[1] La raíz cuadrada de 5 exacta es: 2,2360679774997899 pero se abrevia en 2,2360679775 (Secuencia n.º A002163 del OEIS).La sucesión de mejores aproximaciones racionales es: Las convergentes de la fracción continua están coloreadas; sus numeradores tienen la secuencia n.º A001077 del OEIS y sus denominadores tienen la secuencia n.º A001076 del OEIS.[3] La relación algebraica entre la raíz cuadrada de 5, el número áureo y el número áureo conjugado (Φ = 1/φ = φ − 1) son expresados en las fórmulas siguientes: (Véase la sección abajo para su interpretación geométrica como descomposiciones de un rectángulo raíz-5.)Junto con la relación algebraica entre √5 y φ, esto forma la base para la construcción geométrica del rectángulo áureo de un cuadrado, y para la construcción de un pentágono regular dado su lado (puesto que el cociente lado-a-diagonal en un pentágono regular es φ).Formando un ángulo recto diedro con los dos cuadrados iguales que parten en dos un rectángulo de 1:2, puede ser visto que √5 corresponde también al cociente entre la longitud de un borde del cubo y la distancia más corta a uno de sus vértices del opuesto uno, al atravesar la superficie del cubo (la distancia más corta cuando se atraviesa a través del interior del cubo, corresponde a la longitud de la diagonal del cubo, que es la raíz cuadrada de 3 veces el borde).Esto sigue de las relaciones geométricas entre un cubo y las cantidades √2 (cociente borde-a-cara-diagonal, o la distancia entre los bordes opuestos), √3 (cociente borde-a-cubo-diagonal) y √5 (la relación mencionada arriba).[4] Un rectángulo raíz-5 es particularmente notable en que puede estar partido en un cuadrado y dos rectángulos áureos iguales (de dimensiones Φ × 1), o en dos rectángulos áureos de diversos tamaños (de dimensiones Φ × 1 y 1 × φ).Como √2 y √3, la raíz cuadrada de cinco aparece extensivamente en las fórmulas para las constantes trigonométricas exactas, y como tal el cómputo de su valor es importante para generar tablas trigonométricas.El teorema de Hurwitz en aproximación diofántica indica que cada número irracional x se puede aproximar mediante infinitos números racionales m/n expresados en forma irreducible de una manera tal que y ese √5 es el mejor posible, en el sentido que para cualquier constante más grande que √5, hay algunos números irracionales x para los cuales solo es posible un número finito de tales aproximaciones existentes.En particularmente, uno no puede obtener un límite vinculativo considerando secuencias de cuatro o más convergentes consecutivas.
Rectángulos de raíces. Paso a la geometría del concepto de raíz cuadrada.