stringtranslate.com

Experimentación con animales

La experimentación con animales , también conocida como experimentación animal , investigación con animales y pruebas in vivo , es el uso de animales no humanos , como organismos modelo , en experimentos que buscan controlar las variables que afectan el comportamiento o el sistema biológico en estudio. Este enfoque puede contrastarse con los estudios de campo en los que se observan animales en sus entornos o hábitats naturales. La investigación experimental con animales generalmente se lleva a cabo en universidades, escuelas de medicina, compañías farmacéuticas, establecimientos de defensa e instalaciones comerciales que brindan servicios de experimentación con animales a la industria. [1] El enfoque de la experimentación con animales varía en un continuo desde la investigación pura , enfocada en desarrollar el conocimiento fundamental de un organismo, hasta la investigación aplicada, que puede enfocarse en responder algunas preguntas de gran importancia práctica, como encontrar una cura para una enfermedad. [2] Los ejemplos de investigación aplicada incluyen probar tratamientos de enfermedades, crianza, investigación de defensa y toxicología , incluidas las pruebas de cosméticos . En educación, la experimentación con animales a veces es un componente de los cursos de biología o psicología . [3]

La investigación con modelos animales ha sido fundamental para la mayoría de los logros de la medicina moderna. [4] [5] [6] Ha contribuido a la mayor parte del conocimiento básico en campos como la fisiología humana y la bioquímica , y ha desempeñado papeles importantes en campos como la neurociencia y las enfermedades infecciosas . [7] [8] Los resultados han incluido la casi erradicación de la polio y el desarrollo del trasplante de órganos , y han beneficiado tanto a humanos como a animales. [4] [9] De 1910 a 1927, el trabajo de Thomas Hunt Morgan con la mosca de la fruta Drosophila melanogaster identificó los cromosomas como el vector de herencia de los genes, [10] [11] y Eric Kandel escribió que los descubrimientos de Morgan "ayudaron a transformar la biología en una ciencia experimental". [12] La investigación en organismos modelo condujo a nuevos avances médicos, como la producción de la antitoxina diftérica [13] [14] y el descubrimiento de la insulina en 1922 [15] y su uso en el tratamiento de la diabetes, que anteriormente significaba la muerte. [16] Los anestésicos generales modernos, como el halotano , también se desarrollaron a través de estudios en organismos modelo y son necesarios para las operaciones quirúrgicas modernas y complejas. [17] Otros avances y tratamientos médicos del siglo XX que se basaron en investigaciones realizadas en animales incluyen las técnicas de trasplante de órganos , [18] [19] [20] [21] la máquina corazón-pulmón, [22] los antibióticos , [23] [24] y la vacuna contra la tos ferina . [25]

La experimentación con animales se utiliza ampliamente para investigar enfermedades humanas cuando la experimentación humana sería inviable o poco ética . [26] Esta estrategia es posible gracias a la descendencia común de todos los organismos vivos y a la conservación de las vías metabólicas y de desarrollo y del material genético a lo largo de la evolución . [27] La ​​realización de experimentos en organismos modelo permite comprender mejor el proceso de la enfermedad sin el riesgo añadido de dañar a un ser humano real. La especie del organismo modelo suele elegirse de forma que reaccione a la enfermedad o a su tratamiento de una forma que se asemeje a la fisiología humana según sea necesario. La actividad biológica en un organismo modelo no garantiza un efecto en los seres humanos, y se debe tener cuidado al generalizar de un organismo a otro. [28] [ página necesaria ] Sin embargo, muchos fármacos, tratamientos y curas para enfermedades humanas se desarrollan en parte con la guía de modelos animales. [29] [30] También se han desarrollado tratamientos para enfermedades animales, incluyendo la rabia , [31] ántrax , [31] muermo , [31] virus de inmunodeficiencia felina (VIF), [32] tuberculosis , [31] fiebre del ganado de Texas, [31] peste porcina clásica (cólera porcino), [31] dirofilariosis y otras infecciones parasitarias . [33] La experimentación con animales sigue siendo necesaria para la investigación biomédica, [34] y se utiliza con el objetivo de resolver problemas médicos como la enfermedad de Alzheimer, [35] SIDA, [36] esclerosis múltiple, [37] lesión de la médula espinal, muchos dolores de cabeza, [38] y otras condiciones en las que no hay un sistema modelo in vitro útil disponible.

El uso anual de animales vertebrados , desde el pez cebra hasta los primates no humanos , se estimó en 192 millones en 2015. [39] En la Unión Europea , las especies de vertebrados representan el 93% de los animales utilizados en investigación, [39] y se utilizaron allí 11,5 millones de animales en 2011. [40] El ratón ( Mus musculus ) está asociado con muchos descubrimientos biológicos importantes de los siglos XX y XXI, [41] y, según una estimación, el número de ratones y ratas utilizados solo en los Estados Unidos en 2001 fue de 80 millones. [42] En 2013, se informó que los mamíferos (ratones y ratas), los peces, los anfibios y los reptiles juntos representaban más del 85% de los animales de investigación. [43] En 2022, se aprobó una ley en los Estados Unidos que eliminó el requisito de la FDA de que todos los medicamentos se prueben en animales. [44]

Las pruebas con animales están reguladas en distintos grados en diferentes países. [45] Las pruebas con animales están reguladas de manera diferente en diferentes países: en algunos casos están estrictamente controladas mientras que en otros tienen regulaciones más relajadas. Existen debates en curso sobre la ética y la necesidad de las pruebas con animales. Los defensores argumentan que ha llevado a avances significativos en la medicina y otros campos, mientras que los oponentes plantean preocupaciones sobre la crueldad hacia los animales y cuestionan su efectividad y confiabilidad. [46] [47] Hay esfuerzos en marcha para encontrar alternativas a las pruebas con animales, como modelos de simulación por computadora , tecnología de órganos en chips que imita órganos humanos para pruebas de laboratorio, [48] técnicas de microdosificación que implican administrar pequeñas dosis de compuestos de prueba a voluntarios humanos en lugar de animales no humanos para pruebas de seguridad o exámenes de detección de drogas; tomografías por emisión de positrones (PET) que permiten escanear el cerebro humano sin dañar a los humanos; estudios epidemiológicos comparativos entre poblaciones humanas; simuladores y programas de computadora para fines de enseñanza; entre otros. [49] [50] [51]

Definiciones

Los términos experimentación con animales, experimentación animal, investigación con animales , pruebas in vivo y vivisección tienen denominaciones similares pero connotaciones diferentes . Literalmente, "vivisección" significa "seccionamiento en vivo" de un animal, e históricamente se refería solo a experimentos que involucraban la disección de animales vivos. El término se usa ocasionalmente para referirse peyorativamente a cualquier experimento que use animales vivos; por ejemplo, la Enciclopedia Británica define "vivisección" como: "Operación en un animal vivo con fines experimentales en lugar de curativos; más ampliamente, toda experimentación con animales vivos", [52] [53] [54] aunque los diccionarios señalan que la definición más amplia es "usada solo por personas que se oponen a tal trabajo". [55] [56] La palabra tiene una connotación negativa, que implica tortura, sufrimiento y muerte. [57] La ​​palabra "vivisección" es preferida por aquellos que se oponen a esta investigación, mientras que los científicos suelen usar el término "experimentación con animales". [58] [59]

El siguiente texto excluye en la medida de lo posible las prácticas relacionadas con la cirugía veterinaria in vivo , lo que queda reservado para la discusión de la vivisección .

Historia

Un experimento con un pájaro en una bomba de aire , de 1768, por Joseph Wright
Uno de los perros de Pavlov con un recipiente para recoger saliva y un tubo implantado quirúrgicamente en el hocico, Museo Pavlov, 2005

Las primeras referencias a la experimentación con animales se encuentran en los escritos de los griegos en los siglos II y IV a. C. Aristóteles y Erasístrato estuvieron entre los primeros en realizar experimentos en animales vivos. [60] Galeno , un médico romano del siglo II, realizó disecciones post mortem de cerdos y cabras. [61] Avenzoar , un médico árabe del siglo XII en la España morisca, introdujo un método experimental para probar procedimientos quirúrgicos antes de aplicarlos a pacientes humanos. [62] [63] Los descubrimientos de los siglos XVIII y XIX incluyeron el uso de un conejillo de indias en un calorímetro por parte de Antoine Lavoisier para demostrar que la respiración era una forma de combustión, y la demostración de Louis Pasteur de la teoría de los gérmenes de la enfermedad en la década de 1880 utilizando ántrax en ovejas. [64] Robert Koch utilizó pruebas con animales en ratones y conejillos de indias para descubrir las bacterias que causan el ántrax y la tuberculosis . En la década de 1890, Ivan Pavlov utilizó perros para describir el condicionamiento clásico . [65]

La investigación con modelos animales ha sido fundamental para la mayoría de los logros de la medicina moderna. [4] [5] [6] Ha aportado la mayor parte del conocimiento básico en campos como la fisiología humana y la bioquímica , y ha desempeñado papeles importantes en campos como la neurociencia y las enfermedades infecciosas . [7] [8] Por ejemplo, los resultados han incluido la casi erradicación de la polio y el desarrollo del trasplante de órganos , y han beneficiado tanto a humanos como a animales. [4] [9] De 1910 a 1927, el trabajo de Thomas Hunt Morgan con la mosca de la fruta Drosophila melanogaster identificó los cromosomas como el vector de herencia de los genes. [10] [11] Drosophila se convirtió en uno de los primeros organismos modelo, y durante algún tiempo el más utilizado, [66] y Eric Kandel escribió que los descubrimientos de Morgan "ayudaron a transformar la biología en una ciencia experimental". [12] D. melanogaster sigue siendo uno de los organismos modelo eucariotas más utilizados. Durante el mismo período de tiempo, los estudios sobre la genética del ratón en el laboratorio de William Ernest Castle en colaboración con Abbie Lathrop condujeron a la generación de la cepa endogámica del ratón DBA ("diluido, marrón y no agutí") y a la generación sistemática de otras cepas endogámicas. [67] [68] Desde entonces, el ratón se ha utilizado ampliamente como organismo modelo y está asociado con muchos descubrimientos biológicos importantes de los siglos XX y XXI. [41]

A finales del siglo XIX, Emil von Behring aisló la toxina de la difteria y demostró sus efectos en cobayas. Luego desarrolló una antitoxina contra la difteria en animales y luego en humanos, lo que dio lugar a los métodos modernos de inmunización y terminó en gran medida con la difteria como enfermedad amenazante. [13] La antitoxina de la difteria se conmemora célebremente en la carrera Iditarod, que se basa en la entrega de antitoxina en la carrera de suero de 1925 a Nome . El éxito de los estudios con animales en la producción de la antitoxina de la difteria también se ha atribuido como una causa del declive de la oposición a la investigación con animales a principios del siglo XX en los Estados Unidos. [14]

Investigaciones posteriores en organismos modelo condujeron a avances médicos adicionales, como la investigación de Frederick Banting en perros, que determinó que los aislados de la secreción pancreática podían usarse para tratar perros con diabetes . Esto condujo al descubrimiento de la insulina en 1922 (con John Macleod ) [15] y su uso en el tratamiento de la diabetes, que anteriormente había significado la muerte. [16] [69] La investigación de John Cade en cobayas descubrió las propiedades anticonvulsivas de las sales de litio, [70] que revolucionaron el tratamiento del trastorno bipolar , reemplazando los tratamientos anteriores de lobotomía o terapia electroconvulsiva. Los anestésicos generales modernos, como el halotano y compuestos relacionados, también se desarrollaron a través de estudios en organismos modelo, y son necesarios para las operaciones quirúrgicas modernas y complejas. [17] [71]

En la década de 1940, Jonas Salk utilizó estudios con monos rhesus para aislar las formas más virulentas del virus de la polio , [72] lo que condujo a su creación de una vacuna contra la polio . La vacuna, que se puso a disposición del público en 1955, redujo la incidencia de la polio 15 veces en los Estados Unidos durante los siguientes cinco años. [73] Albert Sabin mejoró la vacuna al pasar el virus de la polio a través de huéspedes animales, incluidos los monos; la vacuna Sabin se produjo para el consumo masivo en 1963, y prácticamente había erradicado la polio en los Estados Unidos en 1965. [74] Se ha estimado que el desarrollo y la producción de las vacunas requirieron el uso de 100.000 monos rhesus, con 65 dosis de vacuna producidas a partir de cada mono. Sabin escribió en 1992: "Sin el uso de animales y seres humanos, habría sido imposible adquirir el importante conocimiento necesario para prevenir mucho sufrimiento y muerte prematura no solo entre los humanos, sino también entre los animales". [75]

El 3 de noviembre de 1957, un perro soviético , Laika , se convirtió en el primero de muchos animales en orbitar la Tierra . En la década de 1970, se desarrollaron tratamientos antibióticos y vacunas contra la lepra utilizando armadillos, [76] que luego se administraron a los humanos. [77] La ​​capacidad de los humanos para cambiar la genética de los animales dio un enorme paso adelante en 1974 cuando Rudolf Jaenisch pudo producir el primer mamífero transgénico , al integrar ADN de simios en el genoma de ratones. [78] Esta investigación genética progresó rápidamente y, en 1996, nació la oveja Dolly , el primer mamífero en ser clonado a partir de una célula adulta. [79] [80]

Otros avances y tratamientos médicos del siglo XX que se basaron en investigaciones realizadas en animales incluyen técnicas de trasplante de órganos , [18] [19] [20] [21] la máquina corazón-pulmón, [22] antibióticos , [23] [24] y la vacuna contra la tos ferina . [25] También se han desarrollado tratamientos para enfermedades animales, incluyendo la rabia , [31] ántrax , [31] muermo , [31] virus de inmunodeficiencia felina (VIF), [32] tuberculosis , [31] fiebre del ganado de Texas, [31] peste porcina clásica (cólera porcino), [31] dirofilariosis y otras infecciones parasitarias . [33] La experimentación con animales sigue siendo necesaria para la investigación biomédica, [34] y se utiliza con el objetivo de resolver problemas médicos como la enfermedad de Alzheimer, [35] el SIDA, [36] [81] [82] la esclerosis múltiple, [37] las lesiones de la médula espinal, muchos dolores de cabeza, [38] y otras afecciones en las que no hay disponible un sistema modelo in vitro útil .

Las pruebas toxicológicas adquirieron importancia en el siglo XX. En el siglo XIX, las leyes que regulaban los medicamentos eran más laxas. Por ejemplo, en los Estados Unidos, el gobierno sólo podía prohibir un medicamento después de haber procesado a una empresa por vender productos que perjudicaban a los clientes. Sin embargo, en respuesta al desastre de la sulfanilamida elixir de 1937, en el que la droga homónima mató a más de 100 usuarios, el Congreso de los Estados Unidos aprobó leyes que exigían pruebas de seguridad de los medicamentos en animales antes de que pudieran comercializarse. Otros países promulgaron leyes similares. [83] En la década de 1960, en reacción a la tragedia de la talidomida , se aprobaron otras leyes que exigían pruebas de seguridad en animales preñados antes de que un medicamento pudiera venderse. [84]

Organismos modelo

Invertebrados

Las moscas de la fruta son un invertebrado comúnmente utilizado en pruebas con animales.

Aunque se utilizan muchos más invertebrados que vertebrados en las pruebas con animales, estos estudios no están regulados por la ley. Las especies de invertebrados más utilizadas son Drosophila melanogaster , una mosca de la fruta, y Caenorhabditis elegans , un gusano nematodo . En el caso de C. elegans , el cuerpo del gusano es completamente transparente y se conoce el linaje preciso de todas las células del organismo, [85] mientras que los estudios en la mosca D. melanogaster pueden utilizar una sorprendente variedad de herramientas genéticas. [86] Estos invertebrados ofrecen algunas ventajas sobre los vertebrados en las pruebas con animales, incluido su corto ciclo de vida y la facilidad con la que se pueden alojar y estudiar grandes cantidades. Sin embargo, la falta de un sistema inmunológico adaptativo y sus órganos simples impiden que los gusanos se utilicen en varios aspectos de la investigación médica, como el desarrollo de vacunas. [87] De manera similar, el sistema inmunológico de la mosca de la fruta difiere en gran medida del de los humanos, [88] y las enfermedades en los insectos pueden ser diferentes de las enfermedades en los vertebrados; [89] Sin embargo, las moscas de la fruta y los gusanos de cera pueden ser útiles en estudios para identificar nuevos factores de virulencia o compuestos farmacológicamente activos. [90] [91] [92]

Varios sistemas de invertebrados se consideran alternativas aceptables a los vertebrados en los exámenes de descubrimiento de etapas tempranas. [93] Debido a las similitudes entre el sistema inmunológico innato de los insectos y los mamíferos, los insectos pueden reemplazar a los mamíferos en algunos tipos de estudios. Drosophila melanogaster y el gusano de cera Galleria mellonella han sido particularmente importantes para el análisis de rasgos virulentos de patógenos mamíferos. [90] [91] Los gusanos de cera y otros insectos también han demostrado ser valiosos para la identificación de compuestos farmacéuticos con biodisponibilidad favorable. [92] La decisión de adoptar dichos modelos generalmente implica aceptar un menor grado de similitud biológica con los mamíferos para obtener ganancias significativas en el rendimiento experimental.

Roedores

A esta rata se la priva del sueño REM (movimientos oculares rápidos) mediante una técnica de plataforma única ("maceta") . El agua está a 1 cm de la plataforma inferior de la pequeña maceta donde se sienta la rata. La rata puede dormir, pero al comienzo del sueño REM pierde el tono muscular y la rata se cae al agua solo para volver a trepar a la maceta para evitar ahogarse, o su nariz se sumerge en el agua, lo que la hace despertar nuevamente.

En los EE. UU., se estima que el número de ratas y ratones utilizados oscila entre 11 millones [94] y entre 20 y 100 millones al año. [95] Otros roedores comúnmente utilizados son los conejillos de indias, los hámsters y los jerbos. Los ratones son las especies de vertebrados más utilizadas debido a su tamaño, bajo costo, facilidad de manejo y rápida tasa de reproducción. [96] [97] Los ratones son ampliamente considerados como el mejor modelo de enfermedad humana hereditaria y comparten el 95% de sus genes con los humanos. [96] Con el advenimiento de la tecnología de ingeniería genética , se pueden generar ratones modificados genéticamente a pedido y pueden proporcionar modelos para una variedad de enfermedades humanas. [96] Las ratas también se utilizan ampliamente para la fisiología, la toxicología y la investigación del cáncer, pero la manipulación genética es mucho más difícil en ratas que en ratones, lo que limita el uso de estos roedores en la ciencia básica. [98]

Perros

Los beagles se utilizan habitualmente para pruebas con animales.

Los perros son ampliamente utilizados en la investigación biomédica, las pruebas y la educación, en particular los beagles , porque son gentiles y fáciles de manejar, y para permitir comparaciones con datos históricos de beagles (una técnica de reducción). [99] Se utilizan como modelos para enfermedades humanas y veterinarias en cardiología, endocrinología y estudios de huesos y articulaciones, investigación que tiende a ser altamente invasiva, según la Humane Society de los Estados Unidos . [100] El uso más común de los perros es en la evaluación de seguridad de nuevos medicamentos [101] para uso humano o veterinario como una segunda especie después de las pruebas en roedores, de acuerdo con las regulaciones establecidas en la Conferencia Internacional sobre Armonización de Requisitos Técnicos para el Registro de Productos Farmacéuticos para Uso Humano . Uno de los avances más significativos en la ciencia médica implica el uso de perros en el desarrollo de las respuestas a la producción de insulina en el cuerpo para diabéticos y el papel del páncreas en este proceso. Descubrieron que el páncreas era el responsable de producir insulina en el cuerpo y que la extirpación del páncreas provocó el desarrollo de diabetes en el perro. Después de volver a inyectar el extracto pancreático (insulina), los niveles de glucosa en sangre se redujeron significativamente. [102] Los avances logrados en esta investigación que implica el uso de perros han dado como resultado una mejora definitiva en la calidad de vida tanto de los humanos como de los animales. [ cita requerida ]

El Informe de Bienestar Animal del Departamento de Agricultura de los EE. UU. muestra que se utilizaron 60.979 perros en instalaciones registradas por el USDA en 2016. [94] En el Reino Unido, según el Ministerio del Interior del Reino Unido, hubo 3.847 procedimientos en perros en 2017. [103] De los otros grandes usuarios de perros de la UE, Alemania realizó 3.976 procedimientos en perros en 2016 [104] y Francia realizó 4.204 procedimientos en 2016. [105] En ambos casos, esto representa menos del 0,2% del número total de procedimientos realizados en animales en los respectivos países.

Pez cebra

Los peces cebra se utilizan comúnmente para el estudio básico y el desarrollo de varios tipos de cáncer . Se utilizan para explorar el sistema inmunológico y las cepas genéticas. Tienen un bajo costo, un tamaño pequeño, una tasa de reproducción rápida y pueden observar células cancerosas en tiempo real. Los humanos y los peces cebra comparten similitudes en las neoplasias , por lo que se utilizan para la investigación. La Biblioteca Nacional de Medicina muestra muchos ejemplos de los tipos de cáncer en los que se utilizan los peces cebra. El uso de peces cebra les ha permitido encontrar diferencias entre pre-B vs T-ALL impulsados ​​​​por MYC y explotarlos para descubrir nuevas terapias de pre-B ALL en la leucemia linfocítica aguda . [106] [107]

La Biblioteca Nacional de Medicina también explica por qué es difícil diagnosticar una neoplasia en una etapa temprana. La investigación actual se centra en comprender el mecanismo molecular de la tumorigénesis del tracto digestivo y buscar nuevos tratamientos. El pez cebra y los humanos comparten células cancerosas gástricas similares en el modelo de xenotrasplante de cáncer gástrico. Esto permitió a los investigadores descubrir que Triphala podía inhibir el crecimiento y la metástasis de las células cancerosas gástricas. Dado que los genes del cáncer de hígado del pez cebra están relacionados con los humanos, se han utilizado ampliamente en la investigación del cáncer de hígado, al igual que muchos otros tipos de cáncer. [108]

El pez cebra es un pez de agua dulce que pertenece a la familia de los pececillos y se utiliza habitualmente para la investigación del cáncer.

Primates no humanos

Enos , el tercer primate en orbitar la Tierra, antes de su inserción en la cápsula Mercury-Atlas 5 en 1961

Los primates no humanos (NHP) se utilizan en pruebas de toxicología, estudios de SIDA y hepatitis, estudios de neurología , comportamiento y cognición, reproducción, genética y xenotrasplante . Son capturados en estado salvaje o criados específicamente. En los Estados Unidos y China, la mayoría de los primates son criados específicamente en el país, mientras que en Europa la mayoría son criados específicamente para ese fin. [109] La Comisión Europea informó que en 2011, 6.012 monos fueron experimentados en laboratorios europeos. [110] Según el Departamento de Agricultura de los EE. UU ., había 71.188 monos en laboratorios estadounidenses en 2016. [94] 23.465 monos fueron importados a los EE. UU. en 2014, incluidos 929 que fueron capturados en estado salvaje. [111] La mayoría de los NHP utilizados en experimentos son macacos ; [112] pero también se utilizan titíes , monos araña y monos ardilla , y en los EE. UU. se utilizan babuinos y chimpancés . En 2015 , había aproximadamente 730 chimpancés en laboratorios estadounidenses. [113]

En una encuesta realizada en 2003, se descubrió que el 89% de los primates alojados individualmente exhibían comportamientos autolesivos o estereotípicos anormales , incluidos caminar de un lado a otro, mecerse, tirarse del pelo y morderse, entre otros. [114]

El primer primate transgénico fue producido en 2001, con el desarrollo de un método que podría introducir nuevos genes en un macaco rhesus . [115] Esta tecnología transgénica ahora se está aplicando en la búsqueda de un tratamiento para el trastorno genético enfermedad de Huntington . [116] Estudios notables en primates no humanos han sido parte del desarrollo de la vacuna contra la polio y el desarrollo de la estimulación cerebral profunda , y su uso no toxicológico más pesado actual ocurre en el modelo de sida del mono, SIV . [117] [ 112] [118] En 2008, una propuesta para prohibir todos los experimentos con primates en la UE ha provocado un vigoroso debate. [119]

Otras especies

En 2016 se utilizaron en el Reino Unido más de 500.000 peces y 9.000 anfibios. [103] Las principales especies utilizadas son el pez cebra, Danio rerio , que es translúcido durante su etapa embrionaria, y la rana africana con garras, Xenopus laevis . En 2004 se utilizaron más de 20.000 conejos para pruebas con animales en el Reino Unido. [120] Los conejos albinos se utilizan en pruebas de irritación ocular ( prueba de Draize ) porque los conejos tienen menos flujo de lágrimas que otros animales y la falta de pigmento ocular en los albinos hace que los efectos sean más fáciles de visualizar. El número de conejos utilizados para este propósito ha disminuido sustancialmente en las últimas dos décadas. En 1996, se realizaron 3.693 procedimientos en conejos por irritación ocular en el Reino Unido, [121] y en 2017 este número fue solo 63. [103] Los conejos también se utilizan con frecuencia para la producción de anticuerpos policlonales.

Los gatos son los animales más utilizados en la investigación neurológica. En 2016, se utilizaron 18.898 gatos solo en los Estados Unidos [94] , de los cuales aproximadamente un tercio se utilizaron en experimentos que tienen el potencial de causar "dolor y/o angustia" [122], aunque solo el 0,1 % de los experimentos con gatos implicaban un dolor potencial que no se aliviaba con anestésicos/analgésicos. En el Reino Unido, solo se realizaron 198 procedimientos en gatos en 2017. La cifra ha rondado los 200 durante la mayor parte de la última década [103] .

Cuidado y uso de animales

Reglamentos y leyes

Leyes mundiales sobre la experimentación de cosméticos en animales
1 Algunos métodos de prueba están excluidos de la prohibición o las leyes varían dentro del país.

Las regulaciones que se aplican a los animales en los laboratorios varían según la especie. En los EE. UU., según la Ley de Bienestar Animal y la Guía para el Cuidado y Uso de Animales de Laboratorio (la Guía ), publicada por la Academia Nacional de Ciencias, se puede realizar cualquier procedimiento en un animal si se puede argumentar con éxito que está justificado científicamente. Los investigadores deben consultar con el veterinario de la institución y su Comité Institucional de Cuidado y Uso de Animales (IACUC), que todo centro de investigación está obligado a mantener. [123] El IACUC debe garantizar que se hayan considerado alternativas, incluidas alternativas sin animales, que los experimentos no sean innecesariamente duplicados y que se administre alivio del dolor a menos que interfiera con el estudio. Los IACUC regulan todos los vertebrados en las pruebas en instituciones que reciben fondos federales en los EE. UU. Aunque la Ley de Bienestar Animal no incluye roedores y aves criados específicamente, estas especies están igualmente reguladas por las políticas del Servicio de Salud Pública que rigen los IACUC. [124] [125] La política del Servicio de Salud Pública supervisa la Administración de Alimentos y Medicamentos (FDA) y los Centros para el Control y la Prevención de Enfermedades (CDC). Los CDC realizan investigaciones sobre enfermedades infecciosas en primates no humanos, conejos, ratones y otros animales, mientras que los requisitos de la FDA cubren el uso de animales en la investigación farmacéutica. [126] Las regulaciones de la Ley de Bienestar Animal (AWA) son aplicadas por el USDA, mientras que las regulaciones del Servicio de Salud Pública son aplicadas por la OLAW y, en muchos casos, por la AAALAC.

Según el informe de 2014 de la Oficina del Inspector General (OIG) del Departamento de Agricultura de los Estados Unidos, que examinó la supervisión del uso de animales durante un período de tres años, "algunos comités institucionales de cuidado y uso de animales... no aprobaron, supervisaron ni informaron adecuadamente sobre los procedimientos experimentales en animales". La OIG descubrió que "como resultado, los animales no siempre reciben atención y tratamiento humanitarios básicos y, en algunos casos, el dolor y la angustia no se minimizan durante y después de los procedimientos experimentales". Según el informe, en un período de tres años, casi la mitad de todos los laboratorios estadounidenses con especies reguladas fueron citados por violaciones de la AWA relacionadas con la supervisión inadecuada del IACUC. [127] La ​​OIG del USDA hizo hallazgos similares en un informe de 2005. [128] Con solo un amplio número de 120 inspectores, el Departamento de Agricultura de los Estados Unidos (USDA) supervisa más de 12 000 instalaciones involucradas en la investigación, exhibición, cría o comercio de animales. [126] Otros han criticado la composición de los IACUC, afirmando que los comités están compuestos predominantemente por investigadores animales y representantes universitarios que pueden estar predispuestos contra las preocupaciones sobre el bienestar animal. [129]

Larry Carbone, veterinario de animales de laboratorio, escribe que, según su experiencia, los comités de uso de animales de laboratorio se toman su trabajo muy en serio, independientemente de la especie involucrada, aunque el uso de primates no humanos siempre levanta lo que él llama una "bandera roja de especial preocupación". [130] Un estudio publicado en la revista Science en julio de 2001 confirmó la baja fiabilidad de las revisiones de experimentos con animales realizadas por el IACUC. Financiado por la National Science Foundation, el estudio de tres años de duración concluyó que los comités de uso de animales que no conocen los detalles de la universidad y el personal no toman las mismas decisiones de aprobación que los comités de uso de animales que sí conocen a la universidad y al personal. En concreto, los comités ciegos suelen pedir más información en lugar de aprobar estudios. [131]

Los científicos en la India están protestando contra una reciente directriz emitida por la Comisión de Becas Universitarias para prohibir el uso de animales vivos en universidades y laboratorios. [132]

Números

Es difícil obtener cifras globales precisas sobre la experimentación con animales; se ha estimado que cada año se experimenta con 100 millones de vertebrados en todo el mundo, [133] de ellos entre 10 y 11 millones en la UE. [134] El Nuffield Council on Bioethics informa que las estimaciones anuales globales oscilan entre 50 y 100 millones de animales. Ninguna de las cifras incluye invertebrados como camarones y moscas de la fruta. [135]

El USDA/APHIS ha publicado las estadísticas de investigación animal de 2016. En general, el número de animales (cubiertos por la Ley de Bienestar Animal) utilizados en investigación en los EE. UU. aumentó un 6,9% de 767.622 (2015) a 820.812 (2016). [136] Esto incluye instituciones públicas y privadas. Al comparar con los datos de la UE, donde se cuentan todas las especies de vertebrados , Speaking of Research estimó que alrededor de 12 millones de vertebrados se utilizaron en investigación en los EE. UU. en 2016. [94] Un artículo de 2015 publicado en el Journal of Medical Ethics sostenía que el uso de animales en los EE. UU. ha aumentado drásticamente en los últimos años. Los investigadores descubrieron que este aumento es en gran medida el resultado de una mayor dependencia de ratones modificados genéticamente en estudios con animales. [137]

En 1995, investigadores del Centro de Animales y Políticas Públicas de la Universidad Tufts estimaron que en 1992 se utilizaron entre 14 y 21 millones de animales en laboratorios estadounidenses, una reducción respecto del máximo de 50 millones utilizados en 1970. [138] En 1986, la Oficina de Evaluación Tecnológica del Congreso de los Estados Unidos informó que las estimaciones de los animales utilizados en los Estados Unidos oscilan entre 10 millones y más de 100 millones cada año, y que su propia mejor estimación era de al menos 17 millones a 22 millones. [139] En 2016, el Departamento de Agricultura registró 60.979 perros, 18.898 gatos, 71.188 primates no humanos, 183.237 cobayas, 102.633 hámsteres, 139.391 conejos, 83.059 animales de granja y 161.467 otros mamíferos, un total de 820.812, una cifra que incluye a todos los mamíferos excepto ratones y ratas criados con ese fin. El uso de perros y gatos en la investigación en los EE. UU. disminuyó de 1973 a 2016 de 195.157 a 60.979, y de 66.165 a 18.898, respectivamente. [94]

En el Reino Unido, las cifras del Ministerio del Interior muestran que en 2017 se llevaron a cabo 3,79 millones de procedimientos. [140] En 2.960 procedimientos se utilizaron primates no humanos, lo que supone una reducción de más del 50% desde 1988. Un "procedimiento" se refiere aquí a un experimento que puede durar minutos, varios meses o años. La mayoría de los animales se utilizan en un solo procedimiento: con frecuencia se sacrifica a los animales después del experimento; sin embargo, la muerte es el punto final de algunos procedimientos. [135] Los procedimientos realizados en animales en el Reino Unido en 2017 se clasificaron como: 43% (1,61 millones) subumbral, 4% (0,14 millones) sin recuperación, 36% (1,35 millones) leves, 15% (0,55 millones) moderados y 4% (0,14 millones) graves. [141] Un procedimiento “severo” sería, por ejemplo, cualquier prueba cuyo resultado final sea la muerte o en la que se esperen muertes, mientras que un procedimiento “leve” sería algo así como un análisis de sangre o una resonancia magnética. [140]

Las tres R

Las tres R (3R) son principios rectores para un uso más ético de los animales en las pruebas. Fueron descritos por primera vez por WMS Russell y RL Burch en 1959. [142] Las 3R establecen:

  1. Reemplazo, que se refiere al uso preferente de métodos no animales en lugar de métodos animales siempre que sea posible lograr los mismos objetivos científicos. Estos métodos incluyen el modelado por computadora.
  2. Reducción que se refiere a métodos que permiten a los investigadores obtener niveles comparables de información de menos animales, u obtener más información del mismo número de animales.
  3. Refinamiento, que se refiere a métodos que alivian o minimizan el dolor, el sufrimiento o la angustia potenciales y mejoran el bienestar de los animales utilizados. Estos métodos incluyen técnicas no invasivas. [143]

Las 3R tienen un alcance más amplio que el de simplemente fomentar alternativas a la experimentación con animales, sino que apuntan a mejorar el bienestar animal y la calidad científica cuando no se puede evitar el uso de animales. Estas 3R se implementan actualmente en muchos establecimientos de experimentación en todo el mundo y han sido adoptadas por diversas leyes y reglamentos. [2]

A pesar de la amplia aceptación de las 3R, muchos países, incluidos Canadá, Australia, Israel, Corea del Sur y Alemania, han informado de un aumento del uso experimental de animales en los últimos años, con un mayor uso de ratones y, en algunos casos, peces, mientras que informan de una disminución en el uso de gatos, perros, primates, conejos, cobayas y hámsteres. Junto con otros países, China también ha intensificado su uso de animales transgénicos , lo que ha dado lugar a un aumento del uso general de animales. [144] [145] [146] [147] [148] [149] [ citas excesivas ]

Fuentes

Los animales que utilizan los laboratorios son suministrados en gran medida por comerciantes especializados. Las fuentes difieren para los animales vertebrados e invertebrados. La mayoría de los laboratorios crían y crían moscas y gusanos ellos mismos, utilizando cepas y mutantes suministrados por unos pocos centros de cría principales. [150] Para los vertebrados, las fuentes incluyen criadores y comerciantes como Covance y Charles River Laboratories que suministran animales criados específicamente y capturados en la naturaleza; empresas que comercian con animales salvajes como Nafovanny ; y comerciantes que suministran animales procedentes de perreras, subastas y anuncios de periódicos. Los refugios de animales también suministran directamente a los laboratorios. [151] También existen grandes centros para distribuir cepas de animales modificados genéticamente ; el Consorcio Internacional de Ratones Knockout , por ejemplo, tiene como objetivo proporcionar ratones knockout para cada gen en el genoma del ratón. [152]

Una jaula para ratones de laboratorio. Los ratones se crían con fines comerciales o en el laboratorio.

En los EE. UU., los criadores de clase A tienen licencia del Departamento de Agricultura de los EE. UU. (USDA) para vender animales con fines de investigación, mientras que los comerciantes de clase B tienen licencia para comprar animales de "fuentes aleatorias", como subastas, incautaciones de perreras y anuncios en periódicos. Algunos comerciantes de clase B han sido acusados ​​de secuestrar mascotas y atrapar ilegalmente animales callejeros, una práctica conocida como " agrupamiento" . [153] [154] [155] [156] [157] [158] Fue en parte por la preocupación pública por la venta de mascotas a instalaciones de investigación que se introdujo la Ley de Bienestar de los Animales de Laboratorio de 1966: el Comité de Comercio del Senado informó en 1966 que se habían recuperado mascotas robadas de las instalaciones de la Administración de Veteranos, el Instituto Mayo, la Universidad de Pensilvania, la Universidad de Stanford y las Escuelas de Medicina de Harvard y Yale. [159] El USDA recuperó al menos una docena de mascotas robadas durante una redada en un comerciante de clase B en Arkansas en 2003. [160]

Cuatro estados de los EE. UU. ( Minnesota , Utah , Oklahoma y Iowa) exigen que sus refugios proporcionen animales a centros de investigación. Catorce estados prohíben explícitamente la práctica, mientras que el resto la permite o no cuenta con legislación al respecto. [161]

En la Unión Europea, las fuentes animales están reguladas por la Directiva 86/609/CEE del Consejo , que exige que los animales de laboratorio sean criados especialmente, a menos que el animal haya sido importado legalmente y no sea un animal salvaje o callejero. Este último requisito también puede eximirse mediante un acuerdo especial. [162] En 2010, la Directiva fue revisada con la Directiva 2010/63/UE de la UE . [163] En el Reino Unido, la mayoría de los animales utilizados en experimentos se crían para ese propósito según la Ley de Protección Animal de 1988, pero se pueden utilizar primates capturados en la naturaleza si se puede establecer una justificación excepcional y específica. [164] [165] Estados Unidos también permite el uso de primates capturados en la naturaleza; Entre 1995 y 1999, se importaron 1.580 babuinos salvajes a los EE. UU. Más de la mitad de los primates importados entre 1995 y 2000 fueron manipulados por Charles River Laboratories o por Covance , que es el mayor importador de primates a los EE. UU. [166]

Dolor y sufrimiento

Antes de la disección con fines educativos, se administró cloroformo a esta rana de arena común para inducir la anestesia y la muerte.

El grado en que la experimentación con animales causa dolor y sufrimiento , y la capacidad de los animales para experimentarlos y comprenderlos, es objeto de mucho debate. [167] [168]

Según el USDA, en 2016 se utilizaron 501.560 animales (61%) (sin incluir ratas, ratones, pájaros o invertebrados) en procedimientos que no incluían más que dolor o angustia momentánea. 247.882 (31%) animales se utilizaron en procedimientos en los que el dolor o la angustia se aliviaron con anestesia, mientras que 71.370 (9%) se utilizaron en estudios que causarían dolor o angustia que no se aliviarían. [94]

La idea de que los animales podrían no sentir dolor como lo sienten los seres humanos se remonta al filósofo francés del siglo XVII, René Descartes , quien argumentó que los animales no experimentan dolor ni sufrimiento porque carecen de conciencia . [135] [169] Bernard Rollin de la Universidad Estatal de Colorado , el autor principal de dos leyes federales de EE. UU. que regulan el alivio del dolor para animales, [170] escribe que los investigadores siguieron sin estar seguros hasta la década de 1980 sobre si los animales experimentan dolor, y que a los veterinarios formados en EE. UU. antes de 1989 simplemente se les enseñó a ignorar el dolor animal. [171] En sus interacciones con científicos y otros veterinarios, se le pidió regularmente que "probara" que los animales son conscientes y que proporcionara fundamentos "científicamente aceptables" para afirmar que sienten dolor. [171] Carbone escribe que la opinión de que los animales sienten el dolor de forma diferente es ahora una opinión minoritaria. Las revisiones académicas del tema son más equívocas, y señalan que, aunque el argumento de que los animales tienen al menos pensamientos y sentimientos conscientes simples tiene un fuerte apoyo, [172] algunos críticos siguen cuestionando la fiabilidad con la que se pueden determinar los estados mentales de los animales. [135] [173] Sin embargo, algunos expertos caninos afirman que, si bien la inteligencia difiere de un animal a otro, los perros tienen la inteligencia de un niño de dos a dos años y medio. Esto apoya la idea de que los perros, como mínimo, tienen alguna forma de conciencia. [174] La capacidad de los invertebrados para experimentar dolor y sufrimiento es menos clara, sin embargo, la legislación en varios países (por ejemplo, Reino Unido, Nueva Zelanda , [175] Noruega [176] ) protege a algunas especies de invertebrados si se utilizan en pruebas con animales.

En los EE.UU., el texto que define la regulación del bienestar animal en la experimentación con animales es la Guía para el cuidado y uso de animales de laboratorio . [177] Esta define los parámetros que rigen la experimentación con animales en los EE.UU. Afirma que "La capacidad de experimentar y responder al dolor está muy extendida en el reino animal... El dolor es un factor estresante y, si no se alivia, puede conducir a niveles inaceptables de estrés y angustia en los animales". La Guía afirma que la capacidad de reconocer los síntomas del dolor en diferentes especies es vital para aplicar eficazmente el alivio del dolor y que es esencial que las personas que cuidan y utilizan animales estén totalmente familiarizadas con estos síntomas. Sobre el tema de los analgésicos utilizados para aliviar el dolor, la Guía afirma que "La selección del analgésico o anestésico más apropiado debe reflejar el criterio profesional en cuanto a cuál cumple mejor con los requisitos clínicos y humanitarios sin comprometer los aspectos científicos del protocolo de investigación". En consecuencia, todas las cuestiones relacionadas con el dolor y la angustia de los animales, y su posible tratamiento con analgesia y anestesia, son cuestiones reglamentarias obligatorias para recibir la aprobación del protocolo animal. [178] En la actualidad, los métodos traumáticos de marcado de animales de laboratorio están siendo reemplazados por alternativas no invasivas. [179] [180]

En 2019, Katrien Devolder y Matthias Eggel propusieron la edición genética de animales de investigación para eliminar la capacidad de sentir dolor . Este sería un paso intermedio hacia el fin de toda experimentación con animales y la adopción de alternativas . [181] Además, esto no impediría que los animales de investigación sufrieran daños psicológicos.

Eutanasia

Las regulaciones requieren que los científicos utilicen la menor cantidad posible de animales, especialmente para experimentos terminales. [182] Sin embargo, mientras que los responsables de las políticas consideran que el sufrimiento es el tema central y ven la eutanasia animal como una forma de reducir el sufrimiento, otros, como la RSPCA , argumentan que las vidas de los animales de laboratorio tienen un valor intrínseco. [183] ​​Las regulaciones se centran en si los métodos particulares causan dolor y sufrimiento , no si su muerte es indeseable en sí misma. [184] Los animales son sacrificados al final de los estudios para la recolección de muestras o el examen post mortem ; durante los estudios si su dolor o sufrimiento cae en ciertas categorías consideradas inaceptables, como la depresión, la infección que no responde al tratamiento o la incapacidad de los animales grandes para comer durante cinco días; [185] o cuando no son aptos para la reproducción o no son deseados por alguna otra razón. [186]

Los métodos de eutanasia de los animales de laboratorio se eligen para inducir la inconsciencia rápida y la muerte sin dolor ni angustia. [187] Los métodos que se prefieren son los publicados por los consejos de veterinarios. Se puede hacer que el animal inhale un gas, como monóxido de carbono y dióxido de carbono , colocándolo en una cámara o mediante el uso de una máscara facial, con o sin sedación o anestesia previa. Se pueden administrar sedantes o anestésicos como barbitúricos por vía intravenosa , o se pueden utilizar anestésicos inhalatorios. Los anfibios y peces pueden sumergirse en agua que contenga un anestésico como tricaína . También se utilizan métodos físicos, con o sin sedación o anestesia según el método. Los métodos recomendados incluyen la decapitación (decapitación) para pequeños roedores o conejos. La dislocación cervical (romper el cuello o la columna) se puede utilizar para pájaros, ratones, ratas y conejos según el tamaño y el peso del animal. [188] La irradiación de microondas de alta intensidad del cerebro puede preservar el tejido cerebral e inducir la muerte en menos de un segundo, pero actualmente esto solo se usa en roedores. Se pueden usar pernos cautivos , típicamente en perros, rumiantes, caballos, cerdos y conejos. Provoca la muerte por conmoción cerebral. Se pueden usar disparos, pero solo en casos en los que no se puede usar un perno cautivo penetrante. Algunos métodos físicos solo son aceptables después de que el animal esté inconsciente. La electrocución se puede usar para ganado, ovejas, cerdos, zorros y visones después de que los animales estén inconscientes, a menudo mediante un aturdimiento eléctrico previo. La descabellación (insertar una herramienta en la base del cerebro) se puede usar en animales que ya están inconscientes. La congelación lenta o rápida, o la inducción de una embolia aérea, solo son aceptables con anestesia previa para inducir la inconsciencia. [189]

Clasificación de la investigación

Investigación pura

La investigación básica o pura investiga cómo se comportan, se desarrollan y funcionan los organismos. Quienes se oponen a la experimentación con animales objetan que la investigación pura puede tener poco o ningún propósito práctico, pero los investigadores argumentan que forma la base necesaria para el desarrollo de la investigación aplicada, lo que hace que la distinción entre investigación pura y aplicada (investigación que tiene un objetivo práctico específico) no esté clara. [190] La investigación pura utiliza un mayor número y una mayor variedad de animales que la investigación aplicada. Las moscas de la fruta, los gusanos nematodos, los ratones y las ratas juntos representan la gran mayoría, aunque se utilizan pequeñas cantidades de otras especies, que van desde babosas marinas hasta armadillos . [191] Algunos ejemplos de los tipos de animales y experimentos utilizados en la investigación básica incluyen:

Investigación aplicada

La investigación aplicada tiene como objetivo resolver problemas específicos y prácticos. Estos pueden implicar el uso de modelos animales de enfermedades o afecciones, que a menudo se descubren o generan mediante programas de investigación pura. A su vez, estos estudios aplicados pueden ser una etapa temprana en el proceso de descubrimiento de fármacos . Algunos ejemplos incluyen:

Xenotrasplante

La investigación sobre xenotrasplantes implica el trasplante de tejidos u órganos de una especie a otra, como una forma de superar la escasez de órganos humanos para su uso en trasplantes de órganos . [214] La investigación actual implica el uso de primates como receptores de órganos de cerdos que han sido modificados genéticamente para reducir la respuesta inmune de los primates contra el tejido porcino. [215] Aunque el rechazo de trasplantes sigue siendo un problema, [215] los ensayos clínicos recientes que implicaron la implantación de células secretoras de insulina de cerdo en diabéticos redujeron la necesidad de insulina de estas personas. [216] [217]

Documentos divulgados a los medios de comunicación por la organización de derechos de los animales Uncaged Campaigns mostraron que, entre 1994 y 2000, babuinos salvajes importados al Reino Unido desde África por Imutran Ltd, una subsidiaria de Novartis Pharma AG, en conjunto con la Universidad de Cambridge y Huntingdon Life Sciences , para ser utilizados en experimentos que implicaban injertos de tejidos de cerdo, sufrieron lesiones graves y a veces fatales. Se produjo un escándalo cuando se reveló que la empresa se había comunicado con el gobierno británico en un intento de evitar la regulación. [218] [219]

Pruebas toxicológicas

Las pruebas toxicológicas, también conocidas como pruebas de seguridad, son realizadas por compañías farmacéuticas que prueban medicamentos, o por instalaciones de prueba en animales contratadas, como Huntingdon Life Sciences , en nombre de una amplia variedad de clientes. [220] Según cifras de la UE de 2005, alrededor de un millón de animales se utilizan cada año en Europa en pruebas toxicológicas; que son aproximadamente el 10% de todos los procedimientos. [221] Según Nature , se utilizan 5.000 animales para cada sustancia química que se prueba, y se necesitan 12.000 para probar pesticidas. [222] Las pruebas se realizan sin anestesia , porque las interacciones entre medicamentos pueden afectar la forma en que los animales desintoxican las sustancias químicas y pueden interferir con los resultados. [223] [224]

Las pruebas toxicológicas se utilizan para examinar productos terminados como pesticidas , medicamentos , aditivos alimentarios , materiales de embalaje y ambientadores , o sus ingredientes químicos. La mayoría de las pruebas implican la prueba de ingredientes en lugar de productos terminados, pero según BUAV , los fabricantes creen que estas pruebas sobreestiman los efectos tóxicos de las sustancias; por lo tanto, repiten las pruebas utilizando sus productos terminados para obtener una etiqueta menos tóxica. [220]

Las sustancias se aplican sobre la piel o se gotean en los ojos; se inyectan por vía intravenosa , intramuscular o subcutánea ; se inhalan colocando una máscara sobre los animales y sujetándolos, o colocándolos en una cámara de inhalación; o se administran por vía oral, a través de un tubo en el estómago, o simplemente en la comida del animal. Las dosis pueden administrarse una sola vez, repetirse regularmente durante muchos meses o durante la vida del animal. [225]

Existen varios tipos diferentes de pruebas de toxicidad aguda . La prueba LD50 ("Dosis letal del 50%") se utiliza para evaluar la toxicidad de una sustancia determinando la dosis necesaria para matar al 50% de la población animal de prueba . Esta prueba fue eliminada de las directrices internacionales de la OCDE en 2002, sustituida por métodos como el procedimiento de dosis fija , que utilizan menos animales y causan menos sufrimiento. [226] [227] Abbott escribe que, a partir de 2005, "la prueba de toxicidad aguda LD50 ... todavía representa un tercio de todas las pruebas [de toxicidad] en animales en todo el mundo". [222]

La irritación se puede medir mediante la prueba de Draize , en la que se aplica una sustancia de prueba a los ojos o la piel de un animal, generalmente un conejo albino. Para la prueba ocular de Draize, la prueba implica observar los efectos de la sustancia a intervalos y calificar cualquier daño o irritación, pero la prueba debe detenerse y el animal debe sacrificarse si muestra "signos continuos de dolor o angustia severos". [228] La Sociedad Protectora de Animales de los Estados Unidos escribe que el procedimiento puede causar enrojecimiento, ulceración, hemorragia, turbidez o incluso ceguera. [229] Esta prueba también ha sido criticada por los científicos por ser cruel e inexacta, subjetiva, hipersensible y no reflejar las exposiciones humanas en el mundo real. [230] Aunque no existen alternativas in vitro aceptadas , una forma modificada de la prueba de Draize llamada prueba ocular de bajo volumen puede reducir el sufrimiento y proporcionar resultados más realistas y se adoptó como el nuevo estándar en septiembre de 2009. [231] [232] Sin embargo, la prueba de Draize se seguirá utilizando para sustancias que no sean irritantes graves. [232]

Los ensayos más rigurosos se reservan para los medicamentos y los alimentos. En estos casos, se realizan una serie de pruebas que duran menos de un mes (aguda), de uno a tres meses (subcrónica) y más de tres meses (crónica) para comprobar la toxicidad general (daño a los órganos), la irritación ocular y cutánea, la mutagenicidad , la carcinogenicidad , la teratogenicidad y los problemas reproductivos. El coste de la serie completa de pruebas es de varios millones de dólares por sustancia y puede llevar entre tres y cuatro años completarlas.

Estas pruebas de toxicidad proporcionan, en palabras de un informe de la Academia Nacional de Ciencias de los Estados Unidos de 2006 , "información crítica para evaluar el riesgo y el potencial de peligro". [233] Las pruebas con animales pueden sobrestimar el riesgo, siendo los resultados positivos falsos un problema particular, [222] [234] pero los positivos falsos no parecen ser prohibitivamente comunes. [235] La variabilidad en los resultados surge del uso de los efectos de altas dosis de sustancias químicas en pequeñas cantidades de animales de laboratorio para tratar de predecir los efectos de dosis bajas en grandes cantidades de seres humanos. [236] Aunque existen relaciones, la opinión está dividida sobre cómo utilizar los datos sobre una especie para predecir el nivel exacto de riesgo en otra. [237]

Los científicos se enfrentan a una presión cada vez mayor para abandonar el uso de pruebas tradicionales de toxicidad animal para determinar si los productos químicos fabricados son seguros. [238] Entre los diversos enfoques para la evaluación de la toxicidad, los que han atraído un interés creciente son los métodos de detección basados ​​en células in vitro que aplican fluorescencia. [239]

Pruebas de cosméticos

El logotipo del "conejito saltando": algunos productos en Europa que no se prueban en animales llevan este símbolo.

Las pruebas de cosméticos en animales son especialmente controvertidas. Estas pruebas, que todavía se realizan en los EE. UU., implican toxicidad general, irritación de ojos y piel, fototoxicidad (toxicidad provocada por la luz ultravioleta ) y mutagenicidad. [240]

Las pruebas de cosméticos en animales están prohibidas en la India, el Reino Unido, la Unión Europea, [241] Israel y Noruega [242] [243] mientras que la legislación de los EE. UU. y Brasil está considerando actualmente prohibiciones similares. [244] En 2002, después de 13 años de discusión, la Unión Europea acordó implementar gradualmente una prohibición casi total de la venta de cosméticos probados en animales para 2009, y prohibir todas las pruebas en animales relacionadas con los cosméticos. Francia, que alberga la empresa de cosméticos más grande del mundo, L'Oreal , ha protestado por la prohibición propuesta presentando un caso en el Tribunal de Justicia Europeo en Luxemburgo , pidiendo que se anule la prohibición. [245] La prohibición también cuenta con la oposición de la Federación Europea de Ingredientes Cosméticos, que representa a 70 empresas en Suiza, Bélgica, Francia, Alemania e Italia. [245] En octubre de 2014, la India aprobó leyes más estrictas que también prohíben la importación de cualquier producto cosmético que se pruebe en animales. [246]

Prueba de drogas

Antes de principios del siglo XX, las leyes que regulaban los medicamentos eran laxas. En la actualidad, todos los nuevos productos farmacéuticos se someten a rigurosas pruebas en animales antes de obtener la autorización para su uso en seres humanos. Las pruebas de los productos farmacéuticos implican:

Educación

Se estima que en los Estados Unidos se utilizan anualmente 20 millones de animales con fines educativos, incluidos ejercicios de observación en el aula, disecciones y cirugías con animales vivos. [249] [250] Las ranas, los fetos de cerdo , las percas, los gatos, las lombrices de tierra, los saltamontes, los cangrejos de río y las estrellas de mar se utilizan habitualmente en las disecciones en el aula. [251] Las alternativas al uso de animales en las disecciones en el aula se utilizan ampliamente, y muchos estados y distritos escolares de los EE. UU. exigen que se ofrezca a los estudiantes la opción de no diseccionar. [252] Citando la amplia disponibilidad de alternativas y la diezmación de las especies de ranas locales, la India prohibió las disecciones en 2014. [253] [254]

El Instituto de Artrópodos de Sonora organiza una conferencia anual sobre invertebrados en la educación y la conservación para analizar el uso de invertebrados en la educación. [255] También hay esfuerzos en muchos países para encontrar alternativas al uso de animales en la educación. [256] La base de datos NORINA, mantenida por Norecopa, enumera productos que pueden usarse como alternativas o suplementos al uso de animales en la educación y en la capacitación del personal que trabaja con animales. [257] Estos incluyen alternativas a la disección en las escuelas. InterNICHE tiene una base de datos similar y un sistema de préstamos. [258]

En noviembre de 2013, la empresa estadounidense Backyard Brains lanzó a la venta al público lo que ellos llaman el "Roboroach", una "mochila electrónica" que se puede sujetar a las cucarachas . El operador debe amputar las antenas de una cucaracha , usar papel de lija para desgastar el caparazón, insertar un cable en el tórax y luego pegar los electrodos y la placa de circuito en la espalda del insecto. Luego se puede usar una aplicación de teléfono móvil para controlarlo a través de Bluetooth . [259] Se ha sugerido que el uso de un dispositivo de este tipo puede ser una ayuda didáctica que puede promover el interés por la ciencia. Los creadores del "Roboroach" han sido financiados por el Instituto Nacional de Salud Mental y afirman que el dispositivo está destinado a alentar a los niños a interesarse por la neurociencia . [259] [260]

Defensa

Los animales son utilizados por los militares para desarrollar armas, vacunas, técnicas quirúrgicas en el campo de batalla y ropa defensiva. [190] Por ejemplo, en 2008 la Agencia de Proyectos de Investigación Avanzada de Defensa de los Estados Unidos utilizó cerdos vivos para estudiar los efectos de las explosiones de dispositivos explosivos improvisados ​​en los órganos internos, especialmente el cerebro. [261]

En el ejército de los EE. UU., las cabras se utilizan comúnmente para entrenar a los médicos de combate . (Las cabras se han convertido en la principal especie animal utilizada para este propósito después de que el Pentágono eliminara gradualmente el uso de perros para el entrenamiento médico en la década de 1980. [262] ) Si bien los maniquíes modernos utilizados en el entrenamiento médico son bastante eficientes para simular el comportamiento de un cuerpo humano, algunos aprendices sienten que "el ejercicio con cabras proporciona una sensación de urgencia que solo el trauma de la vida real puede proporcionar". [263] Sin embargo, en 2014, la Guardia Costera de los EE. UU. anunció que reduciría a la mitad el número de animales que utiliza en sus ejercicios de entrenamiento después de que PETA publicara un video que mostraba a miembros de la Guardia cortando las extremidades de cabras inconscientes con podadores de árboles e infligiendo otras heridas con una escopeta, una pistola, un hacha y un bisturí. [264] Ese mismo año, citando la disponibilidad de simuladores humanos y otras alternativas, el Departamento de Defensa anunció que comenzaría a reducir el número de animales que utiliza en varios programas de entrenamiento. [265] En 2013, varios centros médicos de la Marina dejaron de utilizar hurones en ejercicios de intubación después de las quejas de PETA . [266]

Además de Estados Unidos, seis de los 28 países de la OTAN, incluidos Polonia y Dinamarca, utilizan animales vivos para el entrenamiento de médicos de combate. [262]

Ética

La mayoría de los animales son sacrificados después de ser utilizados en un experimento. [57] Las fuentes de animales de laboratorio varían entre países y especies; la mayoría de los animales son criados con un propósito, mientras que una minoría son capturados en la naturaleza o suministrados por comerciantes que los obtienen de subastas y perchas . [267] [268] [153] Los partidarios del uso de animales en experimentos, como la Royal Society británica , argumentan que prácticamente todos los logros médicos del siglo XX se basaron en el uso de animales de alguna manera. [117] El Instituto de Investigación de Animales de Laboratorio de la Academia Nacional de Ciencias de los Estados Unidos ha argumentado que las pruebas con animales no pueden ser reemplazadas ni siquiera por modelos informáticos sofisticados , que son incapaces de lidiar con las interacciones extremadamente complejas entre moléculas, células, tejidos, órganos, organismos y el medio ambiente. [269] Las organizaciones de derechos de los animales , como PETA y BUAV , cuestionan la necesidad y la legitimidad de las pruebas con animales, argumentando que son crueles y están mal reguladas, que el progreso médico en realidad se ve frenado por modelos animales engañosos que no pueden predecir de manera confiable los efectos en los humanos, que algunas de las pruebas están obsoletas, que los costos superan los beneficios o que los animales tienen el derecho intrínseco a no ser utilizados ni dañados en la experimentación. [52] [270] [271] [272] [273] [274]

Puntos de vista

Monumento a los animales utilizados en experimentos en la Universidad de Keio

Las cuestiones morales y éticas que plantea la realización de experimentos con animales son objeto de debate, y los puntos de vista han cambiado significativamente a lo largo del siglo XX. [275] Siguen existiendo desacuerdos sobre qué procedimientos son útiles para qué fines, así como desacuerdos sobre qué principios éticos se aplican a qué especies.

Una encuesta de Gallup de 2015 determinó que el 67% de los estadounidenses estaban "muy preocupados" o "algo preocupados" por el uso de animales en la investigación. [276] Una encuesta de Pew realizada el mismo año determinó que el 50% de los adultos estadounidenses se oponían al uso de animales en la investigación. [277]

Aun así, existe una amplia gama de puntos de vista. La visión de que los animales tienen derechos morales ( derechos de los animales ) es una posición filosófica propuesta por Tom Regan , entre otros, quien sostiene que los animales son seres con creencias y deseos, y como tales son los "sujetos de una vida" con valor moral y por lo tanto derechos morales. [278] Regan todavía ve diferencias éticas entre matar animales humanos y no humanos, y argumenta que para salvar a los primeros es permisible matar a los segundos. Del mismo modo, una visión de "dilema moral" sugiere que evitar el beneficio potencial para los humanos es inaceptable por motivos similares, y sostiene que la cuestión es un dilema en el equilibrio de dicho daño a los humanos con el daño causado a los animales en la investigación. [279] En contraste, una visión abolicionista de los derechos de los animales sostiene que no hay justificación moral para ninguna investigación dañina en animales que no sea en beneficio del animal individual. [279] Bernard Rollin sostiene que los beneficios para los seres humanos no pueden superar el sufrimiento animal, y que los seres humanos no tienen ningún derecho moral a utilizar a un animal de maneras que no beneficien a ese individuo. Donald Watson ha afirmado que la vivisección y la experimentación con animales "es probablemente el ataque más cruel de todos los del hombre al resto de la Creación". [280] Otra posición destacada es la del filósofo Peter Singer , quien sostiene que no hay motivos para incluir la especie de un ser en las consideraciones sobre si su sufrimiento es importante en las consideraciones morales utilitaristas . [281] Malcolm Macleod y sus colaboradores sostienen que la mayoría de los estudios controlados con animales no emplean la aleatorización , el ocultamiento de la asignación y la evaluación ciega de los resultados, y que el hecho de no emplear estas características exagera el beneficio aparente de los fármacos probados en animales, lo que conduce a un fracaso en la traducción de gran parte de la investigación animal para el beneficio humano. [282] [283] [284] [285] [286]

Gobiernos como los de los Países Bajos y Nueva Zelanda han respondido a las preocupaciones del público prohibiendo los experimentos invasivos en ciertas clases de primates no humanos, en particular los grandes simios . [287] [288] En 2015, los chimpancés cautivos en los EE. UU. se agregaron a la Ley de Especies en Peligro de Extinción, lo que agregó nuevos obstáculos a quienes desean experimentar con ellos. [289] De manera similar, citando consideraciones éticas y la disponibilidad de métodos de investigación alternativos, el NIH de EE. UU. anunció en 2013 que reduciría drásticamente y eventualmente eliminaría gradualmente los experimentos con chimpancés. [290]

El gobierno británico ha exigido que el coste para los animales en un experimento se sopese frente a la ganancia en conocimiento. [291] Algunas escuelas y agencias de medicina en China, Japón y Corea del Sur han construido cenotafios para los animales sacrificados. [292] En Japón también hay servicios conmemorativos anuales Ireisai ( en japonés :慰霊祭) para los animales sacrificados en la escuela de medicina.

La oveja Dolly : el primer clon producido a partir de células somáticas de un mamífero adulto

Varios casos específicos de experimentación con animales han llamado la atención, incluidos tanto casos de investigación científica beneficiosa como casos de supuestas violaciones éticas por parte de quienes realizaban las pruebas. Las propiedades fundamentales de la fisiología muscular se determinaron con trabajo realizado utilizando músculos de rana (incluido el mecanismo de generación de fuerza de todos los músculos, [293] la relación longitud-tensión, [294] y la curva fuerza-velocidad [295] ), y las ranas siguen siendo el organismo modelo preferido debido a la larga supervivencia de los músculos in vitro y la posibilidad de aislar preparaciones intactas de una sola fibra (no es posible en otros organismos). [296] La fisioterapia moderna y la comprensión y el tratamiento de los trastornos musculares se basan en este trabajo y en el trabajo posterior en ratones (a menudo diseñados para expresar estados patológicos como la distrofia muscular ). [297] En febrero de 1997, un equipo del Instituto Roslin en Escocia anunció el nacimiento de la oveja Dolly , el primer mamífero en ser clonado a partir de una célula somática adulta . [79]

Se han suscitado inquietudes sobre el maltrato de los primates sometidos a pruebas. En 1985, el caso de Britches , un mono macaco de la Universidad de California, Riverside , ganó atención pública. Le cosieron los párpados y le colocaron un sensor de sonar en la cabeza como parte de un experimento para probar dispositivos de sustitución sensorial para personas ciegas. El laboratorio fue allanado por el Frente de Liberación Animal en 1985, y se llevaron a Britches y a otros 466 animales. [298] Los Institutos Nacionales de Salud llevaron a cabo una investigación de ocho meses y, sin embargo, concluyeron que no era necesaria ninguna medida correctiva. [299] Durante la década de 2000, otros casos han sido noticia, incluidos los experimentos en la Universidad de Cambridge [300] y la Universidad de Columbia en 2002. [301] En 2004 y 2005, People for the Ethical Treatment of Animals (PETA) filmó imágenes encubiertas del personal del laboratorio de Covance , una organización de investigación por contrato que proporciona servicios de experimentación con animales, en Virginia . Tras la publicación de las imágenes, el Departamento de Agricultura de los EE. UU. multó a Covance con 8.720 dólares por 16 citaciones, tres de las cuales involucraban a monos de laboratorio; las otras citaciones involucraban cuestiones administrativas y de equipo. [302] [303]

Amenazas a los investigadores

Las amenazas de violencia contra los investigadores que utilizan animales no son infrecuentes. [ vago ] [304]

En 2006, un investigador de primates de la Universidad de California en Los Ángeles (UCLA) cerró los experimentos en su laboratorio después de las amenazas de activistas por los derechos de los animales. El investigador había recibido una subvención para utilizar 30 monos macacos para experimentos de visión; cada mono fue anestesiado para un solo experimento fisiológico que duró hasta 120 horas, y luego sacrificado. [305] El nombre, el número de teléfono y la dirección del investigador se publicaron en el sitio web del Primate Freedom Project . Se realizaron manifestaciones frente a su casa. Se colocó un cóctel molotov en el porche de lo que se creía que era la casa de otro investigador de primates de la UCLA; en cambio, se dejó accidentalmente en el porche de una anciana no relacionada con la universidad. El Frente de Liberación Animal se atribuyó la responsabilidad del ataque. [306] Como resultado de la campaña, el investigador envió un correo electrónico al Primate Freedom Project diciendo "usted gana" y "por favor, no moleste más a mi familia". [307] En otro incidente ocurrido en la UCLA en junio de 2007, la Brigada de Liberación Animal colocó una bomba debajo del automóvil de un oftalmólogo infantil de la UCLA que experimenta con gatos y monos rhesus; la bomba tenía una mecha defectuosa y no detonó. [308]

En 1997, PETA filmó al personal de Huntingdon Life Sciences , mostrando perros siendo maltratados. [309] [310] Los empleados responsables fueron despedidos, [311] con dos órdenes de servicio comunitario y ordenados a pagar £250 costos, los primeros técnicos de laboratorio en ser procesados ​​por crueldad animal en el Reino Unido. [312] La campaña Stop Huntingdon Animal Cruelty utilizó tácticas que iban desde la protesta no violenta hasta el supuesto ataque con bombas incendiarias a casas propiedad de ejecutivos asociados con los clientes e inversores de HLS. El Southern Poverty Law Center , que monitorea el extremismo interno de Estados Unidos, ha descrito el modus operandi de SHAC como "tácticas francamente terroristas similares a las de los extremistas antiabortistas", y en 2005 un funcionario de la división antiterrorista del FBI se refirió a las actividades de SHAC en los Estados Unidos como amenazas terroristas internas. [313] [314] 13 miembros de SHAC fueron encarcelados por entre 15 meses y once años por cargos de conspiración para chantajear o dañar a HLS y sus proveedores. [315] [316]

Estos ataques, así como otros incidentes similares que llevaron al Southern Poverty Law Center a declarar en 2002 que el movimiento por los derechos de los animales había "dado un giro claramente hacia lo más extremo", llevaron al gobierno de los Estados Unidos a aprobar la Ley de Terrorismo Empresarial con Animales y al gobierno del Reino Unido a añadir el delito de "Intimidación de personas relacionadas con organizaciones de investigación animal" a la Ley de Crimen Organizado Grave y Policía de 2005. Es posible que esa legislación y el arresto y encarcelamiento de activistas hayan reducido la incidencia de los ataques. [317]

Crítica científica

Las revisiones sistemáticas han señalado que las pruebas con animales a menudo no reflejan con precisión los resultados en humanos. [318] [319] Por ejemplo, una revisión de 2013 señaló que se ha demostrado que unas 100 vacunas previenen el VIH en animales, pero ninguna de ellas ha funcionado en humanos. [319] Los efectos observados en animales pueden no reproducirse en humanos, y viceversa. Muchos corticosteroides causan defectos de nacimiento en animales, pero no en humanos. Por el contrario, la talidomida causa defectos de nacimiento graves en humanos, pero no en algunos animales como los ratones (sin embargo, causa defectos de nacimiento en conejos). [320] Un artículo de 2004 concluyó que gran parte de la investigación con animales se desperdicia porque no se utilizan revisiones sistemáticas y debido a una metodología deficiente. [321] Una revisión de 2006 encontró múltiples estudios en los que hubo resultados prometedores para nuevos medicamentos en animales, pero los estudios clínicos en humanos no mostraron los mismos resultados. Los investigadores sugirieron que esto podría deberse al sesgo del investigador, o simplemente porque los modelos animales no reflejan con precisión la biología humana. [322] La falta de meta-revisiones puede ser parcialmente culpable. [320] La mala metodología es un problema en muchos estudios. Una revisión de 2009 señaló que muchos experimentos con animales no utilizaron experimentos ciegos , un elemento clave de muchos estudios científicos en los que a los investigadores no se les informa sobre la parte del estudio en la que están trabajando para reducir el sesgo. [320] [323] Un artículo de 2021 encontró, en una muestra de estudios de acceso abierto sobre la enfermedad de Alzheimer, que si los autores omiten del título que el experimento se realizó en ratones, el titular de la noticia sigue su ejemplo, y que también la repercusión en Twitter es mayor. [324]

Activismo

Existen varios ejemplos de activistas que utilizan solicitudes de la Ley de Libertad de Información (FOIA) para obtener información sobre la financiación de los contribuyentes a la experimentación con animales. Por ejemplo, el White Coat Waste Project, un grupo de activistas que sostiene que los contribuyentes no deberían tener acceso a información sobre la financiación de la experimentación con animales.

Activistas contra la experimentación con animales protestan en las calles de Londres en 2009

pagar 20 mil millones de dólares cada año para experimentos con animales, [325] destacó que el Instituto Nacional de Alergias y Enfermedades Infecciosas proporcionó 400.000 dólares de dinero de los contribuyentes para financiar experimentos en los que 28 beagles fueron infectados con parásitos causantes de enfermedades. [326] El Proyecto de la Bata Blanca encontró informes que decían que los perros que participaban en los experimentos estaban "vocalizando de dolor" después de haber sido inyectados con sustancias extrañas. [327] Tras la protesta pública, Personas por el Trato Ético de los Animales (PETA) hizo un llamamiento a la acción para que todos los miembros del Instituto Nacional de Salud dimitieran con efecto inmediato [328] y que existe una "necesidad de encontrar un nuevo director del NIH para sustituir al saliente Francis Collins , que cerrará la investigación que viole la dignidad de los animales no humanos". [329]

Debate histórico

Claude Bernard , considerado el «príncipe de los vivisectores», [330] sostuvo que los experimentos con animales son «totalmente concluyentes para la toxicología y la higiene del hombre». [331]

A medida que la experimentación con animales aumentó, especialmente la práctica de la vivisección, también lo hicieron las críticas y la controversia. En 1655, el defensor de la fisiología galénica Edmund O'Meara dijo que "la miserable tortura de la vivisección coloca al cuerpo en un estado antinatural". [332] [333] O'Meara y otros argumentaron que el dolor podría afectar la fisiología animal durante la vivisección, haciendo que los resultados no fueran confiables. También hubo objeciones éticas, que sostenían que el beneficio para los humanos no justificaba el daño a los animales. [333] Las primeras objeciones a la experimentación con animales también vinieron desde otro ángulo: muchas personas creían que los animales eran inferiores a los humanos y tan diferentes que los resultados de los animales no podían aplicarse a los humanos. [2] [333]

En el otro lado del debate, los partidarios de la experimentación con animales sostenían que los experimentos con animales eran necesarios para avanzar en el conocimiento médico y biológico. Claude Bernard —a quien a veces se conoce como el «príncipe de los vivisectores» [330] y el padre de la fisiología, y cuya esposa, Marie Françoise Martin , fundó la primera sociedad antivivisección en Francia en 1883 [334] — escribió en 1865 que «la ciencia de la vida es una sala soberbia y deslumbrantemente iluminada a la que sólo se puede llegar pasando por una cocina larga y espantosa». [335] Argumentando que «los experimentos con animales [...] son ​​totalmente concluyentes para la toxicología y la higiene del hombre [...] Los efectos de estas sustancias son los mismos en el hombre que en los animales, salvo diferencias de grado», [331] Bernard estableció la experimentación con animales como parte del método científico estándar . [336]

En 1896, el fisiólogo y médico Dr. Walter B. Cannon dijo: "Los antiviviseccionistas son el segundo de los dos tipos que Theodore Roosevelt describió cuando dijo: 'El sentido común sin conciencia puede llevar al crimen, pero la conciencia sin sentido común puede llevar a la locura, que es la sirvienta del crimen ' " . [337] Estas divisiones entre los grupos a favor y en contra de la experimentación con animales salieron a la luz pública por primera vez durante el caso Brown Dog a principios del siglo XX, cuando cientos de estudiantes de medicina se enfrentaron con los antiviviseccionistas y la policía por un monumento a un perro viviseccionado. [338]

In 1822, the first animal protection law was enacted in the British parliament, followed by the Cruelty to Animals Act (1876), the first law specifically aimed at regulating animal testing. The legislation was promoted by Charles Darwin, who wrote to Ray Lankester in March 1871: "You ask about my opinion on vivisection. I quite agree that it is justifiable for proper investigations on physiology; but not for mere damnable and detestable curiosity. It is a subject which makes me sick with horror, so I will not say another word about it, else I shall not sleep to-night."[339][340] In response to the lobbying by anti-vivisectionists, several organizations were set up in Britain to defend animal research: The Physiological Society was formed in 1876 to give physiologists "mutual benefit and protection",[341] the Association for the Advancement of Medicine by Research was formed in 1882 and focused on policy-making, and the Research Defence Society (now Understanding Animal Research) was formed in 1908 "to make known the facts as to experiments on animals in this country; the immense importance to the welfare of mankind of such experiments and the great saving of human life and health directly attributable to them".[342]

Opposition to the use of animals in medical research first arose in the United States during the 1860s, when Henry Bergh founded the American Society for the Prevention of Cruelty to Animals (ASPCA), with America's first specifically anti-vivisection organization being the American AntiVivisection Society (AAVS), founded in 1883. Antivivisectionists of the era generally believed the spread of mercy was the great cause of civilization, and vivisection was cruel. However, in the USA the antivivisectionists' efforts were defeated in every legislature, overwhelmed by the superior organization and influence of the medical community. Overall, this movement had little legislative success until the passing of the Laboratory Animal Welfare Act, in 1966.[343]

Real progress in thinking about animal rights build on the "theory of justice" (1971) by the philosopher John Rawls and work on ethics by philosopher Peter Singer.[2]

Alternatives

Most scientists and governments state that animal testing should cause as little suffering to animals as possible, and that animal tests should only be performed where necessary. The "Three Rs" are guiding principles for the use of animals in research in most countries.[142][182] Whilst replacement of animals, i.e. alternatives to animal testing, is one of the principles, their scope is much broader.[344] Although such principles have been welcomed as a step forwards by some animal welfare groups,[345] they have also been criticized as both outdated by current research,[346] and of little practical effect in improving animal welfare.[347] The scientists and engineers at Harvard's Wyss Institute have created "organs-on-a-chip", including the "lung-on-a-chip" and "gut-on-a-chip". Researchers at cellasys in Germany developed a "skin-on-a-chip".[348] These tiny devices contain human cells in a 3-dimensional system that mimics human organs. The chips can be used instead of animals in in vitro disease research, drug testing, and toxicity testing.[349] Researchers have also begun using 3-D bioprinters to create human tissues for in vitro testing.[350]

Another non-animal research method is in silico or computer simulation and mathematical modeling which seeks to investigate and ultimately predict toxicity and drug effects on humans without using animals. This is done by investigating test compounds on a molecular level using recent advances in technological capabilities with the ultimate goal of creating treatments unique to each patient.[351][352] Microdosing is another alternative to the use of animals in experimentation. Microdosing is a process whereby volunteers are administered a small dose of a test compound allowing researchers to investigate its pharmacological affects without harming the volunteers. Microdosing can replace the use of animals in pre-clinical drug screening and can reduce the number of animals used in safety and toxicity testing.[353] Additional alternative methods include positron emission tomography (PET), which allows scanning of the human brain in vivo,[354] and comparative epidemiological studies of disease risk factors among human populations.[355] Simulators and computer programs have also replaced the use of animals in dissection, teaching and training exercises.[356][357]

Official bodies such as the European Centre for the Validation of Alternative Test Methods of the European Commission, the Interagency Coordinating Committee for the Validation of Alternative Methods in the US,[358] ZEBET in Germany,[359] and the Japanese Center for the Validation of Alternative Methods[360] (among others) also promote and disseminate the 3Rs. These bodies are mainly driven by responding to regulatory requirements, such as supporting the cosmetics testing ban in the EU by validating alternative methods. The European Partnership for Alternative Approaches to Animal Testing serves as a liaison between the European Commission and industries.[361] The European Consensus Platform for Alternatives coordinates efforts amongst EU member states.[362] Academic centers also investigate alternatives, including the Center for Alternatives to Animal Testing at the Johns Hopkins University[363] and the NC3Rs in the UK.[364]

See also

References

Citations

  1. ^ ""Introduction", Select Committee on Animals in Scientific Procedures Report". UK Parliament. Retrieved 13 July 2012.
  2. ^ a b c d Liguori, G., et al. (2017). "Ethical Issues in the Use of Animal Models for Tissue Engineering: Reflections on Legal Aspects, Moral Theory, 3Rs Strategies, and Harm-Benefit Analysis" (PDF). Tissue Engineering Part C: Methods. 23 (12): 850–62. doi:10.1089/ten.TEC.2017.0189. PMID 28756735. S2CID 206268293.
  3. ^ Hajar R (2011). "Animal Testing and Medicine". Heart Views. 12 (1): 42. doi:10.4103/1995-705X.81548. ISSN 1995-705X. PMC 3123518. PMID 21731811.
  4. ^ a b c d Royal Society of Medicine (13 May 2015). "Statement of the Royal Society's position on the use of animals in research". From antibiotics and insulin to blood transfusions and treatments for cancer or HIV, virtually every medical achievement in the past century has depended directly or indirectly on research using animals, including veterinary medicine.
  5. ^ a b National Research Council and Institute of Medicine (1988). Use of Laboratory Animals in Biomedical and Behavioral Research. National Academies Press. p. 37. ISBN 9780309038393. NAP:13195. The...methods of scientific inquiry have greatly reduced the incidence of human disease and have substantially increased life expectancy. Those results have come largely through experimental methods based in part on the use of animals.
  6. ^ a b Lieschke GJ, Currie PD (May 2007). "Animal models of human disease: zebrafish swim into view". Nature Reviews Genetics. 8 (5): 353–367. doi:10.1038/nrg2091. PMID 17440532. S2CID 13857842. Biomedical research depends on the use of animal models to understand the pathogenesis of human disease at a cellular and molecular level and to provide systems for developing and testing new therapies.
  7. ^ a b National Research Council and Institute of Medicine (1988). Use of Laboratory Animals in Biomedical and Behavioral Research. National Academies Press. p. 27. ISBN 9780309038393. NAP:13195. Animal studies have been an essential component of every field of medical research and have been crucial for the acquisition of basic knowledge in biology.
  8. ^ a b Hau and Shapiro 2011:
    • Jann Hau, Steven J. Schapiro (2011). Handbook of Laboratory Animal Science, Volume I, Third Edition: Essential Principles and Practices. CRC Press. p. 2. ISBN 978-1-4200-8456-6. Animal-based research has played a key role in understanding infectious diseases, neuroscience, physiology, and toxicology. Experimental results from animal studies have served as the basis for many key biomedical breakthroughs.
    • Jann Hau, Steven J. Schapiro (2011). Handbook of Laboratory Animal Science, Volume II, Third Edition: Animal Models. CRC Press. p. 1. ISBN 978-1-4200-8458-0. Most of our basic knowledge of human biochemistry, physiology, endocrinology, and pharmacology has been derived from initial studies of mechanisms in animal models.
  9. ^ a b Institute of Medicine (1991). Science, Medicine, and Animals. National Academies Press. p. 3. ISBN 978-0-309-56994-1. ...without this fundamental knowledge, most of the clinical advances described in these pages would not have occurred.
  10. ^ a b "The Nobel Prize in Physiology or Medicine 1933". Nobel Web AB. Retrieved 20 June 2015.
  11. ^ a b "Thomas Hunt Morgan and his Legacy". Nobel Web AB. Retrieved 20 June 2015.
  12. ^ a b Kandel, Eric. 1999. "Genes, Chromosomes, and the Origins of Modern Biology", Columbia Magazine
  13. ^ a b Bering Nobel Biography
  14. ^ a b Walter B. Cannon Papers, American Philosophical Society Archived August 14, 2009, at the Wayback Machine
  15. ^ a b Discovery of Insulin Archived September 30, 2009, at the Wayback Machine
  16. ^ a b Thompson bio ref Archived 2009-02-10 at the Wayback Machine
  17. ^ a b Raventos J (1956) Br J Pharmacol 11, 394
  18. ^ a b Carrel A (1912) Surg. Gynec. Obst. 14: p. 246
  19. ^ a b Williamson C (1926) J. Urol. 16: p. 231
  20. ^ a b Woodruff H & Burg R (1986) in Discoveries in Pharmacology vol 3, ed Parnham & Bruinvels, Elsevier, Amsterdam
  21. ^ a b Moore F (1964) Give and Take: the Development of Tissue Transplantation. Saunders, New York
  22. ^ a b Gibbon JH (1937) Arch. Surg. 34, 1105
  23. ^ a b [1] Hinshaw obituary
  24. ^ a b Fleming A (1929) Br J Exp Path 10, 226
  25. ^ a b Medical Research Council (1956) Br. Med. J. 2: p. 454
  26. ^ Fox MA (1986). The Case for Animal Experimention: An Evolutionary and Ethical Perspective. Berkeley and Los Angeles, California: University of California Press. ISBN 978-0-520-05501-8. OCLC 11754940 – via Google Books.
  27. ^ Allmon WD, Ross RM (December 2018). "Evolutionary remnants as widely accessible evidence for evolution: the structure of the argument for application to evolution education". Evolution: Education and Outreach. 11 (1): 1. doi:10.1186/s12052-017-0075-1. S2CID 29281160.
  28. ^ Slack JM (2013). Essential Developmental Biology. Oxford: Wiley-Blackwell. OCLC 785558800.
  29. ^ Chakraborty C, Hsu C, Wen Z, Lin C, Agoramoorthy G (1 February 2009). "Zebrafish: A Complete Animal Model for In Vivo Drug Discovery and Development". Current Drug Metabolism. 10 (2): 116–124. doi:10.2174/138920009787522197. PMID 19275547.
  30. ^ Kari G, Rodeck U, Dicker AP (July 2007). "Zebrafish: An Emerging Model System for Human Disease and Drug Discovery". Clinical Pharmacology & Therapeutics. 82 (1): 70–80. doi:10.1038/sj.clpt.6100223. PMID 17495877. S2CID 41443542.
  31. ^ a b c d e f g h i j k l A reference handbook of the medical sciences. William Wood and Co., 1904, Edited by Albert H. Buck.
  32. ^ a b Pu R, Coleman J, Coisman J, Sato E, Tanabe T, Arai M, Yamamoto JK (February 2005). "Dual-subtype FIV vaccine (Fel-O-Vax® FIV) protection against a heterologous subtype B FIV isolate". Journal of Feline Medicine and Surgery. 7 (1): 65–70. doi:10.1016/j.jfms.2004.08.005. PMC 10911555. PMID 15686976. S2CID 26525327.
  33. ^ a b Dryden MW, Payne PA (2005). "Preventing parasites in cats". Veterinary Therapeutics. 6 (3): 260–7. PMID 16299672.
  34. ^ a b Sources:
    • P. Michael Conn (29 May 2013). Animal Models for the Study of Human Disease. Academic Press. p. 37. ISBN 978-0-12-415912-9. ...animal models are central to the effective study and discovery of treatments for human diseases.
    • Lieschke GJ, Currie PD (May 2007). "Animal models of human disease: zebrafish swim into view". Nature Reviews Genetics. 8 (5): 353–367. doi:10.1038/nrg2091. PMID 17440532. S2CID 13857842. Biomedical research depends on the use of animal models to understand the pathogenesis of human disease at a cellular and molecular level and to provide systems for developing and testing new therapies.
    • Pierce K. H. Chow, Robert T. H. Ng, Bryan E. Ogden (2008). Using Animal Models in Biomedical Research: A Primer for the Investigator. World Scientific. pp. 1–2. ISBN 978-981-281-202-5. Arguments regarding whether biomedical science can advance without the use of animals are frequently mooted and make as much sense as questioning if clinical trials are necessary before new medical therapies are allowed to be widely used in the general population [pg. 1] ...animal models are likely to remain necessary until science develops alternative models and systems that are equally sound and robust [pg. 2].
    • Jann Hau, Steven J. Schapiro (2011). "The contribution of laboratory animals to medical progress". Handbook of Laboratory Animal Science, Volume I, Third Edition: Essential Principles and Practices. CRC Press. ISBN 978-1-4200-8456-6. Animal models are required to connect [modern biological technologies] in order to understand whole organisms, both in healthy and diseased states. In turn, these animal studies are required for understanding and treating human disease [pg. 2] ...In many cases, though, there will be no substitute for whole-animal studies because of the involvement of multiple tissue and organ systems in both normal and aberrant physiological conditions [pg. 15].
    • Royal Society of Medicine (24 May 2023). "Statement of the Royal Society's position on the use of animals in research". At present the use of animals remains the only way for some areas of research to progress.
  35. ^ a b Guela C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (July 1998). "Aging renders the brain vulnerable to amyloid β-protein neurotoxicity". Nature Medicine. 4 (7): 827–831. doi:10.1038/nm0798-827. PMID 9662375. S2CID 45108486.
  36. ^ a b AIDS Reviews 2005;7:67-83 Antiretroviral Drug Studies in Nonhuman Primates: a Valid Animal Model for Innovative Drug Efficacy and Pathogenesis Experiments Archived December 17, 2008, at the Wayback Machine
  37. ^ a b Jameson BA, McDonnell JM, Marini JC, Korngold R (April 1994). "A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis". Nature. 368 (6473): 744–746. Bibcode:1994Natur.368..744J. doi:10.1038/368744a0. PMID 8152486. S2CID 4370797.
  38. ^ a b Lyuksyutova AL, Lu C-C MN, Milanesio N, King LA, Guo N, Wang Y, Nathans J, Tessier-Lavigne M, et al. (2003). "Anterior-posterior guidance of commissural axons by Wnt-Frizzled signaling". Science. 302 (5652): 1984–8. Bibcode:2003Sci...302.1984L. doi:10.1126/science.1089610. PMID 14671310. S2CID 39309990.
  39. ^ a b Taylor K, Alvarez LR (2019). "An Estimate of the Number of Animals Used for Scientific Purposes Worldwide in 2015". Alternatives to Laboratory Animals. 47 (5–6). SAGE Publications: 196–213. doi:10.1177/0261192919899853. ISSN 0261-1929. PMID 32090616. S2CID 211261775.
  40. ^ "REPORT FROM THE COMMISSION TO THE COUNCIL AND THE EUROPEAN PARLIAMENT Seventh Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union". No. Document 52013DC0859. EUR-Lex. 12 May 2013.
  41. ^ a b Hedrich, Hans, ed. (21 August 2004). "The house mouse as a laboratory model: a historical perspective". The Laboratory Mouse. Elsevier Science. ISBN 9780080542539.
  42. ^ Carbone, Larry. (2004). What Animals Want: Expertise and Advocacy in Laboratory Animal Welfare Policy.
  43. ^ "EU statistics show decline in animal research numbers". Speaking of Research. 2013. Retrieved 24 January 2016.
  44. ^ "U.S. Will No Longer Require Animal Testing for New Drugs". 13 January 2022.
  45. ^ Festing S, Wilkinson R (June 2007). "The ethics of animal research. Talking Point on the use of animals in scientific research". EMBO Reports. 8 (6): 526–530. doi:10.1038/sj.embor.7400993. ISSN 1469-221X. PMC 2002542. PMID 17545991.
  46. ^ Reddy N, Lynch B, Gujral J, Karnik K (September 2023). "Regulatory landscape of alternatives to animal testing in food safety evaluations with a focus on the western world". Regulatory Toxicology and Pharmacology. 143: 105470. doi:10.1016/j.yrtph.2023.105470. ISSN 1096-0295. PMID 37591329. S2CID 260938742.
  47. ^ Petetta F, Ciccocioppo R (November 2021). "Public perception of laboratory animal testing: Historical, philosophical, and ethical view". Addiction Biology. 26 (6): e12991. doi:10.1111/adb.12991. ISSN 1369-1600. PMC 9252265. PMID 33331099.
  48. ^ Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA (May 2021). "Organs-on-chips: into the next decade". Nature Reviews. Drug Discovery. 20 (5): 345–361. doi:10.1038/s41573-020-0079-3. hdl:1887/3151779. ISSN 1474-1784. PMID 32913334. S2CID 221621465.
  49. ^ Löwa A, Jevtić M, Gorreja F, Hedtrich S (May 2018). "Alternatives to animal testing in basic and preclinical research of atopic dermatitis". Experimental Dermatology. 27 (5): 476–483. doi:10.1111/exd.13498. ISSN 1600-0625. PMID 29356091. S2CID 3378256.
  50. ^ Madden JC, Enoch SJ, Paini A, Cronin MT (July 2020). "A Review of In Silico Tools as Alternatives to Animal Testing: Principles, Resources and Applications". Alternatives to Laboratory Animals: ATLA. 48 (4): 146–172. doi:10.1177/0261192920965977. ISSN 0261-1929. PMID 33119417. S2CID 226204296.
  51. ^ Reddy N, Lynch B, Gujral J, Karnik K (September 2023). "Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments". Food and Chemical Toxicology. 179: 113944. doi:10.1016/j.fct.2023.113944. ISSN 1873-6351. PMID 37453475. S2CID 259915886.
  52. ^ a b Croce, Pietro (1999). Vivisection or Science? An Investigation into Testing Drugs and Safeguarding Health. Zed Books, ISBN 1-85649-732-1.
  53. ^ "Vivisection". Encyclopædia Britannica. 2007. Archived from the original on 1 January 2008.
  54. ^ "Vivisection FAQ" (PDF). British Union for the Abolition of Vivisection. Archived from the original (PDF) on 13 May 2015.
  55. ^ "Vivisection". Encyclopedia.com. Retrieved 5 May 2023.
  56. ^ "Vivisection". Definition of VIVISECTION. Merriam-Webster. Retrieved 5 May 2023.
  57. ^ a b Carbone, p. 22.
  58. ^ Paixão RL, Schramm FR (1999). "Ethics and animal experimentation: what is debated?". Cadernos de Saúde Pública. 15 (Suppl 1): 99–110. doi:10.1590/s0102-311x1999000500011. PMID 10089552.
  59. ^ Yarri, Donna (2005). The Ethics of Animal Experimentation, Oxford University Press U.S., ISBN 0-19-518179-4.
  60. ^ Cohen and Loew 1984.
  61. ^ "History of nonhuman animal research". Laboratory Primate Advocacy Group. Archived from the original on 13 October 2006.
  62. ^ Abdel-Halim RE (2005). "Contributions of Ibn Zuhr (Avenzoar) to the progress of surgery: a study and translations from his book Al-Taisir". Saudi Medical Journal. 26 (9): 1333–39. PMID 16155644.
  63. ^ Abdel-Halim RE (2006). "Contributions of Muhadhdhab Al-Deen Al-Baghdadi to the progress of medicine and urology. A study and translations from his book Al-Mukhtar". Saudi Medical Journal. 27 (11): 1631–41. PMID 17106533.
  64. ^ Mock M, Fouet A (2001). "Anthrax". Annu. Rev. Microbiol. 55: 647–71. doi:10.1146/annurev.micro.55.1.647. PMID 11544370.
  65. ^ Windholz G (1987). "Pavlov as a psychologist. A reappraisal". Pavlovian J. Biol. Sci. 22 (3): 103–12. doi:10.1007/BF02734662. PMID 3309839. S2CID 141344843.
  66. ^ Kohler, Lords of the Fly, chapter 5
  67. ^ Steensma DP, Kyle Robert A., Shampo Marc A. (November 2010). "Abbie Lathrop, the "Mouse Woman of Granby": Rodent Fancier and Accidental Genetics Pioneer". Mayo Clinic Proceedings. 85 (11): e83. doi:10.4065/mcp.2010.0647. PMC 2966381. PMID 21061734.
  68. ^ Pillai S. "History of Immunology at Harvard". Harvard Medical School:About us. Harvard Medical School. Archived from the original on 20 December 2013. Retrieved 19 December 2013.
  69. ^ Gorden P (1997). "Non-insulin dependent diabetes – the past, present and future". Ann. Acad. Med. Singap. 26 (3): 326–30. PMID 9285027.
  70. ^ [2] John Cade and Lithium
  71. ^ Whalen FX, Bacon DR & Smith HM (2005) Best Pract Res Clin Anaesthesiol 19, 323
  72. ^ "Developing a medical milestone: The Salk polio vaccine". Archived from the original on 11 March 2010. Retrieved 20 June 2015. Virus-typing of polio by Salk
  73. ^ "Tireless polio research effort bears fruit and indignation". Archived from the original on 5 September 2008. Retrieved 23 August 2008. Salk polio virus
  74. ^ [3] Archived 2011-06-04 at the Wayback Machine History of polio vaccine
  75. ^ "the work on [polio] prevention was long delayed by... misleading experimental models of the disease in monkeys" | ari.info
  76. ^ Walgate R (1981). "Armadillos fight leprosy". Nature. 291 (5816): 527. Bibcode:1981Natur.291..527W. doi:10.1038/291527a0. PMID 7242665.
  77. ^ Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL (2006). "The Continuing Challenges of Leprosy". Clin. Microbiol. Rev. 19 (2): 338–81. doi:10.1128/CMR.19.2.338-381.2006. PMC 1471987. PMID 16614253.
  78. ^ Jaenisch R, Mintz B (1974). "Simian Virus 40 DNA Sequences in DNA of Healthy Adult Mice Derived from Preimplantation Blastocysts Injected with Viral DNA". Proceedings of the National Academy of Sciences of the United States of America. 71 (4): 1250–54. Bibcode:1974PNAS...71.1250J. doi:10.1073/pnas.71.4.1250. PMC 388203. PMID 4364530.
  79. ^ a b Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997). "Viable offspring derived from fetal and adult mammalian cells". Nature. 385 (6619): 810–13. Bibcode:1997Natur.385..810W. doi:10.1038/385810a0. PMID 9039911. S2CID 4260518.
  80. ^ "History of animal research". www.understandinganimalresearch.org.uk. Retrieved 8 April 2016.
  81. ^ PMPA blocks SIV in monkeys
  82. ^ PMPA is tenofovir
  83. ^ "Taste of Raspberries, Taste of Death. The 1937 Elixir Sulfanilamide Incident". FDA Consumer magazine. June 1981.
  84. ^ Burkholz H (1 September 1997). "Giving Thalidomide a Second Chance". FDA Consumer. US Food and Drug Administration.
  85. ^ Antoshechkin I, Sternberg PW (2007). "The versatile worm: genetic and genomic resources for Caenorhabditis elegans research". Nature Reviews Genetics. 8 (7): 518–32. doi:10.1038/nrg2105. PMID 17549065. S2CID 12923468.
  86. ^ Matthews KA, Kaufman TC, Gelbart WM (2005). "Research resources for Drosophila: the expanding universe". Nature Reviews Genetics. 6 (3): 179–93. doi:10.1038/nrg1554. PMID 15738962. S2CID 31002250.
  87. ^ Schulenburg H, Kurz CL, Ewbank JJ (2004). "Evolution of the innate immune system: the worm perspective". Immunological Reviews. 198: 36–58. doi:10.1111/j.0105-2896.2004.0125.x. PMID 15199953. S2CID 21541043.
  88. ^ Leclerc V, Reichhart JM (2004). "The immune response of Drosophila melanogaster". Immunological Reviews. 198: 59–71. doi:10.1111/j.0105-2896.2004.0130.x. PMID 15199954. S2CID 7395057.
  89. ^ Mylonakis E, Aballay A (2005). "Worms and flies as genetically tractable animal models to study host-pathogen interactions". Infection and Immunity. 73 (7): 3833–41. doi:10.1128/IAI.73.7.3833-3841.2005. PMC 1168613. PMID 15972468.
  90. ^ a b Kavanagh K, Reeves EP (2004). "Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens". FEMS Microbiology Reviews. 28 (1): 101–12. doi:10.1016/j.femsre.2003.09.002. PMID 14975532.
  91. ^ a b Antunes LC, Imperi F, Carattoli A, Visca P (2011). Adler B (ed.). "Deciphering the Multifactorial Nature of Acinetobacter baumannii Pathogenicity". PLOS ONE. 6 (8): e22674. Bibcode:2011PLoSO...622674A. doi:10.1371/journal.pone.0022674. PMC 3148234. PMID 21829642.
  92. ^ a b Aperis G, Fuchs BB, Anderson CA, Warner JE, Calderwood SB, Mylonakis E (2007). "Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain". Microbes and Infection / Institut Pasteur. 9 (6): 729–34. doi:10.1016/j.micinf.2007.02.016. PMC 1974785. PMID 17400503.
  93. ^ Waterfield NR, Sanchez-Contreras M, Eleftherianos I, Dowling A, Yang G, Wilkinson P, Parkhill J, Thomson N, Reynolds SE, Bode HB, Dorus S, Ffrench-Constant RH (2008). "Rapid Virulence Annotation (RVA): Identification of virulence factors using a bacterial genome library and multiple invertebrate hosts". Proceedings of the National Academy of Sciences of the United States of America. 105 (41): 15967–72. Bibcode:2008PNAS..10515967W. doi:10.1073/pnas.0711114105. PMC 2572985. PMID 18838673.
  94. ^ a b c d e f g "USDA Statistics for Animals Used in Research in the US". Speaking of Research. 20 March 2008.
  95. ^ Trull FL (1999). "More Regulation of Rodents". Science. 284 (5419): 1463. Bibcode:1999Sci...284.1463T. doi:10.1126/science.284.5419.1463. PMID 10383321. S2CID 10122407.
  96. ^ a b c d Rosenthal N, Brown S (2007). "The mouse ascending: perspectives for human-disease models". Nature Cell Biology. 9 (9): 993–99. doi:10.1038/ncb437. PMID 17762889. S2CID 4472227.
  97. ^ Mukerjee M (August 2004). "Speaking for the Animals". Scientific American. 291 (2): 96–97. Bibcode:2004SciAm.291b..96M. doi:10.1038/scientificamerican0804-96.
  98. ^ Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvák Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008). "Progress and prospects in rat genetics: a community view". Nature Genetics. 40 (5): 516–22. doi:10.1038/ng.147. PMID 18443588. S2CID 22522876.
  99. ^ Taylor K, Alvarez LR (November 2019). "An Estimate of the Number of Animals Used for Scientific Purposes Worldwide in 2015". Alternatives to Laboratory Animals. 47 (5–6): 196–213. doi:10.1177/0261192919899853. ISSN 0261-1929. PMID 32090616. S2CID 211261775.
  100. ^ Dog profile, The Humane Society of the United States
  101. ^ Smith D, Broadhead C, Descotes G, Fosse R, Hack R, Krauser K, Pfister R, Phillips B, Rabemampianina Y, Sanders J, Sparrow S, Stephan-Gueldner M, Jacobsen SD (2002). "Preclinical Safety Evaluation Using Nonrodent Species: An Industry/ Welfare Project to Minimize Dog Use". ILAR. 43 Suppl: S39-42. doi:10.1093/ilar.43.Suppl_1.S39. PMID 12388850.
  102. ^ Quianzon CC, Cheikh I (16 July 2012). "History of insulin". Journal of Community Hospital Internal Medicine Perspectives. 2 (2): 18701. doi:10.3402/jchimp.v2i2.18701. ISSN 2000-9666. PMC 3714061. PMID 23882369.
  103. ^ a b c d "Statistics of Scientific Procedures on Living Animals, Great Britain" (PDF). UK Home Office. 2017. Retrieved 23 July 2018.
  104. ^ "Germany sees 7% rise in animal research procedures in 2016". Speaking of Research. 6 February 2018.
  105. ^ "France, Italy and the Netherlands publish their 2016 statistics". Speaking of Research. 20 March 2018.
  106. ^ Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B (15 March 2021). "Application of Animal Models in Cancer Research: Recent Progress and Future Prospects". Cancer Management and Research. 13: 2455–2475. doi:10.2147/CMAR.S302565. ISSN 1179-1322. PMC 7979343. PMID 33758544.
  107. ^ Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham Da, Glennie MJ, Kelland LR (25 May 2010). "Guidelines for the welfare and use of animals in cancer research". British Journal of Cancer. 102 (11): 1555–1577. doi:10.1038/sj.bjc.6605642. ISSN 1532-1827. PMC 2883160. PMID 20502460.
  108. ^ Tsering J, Hu X (2018). "Triphala Suppresses Growth and Migration of Human Gastric Carcinoma Cells In Vitro and in a Zebrafish Xenograft Model". BioMed Research International. 2018: 7046927. doi:10.1155/2018/7046927. ISSN 2314-6141. PMC 6311269. PMID 30643816.
  109. ^ International Perspectives: The Future of Nonhuman Primate Resources, Proceedings of the Workshop Held 17–19 April, pp. 36–45, 46–48, 63–69, 197–200.
  110. ^ "Seventh Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union". Report from the Commission to the Council and the European Parliament. 12 May 2013. Retrieved 9 July 2015.
  111. ^ "U.S. primate import statistics for 2014". International Primate Protection League. Archived from the original on 4 July 2017. Retrieved 9 July 2015.
  112. ^ a b Kathleen M. Conlee, Erika H. Hoffeld and Martin L. Stephens (2004) Demographic Analysis of Primate Research in the United States, ATLA 32, Supplement 1, 315–22
  113. ^ St Fleur N (12 June 2015). "U.S. Will Call All Chimps 'Endangered'". The New York Times. The New York Times. Retrieved 9 July 2015.
  114. ^ Lutz C, Well A, Novak M (2003). "Stereotypic and Self-Injurious Behavior in Rhesus Macaques: A Survey and Retrospective Analysis of Environment and Early Experience". American Journal of Primatology. 60 (1): 1–15. doi:10.1002/ajp.10075. PMID 12766938. S2CID 19980505.
  115. ^ Chan AW, Chong KY, Martinovich C, Simerly C, Schatten G (2001). "Transgenic monkeys produced by retroviral gene transfer into mature oocytes". Science. 291 (5502): 309–12. Bibcode:2001Sci...291..309C. doi:10.1126/science.291.5502.309. PMID 11209082.
  116. ^ Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW (2008). "Towards a transgenic model of Huntington's disease in a non-human primate". Nature. 453 (7197): 921–24. Bibcode:2008Natur.453..921Y. doi:10.1038/nature06975. PMC 2652570. PMID 18488016.
  117. ^ a b The use of non-human animals in research: a guide for scientists The Royal Society, 2004, p. 1
  118. ^ a b Emborg ME (2007). "Nonhuman primate models of Parkinson's disease". ILAR Journal. 48 (4): 339–55. doi:10.1093/ilar.48.4.339. PMID 17712221.
  119. ^ McKie R (2 November 2008). "Ban on primate experiments would be devastating, scientists warn". The Observer. London.
  120. ^ "Statistics of Scientific Procedures on Living Animals, Great Britain" (PDF). British government. 2004. Retrieved 13 July 2012.
  121. ^ Statistics of Scientific Procedures on Living Animals, Great Britain, 1996 – UK Home Office, Table 13
  122. ^ "Annual Report Animals" (PDF). Aphis.usda.gov. Archived from the original (PDF) on 23 November 2020. Retrieved 6 August 2017.
  123. ^ Carbone, pp. 68–69.
  124. ^ Office of Laboratory Animal Welfare. Public Health Service Policy on Humane Care and Use of Laboratory Animals. nih.gov
  125. ^ Title 9 – Animals and Animal Products. Code of Federal Regulations. Vol. 1 (1 January 2008).
  126. ^ a b "Animal Testing and the Law – Animal Legal Defense Fund". Animal Legal Defense Fund. Archived from the original on 23 August 2017. Retrieved 14 June 2017.
  127. ^ Harden G. "USDA Inspector General Audit Report of APHIS Animal Care Program Inspection and Enforcement Activities" (PDF). United States Department of Agriculture Office of Inspector General (Report No. 33601–0001–41). Retrieved 7 July 2015.
  128. ^ Young R (September 2005). "Audit Report: APHIS Animal Care Program Inspection and Enforcement Activities" (PDF). USDA Office of Inspector General Western Region (Report No. 33002–3–SF). Retrieved 7 July 2015.
  129. ^ Hansen L, Goodman J, Chandna A (2012). "Analysis of animal research ethics committee membership at American institutions". Animals. 2 (1): 68–75. doi:10.3390/ani2010068. PMC 4494267. PMID 26486777.
  130. ^ Carbone, p. 94.
  131. ^ Plous S, Herzog H (2001). "Animal Research: Reliability of Protocol Reviews for Animal Research". Science. 293 (5530): 608–09. doi:10.1126/science.1061621. PMID 11474086. S2CID 33314019.
  132. ^ Nandi J (27 April 2012). "Scientists take on activists, want ban on live testing on animals lifted". The Times of India. Archived from the original on 27 October 2012. Retrieved 13 July 2012.
  133. ^ Taylor K, Gordon N, Langley G, Higgins W (2008). "Estimates for worldwide laboratory animal use in 2005". ATLA. 36 (3): 327–42. doi:10.1177/026119290803600310. PMID 18662096. S2CID 196613886.
  134. ^ Hunter, Robert G. (1 January 2014). "Alternatives to animal testing drive market". Gen. Eng. Biotechnol. News. Vol. 34, no. 1. p. 11. While growth has leveled off and there have been significant reductions in some countries, the number of animals used in research globally still totals almost 100 million a year.Open access icon
  135. ^ a b c d "The Ethics of research involving animals" (PDF). Nuffield Council on Bioethics. Archived from the original (PDF) on 25 June 2008.
  136. ^ "USDA publishes 2016 animal research statistics – 7% rise in animal use". Speaking of Research. 19 June 2017. Retrieved 10 December 2017.
  137. ^ Goodman J, Chandna A, Roe K (2015). "Trends in animal use at US research facilities". Journal of Medical Ethics. 41 (7): 567–69. doi:10.1136/medethics-2014-102404. PMID 25717142. S2CID 46187262. Retrieved 7 July 2015.
  138. ^ Rowan, A., Loew, F., and Weer, J. (1995) "The Animal Research Controversy. Protest, Process and Public Policy: An Analysis of Strategic Issues." Tufts University, North Grafton. cited in Carbone 2004, p. 26.
  139. ^ Alternatives to Animal Use in Research, Testing and Education, U.S. Congress Office of Technology Assessment, Washington, D.C.:Government Printing Office, 1986, p. 64. In 1966, the Laboratory Animal Breeders Association estimated in testimony before Congress that the number of mice, rats, guinea pigs, hamsters, and rabbits used in 1965 was around 60 million. (Hearings before the Subcommittee on Livestock and Feed Grains, Committee on Agriculture, U.S. House of Representatives, 1966, p. 63.)
  140. ^ a b "Animal research numbers in 2017". Understanding Animal Research. 2017.
  141. ^ "Home Office Statistics for Animals Used in Research in the UK". Speaking of Research. 23 October 2012.
  142. ^ a b Russell, W. M. S. (William Moy Stratton), Health JB (1992). The principles of humane experimental technique (Special ed.). South Mimms, Potters Bar, Herts, England: Universities Federation for Animal Welfare. ISBN 0-900767-78-2. OCLC 27347928. Archived from the original on 27 September 2011. Retrieved 16 August 2013.
  143. ^ Badyal D., Desai C. (2014). "Animal use in pharmacology education and research: The changing scenario". Indian Journal of Pharmacology. 46 (3): 257–65. doi:10.4103/0253-7613.132153. PMC 4071700. PMID 24987170.
  144. ^ "2009 CCAC Survey of Animal Use" (PDF). Canadian Council on Animal Care. December 2010. Archived from the original (PDF) on 7 June 2015. Retrieved 7 July 2015.
  145. ^ Merkes M, Buttrose R. "New code, same suffering: animals in the lab". ABC. The Drum. Retrieved 7 July 2015.
  146. ^ Even D (29 May 2013). "Number of animal experiments up for first time since 2008". Haaretz. Retrieved 7 July 2015.
  147. ^ "Rise in animal research in South Korea in 2017". Speaking of Research. 20 April 2018. Retrieved 23 July 2017.
  148. ^ "Number of laboratory animals in Germany". Max-Planck-Gesellschaft. Retrieved 7 July 2015.
  149. ^ Kong Q, Qin C (2009). "Analysis of current laboratory animal science policies and administration in China". ILAR. 51 (1): e1–e11. doi:10.1093/ilar.51.1.e1. PMID 20075493.
  150. ^ Invertebrate Animal Resources Archived 25 October 2007 at the Wayback Machine. National Center for Research Resources. ncrr.nih.gov
  151. ^ "Who's Who of Federal Oversight of Animal Issues". Aesop-project.org. Archived from the original on 22 September 2007.
  152. ^ Collins FS, Rossant J, Wurst W (2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  153. ^ a b Gillham, Christina (17 February 2006). "Bought to be sold", Newsweek.
  154. ^ Class B dealers Archived 29 April 2010 at the Wayback Machine, Humane Society of the United States.
  155. ^ "Who's Who of Federal Oversight of Animal Issues" Archived 22 September 2007 at the Wayback Machine, Aesop Project.
  156. ^ Salinger, Lawrence and Teddlie, Patricia. "Stealing Pets for Research and Profit: The Enforcement (?) of the Animal Welfare Act" Archived 16 January 2013 at archive.today, paper presented at the annual meeting of the American Society of Criminology, Royal York, Toronto, 15 October 2006
  157. ^ Reitman, Judith (1995) Stolen for Profit, Zebra, ISBN 0-8217-4951-X.
  158. ^ Moran, Julio (12 September 1991) "Three Sentenced to Prison for Stealing Pets for Research," L.A. Times.
  159. ^ Francione, Gary. Animals, Property, and the Law. Temple University Press, 1995, p. 192; Magnuson, Warren G., Chairman. "Opening remarks in hearings prior to enactment of Pub. L. 89-544, the Laboratory Animal Welfare Act," U.S. Senate Committee on Commerce, 25 March 1966.
  160. ^ Notorious Animal Dealer Loses License and Pays Record Fine, The Humane Society of the United States
  161. ^ Animal Testing: Where Do the Animals Come From?. American Society for the Prevention of Cruelty to Animals. According to the ASPCA, the following states prohibit shelters from providing animals for research: Connecticut, Delaware, Hawaii, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, South Carolina, Vermont, and West Virginia.
  162. ^ "Council Directive 86/609/EEC of 24 November 1986". Eur-lex.europa.eu. 24 November 1986.
  163. ^ "Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes Text with EEA relevance". Eur-lex.europa.eu. 22 September 2010.
  164. ^ Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Archived 31 July 2007 at the Wayback Machine Department for Environment, Food and Rural Affairs
  165. ^ a b ""Statistics of Scientific Procedures on Living Animals", Statistics of Scientific Procedures on Living Animals, Home Office" (PDF). 2004. p. 87.
  166. ^ U.S. Primate Imports Spike International Primate Protection League April 2007
  167. ^ Duncan IJ, Petherick JC (1991). "The implications of cognitive processes for animal welfare". Journal of Animal Science. 69 (12): 5017–22. doi:10.2527/1991.69125017x. PMID 1808195.
  168. ^ Curtis SE, Stricklin WR (1991). "The importance of animal cognition in agricultural animal production systems: an overview". Journal of Animal Science. 69 (12): 5001–07. doi:10.2527/1991.69125001x. PMID 1808193.
  169. ^ Carbone, p. 149.
  170. ^ Rollin drafted the 1985 Health Research Extension Act and an animal welfare amendment to the 1985 Food Security Act: see Rollin, Bernard. "Animal research: a moral science. Talking Point on the use of animals in scientific research", EMBO Reports 8, 6, 2007, pp. 521–25
  171. ^ a b Rollin, Bernard. The Unheeded Cry: Animal Consciousness, Animal Pain, and Science. New York: Oxford University Press, 1989, pp. xii, 117–18, cited in Carbone 2004, p. 150.
  172. ^ Griffin DR, Speck GB (2004). "New evidence of animal consciousness". Animal Cognition. 7 (1): 5–18. doi:10.1007/s10071-003-0203-x. PMID 14658059. S2CID 8650837.
  173. ^ Allen C (1998). "Assessing animal cognition: ethological and philosophical perspectives". Journal of Animal Science. 76 (1): 42–47. doi:10.2527/1998.76142x. PMID 9464883.
  174. ^ "Smarter Than You Think: Renowned Canine Researcher Puts Dogs' Intelligence on Par with 2-Year-Old Human". www.apa.org. Retrieved 5 May 2023.
  175. ^ "Animal Welfare Act 1999". Parliamentary Counsel Office. 2015. Retrieved 23 January 2016.
  176. ^ "Norwegian animal welfare act". Animal Legal and Historical Center. 2011. Retrieved 25 January 2016.
  177. ^ "Guide for the Care and Use of Laboratory Animals", ILAR, National Research Council, National Academies Press, 1996, p. 64, ISBN 0-309-05377-3.
  178. ^ "How to Work With Your Institutional Animal Care and Use Committee (IACUC)". ori.hhs.gov.
  179. ^ Klabukov I, Shestakova V, Krasilnikova O, Smirnova A, Abramova O, Baranovskii D, Atiakshin D, Kostin AA, Shegay P, Kaprin AD (2023). "Refinement of Animal Experiments: Replacing Traumatic Methods of Laboratory Animal Marking with Non-Invasive Alternatives". Animals. 13 (22): 3452. doi:10.3390/ani13223452. ISSN 2076-2615. PMC 10668729. PMID 38003070.
  180. ^ Lindner E, Fuelling O (2002). "Marking methods in small mammals: ear-tattoo as an alternative to toe-clipping". Journal of Zoology. 256 (2): 159–163. doi:10.1017/S0952836902000195. ISSN 0952-8369.
  181. ^ Devolder K, Eggel M (2019). "No Pain, No Gain? In Defence of Genetically Disenhancing (Most) Research Animals". Animals. 9 (4): 154. doi:10.3390/ani9040154. PMC 6523187. PMID 30970545.
  182. ^ a b Flecknell P (2002). "Replacement, reduction and refinement". ALTEX. 19 (2): 73–78. PMID 12098013.
  183. ^ Animal Procedures Committee: review of cost-benefit assessment in the use of animals in research Archived 27 February 2008 at the Wayback Machine The Animal Procedures Committee, June 2003 p46-7
  184. ^ Carbone, Larry. "Euthanasia," in Bekoff, M. and Meaney, C. Encyclopedia of Animal Rights and Welfare. Greenwood Publishing Group, pp. 164–66, cited in Carbone 2004, pp. 189–90.
  185. ^ Cooper D (11 June 2017). ""Euthanasia Guidelines", Research animal resources". University of Minnesota.
  186. ^ Close B, Banister K, Baumans V, Bernoth EM, Bromage N, Bunyan J, Erhardt W, Flecknell P, Gregory N, Hackbarth H, Morton D, Warwick C (1996). "Recommendations for euthanasia of experimental animals: Part 1". Laboratory Animals. 30 (4): 293–316 (295). doi:10.1258/002367796780739871. PMID 8938617.
  187. ^ "Guide for the Care and Use of Laboratory Animals", ILAR, National Research Council, National Academies Press, 1996, p. 65, ISBN 0-309-05377-3.
  188. ^ Diaz SL (2020). "Conducting and reporting animal experimentation: Quo vadis?". European Journal of Neuroscience. 52 (6): 3493–3498. doi:10.1111/ejn.14091. hdl:11336/88084. ISSN 0953-816X. PMID 30058230. S2CID 51865025.
  189. ^ "AVMA Guidelines on Euthanasia, June 2007 edition, Report of the AVMA Panel on Euthanasia" (PDF). Avma.org. Archived from the original (PDF) on 15 August 2011.
  190. ^ a b "Select Committee on Animals in Scientific Procedures Report", House of Lords, 16 July 2002. See chapter 3: "The purpose and nature of animal experiments." Retrieved 6 July 2010.
  191. ^ a b Job CK (2003). "Nine-banded armadillo and leprosy research". Indian Journal of Pathology & Microbiology. 46 (4): 541–50. PMID 15025339.
  192. ^ Venken KJ, Bellen HJ (2005). "Emerging technologies for gene manipulation in Drosophila melanogaster". Nature Reviews Genetics. 6 (3): 167–78. doi:10.1038/nrg1553. PMID 15738961. S2CID 21184903.
  193. ^ Sung YH, Song J, Lee HW (2004). "Functional genomics approach using mice". Journal of Biochemistry and Molecular Biology. 37 (1): 122–32. doi:10.5483/BMBRep.2004.37.1.122. PMID 14761310.
  194. ^ Janies D, DeSalle R (1999). "Development, evolution, and corroboration". The Anatomical Record. 257 (1): 6–14. doi:10.1002/(SICI)1097-0185(19990215)257:1<6::AID-AR4>3.0.CO;2-I. PMID 10333399. S2CID 23492348.
  195. ^ Akam M (1995). "Hox genes and the evolution of diverse body plans". Philosophical Transactions of the Royal Society B. 349 (1329): 313–19. Bibcode:1995RSPTB.349..313A. doi:10.1098/rstb.1995.0119. PMID 8577843.
  196. ^ Prasad BC, Reed RR (1999). "Chemosensation: Molecular mechanisms in worms and mammals". Trends in Genetics. 15 (4): 150–53. doi:10.1016/S0168-9525(99)01695-9. PMID 10203825.
  197. ^ Schafer WR (2006). "Neurophysiological methods in C. elegans: an introduction". WormBook: 1–4. doi:10.1895/wormbook.1.113.1. PMC 4780964. PMID 18050439.
  198. ^ Yamamuro Y (2006). "Social behavior in laboratory rats: Applications for psycho-neuroethology studies". Animal Science Journal. 77 (4): 386–94. doi:10.1111/j.1740-0929.2006.00363.x.
  199. ^ Marler P., Slabbekoorn H, Nature's Music: The Science of Birdsong, Academic Press, 2004. ISBN 0-12-473070-1[page needed]
  200. ^ For example "in addition to providing the chimpanzees with enrichment, the termite mound is also the focal point of a tool-use study being conducted", from the web page of the Lincoln Park Zoo. Retrieved 25 April 2007.
  201. ^ Festing, M., "Inbred Strains of Mice and their Characteristics", The Jackson Laboratory . Retrieved 30 January 2008.
  202. ^ Peichel CL (2005). "Fishing for the secrets of vertebrate evolution in threespine sticklebacks". Developmental Dynamics. 234 (4): 815–23. doi:10.1002/dvdy.20564. PMID 16252286.
  203. ^ Peichel CL, Nereng KS, Ohgi KA, Cole BL, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM (2001). "The genetic architecture of divergence between threespine stickleback species" (PDF). Nature. 414 (6866): 901–05. Bibcode:2001Natur.414..901P. doi:10.1038/414901a. PMID 11780061. S2CID 4304296.
  204. ^ Ramaswamy S, McBride JL, Kordower JH (2007). "Animal models of Huntington's disease". ILAR Journal. 48 (4): 356–73. doi:10.1093/ilar.48.4.356. PMID 17712222.
  205. ^ Rees DA, Alcolado JC (2005). "Animal models of diabetes mellitus". Diabetic Medicine. 22 (4): 359–70. doi:10.1111/j.1464-5491.2005.01499.x. PMID 15787657.
  206. ^ Iwakuma T, Lozano G (2007). "Crippling p53 activities via knock-in mutations in mouse models". Oncogene. 26 (15): 2177–84. doi:10.1038/sj.onc.1210278. PMID 17401426.
  207. ^ Frese KK, Tuveson DA (2007). "Maximizing mouse cancer models". Nature Reviews Cancer. 7 (9): 645–58. doi:10.1038/nrc2192. PMID 17687385. S2CID 6490409.
  208. ^ Dunham SP (2006). "Lessons from the cat: development of vaccines against lentiviruses". Veterinary Immunology and Immunopathology. 112 (1–2): 67–77. doi:10.1016/j.vetimm.2006.03.013. PMID 16678276.
  209. ^ Vail DM, MacEwen EG (2000). "Spontaneously occurring tumors of companion animals as models for human cancer". Cancer Investigation. 18 (8): 781–92. doi:10.3109/07357900009012210. PMID 11107448. S2CID 32489790.
  210. ^ a b Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K (1999). "Experimental models of Parkinson's disease: insights from many models". Laboratory Animal Science. 49 (4): 363–71. PMID 10480640.
  211. ^ Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I (2004). "Where is the evidence that animal research benefits humans?". BMJ. 328 (7438). Reviewing Animal Trials Systematically (RATS) Group: 514–47. doi:10.1136/bmj.328.7438.514. PMC 351856. PMID 14988196.
  212. ^ Langley, Gill (2006) next of kin...A report on the use of primates in experiments Archived 27 February 2008 at the Wayback Machine, BUAV.
  213. ^ The History of Deep Brain Stimulation Archived 31 March 2017 at the Wayback Machine. parkinsonsappeal.com
  214. ^ Platt JL, Lin SS (1998). "The future promises of xenotransplantation". Annals of the New York Academy of Sciences. 862 (1): 5–18. Bibcode:1998NYASA.862....5P. doi:10.1111/j.1749-6632.1998.tb09112.x. PMID 9928201. S2CID 72941995.
  215. ^ a b Schuurman HJ, Pierson RN (2008). "Progress towards clinical xenotransplantation". Frontiers in Bioscience. 13 (13): 204–20. doi:10.2741/2671. PMID 17981539.
  216. ^ Valdés-González RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Dávila-Pérez R, Elliott RB, Terán L, White DJ (2005). "Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study". European Journal of Endocrinology. 153 (3): 419–27. doi:10.1530/eje.1.01982. PMID 16131605.
  217. ^ Valdés-González RA, White DJ, Dorantes LM, Terán L, Garibay-Nieto GN, Bracho-Blanchet E, Dávila-Pérez R, Evia-Viscarra L, Ormsby CE, Ayala-Sumuano JT, Silva-Torres ML, Ramírez-González B (2007). "Three-yr follow-up of a type 1 diabetes mellitus patient with an islet xenotransplant". Clinical Transplantation. 21 (3): 352–57. doi:10.1111/j.1399-0012.2007.00648.x. PMID 17488384. S2CID 22668776.
  218. ^ Townsend, Mark (20 April 2003). "Exposed: secrets of the animal organ lab" Archived 6 July 2008 at the Wayback Machine, The Guardian.
  219. ^ Curtis, Polly (11 July 2003). "Home Office under renewed fire in animal rights row", The Guardian.
  220. ^ a b Household Product Tests Archived 27 February 2008 at the Wayback Machine BUAV
  221. ^ Fifth Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union, Commission of the European Communities, published November 2007
  222. ^ a b c Abbott A (2005). "Animal testing: More than a cosmetic change" (PDF). Nature. 438 (7065): 144–46. Bibcode:2005Natur.438..144A. doi:10.1038/438144a. PMID 16281001. S2CID 4422086. Archived from the original (PDF) on 27 February 2008.
  223. ^ Watkins JB (1989). "Exposure of rats to inhalational anesthetics alters the hepatobiliary clearance of cholephilic xenobiotics". The Journal of Pharmacology and Experimental Therapeutics. 250 (2): 421–27. PMID 2760837.
  224. ^ Watt JA, Dickinson RG (1990). "The effect of diethyl ether, pentobarbitone and urethane anaesthesia on diflunisal conjugation and disposition in rats". Xenobiotica. 20 (3): 289–301. doi:10.3109/00498259009046848. PMID 2336839.
  225. ^ "Testing of chemicals – OECD". www.oecd.org. Retrieved 23 May 2022.
  226. ^ Walum E (1998). "Acute oral toxicity". Environmental Health Perspectives. 106 (Suppl 2): 497–503. doi:10.2307/3433801. JSTOR 3433801. PMC 1533392. PMID 9599698.
  227. ^ Inter-Governmental Organization Eliminates the LD50 Test, The Humane Society of the United States (2003-02-05)
  228. ^ "OECD guideline 405, Organisation for Economic Co-operation and Development" (PDF). Archived from the original (PDF) on 27 February 2008. Retrieved 6 April 2015.
  229. ^ Species Used in Research: Rabbit, Humane Society of the United States
  230. ^ Wilhelmus KR (2001). "The Draize eye test". Survey of Ophthalmology. 45 (6): 493–515. doi:10.1016/S0039-6257(01)00211-9. PMID 11425356.
  231. ^ Secchi A, Deligianni V (2006). "Ocular toxicology: the Draize eye test". Current Opinion in Allergy and Clinical Immunology. 6 (5): 367–72. doi:10.1097/01.all.0000244798.26110.00. PMID 16954791. S2CID 24972694.
  232. ^ a b Draize rabbit eye test replacement milestone welcomed. Dr Hadwen Trust (2009-09-21)
  233. ^ Toxicity Testing for Assessment of Environmental Agents" National Academies Press, (2006), p. 21.
  234. ^ Hartung T (2009). "Toxicology for the twenty-first century". Nature. 460 (7252): 208–12. Bibcode:2009Natur.460..208H. doi:10.1038/460208a. PMID 19587762. S2CID 851143.
  235. ^ "Where is the toxicology for the twenty-first century?". Pro-Test Italia. 2013. Retrieved 30 January 2014.
  236. ^ Smith LL (2001). "Key challenges for toxicologists in the 21st century". Trends Pharmacol. Sci. 22 (6): 281–85. doi:10.1016/S0165-6147(00)01714-4. PMID 11395155.
  237. ^ Brown SL, Brett SM, Gough M, Rodricks JV, Tardiff RG, Turnbull D (1988). "Review of interspecies risk comparisons". Regul. Toxicol. Pharmacol. 8 (2): 191–206. doi:10.1016/0273-2300(88)90028-1. PMID 3051142.
  238. ^ Burden N, Sewell F, Chapman K (2015). "Testing Chemical Safety: What Is Needed to Ensure the Widespread Application of Non-animal Approaches?". PLOS Biol. 13 (5): e1002156. doi:10.1371/journal.pbio.1002156. PMC 4446337. PMID 26018957.
  239. ^ Moczko E, Mirkes EM, Cáceres C, Gorban AN, Piletsky S (2016). "Fluorescence-based assay as a new screening tool for toxic chemicals". Scientific Reports. 6: 33922. Bibcode:2016NatSR...633922M. doi:10.1038/srep33922. PMC 5031998. PMID 27653274.
  240. ^ Stephens, Martin & Rowan, Andrew. An overview of Animal Testing Issues, Humane Society of the United States
  241. ^ "Cosmetics animal testing in the EU". Archived from the original on 30 December 2020. Retrieved 5 December 2018.
  242. ^ Engebretson, Monica (16 March 2014). "India Joins the EU and Israel in Surpassing the US in Cruelty-Free Cosmetics Testing Policy". The World Post.
  243. ^ "Cruelty Free International Applauds Congressman Jim Moran for Bill to End Cosmetics Testing on Animals in the United States" (Press release). 5 March 2014. Archived from the original on 18 March 2014.
  244. ^ Fox, Stacy (10 March 2014). "Animal Attraction: Federal Bill to End Cosmetics Testing on Animals Introduced in Congress" (Press release). Humane Society of the United States. Archived from the original on 11 March 2014.
  245. ^ a b Osborn, Andrew & Gentleman, Amelia."Secret French move to block animal-testing ban", The Guardian (19 August 2003). Retrieved 27 February 2008.
  246. ^ Mohan V (14 October 2014). "India bans import of cosmetics tested on animals". The Times of India. Retrieved 14 October 2014.
  247. ^ "EU Directive 2001/83/EC, p. 44". Eur-lex.europa.eu.
  248. ^ "EU Directive 2001/83/EC, p. 45". Eur-lex.europa.eu.
  249. ^ Patronek G, Rauch A (1 January 2007). "Systematic review of comparative studies examining alternatives to the harmful use of animals in biomedical education". Journal of the American Veterinary Medical Association. 230 (1): 37–43. doi:10.2460/javma.230.1.37. PMID 17199490.
  250. ^ Hart L, Hart B, Wood M (2008). Why Dissection: Animal Use in Education. Westport: Greenwood Press. ISBN 978-0-313-32390-4.
  251. ^ Orlans B, Beauchamp T, Dresser R, Morton D, Gluck J (1998). The Human Use of Animals. Oxford University Press. pp. 213. ISBN 978-0-19-511908-4.
  252. ^ Downey M (25 June 2013). "Should students dissect animals or should schools move to virtual dissections?". The Atlanta Journal-Constitution. Retrieved 7 July 2015.
  253. ^ Pulla P (6 August 2014). "Dissections banned in Indian universities". Science. Retrieved 7 July 2015.
  254. ^ Shine N. "The Battle Over High School Animal Dissection". Pacific Standard. Retrieved 7 July 2015.
  255. ^ "Invertebrates in Education and Conservation Conference | Department of Neuroscience". Neurosci.arizona.edu. Archived from the original on 15 December 2018. Retrieved 6 April 2015.
  256. ^ Dalal R, Even M, Sandusky C, Barnard N (August 2005). "Replacement Alternatives in Education: Animal-Free Teaching" (Abstract from Fifth World Congress on Alternatives and Animal Use in the Life Sciences, Berlin). The Physicians Committee for Responsible Medicine. Archived from the original on 22 July 2014. Retrieved 9 April 2015.
  257. ^ "The NORINA database of alternatives". Oslovet.norecopa.no. Retrieved 6 April 2015.
  258. ^ "Welcome". Interniche.org. Retrieved 6 April 2015.
  259. ^ a b "Row over US mobile phone 'cockroach backpack' app". BBC News. 9 November 2013. Retrieved 9 November 2013.
  260. ^ Hamilton, Anita (1 November 2013). "Resistance is Futile: PETA Attempts to Halt the Sale of Remote-Controlled Cyborg Cockroaches". Time. Retrieved 10 November 2013.
  261. ^ Brook, Tom Vanden, "Brain Study, Animal Rights Collide", USA Today (7 April 2009), p. 1.
  262. ^ a b Kelly J (7 March 2013). "Who, What, Why: Does shooting goats save soldiers' lives?". BBC News Magazine.
  263. ^ Londoño E (24 February 2013). "Military is required to justify using animals in medic training after pressure from activists". The Washington Post. Archived from the original on 15 December 2013.
  264. ^ Vergakis B (14 February 2014). "Coast Guard reduces use of live animals in training". Archived from the original on 9 July 2015. Retrieved 7 July 2015.
  265. ^ Bender B (12 November 2014). "Military to curtail use of live animals in medical training". Boston Globe. Retrieved 7 July 2015.
  266. ^ Champaco B (15 August 2013). "PETA: Madigan Army Medical Center Has Stopped 'Cruel' Ferret-Testing". Patch. Retrieved 7 July 2015.
  267. ^ "Use of Laboratory Animals in Biomedical and Behavioral Research", Institute for Laboratory Animal Research, The National Academies Press, 1988 ISBN 0-309-07878-4.
  268. ^ Cooper, Sylvia (1 August 1999). "Pets crowd animal shelter" Archived 2 February 2014 at the Wayback Machine, The Augusta Chronicle.
  269. ^ "Science, Medicine, and Animals", Institute for Laboratory Animal Research, Published by the National Research Council of the National Academies 2004, p. 2
  270. ^ "About". Peta.org. Retrieved 6 April 2015.
  271. ^ "UK Legislation: A Criticism" (PDF). Archived from the original (PDF) on 25 June 2008. Retrieved 6 April 2015.
  272. ^ "FAQs: Vivisection" (PDF). British Union for the Abolition of Vivisection. Archived from the original (PDF) on 13 May 2015. Retrieved 6 April 2015.
  273. ^ "Biomedical Research: The Humane Society of the United States". Humanesociety.org. Archived from the original on 30 September 2020. Retrieved 6 April 2015.
  274. ^ "Animal Testing and Animal Experimentation Issues | Physicians Committee". Pcrm.org. Archived from the original on 23 July 2011. Retrieved 6 April 2015.
  275. ^ Rollin BE (2006). "The regulation of animal research and the emergence of animal ethics: A conceptual history" (PDF). Theoretical Medicine and Bioethics. 27 (4): 285–304. doi:10.1007/s11017-006-9007-8. PMID 16937023. S2CID 18620094. Archived from the original (PDF) on 8 October 2020. Retrieved 4 December 2019.
  276. ^ Riffkin R (18 May 2015). "In U.S., More Say Animals Should Have Same Rights as People". Gallup. Retrieved 7 July 2015.
  277. ^ Funk C, Rainie L (29 January 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Retrieved 7 July 2015.
  278. ^ Singer, Peter (ed.). "A Companion to Ethics". Blackwell Companions to Philosophy, 1991.
  279. ^ a b Chapter 14, Discussion of ethical issues, p . 244 Archived 28 September 2011 at the Wayback Machine in: The ethics of research involving animals Archived 29 April 2011 at the Wayback Machine at the Nuffield Council on Bioethics. Published 25 May 2005
  280. ^ George R. "Donald Watson 2002 Unabridged Interview" (PDF). Archived (PDF) from the original on 27 October 2019.
  281. ^ Rollin, Bernard E. (1998) "The moral status of animals and their use as experimental subjects," in Kuhse, Helga and Singer, Peter (eds.). "A Companion to Bioethics". Blackwell Publishing, ISBN 0-631-23019-X.
  282. ^ Bebarta V, Luyten D, Heard K (2003). "Emergency medicine animal research: does use of randomization and blinding affect the results?". Academic Emergency Medicine. 10 (6): 684–87. doi:10.1111/j.1553-2712.2003.tb00056.x. PMID 12782533.
  283. ^ Macleod MR, van der Worp HB, Sena ES, Howells DW, Dirnagl U, Donnan GA (2008). "Evidence for the efficacy of NXY-059 in experimental focal cerebral ischaemia is confounded by study quality". Stroke. 39 (10): 2824–29. doi:10.1161/strokeaha.108.515957. PMID 18635842.
  284. ^ Sena E, Wheble P, Sandercock P, Macleod M (2007). "Systematic review and meta-analysis of the efficacy of tirilazad in experimental stroke". Stroke. 38 (2): 388–94. doi:10.1161/01.str.0000254462.75851.22. PMID 17204689.
  285. ^ Hirst JA, Howick J, Aronson J, Roberts N, Perera R, Koshiaris C, Heneghan C (2014). "The Need for Randomization in Animal Trials: An Overview of Systematic Reviews". PLOS ONE. 9 (6): e98856. Bibcode:2014PLoSO...998856H. doi:10.1371/journal.pone.0098856. PMC 4048216. PMID 24906117.
  286. ^ Van der Worp B, Sena E, Porritt M, Rewell S, O'Collins V, Macleod MR (2010). "Can Animal Models of Disease Reliably Inform Human Studies?". PLOS Med. 7 (3): e1000245. doi:10.1371/journal.pmed.1000245. PMC 2846855. PMID 20361020.
  287. ^ Gagneux P, Moore JJ, Varki A (2005). "The ethics of research on great apes". Nature. 437 (7055): 27–29. Bibcode:2005Natur.437...27G. doi:10.1038/437027a. PMID 16136111. S2CID 11500691.
  288. ^ Vermij P (2003). "Europe's last research chimps to retire". Nature Medicine. 9 (8): 981. doi:10.1038/nm0803-981b. PMID 12894144. S2CID 9892510.
  289. ^ St Fleur N (12 June 2015). "U.S. Will Call All Chimps 'Endangered'". The New York Times. Retrieved 7 July 2015.
  290. ^ Kaiser J (26 June 2013). "NIH Will Retire Most Research Chimps, End Many Projects". sciencemag.org. Retrieved 7 July 2015.
  291. ^ "Summary of House of Lords Select Committee on Animals in Scientific Procedures". UK Parliament. 24 July 2002. Retrieved 13 July 2012.
  292. ^ 韓国・食薬庁で「実験動物慰霊祭」挙行 Archived 29 August 2007 at the Wayback Machine
  293. ^ Huxley AF, Simmons RM (1971). "Proposed Mechanism of Force Generation in Striated Muscle". Nature. 233 (5321): 533–38. Bibcode:1971Natur.233..533H. doi:10.1038/233533a0. PMID 4939977. S2CID 26159256.
  294. ^ Gordon AM, Huxley AF, Julian FJ (1966). "The variation in isometric tension with sarcomere length in vertebrate muscle fibres". The Journal of Physiology. 184 (1): 170–92. doi:10.1113/jphysiol.1966.sp007909. PMC 1357553. PMID 5921536.
  295. ^ Ford LE, Huxley AF, Simmons RM (1985). "Tension transients during steady shortening of frog muscle fibres". The Journal of Physiology. 361 (1): 131–50. doi:10.1113/jphysiol.1985.sp015637. PMC 1192851. PMID 3872938.
  296. ^ Lutz GJ, Lieber RL (2000). "Myosin isoforms in anuran skeletal muscle: Their influence on contractile properties and in vivo muscle function". Microscopy Research and Technique. 50 (6): 443–57. doi:10.1002/1097-0029(20000915)50:6<443::AID-JEMT3>3.0.CO;2-5. PMID 10998635. S2CID 3477585.
  297. ^ Liber, R. L. (2002). Skeletal Muscle Structure, Function, and Plasticity: The Physiological Basis of Rehabilitation, 2nd ed. Lippincott Williams & Wilkins, ISBN 978-0-7817-3061-7.
  298. ^ Franklin, Ben A. (30 August 1987) "Going to Extremes for 'Animal Rights'", The New York Times.
  299. ^ Holden C (1986). "A pivotal year for lab animal welfare". Science. 232 (4747): 147–50. Bibcode:1986Sci...232..147H. doi:10.1126/science.3952503. PMID 3952503.
  300. ^ Laville, Sandra (8 February 2005). "Lab monkeys 'scream with fear' in tests", The Guardian.
  301. ^ "Columbia in animal cruelty dispute", CNN (2003-10-12)
  302. ^ Benz, Kathy and McManus, Michael (17 May 2005). PETA accuses lab of animal cruelty, CNN.
  303. ^ Scott, Luci (1 April 2006). "Probe leads to Covance fine", The Arizona Republic. Retrieved 8 March 2021.
  304. ^ Huggett B (2008). "When animal rights turns ugly". Nature Biotechnology. 26 (6): 603–05. doi:10.1038/nbt0608-603. PMID 18536673. S2CID 8006958.
  305. ^ Malone BJ, Kumar VR, Ringach DL (2007). "Dynamics of Receptive Field Size in Primary Visual Cortex". Journal of Neurophysiology. 97 (1): 407–14. CiteSeerX 10.1.1.133.3969. doi:10.1152/jn.00830.2006. PMID 17021020.
  306. ^ Epstein, David (22 August 2006). Throwing in the Towel Archived 27 November 2020 at the Wayback Machine, Inside Higher Education
  307. ^ Predators Unleashed, Investor's Business Daily (2006-08-24)
  308. ^ McDonald, Patrick Range (8 August 2007). UCLA Monkey Madness, LA Weekly.
  309. ^ "It's a Dog's Life", Countryside Undercover, Channel Four Television, UK (26 March 1997).
  310. ^ "It's a dog's life" Archived 8 March 2012 at the Wayback Machine, Small World Productions (2005). Retrieved 6 July 2010.
  311. ^ "A controversial laboratory". BBC News. 18 January 2001. Retrieved 13 July 2012.
  312. ^ Broughton, Zoe (March 2001). "Seeing Is Believing – cruelty to dogs at Huntingdon Life Sciences", The Ecologist.
  313. ^ "From push to shove" Archived 22 November 2009 at the Wayback Machine, Southern Poverty Law Group Intelligence Report, Fall 2002
  314. ^ Lewis, John E. "Statement of John Lewis", US Senate Committee on Environment and Public Works, 26 October 2005, accessed 17 January 2011.
  315. ^ Evers, Marco. "Resisting the Animal Avengers", Part 1, Part 2, Der Spiegel, 19 November 2007.
  316. ^ Weaver, Matthew. "Animal rights activists jailed for terrorising suppliers to Huntingdon Life Sciences", The Guardian, 25 October 2010.
  317. ^ Herbert, Ian (27 January 2007). "Collapse in support for animal rights extremist attacks", The Independent.
  318. ^ Knight A (May 2008). "Systematic reviews of animal experiments demonstrate poor contributions toward human healthcare". Reviews on Recent Clinical Trials. 3 (2): 89–96. doi:10.2174/157488708784223844. ISSN 1574-8871. PMID 18474018.
  319. ^ a b Greek R, Menache A (11 January 2013). "Systematic Reviews of Animal Models: Methodology versus Epistemology". International Journal of Medical Sciences. 10 (3): 206–21. doi:10.7150/ijms.5529. ISSN 1449-1907. PMC 3558708. PMID 23372426.
  320. ^ a b c Bracken MB (1 March 2009). "Why animal studies are often poor predictors of human reactions to exposure". Journal of the Royal Society of Medicine. 102 (3): 120–22. doi:10.1258/jrsm.2008.08k033. ISSN 0141-0768. PMC 2746847. PMID 19297654.
  321. ^ Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I (28 February 2004). "Where is the evidence that animal research benefits humans?". BMJ: British Medical Journal. 328 (7438): 514–17. doi:10.1136/bmj.328.7438.514. ISSN 0959-8138. PMC 351856. PMID 14988196.
  322. ^ Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, Macleod M, Mignini LE, Jayaram P, Khan KS (25 January 2007). "Comparison of treatment effects between animal experiments and clinical trials: systematic review". BMJ. 334 (7586): 197. doi:10.1136/bmj.39048.407928.BE. ISSN 0959-8138. PMC 1781970. PMID 17175568.
  323. ^ Schulz KF, Chalmers I, Altman DG (5 February 2002). "The Landscape and Lexicon of Blinding in Randomized Trials". Annals of Internal Medicine. 136 (3): 254–59. doi:10.7326/0003-4819-136-3-200202050-00022. ISSN 0003-4819. PMID 11827510. S2CID 34932997.
  324. ^ Triunfol M, Gouveia FC (15 June 2021). Bero L (ed.). "What's not in the news headlines or titles of Alzheimer disease articles? #InMice". PLOS Biology. 19 (6): e3001260. doi:10.1371/journal.pbio.3001260. ISSN 1545-7885. PMC 8205157. PMID 34129637.
  325. ^ "White Coat Waste Project". Retrieved 8 March 2022.
  326. ^ "Should dogs be guinea pigs in government research? A bipartisan group says no". The Washington Post. 15 November 2016.
  327. ^ "WCW EXPOSÉ: FAUCI SPENT $424K ON BEAGLE EXPERIMENTS, DOGS BITTEN TO DEATH BY FLIES". 30 July 2021.
  328. ^ "PETA calls for Dr. Fauci to resign: 'Our position is clear'". Fox News. 5 November 2021.
  329. ^ "Experimenters Fed Puppies' Heads to Infected Flies, but That's Not All Fauci's NIH Funded". 25 October 2021.
  330. ^ a b Croce, Pietro. Vivisection or Science? An Investigation into Testing Drugs and Safeguarding Health. Zed Books, 1999, ISBN 1-85649-732-1 p. 11.
  331. ^ a b Bernard, Claude An Introduction to the Study of Experimental Medicine, 1865. First English translation by Henry Copley Greene, published by Macmillan & Co., Ltd., 1927; reprinted in 1949, p. 125.
  332. ^ Ryder, Richard D. (2000). Animal Revolution: Changing Attitudes Towards Speciesism. Berg Publishers, p. 54 ISBN 1-85973-330-1.
  333. ^ a b c "Animal Experimentation: A Student Guide to Balancing the Issues", Australian and New Zealand Council for the Care of Animals in Research and Teaching (ANZCCART), accessed 12 December 2007, cites original reference in Maehle, A-H. and Tr6hler, U. Animal experimentation from antiquity to the end of the eighteenth century: attitudes and arguments. In N. A. Rupke (ed.) Vivisection in Historical Perspective. Croom Helm, London, 1987, p. 22.
  334. ^ Rudacille, Deborah (2000). The Scalpel and the Butterfly: The Conflict, University of California Press, p. 19 ISBN 0-520-23154-6.
  335. ^ "In sickness and in health: vivisection's undoing", The Daily Telegraph, November 2003
  336. ^ LaFollette, H., Shanks, N., Animal Experimentation: the Legacy of Claude Bernard Archived 10 January 2020 at the Wayback Machine, International Studies in the Philosophy of Science (1994) pp. 195–210.
  337. ^ Nicoll CS (1991). "A Physiologist's Views on the Animal Rights/Liberation Movement". The Physiologist. 34 (6): 303, 306–08, 315. PMID 1775539.
  338. ^ Mason, Peter. The Brown Dog Affair Archived 6 October 2020 at the Wayback Machine. Two Sevens Publishing, 1997.
  339. ^ "The Life and Letters of Charles Darwin, Volume II". Fullbooks.com.
  340. ^ Bowlby, John (1991). Charles Darwin: A New Life, W. W. Norton & Company, p. 420 ISBN 0-393-30930-4.
  341. ^ Ilman J (2008). Animal Research in Medicine: 100 years of politics, protest and progress. The Story of the Research Defence Society. Research Defence Society. p. 16. ISBN 978-0-9560008-0-4.
  342. ^ Publications of the Research Defence Society: March 1908–1909; Selected by the committee. London: Macmillan. 1909. p. xiv.
  343. ^ Buettinger, Craig (1 January 1993) Antivivisection and the charge of zoophil-psychosis in the early twentieth century. The Historian.
  344. ^ "What are the 3Rs?". NC3Rs. Archived from the original on 1 August 2014. Retrieved 16 December 2018.
  345. ^ Kolar R (2002). "ECVAM: desperately needed or superfluous? An animal welfare perspective". Altern Lab Anim. 30 (Suppl 2): 169–74. doi:10.1177/026119290203002S26. PMID 12513669.
  346. ^ Schuppli CA, Fraser D, McDonald M (2004). "Expanding the three Rs to meet new challenges in humane animal experimentation". Altern Lab Anim. 32 (5): 525–32. doi:10.1177/026119290403200507. PMID 15656775. S2CID 25015151.
  347. ^ Rusche B (2003). "The 3Rs and animal welfare – conflict or the way forward?". ALTEX. 20 (Suppl 1): 63–76. PMID 14671703.
  348. ^ Alexander FA, Eggert S, Wiest J (February 2018). "Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface". Genes. 9 (2): 114. doi:10.3390/genes9020114. PMC 5852610. PMID 29466319.
  349. ^ "Alternatives to Animal Testing | Animals Used for Experimentation | The Issues". Peta.org. 21 June 2010. Retrieved 6 April 2015.
  350. ^ Rhodes M (28 May 2015). "Inside L'Oreal's Plan to 3-D Print Human Skin". Wired. Retrieved 7 July 2015.
  351. ^ Watts G (27 January 2007). "Alternatives to animal experimentation". BMJ. 334 (7586): 182–84. doi:10.1136/bmj.39058.469491.68. PMC 1782004. PMID 17255608.
  352. ^ Edelman L, Eddy J, Price N (July–August 2010). "In silico models of cancer". Wiley Interdiscip Rev Syst Biol Med. 2 (4): 438–59. doi:10.1002/wsbm.75. PMC 3157287. PMID 20836040.
  353. ^ "Microdosing". 3Rs. Canadian Council on Animal Care in Science. Archived from the original on 7 June 2015. Retrieved 7 July 2015.
  354. ^ "What Is A PET Scan? How Does A PET Scan Work?". Medicalnewstoday.com. 23 June 2017.
  355. ^ Jiang J, Liu B, Nasca PC, Han W, Zou X, Zeng X, Tian X, Wu Y, Zhao P, Li J (2009). "Comparative study of control selection in a national population -based case-control study: Estimating risk of smoking on cancer deaths in Chinese men". International Journal of Medical Sciences. 6 (6): 329–37. doi:10.7150/ijms.6.329. PMC 2777271. PMID 19918375.
  356. ^ McNeil D (13 January 2014). "PETA's Donation to Help Save Lives, Animal and Human". The New York Times. Retrieved 7 July 2015.
  357. ^ Bernstein F (4 October 2005). "An On-Screen Alternative to Hands-On Dissection". The New York Times. Retrieved 7 July 2015.
  358. ^ "NTP Interagency Center for the Evaluation of Alternative Toxicological Methods – NTP". Iccvam.niehs.nih.gov. Archived from the original on 9 December 2013. Retrieved 6 April 2015.
  359. ^ ZEBET database on alternatives to animal experiments on the Internet (AnimAlt-ZEBET). BfR (30 September 2004). Retrieved on 2013-01-21.
  360. ^ About JaCVAM-Organization of JaCVAM Archived 11 May 2012 at the Wayback Machine. Jacvam.jp. Retrieved on 2013-01-21.
  361. ^ EPAA – Home Archived 1 November 2013 at the Wayback Machine. Ec.europa.eu. Retrieved on 2013-01-21.
  362. ^ ecopa – european consensus-platform for alternatives. Ecopa.eu. Retrieved on 2013-01-21.
  363. ^ Center for Alternatives to Animal Testing – Johns Hopkins Bloomberg School of Public Health. Caat.jhsph.edu. Retrieved on 2013-01-21.
  364. ^ "NC3Rs". NC3Rs.org.uk. Retrieved 6 April 2015.

Works cited

Further reading

External links