Anillo local

En Álgebra abstracta, los anillos locales son ciertos anillos comparativamente simples y que sirven para describir el comportamiento local de las funciones definidas sobre variedades algebraicas o variedades diferenciables.En el caso de anillos conmutativos no es necesario distinguir entre ideales a uno u otro lado, así que un anillo conmutativo es local si, y sólo si, tiene un único ideal maximal.Para ver que este anillo de semillas es local, necesitamos identificar sus elementos invertibles.La función g nos da entonces otra semilla, y el producto de fg es igual a 1.Un ejemplo más aritmético es el siguiente: el anillo de números racionales con denominador impar es local; su ideal maximal consiste de las fracciones con numerador par y denominador impar.Más en general, si F es un cuerpo y n es un entero positivo, entonces el Anillo cociente F[X]/(Xn) es local y su ideal maximal consiste en las clases de polinomios con término constante distinto de cero.El Radical de Jacobson m de un anillo local R (que es igual al único ideal maximal por la izquierda y también al único ideal maximal por la derecha) está formado precisamente de los elementos del anillo que no son unidades; además es el único ideal máxima por los dos lados de R. (En el caso no conmutativo, tener un único ideal maximal por los dos lados no es sin embargo a ser local).Un teorema profundo de Kaplansky dice que cualquier Módulo proyectivo sobre un anillo local es libre.