stringtranslate.com

AIM-9 Sidewinder

El AIM-9 Sidewinder ("AIM" por "Air Interception Missile") [3] es un misil aire-aire de corto alcance . Entró en servicio en la Armada de los Estados Unidos en 1956 y en la Fuerza Aérea en 1964, el AIM-9 es uno de los misiles aire-aire más antiguos, económicos y exitosos. [4] Sus últimas variantes siguen siendo equipamiento estándar en la mayoría de las fuerzas aéreas alineadas con Occidente . [5] El K-13 soviético (AA-2 "Atoll"), una copia de ingeniería inversa del AIM-9B, también fue ampliamente adoptado.

El desarrollo de bajo nivel comenzó a fines de la década de 1940, emergiendo a principios de la década de 1950 como un sistema de guía para el cohete modular Zuni . [6] [7] Esta modularidad permitió la introducción de nuevos buscadores y motores de cohetes, incluida la variante AIM-9C, que usaba un radar semiactivo y sirvió como base para el misil antirradar AGM-122 Sidearm . Debido al sistema de guía por infrarrojos del Sidewinder, se usa el código de abreviatura " Fox two " cuando se dispara el AIM-9. Originalmente un sistema de persecución de cola, los primeros modelos se usaron ampliamente durante la Guerra de Vietnam , pero tuvieron una baja tasa de éxito (tasa de acierto del 8% con la variante AIM-9E). Esto condujo a la capacidad de todos los aspectos en la versión L (Lima), que demostró ser un arma efectiva durante la Guerra de las Malvinas de 1982 y la Operación Mole Cricket 19 en el Líbano. Su adaptabilidad lo ha mantenido en servicio frente a diseños más nuevos como el AIM-95 Agile y el SRAAM que estaban destinados a reemplazarlo.

El Sidewinder es el misil aire-aire más utilizado en Occidente, con más de 110.000 misiles producidos para los EE. UU. y otros 27 países, de los cuales quizás un 1 por ciento se han utilizado en combate. Ha sido construido bajo licencia por Suecia y otros países. Se estima que el AIM-9 derriba 270 aviones. [4]

En 2010, Boeing ganó un contrato para respaldar las operaciones del Sidewinder hasta 2055. La portavoz de la Fuerza Aérea, Stephanie Powell, dijo que su costo relativamente bajo, su versatilidad y su confiabilidad significan que es "muy posible que el Sidewinder permanezca en los inventarios de la Fuerza Aérea hasta fines del siglo XXI". [8]

Diseño

El AIM-9 fue un producto del Centro de Armas Navales de los EE. UU. en China Lake en el desierto de Mojave . Presenta un diseño liviano y compacto con canards cruciformes y aletas de cola. Utiliza un motor de cohete sólido para propulsión, similar a la mayoría de los misiles convencionales, una ojiva de fragmentación de varilla continua y un buscador infrarrojo . [9]

El buscador rastrea una diferencia en las temperaturas detectadas y utiliza una guía proporcional para lograr el impacto. Las variantes más antiguas, como el AIM-9B con cabezales buscadores sin refrigeración, solo podían rastrear las altas temperaturas de los gases de escape del motor , lo que los hacía estrictamente orientados hacia atrás. Las variantes posteriores, sin embargo, presentaban botellas de refrigerante de nitrógeno líquido en los lanzadores, lo que permitía al misil rastrear cualquier parte de la aeronave calentada por la resistencia del aire debido al vuelo a alta velocidad, lo que le daba a los Sidewinders modernos capacidades de orientación en todos los aspectos. [10]

Los canards del morro proporcionan maniobrabilidad al AIM-9, y el AIM-9X utiliza vectorización de empuje para aumentarla. Los gases calientes generados se utilizaban para accionar los canards del morro en los modelos más antiguos, mientras que las variantes más nuevas utilizan baterías térmicas .

Para minimizar la cantidad de energía dedicada a activar las superficies de control, el AIM-9 no utiliza estabilización de balanceo activa. En su lugar, utiliza rodillos , pequeños discos de metal que sobresalen del extremo posterior de las puntas de las aletas de cola y que giran mientras el misil vuela por el aire, lo que proporciona estabilización giroscópica .

El AIM-9 utiliza una espoleta de proximidad infrarroja pasiva para detonar su ojiva cerca de un avión enemigo, dispersando metralla que tiene como objetivo dañar el avión, dejándolo inoperativo. La ojiva de varilla continua consta de varillas soldadas entre sí para formar una cubierta exterior cilíndrica, con relleno explosivo en el interior. Tras la detonación, las varillas se dispersan en forma toroidal , lo que garantiza que al menos una parte de la metralla impacte en el avión enemigo.

Los modelos más nuevos del AIM-9 buscaban aumentar el alcance que el cardán del cabezal buscador puede girar, lo que permite que el misil rastree aeronaves en ángulos mayores desde su línea de visión directa, o eje de puntería. Los modelos como el AIM-9L, AIM-9M y AIM-9X cuentan con altas capacidades fuera del eje de puntería, lo que significa que pueden rastrear objetivos en ángulos altos del cardán del buscador o muy distantes de su eje de puntería. [11]

Guía

Un misil (azul) intercepta un objetivo (rojo) manteniendo un rumbo constante hacia él (verde).

El Sidewinder no se guía por la posición real registrada por el detector, sino por el cambio de posición desde el último avistamiento. Por lo tanto, si el objetivo permaneciera a 5 grados a la izquierda entre dos rotaciones del espejo, la electrónica no enviaría ninguna señal al sistema de control. Consideremos un misil disparado en ángulo recto con su objetivo; si el misil está volando a la misma velocidad que el objetivo, debería "adelantarlo" 45 grados, volando hacia un punto de impacto muy por delante de donde estaba el objetivo cuando fue disparado. Si el misil viaja cuatro veces la velocidad del objetivo, debería seguir un ángulo de unos 11 grados por delante. En cualquier caso, el misil debería mantener ese ángulo hasta la interceptación, lo que significa que el ángulo que forma el objetivo contra el detector es constante. Fue este ángulo constante el que el Sidewinder intentó mantener. Este sistema de "seguimiento proporcional " es fácil de implementar y ofrece un cálculo de adelanto de alto rendimiento casi gratis y puede responder a los cambios en la trayectoria de vuelo del objetivo, [12] lo que es mucho más eficiente y hace que el misil "adelanté" al objetivo. [13]

Historia

Orígenes

Prototipo de misil Sidewinder-1 en un AD-4 Skyraider durante pruebas de vuelo en NAWS China Lake , 1952

Durante la Segunda Guerra Mundial , varios investigadores en Alemania diseñaron sistemas de guía por infrarrojos de diversa complejidad. El desarrollo más maduro de estos, con nombre en código Hamburg , estaba destinado a ser utilizado por la bomba planeadora Blohm & Voss BV 143 en una función antibuque. Hamburg usaba una sola fotocélula de infrarrojos como detector junto con un disco giratorio con líneas pintadas en él, conocido alternativamente como "retícula" o "chopper". La retícula giraba a una velocidad fija, lo que hacía que la salida de la fotocélula se interrumpiera en un patrón, y la sincronización precisa de la señal resultante indicaba la orientación del objetivo. Aunque Hamburg y dispositivos similares como Madrid estaban esencialmente completos, el trabajo de acoplarlos a un misil no se había llevado a cabo cuando terminó la guerra. [14]

En la era inmediatamente posterior a la guerra, los equipos de inteligencia militar aliados recopilaron esta información, junto con muchos de los ingenieros que trabajaban en estos proyectos. Se produjeron varios informes extensos sobre los diversos sistemas y se difundieron entre las empresas aeronáuticas occidentales, mientras que varios de los ingenieros se unieron a estas empresas para trabajar en varios proyectos de misiles. A fines de la década de 1940, una amplia variedad de proyectos de misiles estaban en marcha, desde enormes sistemas como el bombardero propulsado por cohetes Bell Bomi hasta sistemas pequeños como misiles aire-aire. A principios de la década de 1950, tanto la Fuerza Aérea de los EE. UU. como la Real Fuerza Aérea habían iniciado importantes proyectos de misiles buscadores IR. [14]

Viñeta de vídeo de un F-104 destruyendo un dron objetivo QF-80 con un misil AIM-9 Sidewinder
Un F-104 Starfighter prueba el lanzamiento de un AIM-9 Sidewinder contra un dron objetivo QF-80 en China Lake

El desarrollo del misil Sidewinder comenzó en 1946 en la Estación de Pruebas de Artillería Naval (NOTS), Inyokern, California, ahora la Estación de Armas Aéreas Navales de China Lake , como un proyecto de investigación interno concebido por William B. McLean . McLean inicialmente llamó a su esfuerzo "Proyecto de Espoleta Local 602" utilizando fondos de laboratorio, ayuda voluntaria y fondos de espoleta para desarrollar lo que llamaron un cohete de búsqueda de calor. El nombre Sidewinder fue seleccionado en 1950 y es el nombre común de Crotalus cerastes , una serpiente de cascabel , que usa órganos sensoriales infrarrojos para cazar presas de sangre caliente. [15] [16]

No recibió financiación oficial hasta 1951, cuando el proyecto estaba lo suficientemente maduro como para mostrárselo al almirante William "Deak" Parsons , subdirector de la Oficina de Artillería (BuOrd). Posteriormente recibió la designación de programa en 1952. Originalmente llamado Sidewinder 1 , el primer disparo en vivo tuvo lugar el 3 de septiembre de 1952. El misil interceptó un dron por primera vez el 11 de septiembre de 1953. El misil realizó 51 vuelos guiados en 1954, y en 1955 se autorizó su producción. [15]

En 1954, la Fuerza Aérea de los Estados Unidos realizó pruebas con el AIM-9A original y el AIM-9B mejorado en el Centro de Desarrollo Aéreo Holloman. El primer uso operativo del misil fue realizado por los Grumman F9F-8 Cougars y FJ-3 Furies de la Armada de los Estados Unidos a mediados de 1956. [15]

Variantes de primera generación con aspecto trasero

Se fabricaron casi 100.000 unidades de la primera generación (AIM-9B/C/D/E) del Sidewinder, con Raytheon y General Electric como principales subcontratistas. Philco-Ford produjo las secciones de guía y control de los primeros misiles. La versión OTAN del misil de primera generación fue construida bajo licencia en Alemania por Bodenseewerk Gerätetechnik ; se construyeron 9.200 ejemplares. [15]

AIM-9A (AAM-N-7 Sidewinder I) (Estados Unidos)

El AIM-9A fue una versión de preproducción del Sidewinder, que se disparó con éxito por primera vez en septiembre de 1953. La producción de misiles comenzó en 1955 y los primeros modelos entraron en servicio en la flota de la Armada en 1956. En general, se trató de una producción de prototipos, de la que se produjeron 240 unidades. Su principal finalidad era entrenar a los pilotos en técnicas de combate aéreo. El AIM-9A se llamó inicialmente AAM-N-7 antes del cambio de designación triservicio en 1962. [17]

Un dato interesante sobre los primeros AIM-9A y B era que se les proporcionaba un accesorio no propulsivo (NPA) para su motor MK 15, suponiendo que un misil ensamblado sería menos peligroso para la tripulación de tierra y el material si se encendía el motor del cohete. Este mismo NPA también se utilizó en el AIM-9B Sidewinder. [ cita requerida ]

AIM-9B (Avión de combate AAM-N-7 Sidewinder IA) (Fuerza Aérea de los Estados Unidos/Marina de los Estados Unidos)

El AIM-9B es muy similar al AIM-9A, pero el "B" tiene una parte trasera más sofisticada y aletas delanteras más aerodinámicas. El AIM-9B es un arma muy limitada, pero no tenía competidores serios ni contraataques cuando se introdujo, lo que provocó que la USAF y la OTAN lo adoptaran como arma estándar, con alrededor de 80.000 unidades producidas entre 1958 y 1962. [17]

El ángulo de visión del sensor del AIM-9B era de unos minúsculos 4 grados, por lo que en el lanzamiento, el piloto tenía que apuntar con precisión la mira del avión por encima o por encima del objetivo (para tener en cuenta la resistencia). La velocidad del escaneo cónico era muy lenta, además, el misil no refrigerado tenía una baja sensibilidad y era propenso al calor externo. Se recomendaba el uso del AIM-9B en objetivos no amenazantes (como bombarderos), solo desde atrás (para poder fijar la radiación térmica de los motores del objetivo) y solo con el sol detrás o al costado de su avión (ya que el misil lo fijaría debido a su radiación térmica).

Fue famosamente la primera variante del Sidewinder en ser disparada con ira, ya que el 24 de septiembre de 1958 logró el primer derribo exitoso del mundo con un misil aire-aire, cuando los F-86F taiwaneses derribaron MiG-15 chinos comunistas utilizando AIM-9B suministrados y equipados por la Marina de los EE. UU. (USN).

Derivados del AIM-9B

RB24 : Un AIM-9B Sidewinder sueco.

K-13/R-3 (AA-2) : El K-13/R-3 era un AIM-9B Sidewinder diseñado a la inversa. En un enfrentamiento que tuvo lugar el 28 de septiembre de 1958 en el estrecho de Taiwán, un AIM-9B se atascó en un MiG-17 sin explotar, lo que permitió retirarlo después del aterrizaje. Los soviéticos se dieron cuenta más tarde de que los chinos tenían al menos un Sidewinder y, tras algunas disputas, pudieron persuadir a los chinos para que les enviaran uno de los misiles capturados.

Variantes K-13/R-3 (AA-2) :

K-13/R-3 (Objeto 300) (AA-2 Atoll): Fue la variante estándar y entró en servicio limitado sólo dos años después, en 1960.

K-13A/R-3S (Objeto 310) (Atolón AA-2A) : Entró en servicio en 1962. El R-3S fue la primera versión en entrar en producción generalizada, a pesar de un tiempo de estabilización del buscador muy largo, alrededor de 22 segundos, a diferencia de los 11 segundos de la versión original.

PL-2 : R-3S de producción china.

A-91 : R-3S de producción rumana.

K-13R/R-3R (Objeto 320) (Atolón AA-2B/C) : Mientras se introducía el R-3S en 1961, se empezó a trabajar en una versión con radar de localización semiactivo (SARH) para uso a gran altitud, con un alcance de 8 km, similar al poco utilizado AIM-9C Sidewinder de la Armada de los EE. UU . Este modelo tardó más en desarrollarse y no entró en servicio hasta 1966.

K-13M/R-13M (Objeto 380) (AA-2D Atoll) : El R-13M es una versión muy mejorada del R-3S y tiene capacidades similares a las del AIM-9G Sidewinder. El R-13M sigue siendo un misil de ataque por cola, pero es mucho más capaz que el R-3S debido a su nuevo buscador y motor de cohete. El nuevo buscador refrigerado es más preciso y algo más resistente a las contramedidas. El nuevo motor de cohete dura más y el cuerpo rediseñado hace que el R-13M sea más maniobrable.

K-13M1/R-13M1 : R-13M mejorado con nuevas aletas delanteras introducidas en 1976.

AIM-9C (Circuito integrado de bobinado lateral AAM-N-7 (SARH)) (Estados Unidos)

El mediocre rendimiento del AIM-9B hizo que la Armada buscara un sucesor. Y en 1963 se diseñó el AAM-N-7 Sidewinder IC , que se desarrolló en dos variantes: una variante SARH (radar de localización semiactivo) (AIM-9C) y una IR (AIM-9D) en 1963. El radar semiactivo del AIM-9C estaba vinculado exclusivamente al radar y al sistema de control de tiro (FCS) del F-8 Crusader . Se lanzaron un total de alrededor de 1.000 misiles AIM-9C entre 1965 y 1967, pero su uso en la guerra de Vietnam resultó infructuoso y no derribó a ningún enemigo. Se inició un programa de modificación de filtros para las unidades rediseñadas (para permitir una capacidad de gran altitud de hasta 18.288 m (60.000 pies). Esta fue la única modificación planificada. [ cita requerida ]

AIM-9D "Delta" (Circuito integrado de bobinado lateral AAM-N-7 (IR)) (Estados Unidos)

Reconociendo las limitaciones del AIM-9B inicial, la Armada de los Estados Unidos (USN) trabajó para mejorar el rendimiento del misil. Cambiaron la nariz del misil por una ojival aerodinámica. El buscador fue mejorado con un campo de visión más amplio más allá de los 25 grados y un campo de visión instantáneo reducido de 2,5 grados, para reducir la interferencia térmica externa (de las bengalas). Se agregó un mejor sistema de enfriamiento de nitrógeno para la espoleta, siendo el primero en el mundo. Esto mejoró la sensibilidad de la cabeza del misil. La maniobrabilidad también se mejoró con una velocidad de seguimiento más rápida, así como un nuevo sistema de actuador. El alcance del Sidewinder también se mejoró, con el nuevo motor cohete de combustible sólido Hercules MK 36 que permite al misil volar hasta 18 km. Finalmente, se instaló una nueva ojiva de varilla continua Mk 48 al misil para aumentar el daño; esto también significó que se podía usar una espoleta de proximidad por infrarrojos o radio. Todas estas mejoras se agregaron al AIM-9D y entraron en servicio con la USN. Entre 1965 y 1969 se fabricaron alrededor de 1.000 unidades del AIM-9D. El principal problema del AIM-9D era que se rompía durante el lanzamiento. El AIM-9D se convirtió finalmente en el AIM-9G. [18]

Derivados del AIM-9D

ATM-9D (USN) : AIM-9D utilizado para entrenamiento de adquisición de objetivos en vuelo cautivo. [17]

GDU-1/B : AIM-9D utilizado para prácticas de tiro. [17]

AIM-9E "Echo" (Fuerza Aérea de los Estados Unidos)

El AIM-9E "Echo" fue la primera versión desarrollada exclusivamente por la Fuerza Aérea de los Estados Unidos (USAF). El AIM-9E permite la expansión de la envolvente de adquisición de armas, especialmente a baja altitud, aumentando su probabilidad de muerte (P[k]). Esto se logró utilizando un nuevo cabezal cónico de morro de baja resistencia, que es una característica distintiva de los Sidewinder de la USAF. Se introdujo una cúpula de búsqueda de fluoruro de magnesio, junto con un conjunto óptico más compacto, un sistema de control de guía mejorado, nueva electrónica y cambios significativos en los arneses de cableado interno. Estas mejoras facilitaron una mejor velocidad de retícula de 100 Hz y una velocidad de seguimiento de 16,5 grados/seg. El cambio de diseño más significativo fue la adición de refrigeración para el detector PbS, agregando refrigeración Peltier (termoeléctrica), lo que brinda la ventaja de una refrigeración ilimitada cuando se coloca en el riel de lanzamiento, pero solo está activo cuando hay energía eléctrica presente. El AIM-9E ofrece un mayor alcance que el AIM-9B, pero es peor que el "D". El diseño del canard se modificó a una forma de doble delta con punta cuadrada, lo que ayudó a mejorar el comportamiento del canard en ángulos de ataque (AOA) más altos. Más de 5000 AIM-9B se reconstruyeron para convertirse en AIM-9E. [17]

El AIM-9E apareció en Vietnam tras la conclusión de la Operación Rolling Thunder en 1968, con la Fuerza Aérea de los Estados Unidos (USAF), convirtiéndose en uno de sus principales armamentos de misiles. Hasta la Operación Linebacker en 1972 no hubo una intensa actividad aire-aire en Vietnam. Hubo 71 intentos de lanzamiento del AIM-9E entre enero y octubre de 1972, sin embargo, solo 6 misiles lograron derribar un avión, y otro alcanzó un avión, pero no causó una destrucción completa. Las razones de la baja tasa de éxito se enumeraron como "el entrenamiento deficiente de la tripulación aérea, los lanzamientos fuera de la envoltura, la situación táctica, el tono marginal, la discriminación de tono, el misil se volvió balístico y otros fallos".

Variantes del AIM-9E

AIM-9E : Modelo de producción estándar.

AIM-9E-2 : Algunos modelos "E" están equipados con motores de cohetes de reducción de humo y tienen la designación AIM-9E-2

Avión de combate AIM-9B FGW.2 (AIM-9F)

Cuando las fuerzas de la OTAN adquirieron el Sidewinder, se le dio licencia de producción a Alemania Occidental, que produciría alrededor de 15.000 unidades. Al igual que los estadounidenses, los alemanes occidentales buscaron mejorar el diseño del AIM-9B debido a sus limitaciones. La única diferencia exterior visible es una ventana de sensor verdosa, pero se añadieron muchas mejoras tecnológicas debajo de la carcasa. Las mejoras que pasaron desapercibidas incluyen electrónica de estado sólido (en lugar de tubos de vacío), refrigeración del buscador de dióxido de carbono, una nueva cúpula de morro y un filtrado óptico superior. Se realizaron conversiones a los AIM-9B europeos para actualizarlos al estándar FGW.2. La designación oficial es AIM-9B FGW.2, pero se conoce como AIM-9F en la nomenclatura estadounidense.

AIM-9G "Golf" (EE.UU.)

El AIM-9G era muy similar al AIM-9D en la mayoría de los aspectos y no se diferenciaba externamente. El AIM-9G era un AIM-9D que utilizaba un cabezal buscador AIM-9D mejorado con SEAM (Sidewinder Extended Acquisition Mode), que permitía girar la óptica a través de un patrón de búsqueda para adquirir al enemigo (probablemente utilizando un escáner de roseta ), [ cita requerida ] también permitía la vinculación de la óptica a un radar o una mira de casco. Esto estaba conectado a la computadora de a bordo de la aeronave, lo que brindaba la capacidad de capturar el objetivo utilizando los datos provenientes del radar aéreo. Esto significaba que el objetivo podía bloquearse sin estar en la mira y el misil recibía automáticamente instrucciones previas al lanzamiento. La velocidad de escaneo cónico también aumentó en gran medida. El cabezal buscador ahora podía buscar en un escaneo circular de 25˚. Esto permitió que el AIM-9G tuviera una mejor posibilidad de adquirir el objetivo que los modelos anteriores. Este, junto con otros módulos de estado sólido mejorados, culminó en el AIM-9G. La mejora fue lo suficientemente sustancial como para que un pedido de 5.000 buscadores AIM-9D se detuviera en 1.850 unidades, y el resto se ordenó según las especificaciones del buscador AIM-9G. Raytheon construyó alrededor de 2.120 AIM-9G entre 1970 y 1972. [17]

El AIM-9G se utilizaría junto con su predecesor, el AIM-9D, durante la Guerra de Vietnam, como el misil IR elegido por la Armada de los Estados Unidos. Se logró una tasa de aciertos del 46% con el AIM-9G durante la Operación Linebackers I y II en 1972, de los cuales 14 aviones eran MiG-17 y los otros 7 eran MiG-21. Esto se debió al diseño del misil y al entrenamiento de pilotos de combate de la USN en TOPGUN . [ cita requerida ] La Fuerza Aérea de los Estados Unidos intentó obtener los AIM-9G de la USN, debido a la mala experiencia con sus modelos AIM-9 Sidewinder (B, E y J), pero eran incompatibles con los lanzadores Sidewinder de la USN debido a los diferentes mecanismos de enfriamiento. (La USN utilizó un contenedor de gas nitrógeno en el lanzador, que la USAF no utilizó) [ cita requerida ]

Derivados del AIM-9G

ATM-9G (USN) : AIM-9G utilizado para entrenamiento de adquisición de objetivos en vuelo cautivo. [17]

AIM-9H (EE. UU.)

En diciembre de 1965, dos diseñadores, McLean y LaBerge (que trabajaban para Philco-Ford), se unieron para crear formas de mejorar la fiabilidad del AIM-9G. Una propuesta era hacer que todos los componentes electrónicos restantes del misil pasaran de vacío a estado sólido de forma gradual. La Fuerza Aérea de los EE. UU. se adhirió a esta constante sustitución de sus AIM-9 por estado sólido, sin embargo, la Armada optó por un enfoque diferente después de que Walt Freitag, un ingeniero de la USN, propusiera un cambio total a estado sólido en un misil.

La variante "H" tuvo cambios importantes con respecto al AIM-9D/G, que tenía múltiples problemas de confiabilidad. Uno de los problemas era la intolerancia de los tubos de vacío a los repetidos aterrizajes a una velocidad de caída de 20 pies/seg de los aviones de la Armada de los EE. UU. en las cubiertas de los portaaviones. El "H" fue el primer Sidewinder en ser completamente de estado sólido, reemplazando a los tubos de vacío originales. El AIM-9H también incluyó un nuevo detector de sulfuro de plomo, que utiliza refrigeración por nitrógeno. El nuevo paquete de guía se construyó utilizando semiconductores. Cuando los ingenieros rediseñaron esta electrónica, esencialmente mantuvieron el sistema óptico del AIM-9G, pero la velocidad de seguimiento aumentó aún más, de los 12˚ originales a 20˚ grados por segundo, lo que complementó los actuadores más potentes de 120 lb.ft que se habían instalado. También reemplazaron la batería térmica con un turboalternador. El AIM-9H también incluyó una ojiva de haz de varillas continuas, lo que mejoró su capacidad destructiva. El AIM-9H fue el último y más maniobrable de los Sidewinder con aspecto trasero de la USN, y la USN pasó al AIM-9L con aspecto completo. [17]

El AIM-9H se utilizó en realidad al final de la guerra de Vietnam, y se incorporó a la armada estadounidense en 1972, utilizándose en la Operación Linebacker . Philco-Ford y Raytheon fabricaron un total de 7.700 unidades del AIM-9H entre 1972 y 1974. El AIM-9H fue la base del AIM-9L de la USAF/USN. [19]

Derivados del AIM-9H

ATM-9H : Era una versión de entrenamiento del AIM-9H para la adquisición de objetivos en vuelo cautivo. [17]

AIM-9K (EE. UU.)

El AIM-9K fue una actualización planificada de la Marina de los EE. UU. (USN) del AIM-9H, pero el desarrollo fue abandonado en favor del AIM-9L conjunto USAF/USN.

AIM-9J (Fuerza Aérea de los Estados Unidos)

Cuando el AIM-9E Sidewinder entró en servicio en el sudeste asiático durante la conclusión de la Operación Rolling Thunder, la USAF comenzó a desarrollar la siguiente generación de Sidewinders para reemplazar al AIM-9E. En noviembre de 1968, comenzaron las pruebas de una actualización del AIM-9E, el "Extended Performance". El misil fue diseñado para brindar a los pilotos un misil infrarrojo de corto alcance más capaz contra un objetivo en maniobra. Finalmente, se lo designaría como AIM-9J.

Las pruebas preliminares del AIM-9J finalizaron el 3 de julio de 1972, lo que indicaba que era necesario realizar más pruebas y evaluaciones en profundidad antes de reemplazar al AIM-9B/E. El 8 de junio de 1972, se autorizó la introducción del AIM-9J en el sudeste asiático en el marco de la Fase IIA de su programa de evaluación, y la aprobación para emplearlo en combate se recibió el 31 de julio de 1972. El primer vuelo de combate del AIM-9J tuvo lugar el 2 de agosto de 1972, pero no fue hasta el 9 de septiembre de 1972 que se lanzaron en combate los tres primeros AIM-9J. Solo se intentaron 31 lanzamientos de combate antes del alto el fuego en enero de 1973. Teniendo en cuenta la intención original de su desarrollo, el rendimiento del AIM-9J fue relativamente poco impresionante en combate. Sin embargo, en comparación con sus competidores (el AIM-7E-2 y el AIM-9E), el AIM-9J pareció relativamente exitoso. La tasa de derribos por misil disparado por el AIM-9J fue del 13 por ciento entre septiembre y diciembre de 1972, en comparación con el 5 por ciento y el 8 por ciento registrados por el AIM-7E-2 y el AIM-9E, respectivamente. Si se considera la eficacia por enfrentamiento, el AIM-9J tuvo un mejor desempeño con un 33 por ciento de derribos por enfrentamiento, frente al 11 por ciento y el 15 por ciento del AIM-7E-2 y el AIM-9E, respectivamente. [20]

El AIM-9J fue una actualización del AIM-9E. Incluía electrónica parcial de estado sólido, la sustitución de la electrónica de tubo anticuada por microchips, un generador de gas de combustión más prolongada que aumentaba el tiempo de vuelo a 40 segundos y actuadores más potentes que impulsaban los nuevos canards de doble delta con punta cuadrada. Los canards duplicaban la capacidad "G" de un solo plano. Se construyeron alrededor de 6.700 AIM-9J a partir de 1972, en su mayoría misiles AIM-9B/E ya existentes convertidos.

Variantes del AIM-9J

AIM-9J : La variante base.

AIM-9J-1 (AIM-9N) : El AIM-9J-1 (posteriormente rebautizado como AIM-9N) fue una actualización a la versión AIM-9J. El AIM-9N tenía una configuración de misiles similar a la del AIM-9J, pero las tres placas de circuitos principales se rediseñaron sustancialmente para ayudar a mejorar el rendimiento del buscador. Se construyeron o reconstruyeron alrededor de 7000 unidades del AIM-9N.

AIM-9J-3 : AIM-9J-1 con el nuevo motor SR116.

Derivados del AIM-9J

RB24J : Designación sueca del AIM-9J.

Objetivo-9P

El misil Sidewinder AIM-9P era una familia de misiles de exportación patrocinada por la USAF basada en el AIM-9J/N, y se modernizaría varias veces a lo largo de su vida útil. El AIM-9P era un AIM-9J mejorado con un nuevo motor, espoleta y mejor fiabilidad. Incluía un mayor alcance de ataque, lo que le permitía ser lanzado a mayor distancia del objetivo. El AIM-9P era más maniobrable que el AIM-9J, y también incluía una electrónica de estado sólido mejorada que aumentaba la fiabilidad y la facilidad de mantenimiento. El AIM-9P era un B/E o J reconstruido o una producción totalmente nueva. Las entregas del AIM-9P comenzaron en 1978.

Variantes del AIM-9P

AIM-9P : El modelo base.

AIM-9P-1 : El AIM-9P-1 introdujo la espoleta de proximidad láser AOTD DSU-15/B, que reemplazó la espoleta de influencia infrarroja anterior por un detector de objetivo óptico activo.

AIM-9P-2 : El AIM-9P-2 incluye un motor de cohete de reducción de humo.

AIM-9P-3 : El AIM-9P-3 incluye un motor de humo reducido, un detector de objetivos óptico activo, una sección de guía y control mejorada, refuerzo mecánico de la ojiva, sistema de guía y sección de control, y una nueva ojiva de munición insensible. La ojiva utiliza un nuevo material explosivo, este material explosivo es menos sensible a las altas temperaturas y tiene una vida útil más larga.

AIM-9P-4 : El AIM-9P-4 presenta las características y la tecnología ALASCA que se encuentran en las variantes AIM-9L/M.

AIM-9P-5 : El AIM-9P-5 agrega IRCCM mejorado del AIM-9M.

Nota: la velocidad del modelo B rondaba los 1,7 Mach y la de los otros modelos los 2,5.

Variantes de todos los aspectos de última generación

AIM-9L (Fuerza Aérea de los Estados Unidos/Marina de los Estados Unidos)

Misil de entrenamiento aéreo cautivo AIM-9L con parte/sección en color azul, que denota cabeza explosiva inerte y motor de cohete , para fines de entrenamiento.

El siguiente gran avance en el desarrollo del Sidewinder IR fue el modelo AIM-9L ( "Lima" ) que estaba en plena producción en 1977. [21] [23] Este fue el primer Sidewinder " de todos los aspectos " con la capacidad de atacar desde todas las direcciones, incluido de frente, lo que tuvo un efecto dramático en las tácticas de combate cuerpo a cuerpo.

Su primer uso en combate fue por un par de F-14 de la Armada de los Estados Unidos en el Golfo de Sidra en 1981 contra dos Sukhoi Su-22 libios , ambos destrozados por AIM-9L. Su primer uso en un conflicto a gran escala fue por parte del Reino Unido durante la Guerra de las Malvinas de 1982. En esta campaña, el "Lima" supuestamente logró derribos en el 80% de los lanzamientos, una mejora dramática sobre los niveles del 10-15% de las versiones anteriores, anotando 17 derribos y 2 derribos compartidos contra aviones argentinos. [24]

Derivados del AIM-9L

DATM-9L (USAF/USN) : Es un AIM-9L utilizado para entrenar al personal de tierra en procedimientos y técnicas de montaje, desmontaje, carga, transporte y almacenamiento de misiles. [4]

GDU-6/C : Era una versión de entrenamiento del AIM-9L, puede haber sido una designación anterior del DATM-9L. [4]

RB74 (RB24L) : RB74 era la denominación sueca del AIM-9L. La denominación original era RB24L, pero se cambió a RB74.

AIM-9M (Fuerza Aérea de los Estados Unidos y Marina de los Estados Unidos)

El AIM-9M es un AIM-9L mejorado que hereda la capacidad de todos los aspectos del modelo L, pero que ofrece un mayor rendimiento general. Tiene un mejor rechazo del fondo y discriminación de contramedidas infrarrojas (WGU-4/B), y un motor de baja emisión de humo para reducir la firma visual del arma, y ​​una sección de control de guía mejorada con contramedidas y una mayor capacidad de mantenimiento y producción. El AIM-9M utiliza una ojiva de fragmentación de explosión anular. Estas modificaciones aumentan la capacidad de localizar y fijar un objetivo y reducen las posibilidades de detección del misil.

Se desplegó en grandes cantidades durante la Guerra del Golfo de 1991 ; el AIM-9M fue responsable de los 10 derribos de Sidewinder registrados durante ese conflicto. El AIM-9M fue utilizado por la RAAF como su AAM de combate aéreo estándar, transportado por el F/A-18 y el F-111. [11]

Variantes del AIM-9M

Derivados del AIM-9M

Variantes del NATM-9M

AIM-9R (EE. UU.)

El AIM-9R fue un AIM-9M mejorado desarrollado por la marina, que incluía el nuevo buscador WGU-19/B IIR (imágenes infrarrojas), con un rendimiento de seguimiento y detección (durante el día) mucho mejor, con la capacidad de rechazar tanto el terreno de fondo como las nubes, un campo de visión del buscador más grande y una capacidad de contramedidas más efectiva contra las técnicas de interferencia o seducción conocidas y postuladas. El primer disparo en vivo ocurrió en 1990, pero en 1992, la producción se canceló por falta de fondos debido a los recortes del presupuesto de defensa. [17]

AIM-9S (EE. UU.)

El AIM-9S es un AIM-9M modificado al que se le ha quitado el equipo de contramedidas (CCM) de la sección de control y guía. Este derivado se utiliza para ventas militares al extranjero (FMS), ofreciendo la última tecnología Sidewinder a los aliados de los EE. UU., sin renunciar a la valiosa tecnología de misiles. Un cliente del AIM-9S fue Turquía , que tenía 310 unidades en 2005. [17]

BOA/Taquilla

China Lake desarrolló una configuración mejorada de control de carro comprimido denominada BOA. Los misiles de "carro comprimido" tienen superficies de control más pequeñas para permitir que quepan más misiles en un espacio determinado. [25] Las superficies pueden estar "recortadas" permanentemente o pueden desplegarse cuando se lanza el misil.

AIM-9X (Fuerza Aérea de los Estados Unidos y Marina de los Estados Unidos)

Un marinero retira el pasador de armado de un AIM-9X montado en la punta del ala de un F/A-18C Hornet de la Marina de los EE. UU. en 2004

Hughes Electronics obtuvo un contrato para el desarrollo del AIM-9X Sidewinder en 1996 después de una competencia contra Raytheon para el próximo misil de combate aéreo de corto alcance, [26] aunque Raytheon compró las partes de defensa de Hughes Electronics al año siguiente. [27] El AIM-9X entró en servicio en noviembre de 2003 con la USAF (la plataforma líder fue el F-15C ) y la USN (la plataforma líder fue el F/A-18C ) y es una mejora sustancial de la familia Sidewinder que presenta un buscador de matriz de plano focal infrarrojo (FPA) con capacidad de 90° fuera del eje de mira, compatibilidad con pantallas montadas en casco como el nuevo Sistema de señalización montado en casco conjunto de EE. UU. (JHMCS) y un sistema de control de empuje vectorial (TVC) de dos ejes totalmente nuevo que proporciona una mayor capacidad de giro sobre las superficies de control tradicionales (60 g ). Utilizando el JHMCS, un piloto puede apuntar el buscador del misil AIM-9X y "fijarlo" simplemente mirando un objetivo, aumentando así la efectividad del combate aéreo. [28] Mantiene el mismo motor de cohete, espoleta y ojiva del AIM-9M, pero su menor resistencia le da un alcance y una velocidad mejorados. [29] El AIM-9X también incluye un sistema de enfriamiento interno, eliminando la necesidad de usar botellas de nitrógeno en el riel de lanzamiento (Marina y Marines de EE. UU.) o botellas de argón internas (USAF). También cuenta con un dispositivo de seguridad y brazo electrónico similar al AMRAAM, lo que permite una reducción en el alcance mínimo, y capacidad de Contramedidas infrarrojas reprogramables (IRCCM) que, junto con el FPA, proporciona una mejor visión hacia abajo en el desorden y un mejor rendimiento contra el último IRCM . Aunque no forma parte del requisito original, el AIM-9X demostró potencial para la capacidad de fijación después del lanzamiento , lo que permite un posible uso interno para el F-35 Lightning II , el F-22 Raptor e incluso en una configuración lanzada desde submarinos para su uso contra plataformas ASW. [30] El AIM-9X ha sido probado para su capacidad de ataque a la superficie, con resultados mixtos. [31]

Bloque II

El trabajo de prueba en la versión AIM-9X Block II comenzó en septiembre de 2008. [32] El Block II agrega capacidad de bloqueo después del lanzamiento con un enlace de datos, por lo que el misil puede lanzarse primero y luego dirigirse a su objetivo después por una aeronave con el equipo adecuado para enfrentamientos de 360 ​​grados, como el F-35 o el F-22. [33] Para enero de 2013, el AIM-9X Block II estaba aproximadamente a la mitad de su prueba operativa y rindiendo mejor de lo esperado. NAVAIR informó que el misil estaba excediendo los requisitos de rendimiento en todas las áreas, incluido el bloqueo después del lanzamiento (LOAL). Un área en la que el Block II necesita mejorar es el rendimiento de alta distancia fuera del eje de mira (HHOBS) sin casco. Está funcionando bien en el misil, pero el rendimiento es inferior al del AIM-9X Block I. La deficiencia de HHOBS no afecta a ninguna otra capacidad del Block II, y se planea mejorarla mediante una compilación de limpieza de software. Los objetivos de la prueba operativa debían completarse para el tercer trimestre de 2013. [34] Sin embargo, a partir de mayo de 2014 ha habido planes para reanudar las pruebas y evaluaciones operativas (incluida la compatibilidad del sistema de misiles tierra-aire). [35] A partir de junio de 2013 , Raytheon había entregado 5.000 misiles AIM-9X a los servicios armados. [36] El 18 de junio de 2017, después de que un AIM-9X no rastreara con éxito un Su-22 Fitter de la Fuerza Aérea Siria , el teniente comandante de la Marina de los EE. UU. Michael "Mob" Tremel volando un F/A-18E Super Hornet utilizó un AAM AMRAAM para destruir con éxito el avión enemigo. [37] Existe una teoría de que el Sidewinder se prueba contra bengalas estadounidenses y no soviéticas/rusas. El Sidewinder está acostumbrado a rechazar bengalas estadounidenses pero no soviéticas/rusas. Surgieron problemas similares de la prueba del modelo AIM-9P. El misil ignoraría las bengalas estadounidenses pero atacaría las soviéticas debido a su "diferente tiempo de combustión, intensidad y separación". [38] [39]

En febrero de 2015, el Ejército de los EE. UU. lanzó con éxito un AIM-9X Block II desde el nuevo Lanzador Multi-Misión (MML), un contenedor de lanzamiento de misiles montado en un camión que puede albergar 15 de los misiles. El MML es parte del Incremento de Capacidad de Protección contra Fuego Indirecto 2-Intercept (IFPC Inc. 2-I) para proteger a las fuerzas terrestres contra amenazas de misiles de crucero y vehículos aéreos no tripulados . El Ejército ha determinado que el AIM-9X Block II es la mejor solución para las amenazas de misiles de crucero y vehículos aéreos no tripulados debido a su buscador infrarrojo de imágenes pasivas. El MML complementará el sistema de defensa aérea AN/TWQ-1 Avenger y se espera que comience a desplegarse en 2019. [40] [ necesita actualización ]

Bloque III

En septiembre de 2012, Raytheon recibió la orden de continuar desarrollando el Sidewinder en una variante del Bloque III, a pesar de que el Bloque II aún no había entrado en servicio. La USN proyectó que el nuevo misil tendría un alcance 60 por ciento mayor, componentes modernos para reemplazar los viejos y una ojiva de municiones insensible , que es más estable y tiene menos probabilidades de detonar por accidente, lo que lo hace más seguro para las tripulaciones de tierra. La necesidad de que el AIM-9 tuviera un mayor alcance fue causada por los bloqueadores de memoria de radiofrecuencia digital (DRFM) que pueden cegar el radar de a bordo de un AIM-120D AMRAAM , por lo que el sistema de guía de búsqueda infrarroja de imágenes pasivas del Sidewinder Bloque III se consideró una alternativa útil. Aunque podría complementar al AMRAAM para enfrentamientos más allá del alcance visual (BVR), aún sería capaz de funcionar dentro del alcance visual (WVR). Modificar el AIM-9X se consideró una alternativa rentable al desarrollo de un nuevo misil en una época de presupuestos en declive. Para lograr el aumento del alcance, el motor del cohete tendría una combinación de mayor rendimiento y gestión de la potencia del misil. El Bloque III "aprovecharía" la unidad de guía y la electrónica del Bloque II, incluido el enlace de datos derivado del AMRAAM. Se programó que el Bloque III alcanzara la capacidad operativa inicial (IOC) en 2022, luego del aumento en el número de cazas de ataque conjunto F-35 Lightning II que entrarían en servicio. [41] [42] La Armada presionó para esta actualización en respuesta a una amenaza proyectada que los analistas han especulado que se deberá a la dificultad de apuntar a los próximos aviones de combate chinos de quinta generación ( Chengdu J-20 , Shenyang J-31 ) con el AMRAAM guiado por radar, [43] específicamente que los avances chinos en electrónica significarán que los cazas chinos usarán sus radares AESA como bloqueadores para degradar la probabilidad de derribo del AIM-120. [44] Sin embargo, el presupuesto del año fiscal 2016 de la Armada canceló el AIM-9X Block III al reducir las compras del F-35C, ya que su objetivo principal era permitir que el caza llevara seis misiles BVR; la ojiva de munición insensible se conservará para el programa AIM-9X. [45]

Combatir

Debut en combate: estrecho de Taiwán, 1958

El primer uso en combate del Sidewinder se produjo el 24 de septiembre de 1958 por parte de la Fuerza Aérea de la República de China (Taiwán) durante la Segunda Crisis del Estrecho de Taiwán . En ese momento, los North American F-86 Sabre de la ROCAF participaban rutinariamente en batallas aéreas con la República Popular China sobre el Estrecho de Taiwán . De manera similar a los enfrentamientos de la Guerra de Corea entre el F-86 y los MiG-15 anteriores, los MiG-17 de la República Popular China sobrevolaron a gran altura los ROC Sabre, inmunes a sus cañones de calibre .50 y luchando solo cuando las condiciones los favorecían. [47]

En un esfuerzo altamente secreto, Estados Unidos proporcionó unas pocas docenas de Sidewinder a las fuerzas de la ROC y un equipo de artillería de aviación del Cuerpo de Marines de Estados Unidos para modificar sus aviones para que llevaran el Sidewinder. En el primer encuentro, el 24 de septiembre de 1958, los pilotos de la ROCAF utilizaron los Sidewinder para emboscar a los MiG-17 que pasaban volando. Esta acción marcó el primer uso exitoso de misiles aire-aire en combate, siendo los MiG derribados las primeras víctimas. [47]

Durante las batallas del estrecho de Taiwán de 1958, un AIM-9B de la ROCAF impactó a un MiG-17 de la PLAAF sin explotar; el misil se alojó en la estructura del MiG y permitió al piloto traer tanto el avión como el misil de vuelta a la base. Los ingenieros soviéticos dijeron más tarde que el Sidewinder capturado sirvió como un "curso universitario" en diseño de misiles y mejoró sustancialmente las capacidades aire-aire soviéticas. [48] Realizaron ingeniería inversa de una copia del Sidewinder, que fue fabricado como el misil Vympel K-13 /R-3S , con el nombre de informe de la OTAN AA-2 Atoll . El Vympel K-13 entró en servicio con las fuerzas aéreas soviéticas en 1960. [49]

Servicio en la guerra de Vietnam, 1965-1973

F-4B 202 armado con AIM-9D del VF-111 en el USS  Coral Sea , 1971~1972

El rendimiento de los 454 Sidewinder lanzados [50] durante la guerra no fue tan satisfactorio como se esperaba. Tanto la Marina de los Estados Unidos como la Fuerza Aérea de los Estados Unidos estudiaron el rendimiento de sus tripulaciones, aviones, armas, entrenamiento e infraestructura de apoyo. La Fuerza Aérea de los Estados Unidos llevó a cabo el Informe Barón Rojo clasificado, mientras que la Armada llevó a cabo un estudio centrado principalmente en el rendimiento de las armas aire-aire que se conoció informalmente como el " Informe Ault ". Ambos servicios modificaron posteriormente sus AIM-9 para mejorar el rendimiento y la fiabilidad. [51]

El AIM-9 de la Guerra de Vietnam logró derribos en combate aéreo

En total, se dispararon 452 Sidewinders durante la guerra de Vietnam, lo que dio como resultado una probabilidad de muerte de 0,18. [53]

Guerra de las Malvinas de 1982

Durante la Guerra de las Malvinas , la Fuerza Aérea de los Estados Unidos proporcionó a la Real Fuerza Aérea 200 unidades del misil aire-aire AIM-9L Sidewinder para su uso en sus aviones de salto Harrier . [54] [55] El primer uso en combate del AIM-9L Sidewinder por parte de las fuerzas británicas ocurrió el 1 de mayo de 1982, cuando los Sea Harriers del 801 Escuadrón Aéreo Naval derribaron un avión de combate Mirage III de la Fuerza Aérea Argentina mientras realizaban una patrulla aérea de combate para proteger a la flota de invasión. [56] Al final de la guerra, los Sea Harriers armados con AIM-9L Sidewinder habían destruido 23 aviones argentinos en enfrentamientos aire-aire sin perder un solo avión británico por fuego enemigo. [57] El hecho de que los Sidewinders buscadores de calor apuntaran a los escapes de los aviones calientes contra un fondo frío del Atlántico Sur en invierno resultó en una tasa de letalidad de más del 80 por ciento. [58]

Derribos de globos y objetos no identificados en América del Norte en 2023

El 4 de febrero de 2023, un F-22 Raptor operado por la Fuerza Aérea de los Estados Unidos utilizó un solo misil AIM-9X para derribar un supuesto globo espía chino frente a la costa de Surfside Beach, Carolina del Sur, a una altitud de entre 60.000 y 65.000 pies (18.000 a 20.000 m). [59] [60] Seis días después, otro objeto fue derribado cerca de Alaska . [61] El 11 y el 12 de febrero se derribaron dos objetos más, sobre Yukón, Canadá y el lago Hurón en Michigan respectivamente. [62] [63] [64]

Guerra entre Israel y Hamás de 2023

El 2 de noviembre de 2023, la Fuerza Aérea israelí afirmó que uno de sus F-35I había derribado un misil de crucero no identificado, utilizando un AIM-9X Sidewinder. [65]

Descendientes de Sidewinder

Variantes antitanque

Uso experimental de un AIM-9L contra un M41 Walker Bulldog en China Lake , 1971

La Estación Naval de Armas Aéreas de China Lake experimentó con Sidewinder en modo aire-tierra , incluido su uso como arma antitanque . A partir de 2008, el AIM-9X demostró su capacidad como misil aire-tierra ligero con éxito . [66]

En 2016, Diehl cerró un acuerdo con la Oficina Federal de Equipamiento, Tecnología de la Información y Soporte en Servicio de la Bundeswehr para desarrollar una variante aire-tierra guiada por láser del misil Sidewinder basada en la variante AIM-9L. En pruebas con la Administración de Material de Defensa de Suecia, un Saab JAS 39 Gripen podría alcanzar un objetivo estacionario y dos móviles. [67]

El 28 de febrero de 2018, el Cuerpo de la Guardia Revolucionaria Islámica de Irán presentó un derivado antitanque del misil Sidewinder llamado "Azarakhsh", destinado a ser utilizado por los helicópteros de ataque Bell AH-1J SeaCobra . [68]

Desarrollos posteriores

Motor de cohete más grande

En el marco del Proyecto de Gran Altitud, los ingenieros de China Lake acoplaron una ojiva y un buscador Sidewinder a un motor de cohete Sparrow para experimentar con la utilidad de un motor más grande, dándole un mayor alcance. [69]

Otras plataformas de lanzamiento terrestre

MIM-72 Chaparral

El MIM-72 Chaparral es un misil tierra-aire (SAM) autopropulsado de fabricación estadounidense basado en el sistema de misiles aire-aire AIM-9 Sidewinder .

Variantes del MIM-72

Mira telescópica AIM-9X

En 2016, el AIM-9X fue probado desde un lanzador multimisión en el campo de misiles White Sands en Nuevo México , EE. UU. [70] Durante las pruebas con el MML, el AIM-9X experimentó problemas de sobrecalentamiento. Estos problemas se han resuelto desde entonces. [71] En septiembre de 2021, el ejército de los EE. UU. firmó un contrato con Dynetics para construir prototipos para su capacidad de protección contra incendios indirectos (IFPC), utilizando un lanzador basado en MML que dispara el Sidewinder para contrarrestar los vehículos aéreos no tripulados y los misiles de crucero. Está previsto que entre en servicio en 2023. [72]

AIM-9X NASAMS

En mayo de 2019, el AIM-9X Block II fue probado desde el Sistema Nacional Avanzado de Misiles Tierra-Aire ( NASAMS ) en el Centro Espacial Andøya en Noruega . [73]

FrankenSAM

A finales de 2022, Estados Unidos y Ucrania comenzaron a trabajar en un programa para adaptar los antiguos AIM-9M Sidewinder a misiles tierra-aire , como parte de un programa más amplio conocido como " FrankenSAM ", [74] en un intento de proteger mejor a Ucrania contra los ataques aéreos rusos a la infraestructura energética crítica durante la guerra ruso-ucraniana . [75] El 24 de octubre de 2023, un funcionario ucraniano dijo: "Esos misiles [AIM-9] estaban fuera de servicio... Encontramos una forma de lanzarlos [Sidewinder] desde el suelo. Es una especie de defensa aérea hecha por nosotros mismos". [76]

Operadores

Operadores del AIM-9 Sidewinder
  Actual
  Anterior
  Futuro

Operadores actuales

El AIM-9J con solo aspecto trasero transportado por un F-104G Starfighter holandés en 1979.

Antiguos operadores

Operadores del futuro

Please note that this list is not definitive.

See also

Related development

Related lists

Comparable missiles

References

Notes

Citations

  1. ^ a b c d e f g Sea Power (January 2006). Wittman, Amy; Atkinson, Peter; Burgess, Rick (eds.). "Air-to-Air Missiles". Sea Power. 49 (1). Arlington, Virginia: Navy League of the United States: 95–96. ISSN 0199-1337.
  2. ^ "Department of Defense Fiscal Year (FY) 2021 Budget Estimates" (PDF). US Navy. February 2020. p. 105. Archived from the original (PDF) on 19 December 2020. Retrieved 11 January 2023.
  3. ^ Parsch, Andreas (2024), Current Designations of U.S. Unmanned Military Aerospace Vehicles
  4. ^ a b c d e f g h i j k l m n o p q r s t u "Raytheon AIM-9 Sidewinder". www.designation-systems.net. Archived from the original on 9 February 2010. Retrieved 2 February 2010.
  5. ^ Babcock, Elizabeth (September 1999). Sidewinder Invention and Early Years. The China Lake Museum Foundation. The Air Force subsequently procured Sidewinder AIM-9B missiles for its hottest tactical and strategic aircraft, p. 21
  6. ^ Military Technology (August 2008). "News Flash". World Defence Almanac: The Balance of Military Power. 32 (8). Heilsbachstraße, Bonn-Germany: Mönch Publishing Group: 93–96. ISSN 0722-3226. "Alliant Techsystems and RUAG Aerospace have signed a teaming agreement to provide full-service and upgrade support of the AIM-9P-3/4/5 Sidewinder family of IR-guided short-range air-to-air missiles.
  7. ^ "Air Weapons: Beyond Sidewinder". www.strategypage.com. Archived from the original on 3 February 2010. Retrieved 2 February 2010.
  8. ^ "April 9, 2004: 416th Flight Test Squadron Test Fires AIM-9X for the First Time From an F-16". Air Force Test Center. United States Air Force. 9 April 2021. Retrieved 7 January 2022.
  9. ^ "AIM-9 Sidewinder Short-Range Air-to-Air Missile | MilitaryToday.com". www.militarytoday.com. Retrieved 19 December 2023.
  10. ^ "FOX TWO: The Story of the AIM-9 Sidewinder, by Don Hollway". www.donhollway.com. Retrieved 19 December 2023.
  11. ^ a b c d Kopp, Carlo (1 April 1994). "The Sidewinder Story; The Evolution of the AIM-9 Missile". Australian Aviation. 1994 (April).
  12. ^ Echo-locating bats, as they pursue flying insects, also adopt such a strategy, see this PLoS Biology report: Ghose, K.; Horiuchi, T. K.; Krishnaprasad, P. S.; Moss, C. F. (18 April 2006). "Echo-locating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey". PLOS Biology. 4 (5): e108. doi:10.1371/journal.pbio.0040108. PMC 1436025. PMID 16605303.
  13. ^ "How Sidewinder Missiles Work". HowStuffWorks. 1 January 1970. Retrieved 9 February 2024.
  14. ^ a b Kutzscher, Edgar (1957). "The Physical and Technical Development of Infrared Homing Devices". In Benecke, T; Quick, A (eds.). History of German Guided Missiles Development. NATO. Archived from the original on 30 September 2015. Retrieved 20 October 2015.
  15. ^ a b c d Tom Hildreth (March–April 1988). "The Sidewinder Missile". Air-Britain Digest. 40 (2): 39–40. ISSN 0950-7434.
  16. ^ "U.S. Naval Museum of Armament & Technology". Archived from the original on 23 September 2015. Retrieved 26 March 2015.
  17. ^ a b c d e f g h i j k "Raytheon AIM-9 Sidewinder". www.designation-systems.net. Archived from the original on 9 February 2010. Retrieved 2 February 2010.
  18. ^ Carlo, Kopp (1 April 1994). "The Sidewinder Story; The Evolution of the AIM-9 Missile". Australian Aviation. 1994 (April). Archived from the original on 17 December 2006. Retrieved 4 January 2007.
  19. ^ "F-16 Armament – AIM-9 Sidewinder". Archived from the original on 25 March 2015. Retrieved 26 March 2015.
  20. ^ a b Siemann, John W. (24 April 1974). Project CHECO Report, COMBAT SNAP (AIM-9J Southeast Asia Introduction) (PDF) (Report). U.S. Department of the Air Force. Retrieved 31 May 2024.Public Domain This article incorporates text from this source, which is in the public domain.
  21. ^ a b c Carlo, Kopp (1 April 1994). "The Sidewinder Story; The Evolution of the AIM-9 Missile". Australian Aviation. 1994 (April). Archived from the original on 17 December 2006. Retrieved 4 January 2007.
  22. ^ a b NAVAIR 01-245FDB-1T - Tactical Manual - F-4B J N - September 1972
  23. ^ Bonds 1989, p. 229.
  24. ^ "F-16 Armament – AIM-9 Sidewinder". Archived from the original on 25 March 2015. Retrieved 26 March 2015.
  25. ^ Eugene L. Fleeman (2001). "Technologies for Future Precision Strike Missile Systems - Missile/Aircraft Integration". DTIC. Retrieved 16 February 2024.
  26. ^ Bloomberg News (16 December 1996). "Hughes Electronics Wins Missile Contract". The New York Times. ISSN 0362-4331. Retrieved 12 July 2021.
  27. ^ PELTZ, JAMES F. (17 January 1997). "Raytheon Acquires Hughes Wing in $9.5-Billion Deal". Los Angeles Times. Retrieved 12 July 2021.
  28. ^ Doty, Steven R. (29 February 2008). "Kunsan pilots improve capability with AIM-9X missile". Air Force Link. Archived from the original on 2 March 2008. Retrieved 29 February 2008.
  29. ^ Sweetman, Bill, Warming trend, Aviation Week and Space Technology, July 8, 2013, p.26
  30. ^ "Successful Test of an AIM-9X Missile by a Raytheon-Led Team Demonstrates Potential for Low Cost Solution in Littoral Joint Battlespace". 29 September 2007. Archived from the original on 29 September 2007. Retrieved 25 August 2020.
  31. ^ "Raytheon AIM-9X Block II Air/Air Missile." Archived 2011-09-26 at the Wayback Machine Defense Update, 20 September 2011.
  32. ^ "Raytheon AIM-9X Block II Missile Completes First Captive Carry Flight". Raytheon. 18 September 2008. Retrieved 2 November 2018.
  33. ^ "Raytheon AIM-9X Block II Missile Completes First Captive Carry Flight". Archived from the original on 8 October 2014. Retrieved 26 March 2015.
  34. ^ AIM-9X Block II performing better than expected Archived 2013-02-03 at the Wayback Machine – Flightglobal.com, January 28, 2013
  35. ^ David C. Isby (May 2014). "AIM-9X Block II resumes IOT&E". Jane's International Defence Review. 47: 16. ISSN 2048-3449.
  36. ^ Raytheon Delivers 5,000th AIM-9X Sidewinder Air-to-Air Missile Archived 2014-03-07 at the Wayback Machine – Deagel.com, 15 June 2013
  37. ^ Ziezulewicz, Geoff (10 September 2018). "The inside story of how a US Navy pilot shot down a Syrian jet". Navy Times. Retrieved 11 February 2023.
  38. ^ KYLE MIZOKAMI (27 June 2017). "How Did a 30-Year-Old Jet Dodge the Pentagon's Latest Missile?". Popular Mechanics. Retrieved 10 March 2023.
  39. ^ DAVE MAJUMDAR (26 June 2017). "Why America's Mighty Military Doesn't Always Dominate The Battlefield". Task and Purpose. Retrieved 10 March 2023.
  40. ^ New Launcher to Deploy C-RAM, C-UAV and Counter Cruise-Missile Defenses by 2019 Archived 2015-07-09 at the Wayback Machine – Defense-Update.com, 28 March 2015
  41. ^ "US Navy hopes to increase AIM-9X range by 60%." Archived 2013-07-21 at the Wayback Machine – Flightglobal.com, 18 July 2013
  42. ^ New Sidewinder Tweaks Archived 2012-09-07 at the Wayback Machine – Strategypage.com, September 5, 2012
  43. ^ Sweetman, Bill (19 June 2013). "Raytheon Looks At Options For Long-Range AIM-9". Aviation Week. Archived from the original on 21 February 2014. Retrieved 23 June 2013.
  44. ^ Sweetman, Bill, Warming Trend, Aviation Week and Space Technology, July 8, 2013, p.26
  45. ^ F-35Cs Cut Back As U.S. Navy Invests In Standoff Weapons Archived 2015-02-05 at the Wayback Machine – Aviationweek.com, 3 February 2015
  46. ^ CD101B-0901 & 2-15D Supplement to Phantom FG.1 & FGR.2 Aircrew Manual - Weapon System (1977 & 1980 Radar Modification Standards)
  47. ^ a b Sidewinder AIM-9. US Naval Academy 2012. Archived from the original on 2 July 2018. Retrieved 21 November 2017.
  48. ^ Secret City: A history of the Navy at China Lake. OCLC 851089182.
  49. ^ Hollings, Alex (21 March 2021). "The Almost-Unbelievable True Story of the Sidewinder Missile". Popular Mechanics. Hearst Magazines. Retrieved 7 January 2022.
  50. ^ Michel III p. 287
  51. ^ Young, James. "Freedom's Flying Snake: The AIM-9 Sidewinder in The Cold War". Marine Corps University. United States Marine Corps. Retrieved 7 January 2022.
  52. ^ a b McCarthy Jr. p. 148-157
  53. ^ Friedman, Norman (1989). The Naval Institute Guide to World Naval Weapon Systems. Annapolis, Maryland: Naval Institute Press. p. 439. ISBN 978-1-55750-262-9.
  54. ^ Paul Reynolds, "Obituary: Caspar Weinberger Archived 30 October 2012 at the Wayback Machine," BBC News, 28 March 2006.
  55. ^ Prime Minister Margaret Thatcher would later write, "Without the Harriers... using the latest version of the Sidewinder air-to-air missile supplied by Caspar Weinberger, we could not have retaken the Falklands." Dan Snow, Peter Snow, p. 270, 20th Century Battlefields, Random House, 2012
  56. ^ Rodríguez Mottino, Horacio (1984). La artillería argentina en Malvinas (in Spanish). Editorial Clio. p. 170. ISBN 978-9509377028.
  57. ^ "The Fleet Air Arm in the Falklands War". navywings.org.uk.
  58. ^ Young, James. "Freedom's Flying Snake: The AIM-9 Sidewinder in The Cold War". Marine Corps University. United States Marine Corps. Retrieved 7 January 2022.
  59. ^ Borger, Julian (4 February 2023). "US shoots down suspected Chinese spy balloon over east coast". theguardian.com. Retrieved 5 February 2023.
  60. ^ Cooper, Helene; Wong, Edward (4 February 2023). "U.S. Shoots Down Chinese Spy Balloon Off the Coast of the Carolinas". The New York Times. ISSN 0362-4331. Retrieved 4 February 2023.
  61. ^ Epstein, Jake. "After nearly 2 decades in service, the F-22 has its first air-to-air kills — neither against the jets it was designed to fight". Business Insider. Retrieved 11 February 2023.
  62. ^ "Statement on Today's Actions by North American Aerospace Defense Command" (Press release). U.S. Department of Defense. 12 February 2023. Retrieved 12 February 2023.
  63. ^ Cooper, Helene (12 February 2023). "U.S. Shoots Down a Fourth Flying Object". The New York Times. Retrieved 12 February 2023.
  64. ^ "US jets shoot down third unmanned aircraft within a week, this time over Canada". USA Today. Retrieved 12 February 2023.
  65. ^ Newdick, Thomas (2 November 2023). "Israel Scores F-35's First Cruise Missile Kill". The War Zone. Retrieved 20 December 2023.
  66. ^ "AIM-9X Sidewinder demonstrates Air-To-Surface capability". Archived from the original on 28 September 2013. Retrieved 26 March 2015.
  67. ^ Heiming, Gerhard. "Laser-gelenkte Lenkrakete Sidewinder für den Luft-Boden-Einsatz". ESuT. Retrieved 13 May 2021.
  68. ^ "Iran's New Anti-Tank Missile Looks Awfully Familiar". Popular Mechanics. 1 March 2018. Archived from the original on 3 August 2020. Retrieved 4 February 2021.
  69. ^ "1970 China Lake Photo Gallery". www.chinalakealumni.org. Archived from the original on 10 June 2018. Retrieved 22 February 2018.
  70. ^ Collins, Boyd (30 March 2016). "U.S. Army successfully fires AIM-9X missile from new interceptor launch platform". www.army.mil. United States Army. Archived from the original on 20 June 2019. Retrieved 20 June 2019.
  71. ^ Judson, Jen (4 June 2021). "Dynetics unveils Enduring Shield, its solution for the US Army to counter cruise missiles". www.defensenews.com. Defense News. Retrieved 5 June 2021.
  72. ^ US Army mints deal with Dynetics to build system to counter drones and cruise missiles. Defense News. 24 September 2021.
  73. ^ Reichmann, Kelsey (19 June 2019). "Norway's Air Force tests Sidewinder missile". defensenews.com. Defense News. Retrieved 20 June 2019.
  74. ^ JOSEPH TREVITHICK (13 October 2023). "Ukraine Situation Report: 'FrankenSAM' To Speed Delivery Of Air Defenses". The War Zone. Retrieved 14 October 2023.
  75. ^ Roman Petrenko (29 October 2023). "Preparing for winter, Ukraine uses US assistance in creation of hybrid air defence systems – NYT". Ukrayinska Pravda. Retrieved 31 October 2023.
  76. ^ Alec Russell; Christopher Miller (13 October 2023). "Ukraine's race to build its own arms industrys". www.ft.com. Financial Times. Retrieved 27 October 2023.
  77. ^ Rivas, Santiago. "Fightinghawk still alive". Revista Pucará. No. 19. p. 25.
  78. ^ La Franchi, Peter (27 March 2007). "Australia confirms AIM-9X selection for Super Hornets". Flight International. Archived from the original on 7 September 2008. Retrieved 20 April 2011.
  79. ^ a b c d e f g h i j k l m n o p q r s Jennings, Gareth. "Norway and Taiwan join AIM-9X Block II user-community | IHS Jane's 360". IHS Jane's 360. London. Archived from the original on 5 July 2016. Retrieved 4 July 2016.
  80. ^ "Bahraini F-16C Block 40 #101, armed with 4 AIM-9 Sidewinder missiles, on a desert airfield. This aircraft was the first F-16 delivered to the RBAF [RBAF photo]". F-16.net. Retrieved 22 February 2022.
  81. ^ "International Market Research – Defense Trade Guide Update 2003". 13 October 2007. Archived from the original on 13 October 2007.
  82. ^ a b Cooper 2018, p. V
  83. ^ "Finland Ordering 150 AIM-9X Sidewinders". Archived from the original on 2 September 2006. Retrieved 12 September 2006.
  84. ^ Newdick, Thomas (3 September 2020). "Face-Off Over The Aegean: How Greek And Turkish Air Forces Stack Up". The Drive. Retrieved 18 February 2022.
  85. ^ "Die AIM-9L/I Sidewinder: Kurzstreckenrakete mit Infrarot-System". Archived from the original on 21 April 2024. Retrieved 2 September 2024.
  86. ^ "Two Indonesian vipers, fully armed with 4x AIM-9 and 2x AGM-65 missiles, flying low (200 ft) over Gulf Of Popoh, South of East Java Province. [Photo by Capt.Agung "Sharky" Sasongkojati]". F-16.net. Retrieved 22 February 2022.
  87. ^ "Taking On Iran's Air Force – Defense Tech". 17 May 2006. Archived from the original on 12 June 2015. Retrieved 26 March 2015.
  88. ^ Rogoway, Tyler (19 April 2018). "Now Iraq Has Started Bombing Syria Too (Updated)". The Drive. Retrieved 18 February 2022.
  89. ^ "An IDF/AF viper banking over the Golan heights, armed with 2 JDAMs, 2 Python 5 and 2 Sidewinder missiles. [IDF/AF photo]". F-16.net. Retrieved 22 February 2022.
  90. ^ Rivas, Santiago. "A capacity hard to sustain. Combat aviation in Latin America - Part 3". Revista Pucará. No. 13. p. 51.
  91. ^ Cooper 2018, p. IV
  92. ^ Chenel, Liébert & Moreau 2014, p. 156
  93. ^ "PH completes inspection of Raytheon for FA-50's air-to-air missiles – Update Philippines". 18 July 2017. Archived from the original on 7 November 2017. Retrieved 1 November 2017.
  94. ^ "US State Department Approves Harpoon and AIM-9X for Philippines". global defense corp. Retrieved 15 July 2021.
  95. ^ Trevithick, Joseph (4 February 2022). "These Photos Of Armed NATO F-16s Patrolling Over The Baltics Are Absolutely Incredible". The Drive. Retrieved 18 February 2022.
  96. ^ "PoAF F-16A #15117, armed with four AIM-9 Sidewinders, refueling from a USAF tanker [USAF photo]". F-16.net. Retrieved 22 February 2022.
  97. ^ "Portuguese Air Force Joining AIM-9X Block II Sidewinder Air-to-air Missile Operators Group". 11 November 2022. Retrieved 12 January 2023.
  98. ^ "150 AIM-9 Sidewinder Missiles for Saudi Arabia". Archived from the original on 2 September 2006. Retrieved 12 September 2006.
  99. ^ "SIPRI arms transfer database". Stockholm International Peace Research Institute. 19 March 2012. Archived from the original on 29 December 2017. Retrieved 27 April 2012.
  100. ^ "Jas 39 Gripen C/D". Försvarsmakten (in Swedish). Försvarsmakten. Retrieved 30 May 2023.
  101. ^ "Thailand - KongTup Arkard Thai Royal Thai Air Force - RTAF". F-16.net.
  102. ^ "Turkey Buys 127 AIM-9X Sidewinder Missiles". Archived from the original on 2 September 2006. Retrieved 12 September 2006.
  103. ^ "Defence Minister Anita Anand announces military aid for Ukraine at the twelfth meeting of the Ukraine Defense Contact Group". www.canada.ca. 25 May 2023.
  104. ^ Gareth Jennings (26 May 2023). "Ukraine conflict: Canada to donate Sidewinder missiles to Kyiv". janes.com.
  105. ^ "AIM-9M Missiles, $250 Million in Additional Security Assistance Headed for Ukraine". U.S. Department of Defense. Retrieved 30 August 2023.
  106. ^ "Venezuela - Fuerza Aérea Venezolana Venezuelan Air Force - FAV". F-16.net.
  107. ^ Moralez, Joao Paulo. "On target! A brief history of the MAA-1 Piranha". Revista Pucará. No. 23. p. 13.
  108. ^ Moralez, Joao Paulo. "25 years of the falcons of the Brazilian Navy". Revista Pucará. No. 22. p. 70.
  109. ^ Chenel, Liébert & Moreau 2014, p. 363
  110. ^ Cooper 2017, p. 40
  111. ^ "AIM-9B Sidewinder". South African Air Force Association. Archived from the original on 27 June 2008. Retrieved 4 August 2008.
  112. ^ Chenel, Liébert & Moreau 2014, p. 225
  113. ^ Team, ESD Editorial (13 December 2019). "Slovak Air Force Modernisation - European Security & Defence". euro-sd.com. Retrieved 30 December 2023.
  114. ^ "Bulgaria – F-16 C/D Block 70 Aircraft | Defense Security Cooperation Agency". www.dsca.mil. Retrieved 17 June 2023.
  115. ^ "Germany – F-35 Aircraft and Munitions". Defense Security Cooperation Agency. 28 July 2022. Archived from the original on 20 February 2024. Retrieved 2 September 2024.

Bibliography

External links