivos o si existe la preocupación de que los eventos del paciente tengan un diagnóstico alternativo, por ejemplo, convulsiones psicógenas no epilépticas , síncope (desmayo) , trastornos del movimiento subcortical , variantes de migraña , accidente cerebrovascular, etc. En casos de convulsiones epilépticas, la monitorización continua del EEG ayuda a caracterizar las convulsiones y localizar/lateralizar la región del cerebro en la que se origina una convulsión. Esto puede ayudar a identificar opciones de tratamiento no farmacológico adecuadas. [11] En el uso clínico, los neurólogos analizan visualmente los trazos del EEG para observar varias características. Cada vez más, el análisis cuantitativo del EEG se utiliza junto con el análisis visual. Las visualizaciones del análisis cuantitativo como el análisis del espectro de potencia, la relación alfa-delta, el EEG integrado de amplitud y la detección de picos pueden ayudar a identificar rápidamente segmentos del EEG que necesitan un análisis visual minucioso o, en algunos casos, pueden utilizarse como sustitutos para la identificación rápida de convulsiones en grabaciones a largo plazo.

Otros trastornos cerebrales

Un EEG también podría ser útil para diagnosticar o tratar los siguientes trastornos: [12]

También puede:

Unidad de cuidados intensivos (UCI)

El EEG también se puede utilizar en unidades de cuidados intensivos para monitorear la función cerebral, para monitorear convulsiones no convulsivas/estado epiléptico no convulsivo, para monitorear el efecto de sedantes/anestesia en pacientes en coma inducido médicamente (para el tratamiento de convulsiones refractarias o aumento de la presión intracraneal ) y para monitorear daño cerebral secundario en condiciones como hemorragia subaracnoidea (actualmente un método de investigación).

En los casos en que se sospecha una lesión cerebral significativa, por ejemplo después de un paro cardíaco, el EEG puede proporcionar cierta información pronóstica.

Si se está considerando la posibilidad de realizar una cirugía resectiva a un paciente con epilepsia , a menudo es necesario localizar el foco (fuente) de la actividad cerebral epiléptica con una resolución mayor que la que proporciona el EEG del cuero cabelludo. En estos casos, los neurocirujanos suelen implantar tiras y rejillas de electrodos o electrodos de profundidad penetrante debajo de la duramadre , a través de una craneotomía o un orificio de trépano . El registro de estas señales se conoce como electrocorticografía (ECoG), EEG subdural (sdEEG), EEG intracraneal (icEEG) o EEG estereotáctico (sEEG). La señal registrada del ECoG está en una escala de actividad diferente a la actividad cerebral registrada del EEG del cuero cabelludo. Los componentes de bajo voltaje y alta frecuencia que no se pueden ver fácilmente (o en absoluto) en el EEG del cuero cabelludo se pueden ver claramente en el ECoG. Además, los electrodos más pequeños (que cubren una porción más pequeña de la superficie cerebral) permiten una mejor resolución espacial para limitar las áreas críticas para el inicio y la propagación de las convulsiones. Algunos sitios clínicos registran datos de microelectrodos penetrantes. [13]

EEG ambulatorio domiciliario

En ocasiones resulta más conveniente o clínicamente necesario realizar registros de EEG ambulatorios en el domicilio del paciente. Estos estudios suelen tener una duración de 24 a 72 horas. [ cita requerida ]

Uso de la investigación

El EEG y el estudio relacionado de los ERP se utilizan ampliamente en neurociencia , ciencia cognitiva , psicología cognitiva , neurolingüística e investigación psicofisiológica , así como para estudiar funciones humanas como la deglución. [14] [15] [16] Cualquier técnica de EEG utilizada en la investigación no está suficientemente estandarizada para el uso clínico, y muchos estudios de ERP no informan todos los pasos de procesamiento necesarios para la recopilación y reducción de datos, [17] lo que limita la reproducibilidad y replicabilidad de muchos estudios. Según una revisión sistemática de la literatura y un metanálisis de 2024 encargados por el Patient-Centered Outcomes Research Institute (PCORI), las exploraciones EEG no se pueden utilizar de manera confiable para ayudar a realizar un diagnóstico clínico de TDAH. [18] Sin embargo, el EEG continúa utilizándose en la investigación sobre discapacidades mentales, como el trastorno del procesamiento auditivo (APD), el ADD y el ADHD . [18]

Ventajas

Existen otros métodos para estudiar la función cerebral, como la resonancia magnética funcional (fMRI), la tomografía por emisión de positrones (PET), la magnetoencefalografía (MEG), la espectroscopia por resonancia magnética nuclear (NMR o MRS), la electrocorticografía (ECoG), la tomografía computarizada por emisión monofotónica (SPECT), la espectroscopia de infrarrojo cercano (NIRS) y la señal óptica relacionada con eventos (EROS). A pesar de la sensibilidad espacial relativamente pobre de la EEG, las "señales unidimensionales de regiones periféricas localizadas en la cabeza la hacen atractiva por su fidelidad simplista y han permitido un alto rendimiento en la investigación clínica y básica". [19] Por lo tanto, la EEG posee algunas ventajas sobre algunas de esas otras técnicas:

El EEG también tiene algunas características que lo comparan favorablemente con las pruebas de comportamiento:

[32]

Desventajas

Con otras técnicas de neuroimagen

Se han obtenido registros de EEG y exploraciones de fMRI simultáneos con éxito, [38] [39] [40] [41] aunque registrar ambos al mismo tiempo requiere efectivamente superar varias dificultades técnicas, como la presencia de artefactos balistocardiográficos, artefactos de pulso de MRI y la inducción de corrientes eléctricas en cables de EEG que se mueven dentro de los fuertes campos magnéticos de la MRI. Si bien son desafiantes, estos se han superado con éxito en varios estudios. [42] [43]

Las resonancias magnéticas producen imágenes detalladas creadas mediante la generación de campos magnéticos fuertes que pueden inducir fuerzas de desplazamiento y torsión potencialmente dañinas. Estos campos producen un calentamiento por radiofrecuencia potencialmente dañino y crean artefactos en las imágenes que las vuelven inútiles. Debido a estos riesgos potenciales, solo ciertos dispositivos médicos pueden usarse en un entorno de resonancia magnética.

Del mismo modo, también se han realizado registros simultáneos con MEG y EEG, lo que presenta varias ventajas frente al uso de cualquiera de las dos técnicas por separado:

Recientemente, se ha investigado un enfoque combinado de EEG/MEG (EMEG) con el propósito de reconstruir la fuente en el diagnóstico de la epilepsia. [45]

El EEG también se ha combinado con la tomografía por emisión de positrones . Esto ofrece la ventaja de permitir a los investigadores ver qué señales del EEG están asociadas con diferentes acciones de los fármacos en el cerebro. [46]

Estudios recientes que utilizan técnicas de aprendizaje automático , como redes neuronales con características temporales estadísticas extraídas de datos de ondas cerebrales del EEG del lóbulo frontal , han demostrado altos niveles de éxito en la clasificación de estados mentales (relajado, neutral, concentrado), [47] estados emocionales mentales (negativo, neutral, positivo) [48] y disritmia talamocortical . [49]

Mecanismos

La carga eléctrica del cerebro se mantiene gracias a miles de millones de neuronas . [50] Las neuronas están cargadas eléctricamente (o "polarizadas") por proteínas de transporte de membrana que bombean iones a través de sus membranas. Las neuronas intercambian iones constantemente con el medio extracelular, por ejemplo, para mantener el potencial de reposo y propagar potenciales de acción . Los iones de carga similar se repelen entre sí, y cuando muchos iones son expulsados ​​de muchas neuronas al mismo tiempo, pueden empujar a sus vecinos, que empujan a sus vecinos, y así sucesivamente, en una onda. Este proceso se conoce como conducción de volumen. Cuando la onda de iones llega a los electrodos en el cuero cabelludo, pueden empujar o tirar de electrones en el metal de los electrodos. Dado que el metal conduce el empuje y la atracción de electrones fácilmente, la diferencia en los voltajes de empuje o atracción entre dos electrodos cualesquiera se puede medir con un voltímetro . El registro de estos voltajes a lo largo del tiempo nos da el EEG. [51]

El potencial eléctrico generado por una neurona individual es demasiado pequeño para ser captado por EEG o MEG. [52] Por lo tanto, la actividad de EEG siempre refleja la suma de la actividad sincrónica de miles o millones de neuronas que tienen una orientación espacial similar. Si las células no tienen una orientación espacial similar, sus iones no se alinean y crean ondas que se puedan detectar. Se cree que las neuronas piramidales de la corteza producen la mayor cantidad de señal de EEG porque están bien alineadas y se activan juntas. Debido a que los gradientes de campo de voltaje disminuyen con el cuadrado de la distancia, la actividad de fuentes profundas es más difícil de detectar que las corrientes cercanas al cráneo. [53]

La actividad del EEG del cuero cabelludo muestra oscilaciones en una variedad de frecuencias. Varias de estas oscilaciones tienen rangos de frecuencia característicos , distribuciones espaciales y están asociadas con diferentes estados de funcionamiento cerebral (por ejemplo, vigilia y las diversas etapas del sueño ). Estas oscilaciones representan una actividad sincronizada en una red de neuronas. Las redes neuronales subyacentes a algunas de estas oscilaciones se comprenden (por ejemplo, la resonancia talamocortical subyacente a los husos del sueño ), mientras que muchas otras no (por ejemplo, el sistema que genera el ritmo básico posterior). La investigación que mide tanto el EEG como la activación neuronal encuentra que la relación entre los dos es compleja, con una combinación de potencia del EEG en la banda gamma y fase en la banda delta relacionada más fuertemente con la actividad de la activación neuronal. [54]

Método

El electroencefalógrafo computarizado Neurovisor-BMM 40 se fabrica y se vende en Rusia

En el electroencefalograma convencional del cuero cabelludo, el registro se obtiene colocando electrodos en el cuero cabelludo con un gel o pasta conductora, generalmente después de preparar el área del cuero cabelludo mediante una abrasión ligera para reducir la impedancia debido a las células cutáneas muertas. Muchos sistemas suelen utilizar electrodos, cada uno de los cuales está conectado a un cable individual. Algunos sistemas utilizan tapas o redes en las que se incrustan los electrodos; esto es particularmente común cuando se necesitan conjuntos de electrodos de alta densidad. [ cita requerida ]

Las ubicaciones y los nombres de los electrodos están especificados por el sistema internacional 10-20 [55] para la mayoría de las aplicaciones clínicas y de investigación (excepto cuando se utilizan conjuntos de alta densidad). Este sistema garantiza que la denominación de los electrodos sea consistente en todos los laboratorios. En la mayoría de las aplicaciones clínicas, se utilizan 19 electrodos de registro (más la referencia de tierra y del sistema). [56] Por lo general, se utiliza una cantidad menor de electrodos cuando se registra EEG de neonatos . Se pueden agregar electrodos adicionales a la configuración estándar cuando una aplicación clínica o de investigación exige una mayor resolución espacial para un área particular del cerebro. Los conjuntos de alta densidad (generalmente a través de un gorro o una red) pueden contener hasta 256 electrodos espaciados más o menos uniformemente alrededor del cuero cabelludo.

Cada electrodo está conectado a una entrada de un amplificador diferencial (un amplificador por par de electrodos); un electrodo de referencia del sistema común está conectado a la otra entrada de cada amplificador diferencial. Estos amplificadores amplifican el voltaje entre el electrodo activo y la referencia (normalmente 1.000–100.000 veces, o 60–100  dB de ganancia de potencia). En el EEG analógico, la señal se filtra (próximo párrafo), y la señal del EEG se emite como la desviación de los bolígrafos cuando el papel pasa por debajo. Sin embargo, la mayoría de los sistemas de EEG actuales son digitales, y la señal amplificada se digitaliza a través de un convertidor analógico a digital , después de pasar por un filtro anti-aliasing . El muestreo analógico a digital normalmente se produce a 256–512 Hz en el EEG clínico del cuero cabelludo; se utilizan frecuencias de muestreo de hasta 20 kHz en algunas aplicaciones de investigación.

Durante el registro, se pueden utilizar una serie de procedimientos de activación. Estos procedimientos pueden inducir una actividad electroencefalográfica normal o anormal que de otro modo no se vería. Estos procedimientos incluyen hiperventilación, estimulación fótica (con una luz estroboscópica), cierre de los ojos, actividad mental, sueño y privación del sueño. Durante el seguimiento de la epilepsia (durante el ingreso), es posible que se retiren los medicamentos anticonvulsivos habituales del paciente.

La señal digital del EEG se almacena electrónicamente y se puede filtrar para su visualización. Los ajustes típicos para el filtro de paso alto y el filtro de paso bajo son 0,5–1  Hz y 35–70 Hz respectivamente. El filtro de paso alto normalmente filtra los artefactos lentos, como las señales electrogalvánicas y los artefactos de movimiento, mientras que el filtro de paso bajo filtra los artefactos de alta frecuencia, como las señales electromiográficas . Normalmente se utiliza un filtro de muesca adicional para eliminar los artefactos causados ​​por las líneas eléctricas (60 Hz en los Estados Unidos y 50 Hz en muchos otros países). [13]

Las señales de EEG se pueden capturar con hardware de código abierto como OpenBCI y la señal se puede procesar mediante software de EEG disponible gratuitamente como EEGLAB o Neurophysiological Biomarker Toolbox .

Como parte de una evaluación para la cirugía de la epilepsia, puede ser necesario insertar electrodos cerca de la superficie del cerebro, debajo de la superficie de la duramadre . Esto se logra a través de un orificio de trépano o craneotomía . Esto se conoce de diversas formas como "electrocorticografía (ECoG)" , "EEG intracraneal (I-EEG)" o "EEG subdural (SD-EEG)". Los electrodos de profundidad también se pueden colocar en estructuras cerebrales, como la amígdala o el hipocampo , estructuras que son focos epilépticos comunes y que pueden no "verse" claramente mediante el EEG del cuero cabelludo. La señal electrocorticográfica se procesa de la misma manera que el EEG digital del cuero cabelludo (arriba), con un par de salvedades. El ECoG se registra típicamente a velocidades de muestreo más altas que el EEG del cuero cabelludo debido a los requisitos del teorema de Nyquist : la señal subdural se compone de un mayor predominio de componentes de frecuencia más alta. Además, muchos de los artefactos que afectan el EEG del cuero cabelludo no afectan el ECoG y, por lo tanto, a menudo no es necesario el filtrado de visualización.

Una señal de EEG humana adulta típica tiene una amplitud de aproximadamente 10 μV a 100 μV cuando se mide desde el cuero cabelludo. [57]

Dado que una señal de voltaje de EEG representa una diferencia entre los voltajes en dos electrodos, la visualización del EEG para el encefalografista que realiza la lectura se puede configurar de varias maneras. La representación de los canales de EEG se denomina montaje.

Montaje secuencial
Cada canal (es decir, forma de onda) representa la diferencia entre dos electrodos adyacentes. El montaje completo consta de una serie de estos canales. Por ejemplo, el canal "Fp1-F3" representa la diferencia de voltaje entre el electrodo Fp1 y el electrodo F3. El siguiente canal del montaje, "F3-C3", representa la diferencia de voltaje entre F3 y C3, y así sucesivamente a lo largo de todo el conjunto de electrodos.
Montaje referencial
Cada canal representa la diferencia entre un electrodo determinado y un electrodo de referencia designado. No existe una posición estándar para esta referencia; sin embargo, se encuentra en una posición diferente a la de los electrodos de "registro". Las posiciones de línea media se utilizan a menudo porque no amplifican la señal en un hemisferio en comparación con el otro, como Cz, Oz, Pz, etc. como referencia en línea. Las otras referencias fuera de línea populares son:
Montaje de referencia promedio
Se suman y promedian las salidas de todos los amplificadores, y esta señal promediada se utiliza como referencia común para cada canal.
Montaje laplaciano
Cada canal representa la diferencia entre un electrodo y un promedio ponderado de los electrodos circundantes. [59]

Cuando se utilizan EEG analógicos (en papel), el técnico cambia entre montajes durante la grabación para resaltar o caracterizar mejor ciertas características del EEG. Con el EEG digital, todas las señales se suelen digitalizar y almacenar en un montaje particular (normalmente referencial); dado que cualquier montaje se puede construir matemáticamente a partir de cualquier otro, el electroencefalografista puede visualizar el EEG en cualquier montaje de visualización que desee.

El EEG lo lee un neurofisiólogo clínico o un neurólogo (según las costumbres y leyes locales en materia de especialidades médicas ), preferentemente alguien que tenga formación específica en la interpretación de EEG con fines clínicos. Esto se hace mediante la inspección visual de las formas de onda, llamadas grafoelementos. El uso del procesamiento informático de señales del EEG, la denominada electroencefalografía cuantitativa , es algo controvertido cuando se utiliza con fines clínicos (aunque existen muchos usos para la investigación).

Electrodos de EEG secos

A principios de la década de 1990, Babak Taheri, de la Universidad de California, Davis, demostró las primeras matrices de electrodos activos secos de un solo canal y también de varios canales utilizando micromaquinado. La construcción del electrodo de EEG seco de un solo canal y los resultados se publicaron en 1994. [60] También se demostró que el electrodo en matriz funcionaba bien en comparación con los electrodos de plata / cloruro de plata . El dispositivo constaba de cuatro sitios de sensores con electrónica integrada para reducir el ruido mediante la adaptación de impedancia . Las ventajas de estos electrodos son: (1) no se utiliza electrolito, (2) no se prepara la piel, (3) se reduce significativamente el tamaño del sensor y (4) es compatible con los sistemas de monitorización de EEG. La matriz de electrodos activos es un sistema integrado formado por una matriz de sensores capacitivos con circuitos integrados locales alojados en un paquete con baterías para alimentar los circuitos. Este nivel de integración era necesario para lograr el rendimiento funcional obtenido por el electrodo. El electrodo se probó en un banco de pruebas eléctrico y en sujetos humanos en cuatro modalidades de actividad EEG, a saber: (1) EEG espontáneo, (2) potenciales relacionados con eventos sensoriales, (3) potenciales del tronco encefálico y (4) potenciales relacionados con eventos cognitivos. El rendimiento del electrodo seco se comparó favorablemente con el de los electrodos húmedos estándar en términos de preparación de la piel, sin requisitos de gel (seco) y una mayor relación señal-ruido. [61]

En 1999, investigadores de la Case Western Reserve University , en Cleveland , Ohio , dirigidos por Hunter Peckham, utilizaron un electroencefalograma de 64 electrodos en el cráneo para devolverle a Jim Jatich, cuadripléjico , los movimientos limitados de la mano . Mientras Jatich se concentraba en conceptos simples pero opuestos como arriba y abajo, su salida de EEG de ritmo beta se analizó utilizando un software para identificar patrones en el ruido. Se identificó un patrón básico y se utilizó para controlar un interruptor: la actividad por encima de la media se configuró como activada, la actividad por debajo de la media se apagó. Además de permitirle a Jatich controlar un cursor de computadora, las señales también se utilizaron para activar los controladores nerviosos integrados en sus manos, restaurando algo de movimiento. [62]

En 2018, se informó sobre un electrodo seco funcional compuesto de un elastómero de polidimetilsiloxano lleno de nanofibras de carbono conductoras . Esta investigación se llevó a cabo en el Laboratorio de Investigación del Ejército de EE . UU . [63] La tecnología de EEG a menudo implica la aplicación de un gel en el cuero cabelludo que facilita una fuerte relación señal-ruido. Esto da como resultado resultados experimentales más reproducibles y confiables. Dado que a los pacientes no les gusta que les llenen el cabello con gel, y la larga configuración requiere personal capacitado a mano, utilizar EEG fuera del entorno de laboratorio puede ser difícil. [64] Además, se ha observado que el rendimiento de los sensores de electrodos húmedos se reduce después de un lapso de horas. [63] Por lo tanto, la investigación se ha dirigido al desarrollo de interfaces bioelectrónicas de EEG secas y semisecas. [ cita requerida ]

Las señales de los electrodos secos dependen del contacto mecánico. Por lo tanto, puede resultar difícil obtener una señal utilizable debido a la impedancia entre la piel y el electrodo. [64] [63] Algunos sistemas de EEG intentan evitar este problema aplicando una solución salina. [65] Otros tienen una naturaleza semiseca y liberan pequeñas cantidades de gel al entrar en contacto con el cuero cabelludo. [64] Otra solución utiliza configuraciones de clavijas accionadas por resorte. Estas pueden resultar incómodas. También pueden ser peligrosas si se utilizan en una situación en la que un paciente podría golpearse la cabeza, ya que podrían quedar atrapadas después de un incidente de traumatismo por impacto. [63]

En la actualidad, existen auriculares que incorporan electrodos secos con hasta 30 canales. [66] Estos diseños pueden compensar parte de la degradación de la calidad de la señal relacionada con las altas impedancias optimizando la preamplificación, el blindaje y la mecánica de soporte. [67]

Limitaciones

El EEG tiene varias limitaciones. La más importante es su pobre resolución espacial. [68] El EEG es más sensible a un conjunto particular de potenciales postsinápticos: aquellos generados en las capas superficiales de la corteza, en las crestas de los giros que lindan directamente con el cráneo y radialmente al cráneo. Las dendritas que están más profundas en la corteza, dentro de los surcos , en la línea media o en estructuras profundas (como el giro cingulado o el hipocampo ), o que producen corrientes que son tangenciales al cráneo, hacen una contribución mucho menor a la señal del EEG.

Los registros de EEG no capturan directamente los potenciales de acción axónica . Un potencial de acción se puede representar con precisión como un cuadrupolo de corriente , lo que significa que el campo resultante disminuye más rápidamente que los producidos por el dipolo de corriente de los potenciales postsinápticos. [22] Además, dado que los EEG representan promedios de miles de neuronas, es necesaria una gran población de células en actividad sincrónica para causar una desviación significativa en los registros. Los potenciales de acción son muy rápidos y, como consecuencia, las posibilidades de suma de campos son escasas. Sin embargo, la retropropagación neuronal , como un dipolo de corriente dendrítica típicamente más largo, puede ser captada por electrodos de EEG y es una indicación confiable de la ocurrencia de salida neuronal.

Los EEG no sólo captan corrientes dendríticas casi exclusivamente en lugar de corrientes axónicas, sino que también muestran una preferencia por la actividad en poblaciones de dendritas paralelas y la transmisión de corriente en la misma dirección al mismo tiempo. Las neuronas piramidales de las capas corticales II/III y V extienden las dendritas apicales hasta la capa I. Las corrientes que se desplazan hacia arriba o hacia abajo por estos procesos son la base de la mayoría de las señales producidas por la electroencefalografía. [69]

Por lo tanto, el EEG proporciona información con un gran sesgo a favor de determinados tipos de neuronas, ubicaciones y orientaciones. Por lo tanto, en general no debería utilizarse para hacer afirmaciones sobre la actividad cerebral global. Las meninges , el líquido cefalorraquídeo y el cráneo "difuminan" la señal del EEG, ocultando su origen intracraneal.

Es matemáticamente imposible reconstruir una fuente de corriente intracraneal única para una señal de EEG dada, [13] ya que algunas corrientes producen potenciales que se cancelan entre sí. Esto se conoce como el problema inverso . Sin embargo, se ha trabajado mucho para producir estimaciones notablemente buenas de, al menos, un dipolo eléctrico localizado que represente las corrientes registradas. [ cita requerida ]

EEG frente a fMRI, fNIRS, fUS y PET

El EEG tiene varios puntos fuertes como herramienta para explorar la actividad cerebral. Los EEG pueden detectar cambios en milisegundos, lo cual es excelente considerando que un potencial de acción tarda aproximadamente entre 0,5 y 130 milisegundos en propagarse a través de una sola neurona, dependiendo del tipo de neurona. [70] Otros métodos para observar la actividad cerebral, como PET , fMRI o fUS, tienen una resolución temporal entre segundos y minutos. El EEG mide la actividad eléctrica del cerebro directamente, mientras que otros métodos registran cambios en el flujo sanguíneo (p. ej., SPECT , fMRI, fUS) o la actividad metabólica (p. ej., PET, NIRS ), que son marcadores indirectos de la actividad eléctrica cerebral.

El EEG se puede utilizar simultáneamente con fMRI o fUS para que los datos de alta resolución temporal se puedan registrar al mismo tiempo que los datos de alta resolución espacial; sin embargo, dado que los datos derivados de cada uno ocurren en un lapso de tiempo diferente, los conjuntos de datos no necesariamente representan exactamente la misma actividad cerebral. Existen dificultades técnicas asociadas con la combinación de EEG y fMRI, incluida la necesidad de eliminar el artefacto de gradiente de MRI presente durante la adquisición de MRI. Además, se pueden inducir corrientes en los cables de electrodos de EEG en movimiento debido al campo magnético de la MRI.

El EEG se puede utilizar simultáneamente con NIRS o fUS sin mayores dificultades técnicas. No existe influencia entre estas modalidades y una medición combinada puede brindar información útil sobre la actividad eléctrica y la hemodinámica con una resolución espacial media.

EEG frente a MEG

El EEG refleja la actividad sináptica correlacionada causada por los potenciales postsinápticos de las neuronas corticales . Las corrientes iónicas involucradas en la generación de potenciales de acción rápida pueden no contribuir en gran medida a los potenciales de campo promedio que representan el EEG. [52] [71] Más específicamente, se cree que los potenciales eléctricos del cuero cabelludo que producen EEG son causados ​​por las corrientes iónicas extracelulares causadas por la actividad eléctrica dendrítica , mientras que los campos que producen señales magnetoencefalográficas [22] están asociados con corrientes iónicas intracelulares. [72]

Actividad normal

El EEG se describe típicamente en términos de (1) actividad rítmica y (2) transitorios. La actividad rítmica se divide en bandas por frecuencia. Hasta cierto punto, estas bandas de frecuencia son una cuestión de nomenclatura (es decir, cualquier actividad rítmica entre 8 y 12 Hz puede describirse como "alfa"), pero estas designaciones surgieron porque se observó que la actividad rítmica dentro de un cierto rango de frecuencia tenía una cierta distribución sobre el cuero cabelludo o un cierto significado biológico. Las bandas de frecuencia generalmente se extraen utilizando métodos espectrales (por ejemplo, Welch) como los implementados, por ejemplo, en software de EEG disponible gratuitamente, como EEGLAB o Neurophysiological Biomarker Toolbox . El procesamiento computacional del EEG a menudo se denomina electroencefalografía cuantitativa (qEEG).

La mayor parte de la señal cerebral observada en el EEG del cuero cabelludo se encuentra en el rango de 1 a 20 Hz (es probable que la actividad por debajo o por encima de este rango sea artificial, según las técnicas de registro clínico estándar). Las formas de onda se subdividen en anchos de banda conocidos como alfa, beta, theta y delta para representar la mayoría del EEG utilizado en la práctica clínica. [73]

Comparación de bandas de EEG

La práctica de utilizar únicamente números enteros en las definiciones proviene de consideraciones prácticas de la época en que sólo se podían contar ciclos completos en registros en papel. Esto genera lagunas en las definiciones, como se ve en otras partes de esta página. Las definiciones teóricas siempre se han definido con más cuidado para incluir todas las frecuencias. Lamentablemente, no hay acuerdo en las obras de referencia estándar sobre cuáles deberían ser estos rangos  : los valores para el extremo superior de alfa y el extremo inferior de beta incluyen 12, 13, 14 y 15. Si se toma el umbral como 14 Hz, entonces la onda beta más lenta tiene aproximadamente la misma duración que el pico más largo (70 ms), lo que hace que este sea el valor más útil.

EEG humano con ritmo alfa prominente
EEG humano con ritmo alfa prominente

Patrones de ondas

Ondas delta
Ondas theta
Ondas alfa
Ritmo sensoriomotor también conocido como ritmo mu
Además del ritmo básico posterior, existen otros ritmos alfa normales como el ritmo mu (actividad alfa en las áreas corticales motoras y sensoriales contralaterales) que surge cuando las manos y los brazos están inactivos; y el "tercer ritmo" (actividad alfa en los lóbulos temporales o frontales). [82] [83] El alfa puede ser anormal; por ejemplo, un EEG que tiene alfa difuso que ocurre en coma y no responde a estímulos externos se denomina "coma alfa".
Ondas beta
Ondas gamma

En algunos contextos de investigación, se registra la actividad "ultralenta" o "casi continua " mediante amplificadores de CC. Por lo general, no se registra en un contexto clínico porque la señal en estas frecuencias es susceptible a una serie de artefactos.

Algunas características del EEG son transitorias en lugar de rítmicas. Las puntas y las ondas agudas pueden representar actividad convulsiva o actividad interictal en personas con epilepsia o predisposición a la epilepsia. Otras características transitorias son normales: las ondas de vértice y los husos del sueño se observan en el sueño normal.

Existen tipos de actividad que son estadísticamente poco comunes, pero que no están asociados con disfunción o enfermedad. A menudo se los denomina "variantes normales". El ritmo mu es un ejemplo de una variante normal.

El electroencefalograma (EEG) normal varía según la edad. El EEG prenatal y neonatal es bastante diferente del EEG del adulto. Los fetos en el tercer trimestre y los recién nacidos muestran dos patrones comunes de actividad cerebral: "discontinua" y "alternativa traza". La actividad eléctrica "discontinua" se refiere a ráfagas agudas de actividad eléctrica seguidas de ondas de baja frecuencia. La actividad eléctrica "alternativa traza" describe ráfagas agudas seguidas de intervalos cortos de alta amplitud y generalmente indica sueño tranquilo en los recién nacidos. [85] El EEG en la infancia generalmente tiene oscilaciones de frecuencia más lentas que el EEG del adulto.

El EEG normal también varía según el estado. El EEG se utiliza junto con otras mediciones ( EOG , EMG ) para definir las etapas del sueño en la polisomnografía . El sueño de la etapa I (equivalente a la somnolencia en algunos sistemas) aparece en el EEG como una pérdida del ritmo básico posterior. Puede haber un aumento en las frecuencias theta. Santamaria y Chiappa catalogaron una serie de la variedad de patrones asociados con la somnolencia. El sueño de la etapa II se caracteriza por husos de sueño: series transitorias de actividad rítmica en el rango de 12 a 14 Hz (a veces denominado banda "sigma") que tienen un máximo frontocentral. La mayor parte de la actividad en la etapa II está en el rango de 3 a 6 Hz. El sueño de las etapas III y IV se definen por la presencia de frecuencias delta y a menudo se las denomina colectivamente "sueño de ondas lentas". Las etapas I a IV comprenden el sueño no REM (o "NREM"). El EEG en el sueño REM (movimiento ocular rápido) parece algo similar al EEG despierto.

El EEG bajo anestesia general depende del tipo de anestésico empleado. Con anestésicos halogenados, como el halotano o agentes intravenosos, como el propofol , se observa un patrón de EEG rápido (alfa o beta baja), no reactivo en la mayor parte del cuero cabelludo, especialmente en la parte anterior; en alguna terminología antigua esto se conocía como un patrón WAR (rápido anterior generalizado), en contraste con un patrón WAIS (lento generalizado) asociado con altas dosis de opiáceos . Los efectos de los anestésicos sobre las señales de EEG están comenzando a entenderse a nivel de las acciones de los fármacos sobre diferentes tipos de sinapsis y los circuitos que permiten la actividad neuronal sincronizada. [86]

Artefactos

Principales tipos de artefactos en el EEG humano
Principales tipos de artefactos en el EEG humano

El electroencefalograma (EEG) es una técnica extremadamente útil para estudiar la actividad cerebral, pero la señal medida siempre está contaminada por artefactos que pueden afectar el análisis de los datos. Un artefacto es cualquier señal medida que no se origina dentro del cerebro. Aunque existen múltiples algoritmos para la eliminación de artefactos, el problema de cómo lidiar con ellos sigue siendo una pregunta abierta. La fuente de los artefactos puede ser de problemas relacionados con el instrumento, como electrodos defectuosos, ruido de línea o alta impedancia de electrodos, o pueden ser de la fisiología del sujeto que se está registrando. Esto puede incluir parpadeos y movimientos de los ojos, actividad cardíaca y actividad muscular y estos tipos de artefactos son más complicados de eliminar. Los artefactos pueden sesgar la interpretación visual de los datos del EEG ya que algunos pueden imitar la actividad cognitiva que podría afectar el diagnóstico de problemas como la enfermedad de Alzheimer o trastornos del sueño. Como tal, la eliminación de tales artefactos en los datos del EEG utilizados para aplicaciones prácticas es de suma importancia. [87]

Eliminación de artefactos

Es importante poder distinguir los artefactos de la actividad cerebral genuina para evitar interpretaciones incorrectas de los datos del EEG. Los enfoques generales para la eliminación de artefactos de los datos son la prevención, el rechazo y la cancelación. El objetivo de cualquier enfoque es desarrollar una metodología capaz de identificar y eliminar los artefactos sin afectar la calidad de la señal del EEG. Como las fuentes de los artefactos son bastante diferentes, la mayoría de los investigadores se centran en el desarrollo de algoritmos que identifiquen y eliminen un solo tipo de ruido en la señal. El filtrado simple utilizando un filtro de muesca se utiliza comúnmente para rechazar componentes con una frecuencia de 50/60 Hz. Sin embargo, estos filtros simples no son una opción adecuada para tratar todos los artefactos, ya que para algunos, sus frecuencias se superpondrán con las frecuencias del EEG.

Los algoritmos de regresión tienen un costo computacional moderado y son simples. Representaron el método de corrección más popular hasta mediados de la década de 1990, cuando fueron reemplazados por métodos de tipo "separación ciega de fuentes". Los algoritmos de regresión funcionan bajo la premisa de que todos los artefactos están compuestos por uno o más canales de referencia. Restar estos canales de referencia de los otros canales contaminados, ya sea en el dominio del tiempo o de la frecuencia, mediante la estimación del impacto de los canales de referencia en los otros canales, corregiría los canales para el artefacto. Aunque el requisito de los canales de referencia finalmente llevó a que se reemplazara esta clase de algoritmo, todavía representan el punto de referencia con el que se evalúan los algoritmos modernos. [88] Los algoritmos de separación ciega de fuentes (BSS) empleados para eliminar artefactos incluyen el análisis de componentes principales (PCA) y el análisis de componentes independientes (ICA) y varios algoritmos de esta clase han tenido éxito en abordar la mayoría de los artefactos fisiológicos. [88]

Artefactos fisiológicos

Artefactos oculares

Los artefactos oculares afectan significativamente la señal del EEG. Esto se debe a que los movimientos oculares implican un cambio en los campos eléctricos que rodean los ojos, distorsionando el campo eléctrico sobre el cuero cabelludo y, como el EEG se registra en el cuero cabelludo, distorsiona la señal registrada. Existe una diferencia de opinión entre los investigadores: algunos sostienen que los artefactos oculares son, o pueden describirse razonablemente como, un solo generador, mientras que otros sostienen que es importante comprender los mecanismos potencialmente complicados. Se han propuesto tres mecanismos potenciales para explicar el artefacto ocular.

El primero es el movimiento dipolar corneal-retiniano, que sostiene que se forma un dipolo eléctrico entre la córnea y la retina, ya que la primera tiene carga positiva y la segunda, negativa. Cuando el ojo se mueve, también lo hace este dipolo que impacta el campo eléctrico sobre el cuero cabelludo; esta es la visión más estándar. El segundo mecanismo es el movimiento dipolar retiniano, que es similar al primero pero difiere en que sostiene que hay una diferencia de potencial, por lo tanto, el dipolo a través de la retina y la córnea tiene poco efecto. El tercer mecanismo es el movimiento del párpado. Se sabe que hay un cambio de voltaje alrededor de los ojos cuando el párpado se mueve, incluso si el globo ocular no lo hace. Se cree que el párpado puede describirse como una fuente de potencial deslizante y que el impacto del parpadeo es diferente al movimiento del ojo en el EEG registrado. [89]

Los artefactos de aleteo palpebral de un tipo característico se denominaban anteriormente ritmo kappa (u ondas kappa). Suelen observarse en las derivaciones prefrontales, es decir, justo encima de los ojos. A veces se observan con la actividad mental. Suelen estar en el rango theta (4-7 Hz) o alfa (7-14 Hz). Se les dio ese nombre porque se creía que se originaban en el cerebro. Un estudio posterior reveló que se generaban por un aleteo rápido de los párpados, a veces tan minúsculo que era difícil verlo. De hecho, son ruido en la lectura del EEG y técnicamente no deberían llamarse ritmo u onda. Por lo tanto, el uso actual en electroencefalografía se refiere al fenómeno como un artefacto de aleteo palpebral, en lugar de un ritmo (u onda) kappa. [90]

La propagación del artefacto ocular se ve afectada por múltiples factores, incluidas las propiedades del cráneo, los tejidos neuronales y la piel del sujeto, pero la señal puede aproximarse como inversamente proporcional al cuadrado de la distancia desde los ojos. El electrooculograma (EOG) consiste en una serie de electrodos que miden los cambios de voltaje cerca del ojo y es la herramienta más común para tratar el artefacto del movimiento ocular en la señal EEG. [89]

Artefactos musculares

Otra fuente de artefactos son los diversos movimientos musculares en todo el cuerpo. Esta clase particular de artefacto suele registrarse con todos los electrodos en el cuero cabelludo debido a la actividad miogénica (aumento o disminución de la presión arterial). El origen de estos artefactos no tiene una ubicación única y surge de grupos musculares funcionalmente independientes, lo que significa que las características del artefacto no son constantes. Los patrones observados debido a los artefactos musculares cambiarán según el sexo del sujeto, el tejido muscular en particular y su grado de contracción. El rango de frecuencia de los artefactos musculares es amplio y se superpone con cada ritmo clásico del EEG. Sin embargo, la mayor parte de la potencia se concentra en el rango inferior de las frecuencias observadas de 20 a 300 Hz, lo que hace que la banda gamma sea particularmente susceptible a los artefactos musculares. Algunos artefactos musculares pueden tener actividad con una frecuencia tan baja como 2 Hz, por lo que las bandas delta y theta también pueden verse afectadas por la actividad muscular. Los artefactos musculares pueden afectar los estudios del sueño, ya que los movimientos inconscientes de bruxismo (rechinar de dientes) o los ronquidos pueden afectar gravemente la calidad del EEG registrado. Además, las grabaciones realizadas a pacientes con epilepsia pueden verse significativamente afectadas por la existencia de artefactos musculares. [91]

Artefactos cardíacos

El potencial debido a la actividad cardíaca introduce errores electrocardiográficos (ECG) en el EEG. [92] Los artefactos que surgen debido a la actividad cardíaca se pueden eliminar con la ayuda de una señal de referencia de ECG. [87]

Otros artefactos fisiológicos

Los artefactos glosocinéticos son causados ​​por la diferencia de potencial entre la base y la punta de la lengua. Los movimientos menores de la lengua pueden contaminar el EEG, especialmente en los trastornos parkinsonianos y de temblor . [ cita requerida ]

Artefactos ambientales

Además de los artefactos generados por el cuerpo, muchos artefactos se originan desde fuera del cuerpo. El movimiento del paciente, o incluso el simple asentamiento de los electrodos, puede causar estallidos de electrodos , picos originados por un cambio momentáneo en la impedancia de un electrodo determinado. Una mala conexión a tierra de los electrodos de EEG puede causar un artefacto significativo de 50 o 60 Hz, dependiendo de la frecuencia del sistema de energía local . Una tercera fuente de posible interferencia puede ser la presencia de un goteo intravenoso ; estos dispositivos pueden causar ráfagas rítmicas, rápidas y de bajo voltaje, que pueden confundirse con picos. [ cita requerida ]

Actividad anormal

La actividad anormal puede dividirse, en líneas generales, en actividad epileptiforme y no epileptiforme. También puede dividirse en focal o difusa.

Las descargas epileptiformes focales representan potenciales rápidos y sincrónicos en un gran número de neuronas en un área más o menos discreta del cerebro. Pueden ocurrir como actividad interictal, entre convulsiones, y representan un área de irritabilidad cortical que puede estar predispuesta a producir convulsiones epilépticas. Las descargas interictales no son totalmente confiables para determinar si un paciente tiene epilepsia ni dónde puede originarse su convulsión. (Véase epilepsia focal .)

Las descargas epileptiformes generalizadas suelen tener un máximo anterior, pero se observan de forma sincrónica en todo el cerebro y son muy indicativas de una epilepsia generalizada.

La actividad anormal focal no epileptiforme puede ocurrir en áreas del cerebro donde hay daño focal de la corteza o de la sustancia blanca . A menudo consiste en un aumento de los ritmos de frecuencia lenta y/o una pérdida de los ritmos normales de frecuencia más alta. También puede aparecer como una disminución focal o unilateral de la amplitud de la señal del EEG.

La actividad anormal difusa no epileptiforme puede manifestarse como ritmos difusos anormalmente lentos o desaceleración bilateral de los ritmos normales, como el PBR.

Los electrodos de encefalograma intracortical y los electrodos subdurales se pueden utilizar en conjunto para discriminar y discretizar artefactos de eventos epileptiformes y otros eventos neurológicos graves.

Recientemente también se ha prestado atención a medidas más avanzadas de señales EEG anormales como posibles biomarcadores para diferentes trastornos como la enfermedad de Alzheimer . [93]

Comunicación remota

Los sistemas para decodificar el habla imaginada a partir del EEG tienen aplicaciones, por ejemplo, en las interfaces cerebro-computadora . [94]

Diagnóstico EEG

El Departamento de Defensa (DoD) y el Departamento de Asuntos de Veteranos (VA) y el Laboratorio de Investigación del Ejército de los EE. UU. (ARL) colaboraron en el diagnóstico de EEG para detectar lesiones cerebrales traumáticas leves a moderadas (LCTm) en soldados de combate. [95] Entre 2000 y 2012, el 75 por ciento de las lesiones cerebrales en operaciones militares de los EE. UU. se clasificaron como LCTm. En respuesta, el DoD buscó nuevas tecnologías capaces de detectar de forma rápida, precisa, no invasiva y en el campo las LCTm para abordar esta lesión. [95]

El personal de combate a menudo desarrolla TEPT y TCE leve en correlación. Ambas afecciones se presentan con oscilaciones de ondas cerebrales de baja frecuencia alteradas. [96] Las ondas cerebrales alteradas de los pacientes con TEPT se presentan con disminuciones en las oscilaciones de baja frecuencia, mientras que las lesiones por TCE leve están vinculadas a un aumento de las oscilaciones de ondas de baja frecuencia. Un diagnóstico EEG eficaz puede ayudar a los médicos a identificar con precisión las afecciones y tratar adecuadamente las lesiones para mitigar los efectos a largo plazo. [97]

Tradicionalmente, la evaluación clínica de los EEG implicaba una inspección visual. En lugar de una evaluación visual de la topografía de oscilación de las ondas cerebrales, la electroencefalografía cuantitativa (qEEG), metodologías algorítmicas computarizadas, analiza una región específica del cerebro y transforma los datos en un "espectro de potencia" significativo del área. [95] La diferenciación precisa entre LCT leve y TEPT puede aumentar significativamente los resultados positivos de recuperación para los pacientes, especialmente porque los cambios a largo plazo en la comunicación neuronal pueden persistir después de un incidente inicial de LCT leve. [97]

Otra medición común realizada a partir de datos de EEG son las medidas de complejidad como la complejidad de Lempel-Ziv , la dimensión fractal y la planitud espectral , [19] que están asociadas con patologías particulares o etapas de patología.

Ciencias económicas

Existen dispositivos de EEG económicos para los mercados de consumo y de investigación de bajo costo. Recientemente, algunas empresas han miniaturizado la tecnología de EEG de grado médico para crear versiones accesibles al público en general. Algunas de estas empresas han construido dispositivos de EEG comerciales que se venden al por menor por menos de 100 dólares.

Investigaciones futuras

El EEG se ha utilizado para muchos propósitos además de los usos convencionales del diagnóstico clínico y la neurociencia cognitiva convencional. Uno de los primeros usos fue durante la Segunda Guerra Mundial por parte del Cuerpo Aéreo del Ejército de los EE. UU. para detectar a los pilotos en peligro de sufrir convulsiones; [110] los registros de EEG a largo plazo en pacientes con epilepsia todavía se utilizan hoy en día para la predicción de convulsiones . El neurofeedback sigue siendo una extensión importante, y en su forma más avanzada también se intenta como base de las interfaces cerebro-computadora . [111] El EEG también se utiliza bastante ampliamente en el campo del neuromarketing .

El EEG se altera con fármacos que afectan a las funciones cerebrales, sustancias químicas que son la base de la psicofarmacología . Los primeros experimentos de Berger registraron los efectos de los fármacos en el EEG. La ciencia de la farmacoelectroencefalografía ha desarrollado métodos para identificar sustancias que alteran sistemáticamente las funciones cerebrales para uso terapéutico y recreativo.

Honda is attempting to develop a system to enable an operator to control its Asimo robot using EEG, a technology it eventually hopes to incorporate into its automobiles.[112]

EEGs have been used as evidence in criminal trials in the Indian state of Maharashtra.[113][114] Brain Electrical Oscillation Signature Profiling (BEOS), an EEG technique, was used in the trial of State of Maharashtra v. Sharma to show Sharma remembered using arsenic to poison her ex-fiancé, although the reliability and scientific basis of BEOS is disputed.[115]

A lot of research is currently being carried out in order to make EEG devices smaller, more portable and easier to use. So called "Wearable EEG" is based upon creating low power wireless collection electronics and 'dry' electrodes which do not require a conductive gel to be used.[116] Wearable EEG aims to provide small EEG devices which are present only on the head and which can record EEG for days, weeks, or months at a time, as ear-EEG. Such prolonged and easy-to-use monitoring could make a step change in the diagnosis of chronic conditions such as epilepsy, and greatly improve the end-user acceptance of BCI systems.[117] Research is also being carried out on identifying specific solutions to increase the battery lifetime of Wearable EEG devices through the use of the data reduction approach.

In research, currently EEG is often used in combination with machine learning.[118] EEG data are pre-processed then passed on to machine learning algorithms. These algorithms are then trained to recognize different diseases like schizophrenia,[119] epilepsy[120] or dementia.[121] Furthermore, they are increasingly used to study seizure detection.[122][123][124][125] By using machine learning, the data can be analyzed automatically. In the long run this research is intended to build algorithms that support physicians in their clinical practice [126] and to provide further insights into diseases.[127] In this vein, complexity measures of EEG data are often calculated, such as Lempel-Ziv complexity, fractal dimension, and spectral flatness.[19] It has been shown that combining or multiplying such measures can reveal previously hidden information in EEG data.[19]

EEG signals from musical performers were used to create instant compositions and one CD by the Brainwave Music Project, run at the Computer Music Center at Columbia University by Brad Garton and Dave Soldier.[citation needed] Similarly, an hour-long recording of the brainwaves of Ann Druyan was included on the Voyager Golden Record, launched on the Voyager probes in 1977, in case any extraterrestrial intelligence could decode her thoughts, which included what it was like to fall in love.[citation needed]

History

The first human EEG recording obtained by Hans Berger in 1924. The upper tracing is EEG, and the lower is a 10 Hz timing signal.
Hans Berger

In 1875, Richard Caton (1842–1926), a physician practicing in Liverpool, presented his findings about electrical phenomena of the exposed cerebral hemispheres of rabbits and monkeys in the British Medical Journal. In 1890, Polish physiologist Adolf Beck published an investigation of spontaneous electrical activity of the brain of rabbits and dogs that included rhythmic oscillations altered by light. Beck started experiments on the electrical brain activity of animals. Beck placed electrodes directly on the surface of the brain to test for sensory stimulation. His observation of fluctuating brain activity led to the conclusion of brain waves.[128]

In 1912, Ukrainian physiologist Vladimir Vladimirovich Pravdich-Neminsky published the first animal EEG and the evoked potential of the mammalian (dog).[129] In 1914, Napoleon Cybulski and Jelenska-Macieszyna photographed EEG recordings of experimentally induced seizures.[citation needed]

German physiologist and psychiatrist Hans Berger (1873–1941) recorded the first human EEG in 1924.[130] Expanding on work previously conducted on animals by Richard Caton and others, Berger also invented the electroencephalograph (giving the device its name), an invention described "as one of the most surprising, remarkable, and momentous developments in the history of clinical neurology".[131] His discoveries were first confirmed by British scientists Edgar Douglas Adrian and B. H. C. Matthews in 1934 and developed by them.

In 1934, Fisher and Lowenbach first demonstrated epileptiform spikes. In 1935, Gibbs, Davis and Lennox described interictal spike waves and the three cycles/s pattern of clinical absence seizures, which began the field of clinical electroencephalography.[132] Subsequently, in 1936 Gibbs and Jasper reported the interictal spike as the focal signature of epilepsy. The same year, the first EEG laboratory opened at Massachusetts General Hospital.[citation needed]

Franklin Offner (1911–1999), professor of biophysics at Northwestern University developed a prototype of the EEG that incorporated a piezoelectric inkwriter called a Crystograph (the whole device was typically known as the Offner Dynograph).

In 1947, The American EEG Society was founded and the first International EEG congress was held. In 1953 Aserinsky and Kleitman described REM sleep.

In the 1950s, William Grey Walter developed an adjunct to EEG called EEG topography, which allowed for the mapping of electrical activity across the surface of the brain. This enjoyed a brief period of popularity in the 1980s and seemed especially promising for psychiatry. It was never accepted by neurologists and remains primarily a research tool.

Chuck Kayser with electroencephalograph electrodes and a signal conditioner for use in Project Gemini, 1965

An electroencephalograph system manufactured by Beckman Instruments was used on at least one of the Project Gemini manned spaceflights (1965–1966) to monitor the brain waves of astronauts on the flight. It was one of many Beckman Instruments specialized for and used by NASA.[133]

The first instance of the use of EEG to control a physical object, a robot, was in 1988. The robot would follow a line or stop depending on the alpha activity of the subject. If the subject relaxed and closed their eyes therefore increasing alpha activity, the bot would move. Opening their eyes thus decreasing alpha activity would cause the robot to stop on the trajectory.[134]

In October 2018, scientists connected the brains of three people to experiment with the process of thoughts sharing. Five groups of three people participated in the experiment using EEG. The success rate of the experiment was 81%.[135]

See also

References

  1. ^ Compare EEC:Moran A (August 2, 2004). Sport and Exercise Psychology: A Critical Introduction. Hove, East Sussex: Routledge. p. 104. ISBN 9781134704101. Retrieved July 6, 2024. [...] electroencephalographic (EEC) methods [...]. In a typical EEC experiment, an electrode is attached to a person's scalp in order to detect the electrical activity of neurons in the underlying brain region. Another electrode is then attached to the person's earlobe, where there is no electrical activity to detect. Then the EEC is recorded to indicate the difference in electrical potentials detected by the electrodes [...]. In recent years, a considerable amount of research has been conducted on EEC activity in athletes [...].
  2. ^ Amzica F, Lopes da Silva FH (November 2017). Schomer DL, Lopes da Silva FH (eds.). Cellular Substrates of Brain Rhythms. Vol. 1. Oxford University Press. doi:10.1093/med/9780190228484.003.0002.
  3. ^ a b Eric R. Kandel, John Koester, Sarah Mack, Steven Siegelbaum (2021). Principles of neural science (6th ed.). New York: McGraw-Hill Companies. p. 1450. ISBN 978-1-259-64223-4. OCLC 1199587061.
  4. ^ "EEG: MedlinePlus Medical Encyclopedia". medlineplus.gov. Archived from the original on July 5, 2016. Retrieved July 24, 2022.
  5. ^ Chernecky CC, Berger BJ (2013). Laboratory tests and diagnostic procedures (6th ed.). St. Louis, Mo.: Elsevier. ISBN 978-1-4557-0694-5.
  6. ^ Deschamps A, Ben Abdallah A, Jacobsohn E, Saha T, Djaiani G, El-Gabalawy R, et al. (July 2024). "Electroencephalography-Guided Anesthesia and Delirium in Older Adults After Cardiac Surgery: The ENGAGES-Canada Randomized Clinical Trial". JAMA. 332 (2): 112–123. doi:10.1001/jama.2024.8144. PMC 11165413. PMID 38857019.
  7. ^ Hao D, Fritz BA, Saddawi-Konefka D, Palanca BJ (November 2023). "Pro-Con Debate: Electroencephalography-Guided Anesthesia for Reducing Postoperative Delirium". Anesthesia and Analgesia. 137 (5): 976–982. doi:10.1213/ANE.0000000000006399. PMID 37862399.
  8. ^ a b c Pillai J, Sperling MR (2006). "Interictal EEG and the diagnosis of epilepsy". Epilepsia. 47 Suppl 1 (Suppl 1): 14–22. doi:10.1111/j.1528-1167.2006.00654.x. PMID 17044820. S2CID 8668713. Archived from the original on October 23, 2022. Retrieved October 23, 2022.
  9. ^ So EL (August 2010). "Interictal epileptiform discharges in persons without a history of seizures: what do they mean?". Journal of Clinical Neurophysiology. 27 (4): 229–238. doi:10.1097/WNP.0b013e3181ea42a4. PMID 20634716.
  10. ^ "The Yield of Ambulatory Video-EEG - Predictors of Successful Event Capture". Neurology Clinical Practice. Retrieved December 5, 2023.
  11. ^ van Rooij LG, Hellström-Westas L, de Vries LS (August 2013). "Treatment of neonatal seizures". Seminars in Fetal & Neonatal Medicine. 18 (4): 209–215. doi:10.1016/j.siny.2013.01.001. PMID 23402893.
  12. ^ "EEG (Electroencephalogram) – Mayo Clinic". Mayo Clinic. Archived from the original on August 30, 2019. Retrieved August 30, 2019.
  13. ^ a b c d Niedermeyer E, da Silva FL (2004). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins. ISBN 978-0-7817-5126-1.[page needed]
  14. ^ Yang H, Ang KK, Wang C, Phua KS, Guan C (2016). "Neural and cortical analysis of swallowing and detection of motor imagery of swallow for dysphagia rehabilitation—A review". Brain-Computer Interfaces: Lab Experiments to Real-World Applications. Progress in Brain Research. Vol. 228. pp. 185–219. doi:10.1016/bs.pbr.2016.03.014. ISBN 978-0-12-804216-8. PMID 27590970.
  15. ^ Jestrović I, Coyle JL, Sejdić E (October 2015). "Decoding human swallowing via electroencephalography: a state-of-the-art review". Journal of Neural Engineering. 12 (5): 051001. Bibcode:2015JNEng..12e1001J. doi:10.1088/1741-2560/12/5/051001. PMC 4596245. PMID 26372528.
  16. ^ Cuellar M, Harkrider AW, Jenson D, Thornton D, Bowers A, Saltuklaroglu T (July 2016). "Time-frequency analysis of the EEG mu rhythm as a measure of sensorimotor integration in the later stages of swallowing". Clinical Neurophysiology. 127 (7): 2625–2635. doi:10.1016/j.clinph.2016.04.027. PMID 27291882. S2CID 3746307.
  17. ^ Clayson PE, Carbine KA, Baldwin SA, Larson MJ (November 2019). "Methodological reporting behavior, sample sizes, and statistical power in studies of event-related potentials: Barriers to reproducibility and replicability". Psychophysiology. 56 (11): e13437. doi:10.1111/psyp.13437. PMID 31322285. S2CID 197665482. Archived from the original on October 7, 2022. Retrieved October 7, 2022.
  18. ^ a b Peterson BS, Trampush J, Maglione M, Bolshakova M, Brown M, Rozelle M, et al. (2024). "ADHD Diagnosis and Treatment in Children and Adolescents". effectivehealthcare.ahrq.gov. doi:10.23970/ahrqepccer267. PMID 38657097. Retrieved June 19, 2024.
  19. ^ a b c d Burns T, Rajan R (2015). "Combining complexity measures of EEG data: multiplying measures reveal previously hidden information". F1000Research. 4: 137. doi:10.12688/f1000research.6590.1. PMC 4648221. PMID 26594331.
  20. ^ Vespa PM, Nenov V, Nuwer MR (January 1999). "Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy". Journal of Clinical Neurophysiology. 16 (1): 1–13. doi:10.1097/00004691-199901000-00001. PMID 10082088.
  21. ^ Schultz TL (March 2012). "Technical tips: MRI compatible EEG electrodes: advantages, disadvantages, and financial feasibility in a clinical setting". The Neurodiagnostic Journal. 52 (1): 69–81. PMID 22558648.
  22. ^ a b c Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993). "Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain". Reviews of Modern Physics. 65 (2): 413–97. Bibcode:1993RvMP...65..413H. doi:10.1103/RevModPhys.65.413. Archived from the original on January 26, 2019. Retrieved September 10, 2018.
  23. ^ Montoya-Martínez J, Vanthornhout J, Bertrand A, Francart T (2021). "Effect of number and placement of EEG electrodes on measurement of neural tracking of speech". PLOS ONE. 16 (2): e0246769. Bibcode:2021PLoSO..1646769M. bioRxiv 10.1101/800979. doi:10.1371/journal.pone.0246769. PMC 7877609. PMID 33571299.
  24. ^ O'Regan S, Faul S, Marnane W (2010). "Automatic detection of EEG artifacts arising from head movements". 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. pp. 6353–6. doi:10.1109/IEMBS.2010.5627282. ISBN 978-1-4244-4123-5.
  25. ^ Murphy KJ, Brunberg JA (1997). "Adult claustrophobia, anxiety and sedation in MRI". Magnetic Resonance Imaging. 15 (1): 51–54. doi:10.1016/S0730-725X(96)00351-7. PMID 9084025.
  26. ^ Schenck JF (June 1996). "The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds". Medical Physics. 23 (6): 815–850. Bibcode:1996MedPh..23..815S. doi:10.1118/1.597854. PMID 8798169.
  27. ^ a b Yasuno F, Brown AK, Zoghbi SS, Krushinski JH, Chernet E, Tauscher J, et al. (January 2008). "The PET radioligand [11C]MePPEP binds reversibly and with high specific signal to cannabinoid CB1 receptors in nonhuman primate brain". Neuropsychopharmacology. 33 (2): 259–269. doi:10.1038/sj.npp.1301402. PMID 17392732.
  28. ^ Mulholland T (2012). "Objective EEG Methods for Studying Covert Shifts of Visual Attention". In McGuigan FJ, Schoonover RA (eds.). The Psychophysiology of Thinking: Studies of Covert Processes. Elsevier. pp. 109–51. ISBN 978-0-323-14700-2.
  29. ^ Hinterberger T, Kübler A, Kaiser J, Neumann N, Birbaumer N (March 2003). "A brain-computer interface (BCI) for the locked-in: comparison of different EEG classifications for the thought translation device". Clinical Neurophysiology. 114 (3): 416–425. doi:10.1016/S1388-2457(02)00411-X. PMID 12705422. S2CID 11857440.
  30. ^ Cheng MY, Wang KP, Hung CL, Tu YL, Huang CJ, Koester D, et al. (September 2017). "Higher power of sensorimotor rhythm is associated with better performance in skilled air-pistol shooters". Psychology of Sport and Exercise. 32: 47–53. doi:10.1016/j.psychsport.2017.05.007. S2CID 33780406.
  31. ^ Sereno SC, Rayner K, Posner MI (July 1998). "Establishing a time-line of word recognition: evidence from eye movements and event-related potentials". NeuroReport. 9 (10): 2195–2200. doi:10.1097/00001756-199807130-00009. PMID 9694199. S2CID 19466604.
  32. ^ Feinberg I, Campbell IG (February 2013). "Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 304 (4): R296–R303. doi:10.1152/ajpregu.00422.2012. PMC 3567357. PMID 23193115.
    • Lay summary in: "Sleep study reveals how the adolescent brain makes the transition to mature thinking". ScienceDaily (Press release). March 19, 2013.
  33. ^ Srinivasan R (1999). "Methods to Improve the Spatial Resolution of EEG". International Journal. 1 (1): 102–11.
  34. ^ Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, et al. (November 2008). "Review on solving the inverse problem in EEG source analysis". Journal of Neuroengineering and Rehabilitation. 5 (1): 25. doi:10.1186/1743-0003-5-25. PMC 2605581. PMID 18990257.
  35. ^ Schlögl A, Slater M, Pfurtscheller G (2002). "Presence research and EEG" (PDF). Archived (PDF) from the original on August 11, 2017. Retrieved August 24, 2013.
  36. ^ Etienne A, Laroia T, Weigle H, Afelin A, Kelly SK, Krishnan A, et al. (July 2020). "Novel Electrodes for Reliable EEG Recordings on Coarse and Curly Hair". Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2020: 6151–6154. doi:10.1101/2020.02.26.965202. PMID 33019375.
  37. ^ Adams EJ, Scott ME, Amarante M, Ramírez CA, Rowley SJ, Noble KG, et al. (April 2024). "Fostering inclusion in EEG measures of pediatric brain activity". npj Science of Learning. 9 (1): 27. Bibcode:2024npjSL...9...27A. doi:10.1038/s41539-024-00240-y. PMC 10987610. PMID 38565857.
  38. ^ Huang-Hellinger FR, Breiter HC, McCormack G, Cohen MS, Kwong KK, Sutton JP, et al. (1995). "Simultaneous Functional Magnetic Resonance Imaging and Electrophysiological Recording". Human Brain Mapping. 3: 13–23. doi:10.1002/hbm.460030103. S2CID 145788101.
  39. ^ Goldman RI, Stern JM, Engel J, Cohen MS (November 2000). "Acquiring simultaneous EEG and functional MRI". Clinical Neurophysiology. 111 (11): 1974–1980. doi:10.1016/s1388-2457(00)00456-9. PMID 11068232. S2CID 11716369.
  40. ^ Horovitz SG, Skudlarski P, Gore JC (May 2002). "Correlations and dissociations between BOLD signal and P300 amplitude in an auditory oddball task: a parametric approach to combining fMRI and ERP". Magnetic Resonance Imaging. 20 (4): 319–325. doi:10.1016/S0730-725X(02)00496-4. PMID 12165350.
  41. ^ Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, et al. (August 2003). "EEG-correlated fMRI of human alpha activity". NeuroImage. 19 (4): 1463–1476. CiteSeerX 10.1.1.586.3056. doi:10.1016/S1053-8119(03)00286-6. PMID 12948703. S2CID 6272011.
  42. ^ US patent 7286871, Mark S. Cohen, "Method and apparatus for reducing contamination of an electrical signal", published 2004-05-20 
  43. ^ Difrancesco MW, Holland SK, Szaflarski JP (October 2008). "Simultaneous EEG/functional magnetic resonance imaging at 4 Tesla: correlates of brain activity to spontaneous alpha rhythm during relaxation". Journal of Clinical Neurophysiology. 25 (5): 255–264. doi:10.1097/WNP.0b013e3181879d56. PMC 2662486. PMID 18791470.
  44. ^ Huizenga HM, van Zuijen TL, Heslenfeld DJ, Molenaar PC (July 2001). "Simultaneous MEG and EEG source analysis". Physics in Medicine and Biology. 46 (7): 1737–1751. Bibcode:2001PMB....46.1737H. CiteSeerX 10.1.1.4.8384. doi:10.1088/0031-9155/46/7/301. PMID 11474922. S2CID 250761006.
  45. ^ Aydin Ü, Vorwerk J, Dümpelmann M, Küpper P, Kugel H, Heers M, et al. (2015). "Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis". PLOS ONE (Review). 10 (3): e0118753. Bibcode:2015PLoSO..1018753A. doi:10.1371/journal.pone.0118753. PMC 4356563. PMID 25761059.
  46. ^ Schreckenberger M, Lange-Asschenfeldt C, Lange-Asschenfeld C, Lochmann M, Mann K, Siessmeier T, et al. (June 2004). "The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans". NeuroImage. 22 (2): 637–644. doi:10.1016/j.neuroimage.2004.01.047. PMID 15193592. S2CID 31790623.
  47. ^ Bird J, Manso LJ, Ekart A, Faria DR (September 2018). A Study on Mental State Classification using EEG-based Brain-Machine Interface. Madeira Island, Portugal: 9th international Conference on Intelligent Systems 2018. Retrieved December 3, 2018.
  48. ^ Bird JJ, Ekart A, Buckingham CD, Faria DR (2019). Mental Emotional Sentiment Classification with an EEG-based Brain-Machine Interface. St Hugh's College, University of Oxford, United Kingdom: The International Conference on Digital Image and Signal Processing (DISP'19). Archived from the original on December 3, 2018. Retrieved December 3, 2018.
  49. ^ Vanneste S, Song JJ, De Ridder D (March 2018). "Thalamocortical dysrhythmia detected by machine learning". Nature Communications. 9 (1): 1103. Bibcode:2018NatCo...9.1103V. doi:10.1038/s41467-018-02820-0. PMC 5856824. PMID 29549239.
  50. ^ Herculano-Houzel S (2009). "The human brain in numbers: a linearly scaled-up primate brain". Frontiers in Human Neuroscience. 3: 31. doi:10.3389/neuro.09.031.2009. PMC 2776484. PMID 19915731.
  51. ^ Tatum WO, Husain AM, Benbadis SR (2008). Handbook of EEG Interpretation. Demos Medical Publishing.[page needed]
  52. ^ a b Nunez PL, Srinivasan R (1981). Electric fields of the brain: The neurophysics of EEG. Oxford University Press. ISBN 978-0-19-502796-9.[page needed]
  53. ^ Klein S, Thorne BM (October 3, 2006). Biological psychology. New York, N.Y.: Worth. ISBN 978-0-7167-9922-1.[page needed]
  54. ^ Whittingstall K, Logothetis NK (October 2009). "Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex". Neuron. 64 (2): 281–289. doi:10.1016/j.neuron.2009.08.016. PMID 19874794. S2CID 17650488.
  55. ^ Towle VL, Bolaños J, Suarez D, Tan K, Grzeszczuk R, Levin DN, et al. (January 1993). "The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy". Electroencephalography and Clinical Neurophysiology. 86 (1): 1–6. doi:10.1016/0013-4694(93)90061-Y. PMID 7678386.
  56. ^ "Guideline seven: a proposal for standard montages to be used in clinical EEG. American Electroencephalographic Society". Journal of Clinical Neurophysiology. 11 (1): 30–36. January 1994. doi:10.1097/00004691-199401000-00008. PMID 8195424.
  57. ^ Aurlien H, Gjerde IO, Aarseth JH, Eldøen G, Karlsen B, Skeidsvoll H, et al. (March 2004). "EEG background activity described by a large computerized database". Clinical Neurophysiology. 115 (3): 665–673. doi:10.1016/j.clinph.2003.10.019. PMID 15036063. S2CID 25988980.
  58. ^ Yao D (November 2001). "A method to standardize a reference of scalp EEG recordings to a point at infinity". Physiological Measurement. 22 (4): 693–711. doi:10.1088/0967-3334/22/4/305. PMID 11761077. S2CID 250847914.
  59. ^ Nunez PL, Pilgreen KL (October 1991). "The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution". Journal of Clinical Neurophysiology. 8 (4): 397–413. doi:10.1097/00004691-199110000-00005. PMID 1761706. S2CID 38459560.
  60. ^ Taheri BA, Knight RT, Smith RL (May 1994). "A dry electrode for EEG recording". Electroencephalography and Clinical Neurophysiology. 90 (5): 376–383. doi:10.1016/0013-4694(94)90053-1. PMID 7514984. Archived from the original on December 22, 2019. Retrieved December 10, 2019.
  61. ^ Alizadeh-Taheri B (1994). Active Micromachined Scalp Electrode Array for Eeg Signal Recording (PhD thesis). University of California, Davis. p. 82. Bibcode:1994PhDT........82A.
  62. ^ Hockenberry J (August 2001). "The Next Brainiacs". Wired Magazine.
  63. ^ a b c d Slipher GA, Hairston WD, Bradford JC, Bain ED, Mrozek RA (2018). "Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces". PLOS ONE. 13 (2): e0189415. Bibcode:2018PLoSO..1389415S. doi:10.1371/journal.pone.0189415. PMC 5800568. PMID 29408942.
  64. ^ a b c Wang F, Li G, Chen J, Duan Y, Zhang D (August 2016). "Novel semi-dry electrodes for brain-computer interface applications". Journal of Neural Engineering. 13 (4): 046021. Bibcode:2016JNEng..13d6021W. doi:10.1088/1741-2560/13/4/046021. PMID 27378253. S2CID 26744679.
  65. ^ Fiedler P, Griebel S, Pedrosa P, Fonseca C, Vaz F, Zentner L, et al. (January 1, 2015). "Multichannel EEG with novel Ti/TiN dry electrodes". Sensors and Actuators A: Physical. 221: 139–147. Bibcode:2015SeAcA.221..139F. doi:10.1016/j.sna.2014.10.010. ISSN 0924-4247.
  66. ^ "Dry EEG Headsets | Products | CGX". CGX 2021. Archived from the original on February 13, 2020. Retrieved February 13, 2020.
  67. ^ "Dry EEG Technology". CGX LLC. Archived from the original on February 13, 2020. Retrieved February 13, 2020.
  68. ^ Kondylis ED, Wozny TA, Lipski WJ, Popescu A, DeStefino VJ, Esmaeili B, et al. (2014). "Detection of high-frequency oscillations by hybrid depth electrodes in standard clinical intracranial EEG recordings". Frontiers in Neurology. 5: 149. doi:10.3389/fneur.2014.00149. PMC 4123606. PMID 25147541.
  69. ^ Murakami S, Okada Y (September 2006). "Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals". The Journal of Physiology. 575 (Pt 3): 925–936. doi:10.1113/jphysiol.2006.105379. PMC 1995687. PMID 16613883.
  70. ^ Anderson J (October 22, 2004). Cognitive Psychology and Its Implications (Hardcover) (6th ed.). New York, NY: Worth. p. 17. ISBN 978-0-7167-0110-1.
  71. ^ Creutzfeldt OD, Watanabe S, Lux HD (January 1966). "Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation". Electroencephalography and Clinical Neurophysiology. 20 (1): 1–18. doi:10.1016/0013-4694(66)90136-2. PMID 4161317.
  72. ^ Buzsaki G (2006). Rhythms of the brain. Oxford University Press. ISBN 978-0-19-530106-9.[page needed]
  73. ^ Tatum WO (March 2014). "Ellen R. Grass Lecture: extraordinary EEG". The Neurodiagnostic Journal. 54 (1): 3–21. PMID 24783746.
  74. ^ a b Kirmizi-Alsan E, Bayraktaroglu Z, Gurvit H, Keskin YH, Emre M, Demiralp T (August 2006). "Comparative analysis of event-related potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention". Brain Research. 1104 (1): 114–128. doi:10.1016/j.brainres.2006.03.010. PMID 16824492. S2CID 18850757.
  75. ^ Frohlich J, Senturk D, Saravanapandian V, Golshani P, Reiter LT, Sankar R, et al. (December 2016). "A Quantitative Electrophysiological Biomarker of Duplication 15q11.2-q13.1 Syndrome". PLOS ONE. 11 (12): e0167179. Bibcode:2016PLoSO..1167179F. doi:10.1371/journal.pone.0167179. PMC 5157977. PMID 27977700.
  76. ^ Kisley MA, Cornwell ZM (November 2006). "Gamma and beta neural activity evoked during a sensory gating paradigm: effects of auditory, somatosensory and cross-modal stimulation". Clinical Neurophysiology. 117 (11): 2549–2563. doi:10.1016/j.clinph.2006.08.003. PMC 1773003. PMID 17008125.
  77. ^ Kanayama N, Sato A, Ohira H (May 2007). "Crossmodal effect with rubber hand illusion and gamma-band activity". Psychophysiology. 44 (3): 392–402. doi:10.1111/j.1469-8986.2007.00511.x. PMID 17371495.
  78. ^ Gastaut H (1952). "[Electrocorticographic study of the reactivity of rolandic rhythm]". Revue Neurologique. 87 (2): 176–182. PMID 13014777.
  79. ^ a b Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA (July 2005). "EEG evidence for mirror neuron dysfunction in autism spectrum disorders". Brain Research. Cognitive Brain Research. 24 (2): 190–198. doi:10.1016/j.cogbrainres.2005.01.014. PMID 15993757.
  80. ^ Cahn BR, Polich J (March 2006). "Meditation states and traits: EEG, ERP, and neuroimaging studies". Psychological Bulletin. 132 (2): 180–211. doi:10.1037/0033-2909.132.2.180. PMID 16536641. S2CID 2151810.
  81. ^ Gerrard P, Malcolm R (June 2007). "Mechanisms of modafinil: A review of current research". Neuropsychiatric Disease and Treatment. 3 (3): 349–364. PMC 2654794. PMID 19300566.
  82. ^ Niedermeyer E (June 1997). "Alpha rhythms as physiological and abnormal phenomena". International Journal of Psychophysiology. 26 (1–3): 31–49. doi:10.1016/S0167-8760(97)00754-X. PMID 9202993.
  83. ^ Feshchenko VA, Reinsel RA, Veselis RA (July 2001). "Multiplicity of the alpha rhythm in normal humans". Journal of Clinical Neurophysiology. 18 (4): 331–344. doi:10.1097/00004691-200107000-00005. PMID 11673699.
  84. ^ Pfurtscheller G, Lopes da Silva FH (November 1999). "Event-related EEG/MEG synchronization and desynchronization: basic principles". Clinical Neurophysiology. 110 (11): 1842–1857. doi:10.1016/S1388-2457(99)00141-8. PMID 10576479. S2CID 24756702.
  85. ^ Anderson AL, Thomason ME (November 2013). "Functional plasticity before the cradle: a review of neural functional imaging in the human fetus". Neuroscience and Biobehavioral Reviews. 37 (9 Pt B): 2220–2232. doi:10.1016/j.neubiorev.2013.03.013. PMID 23542738. S2CID 45733681.
  86. ^ "The MacIver Lab". Stanford University. Archived from the original on November 23, 2008. Retrieved December 16, 2006.
  87. ^ a b Jiang X, Bian GB, Tian Z (February 2019). "Removal of Artifacts from EEG Signals: A Review". Sensors. 19 (5): 987. Bibcode:2019Senso..19..987J. doi:10.3390/s19050987. PMC 6427454. PMID 30813520.
  88. ^ a b Alsuradi H, Park W, Eid M (2020). "EEG-Based Neurohaptics Research: A Literature Review". IEEE Access. 8: 49313–49328. Bibcode:2020IEEEA...849313A. doi:10.1109/ACCESS.2020.2979855. ISSN 2169-3536. S2CID 214596892.
  89. ^ a b Croft RJ, Barry RJ (February 2000). "Removal of ocular artifact from the EEG: a review". Neurophysiologie Clinique = Clinical Neurophysiology. 30 (1): 5–19. doi:10.1016/S0987-7053(00)00055-1. PMID 10740792. S2CID 13738373.
  90. ^ Epstein CM (1983). Introduction to EEG and evoked potentials. J. B. Lippincott Co. ISBN 978-0-397-50598-2.[page needed]
  91. ^ Chen X, Xu X, Liu A, Lee S, Chen X, Zhang X, et al. (July 15, 2019). "Removal of Muscle Artifacts From the EEG: A Review and Recommendations". IEEE Sensors Journal. 19 (14): 5353–5368. Bibcode:2019ISenJ..19.5353C. doi:10.1109/JSEN.2019.2906572. ISSN 1558-1748. S2CID 116693954.
  92. ^ Kaya I (May 18, 2022), "A Brief Summary of EEG Artifact Handling", in Asadpour V (ed.), Brain-Computer Interface, Artificial Intelligence, vol. 9, IntechOpen, arXiv:2001.00693, doi:10.5772/intechopen.99127, ISBN 978-1-83962-522-0, S2CID 209832569, archived from the original on December 20, 2022, retrieved December 20, 2022
  93. ^ Montez T, Poil SS, Jones BF, Manshanden I, Verbunt JP, van Dijk BW, et al. (February 2009). "Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease". Proceedings of the National Academy of Sciences of the United States of America. 106 (5): 1614–1619. Bibcode:2009PNAS..106.1614M. doi:10.1073/pnas.0811699106. PMC 2635782. PMID 19164579.
  94. ^ Panachakel JT, Ramakrishnan AG (2021). "Decoding Covert Speech From EEG-A Comprehensive Review". Frontiers in Neuroscience. 15: 642251. doi:10.3389/fnins.2021.642251. PMC 8116487. PMID 33994922.
  95. ^ a b c Rapp PE, Keyser DO, Albano A, Hernandez R, Gibson DB, Zambon RA, et al. (2015). "Traumatic brain injury detection using electrophysiological methods". Frontiers in Human Neuroscience. 9: 11. doi:10.3389/fnhum.2015.00011. PMC 4316720. PMID 25698950.
  96. ^ Franke LM, Walker WC, Hoke KW, Wares JR (August 2016). "Distinction in EEG slow oscillations between chronic mild traumatic brain injury and PTSD". International Journal of Psychophysiology. 106: 21–29. doi:10.1016/j.ijpsycho.2016.05.010. PMID 27238074.
  97. ^ a b "Study: EEG can help tell apart PTSD, mild traumatic brain injury". www.research.va.gov. Archived from the original on October 9, 2019. Retrieved October 9, 2019.
  98. ^ "Mind Games". The Economist. March 23, 2007. Archived from the original on December 12, 2009. Retrieved August 12, 2010.
  99. ^ a b c Li S (August 8, 2010). "Mind reading is on the market". Los Angeles Times. Archived from the original on January 4, 2013.
  100. ^ Fruhlinger J (October 9, 2008). "Brains-on with NeuroSky and Square Enix's Judecca mind-control game". Engadget. Archived from the original on October 30, 2010. Retrieved December 2, 2010.
  101. ^ "New games powered by brain waves". Physorg.com. Archived from the original on June 6, 2011. Retrieved December 2, 2010.
  102. ^ Snider M (January 7, 2009). "Toy trains 'Star Wars' fans to use The Force". USA Today. Archived from the original on October 23, 2012. Retrieved May 1, 2010.
  103. ^ "News – NeuroSky Upgrades SDK, Allows For Eye Blink, Brainwave-Powered Games". Gamasutra. June 30, 2010. Archived from the original on February 22, 2017. Retrieved December 2, 2010.
  104. ^ Fiolet E. "NeuroSky MindWave Brings Brain-Computer Interface to Education". www.ubergizmo.com. Ubergizmo. Archived from the original on December 12, 2017. Retrieved May 18, 2015.
  105. ^ "NeuroSky MindWave Sets Guinness World Record for "Largest Object Moved Using a Brain-Computer Interface"". NeuroGadget.com. NeuroGadget. Archived from the original on October 15, 2013. Retrieved June 2, 2011.
  106. ^ "Product Launch! Neurosync – The World's Smallest Brain-Computer-Interface". www.prnewswire.com. July 15, 2015. Archived from the original on December 9, 2018. Retrieved July 21, 2017.
  107. ^ "APP – Macrotellect". o.macrotellect.com. Archived from the original on January 23, 2017. Retrieved December 8, 2016.
  108. ^ "510(k) Premarket Notification". www.accessdata.fda.gov. Archived from the original on November 12, 2021. Retrieved November 12, 2021.
  109. ^ Bell J, ed. (January 8, 2021). "BioSerenity receives FDA clearance for EEG wearable device system". NeuroNews International. Archived from the original on November 12, 2021. Retrieved November 12, 2021.
  110. ^ Keiper A (2006). "The age of neuroelectronics". New Atlantis. 11. The New Atlantis: 4–41. PMID 16789311. Archived from the original on February 12, 2016.
  111. ^ Wan F, da Cruz JN, Nan W, Wong CM, Vai MI, Rosa A (June 2016). "Alpha neurofeedback training improves SSVEP-based BCI performance". Journal of Neural Engineering. 13 (3): 036019. Bibcode:2016JNEng..13c6019W. doi:10.1088/1741-2560/13/3/036019. PMID 27152666. S2CID 206099640.
  112. ^ "Mind over matter: Brain waves control Asimo". Japan Times. April 1, 2009. Archived from the original on April 3, 2009.
  113. ^ Natu N (July 21, 2008). "This brain test maps the truth". The Times of India. Archived from the original on July 18, 2012. Retrieved April 14, 2021.
  114. ^ Puranik DA, Joseph SK, Daundkar BB, Garad MV (November 2009). Brain Signature Profiling In India: Its Status As An Aid In Investigation And As Corroborative Evidence-As Seen From Judgments (PDF). Proceedings of XX All India Forensic Science Conference. pp. 815–822. Archived from the original (PDF) on March 3, 2016.
  115. ^ Gaudet LM (2011). "Brain Fingerprinting, Scientific Evidence, and "Daubert": A Cautionary Lesson from India". Jurimetrics. 51 (3): 293–318. ISSN 0897-1277. JSTOR 41307131. Archived from the original on April 16, 2021. Retrieved March 20, 2019.
  116. ^ Casson A, Yates D, Smith S, Duncan J, Rodriguez-Villegas E (2010). "Wearable electroencephalography. What is it, why is it needed, and what does it entail?". IEEE Engineering in Medicine and Biology Magazine. 29 (3): 44–56. doi:10.1109/MEMB.2010.936545. hdl:10044/1/5910. PMID 20659857. S2CID 1891995.
  117. ^ Looney D, Kidmose P, Park C, Ungstrup M, Rank M, Rosenkranz K, et al. (November 1, 2012). "The in-the-ear recording concept: user-centered and wearable brain monitoring". IEEE Pulse. 3 (6): 32–42. doi:10.1109/MPUL.2012.2216717. PMID 23247157. S2CID 14103460.
  118. ^ Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, et al. (June 2018). "A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update". Journal of Neural Engineering. 15 (3): 031005. Bibcode:2018JNEng..15c1005L. doi:10.1088/1741-2552/aab2f2. PMID 29488902.
  119. ^ Shim M, Hwang HJ, Kim DW, Lee SH, Im CH (October 2016). "Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features". Schizophrenia Research. 176 (2–3): 314–319. doi:10.1016/j.schres.2016.05.007. PMID 27427557. S2CID 44504680.
  120. ^ Buettner R, Frick J, Rieg T (November 12, 2019). "High-performance detection of epilepsy in seizure-free EEG recordings: A novel machine learning approach using very specific epileptic EEG sub-bands". ICIS 2019 Proceedings. Archived from the original on January 21, 2021. Retrieved January 13, 2021.
  121. ^ Ieracitano C, Mammone N, Hussain A, Morabito FC (March 2020). "A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia". Neural Networks. 123: 176–190. doi:10.1016/j.neunet.2019.12.006. PMID 31884180. S2CID 209510497.
  122. ^ Bhattacharyya A, Pachori RB (September 2017). "A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform". IEEE Transactions on Bio-Medical Engineering. 64 (9): 2003–2015. doi:10.1109/TBME.2017.2650259. PMID 28092514. S2CID 3522546.
  123. ^ Saab K, Dunnmon J, Ré C, Rubin D, Lee-Messer C (April 20, 2020). "Weak supervision as an efficient approach for automated seizure detection in electroencephalography". npj Digital Medicine. 3 (1): 59. doi:10.1038/s41746-020-0264-0. PMC 7170880. PMID 32352037.
  124. ^ Bomela W, Wang S, Chou CA, Li JS (May 2020). "Real-time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures". Scientific Reports. 10 (1): 8653. Bibcode:2020NatSR..10.8653B. doi:10.1038/s41598-020-65401-6. PMC 7251100. PMID 32457378.
  125. ^ Paesschen WV (March 2018). "The future of seizure detection". The Lancet. Neurology. 17 (3): 200–202. doi:10.1016/S1474-4422(18)30034-6. PMID 29452676. S2CID 3376296.
  126. ^ Chen PC, Liu Y, Peng L (May 2019). "How to develop machine learning models for healthcare". Nature Materials. 18 (5): 410–414. Bibcode:2019NatMa..18..410C. doi:10.1038/s41563-019-0345-0. PMID 31000806. S2CID 122563425.
  127. ^ Rudin C (May 2019). "Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead". Nature Machine Intelligence. 1 (5): 206–215. arXiv:1811.10154. doi:10.1038/s42256-019-0048-x. PMC 9122117. PMID 35603010.
  128. ^ Coenen A, Fine E, Zayachkivska O (2014). "Adolf Beck: a forgotten pioneer in electroencephalography". Journal of the History of the Neurosciences. 23 (3): 276–286. doi:10.1080/0964704x.2013.867600. PMID 24735457. S2CID 205664545.
  129. ^ Pravdich-Neminsky VV (1913). "Ein Versuch der Registrierung der elektrischen Gehirnerscheinungen". Zentralblatt für Physiologie. 27: 951–60.
  130. ^ Haas LF (January 2003). "Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography". Journal of Neurology, Neurosurgery, and Psychiatry. 74 (1): 9. doi:10.1136/jnnp.74.1.9. PMC 1738204. PMID 12486257.
  131. ^ Millet D (June 2002). The origins of EEG. 7th Annual Meeting of the International Society for the History of the Neurosciences (ISHN). Archived from the original on September 8, 2020. Retrieved November 27, 2010.
  132. ^ Gibbs FA, Davis H, Lennox WG (December 1935). "The Electro-Encephalogram in Epilepsy and in Conditions of Impaired Consciousness". Archives of Neurology and Psychiatry. 34 (6): 1133. doi:10.1001/archneurpsyc.1935.02250240002001.
  133. ^ "Beckman Instruments Supplying Medical Flight Monitoring Equipment" (PDF). Space News Roundup. March 3, 1965. pp. 4–5. Archived (PDF) from the original on August 7, 2019. Retrieved August 7, 2019.
  134. ^ Bozinovski S (2013). "Controlling Robots Using EEG Signals, Since 1988". In Markovski S, Gusev M (eds.). ICT Innovations 2012. Advances in Intelligent Systems and Computing. Vol. 207. Berlin, Heidelberg: Springer. pp. 1–11. doi:10.1007/978-3-642-37169-1_1. ISBN 978-3-642-37169-1.
  135. ^ Jiang L, Stocco A, Losey DM, Abernethy JA, Prat CS, Rao RP (April 2019). "BrainNet: A Multi-Person Brain-to-Brain Interface for Direct Collaboration Between Brains". Scientific Reports. 9 (1): 6115. arXiv:1809.08632. Bibcode:2019NatSR...9.6115J. doi:10.1038/s41598-019-41895-7. PMC 6467884. PMID 30992474.

Further reading

External links