Notación bra-ket

La notación bra-ket,[1]​[2]​ también conocida como formalismo de Dirac, es la notación estándar para describir los estados cuánticos en la teoría de la mecánica cuántica.Puede también ser utilizada para denotar vectores abstractos y funcionales lineales en la matemática pura.Es así llamada porque el producto interno de dos estados es denotado por el «paréntesis angular» (angle bracket, en inglés),, llamada el bra, y una parte derecha,[2]​ La notación fue introducida en 1939 por Paul Dirac,[3]​ aunque la notación tiene precursores en el uso del lingüista y matemático alemán Hermann Grassmann de la notación [φ|ψ] para sus productos internos casi 100 años antes.[4]​[5]​ En mecánica cuántica, el estado de un sistema físico se identifica con un vector en el espacio de Hilbert complejo,, esto es una funcional lineal continua dea los números complejos C, definido como Donde () denota el producto interno definido en el espacio de Hilbert.La notación está justificada por el teorema de representación de Riesz, que establece que un espacio de Hilbert y su espacio dual son isométricamente isomorfos.Así, cada bra corresponde a exactamente un ket, y viceversa.En cualquier espacio de Banach B, los vectores pueden ser notados como kets y los funcionales lineales continuos por los bras.Sobre cualquier espacio vectorial sin topología, se puede también denotar los vectores con kets y los funcionales lineales por los bras.da lugar a un número complejo, que se denota: En mecánica cuántica, ésta es la amplitud de probabilidad para que el estadoLos bras y kets se pueden manipular de las maneras siguientes: es dual aLos operadores lineales son ubicuos en la teoría de la mecánica cuántica.Por ejemplo, se utilizan operadores lineales hermíticos para representar cantidades físicas observables, tales como la energía o el momento, mientras que los operadores lineales unitarios representan procesos transformativos como la rotación o la progresión del tiempo.Los operadores pueden también ser vistos como actuando en los bras del «lado derecho».La aplicación del operador A al bra, definido como funcional lineal en H por la regla Esta expresión se escribe comúnmente como: Una manera conveniente de definir operadores lineales en H es dada por el producto exterior: sies un escalar que multiplica al ketUna de las aplicaciones del producto externo es para construir un operador de proyección o proyector dado un ketde norma 1, la proyección ortogonal sobre el subespacio generado porEn mecánica cuántica, esto se utiliza para describir conjuntos compuestos.Si un conjunto se compone de dos subconjuntos descritos por V y W respectivamente, entonces el espacio de Hilbert del conjunto entero es el producto tensorial de los dos espacios.La excepción a esto es si los subconjuntos son realmente partículas idénticas; en ese caso, la situación es un poco más complicada.En mecánica cuántica, es a menudo conveniente trabajar con las proyecciones de los vectores de estado sobre una base particular, más bien que con los vectores mismos.Este proceso es muy similar al uso de vectores coordinados en álgebra lineal.en este espacio de Hilbert, se puede definir una función escalar compleja de x, conocida como función de onda Es entonces usual definir operadores lineales que actúan sobre funciones de ondas en términos de operadores lineales que actúan en kets, como Aunque el operador A en el lado izquierdo de esta ecuación, por convención, se etiqueta de la misma manera que el operador en el lado derecho, debe considerarse que los dos son entidades conceptualmente diversas: el primero actúa sobre funciones de ondas, y el segundo actúa sobre kets.El operador diferencial debe ser entendido como un operador abstracto, actuando en kets, que tiene el efecto de diferenciar funciones de ondas una vez que la expresión se proyecta en la base de posición.Para otros detalles, véase espacio equipado de Hilbert.