stringtranslate.com

Avión Lockheed Martin F-22 Raptor

El Lockheed Martin/Boeing F-22 Raptor es un avión de combate furtivo supersónico para todo clima, bimotor , desarrollado y producido para la Fuerza Aérea de los Estados Unidos (USAF). Como producto del programa Advanced Tactical Fighter (ATF) de la USAF, el avión fue diseñado como un caza de superioridad aérea , pero también incorpora capacidades de ataque terrestre , guerra electrónica e inteligencia de señales . El contratista principal, Lockheed Martin , construyó la mayor parte del fuselaje y los sistemas de armas del F-22 y realizó el ensamblaje final, mientras que el socio del programa Boeing proporcionó las alas, el fuselaje trasero , la integración de aviónica y los sistemas de entrenamiento.

El F-22, que voló por primera vez en 1997, descendió del Lockheed YF-22 y fue designado de diversas formas como F-22 y F/A-22 antes de entrar formalmente en servicio en diciembre de 2005 como F-22A . Aunque la USAF había planeado originalmente comprar un total de 750 ATF, más tarde redujo la cantidad a 381, y el programa finalmente se redujo a 195 aviones (187 de ellos modelos operativos) en 2009 debido a la oposición política por los altos costos, la falta de misiones aire-aire en el momento de la producción y el desarrollo del F-35 , más asequible y versátil . [N 2] El último avión fue entregado en 2012.

El F-22 es un componente fundamental de la fuerza aérea táctica de alto nivel de la USAF. Si bien tuvo un desarrollo prolongado y dificultades operativas iniciales, la aeronave se convirtió en la plataforma líder del servicio para misiones aire-aire contra adversarios similares. Aunque fue diseñado para operaciones antiaéreas, el F-22 también ha realizado ataques y vigilancia electrónica en Oriente Medio contra el Estado Islámico y las fuerzas alineadas con Assad . Está previsto que el F-22 siga siendo una piedra angular de la flota de cazas de la USAF hasta que lo sustituya el caza tripulado Next Generation Air Dominance . [3] [4] [5]

Desarrollo

Orígenes

Parche de la ATF SPO, 1990

El F-22 se originó a partir del programa Advanced Tactical Fighter (ATF) que la Fuerza Aérea de los EE. UU. inició en 1981 para reemplazar al F-15 Eagle y al F-16 Fighting Falcon . Aunque el F-15 y el F-16 habían entrado en servicio recientemente, los informes de inteligencia indicaban que su efectividad se erosionaría rápidamente por las amenazas mundiales emergentes que emanaban de la Unión Soviética , incluidos los nuevos desarrollos en sistemas de misiles tierra-aire para redes integradas de defensa aérea, la introducción del sistema de alerta y control aéreo (AWACS) Beriev A-50 "Mainstay" y la proliferación de la clase de aviones de combate Sukhoi Su-27 "Flanker" y Mikoyan MiG-29 "Fulcrum". [6] Inicialmente llamado " Senior Sky ", el ATF se convertiría en un programa de caza de superioridad aérea influenciado por estos informes; En el escenario potencial de una invasión soviética y del Pacto de Varsovia en Europa Central , se concibió que la ATF encabezaría las operaciones antiaéreas ofensivas y defensivas (OCA/DCA) en este entorno altamente disputado que luego permitiría a los siguientes escalones de aviones de ataque y ataque de la OTAN atacar formaciones terrestres; para ello, la ATF daría un ambicioso salto en capacidad y capacidad de supervivencia aprovechando las nuevas tecnologías en diseño de cazas en el horizonte, incluidos materiales compuestos , aleaciones ligeras , sistemas avanzados de control de vuelo y aviónica, sistemas de propulsión más potentes para crucero supersónico (o supercrucero ) alrededor de Mach 1,5 y tecnología furtiva para baja observabilidad. [7] [8] [9]

La USAF inició una solicitud de información (RFI) de la ATF a la industria aeroespacial en mayo de 1981 y un equipo de desarrollo de conceptos (CDT) posterior para identificar los requisitos y gestionar el desarrollo de conceptos y tecnología. [10] En 1983, el CDT se convirtió en la Oficina del Programa del Sistema (SPO) de la ATF y gestionó el programa en la Base de la Fuerza Aérea Wright-Patterson . Tras un período de refinamiento del concepto y definición de los requisitos del sistema, la solicitud de propuestas (RFP) de demostración y validación (Dem/Val ) se emitió en septiembre de 1985, con requisitos que ponían un fuerte énfasis en el sigilo y el supercrucero. La RFP vería algunas modificaciones después de su lanzamiento inicial; el SPO aumentó drásticamente los requisitos de reducción de firma en diciembre de 1985, [N 3] y el requisito de volar prototipos demostradores de tecnología se agregó en mayo de 1986 debido a las recomendaciones de la Comisión Packard . [11] Además, la Armada de los EE. UU. , bajo el programa Navy Advanced Tactical Fighter (NATF), finalmente anunció que usaría un derivado del ATF para reemplazar su F-14 Tomcat . Debido a las inmensas inversiones requeridas para desarrollar la tecnología necesaria para lograr los requisitos, se alentó la asociación entre empresas. De las siete empresas ofertantes, [N 4] Lockheed y Northrop fueron seleccionadas el 31 de octubre de 1986. Lockheed, a través de su división Skunk Works en Burbank, California , se asoció con Boeing y General Dynamics , mientras que Northrop se asoció con McDonnell Douglas . Estos dos equipos de contratistas llevaron a cabo una fase Dem/Val de 50 meses, que culminó con la prueba de vuelo de dos prototipos de demostración de tecnología, el YF-22 y el YF-23 respectivamente; si bien representan diseños competitivos, los prototipos debían ser vehículos de "mejor esfuerzo" no destinados a realizar un despegue competitivo o representar un avión de producción, sino a demostrar la viabilidad de su concepto y mitigar el riesgo. [N 5] Al mismo tiempo, Pratt & Whitney y General Electric fueron contratados para desarrollar los sistemas de propulsión para la competición de motores ATF. [12] [13]

Dem/Val se centró en la ingeniería de sistemas , los planes de desarrollo de tecnología y la reducción de riesgos en los diseños de aeronaves puntuales; de hecho, después de la selección descendente, el equipo de Lockheed rediseñó por completo la configuración del fuselaje en el verano de 1987 debido al análisis de peso durante el diseño detallado, con cambios notables que incluyeron la forma del ala de trapezoide en flecha a delta en forma de diamante y una reducción en el área de la forma del cuerpo delantero. [14] [15] El equipo hizo un uso extensivo de métodos analíticos y empíricos, incluida la dinámica de fluidos computacional y el software de diseño asistido por computadora , pruebas en túnel de viento (18.000 horas para Dem/Val) y cálculos de sección transversal de radar (RCS) y pruebas de postes en Helendale, California . El desarrollo de la aviónica estuvo marcado por pruebas y prototipos exhaustivos y apoyados por laboratorios terrestres y de vuelo. [16] Durante Dem/Val, el SPO utilizó los resultados de los estudios de rendimiento y comercio de costos de ambos equipos para revisar los requisitos de ATF y ajustar o eliminar los que eran impulsores significativos de peso y costo mientras tenían un valor marginal. El requisito de despegue y aterrizaje cortos ( STOL ) se relajó para eliminar los inversores de empuje , lo que permitió ahorrar peso sustancial. Como la aviónica era un factor de costo importante, se eliminaron los radares laterales y el sistema de búsqueda y seguimiento infrarrojo dedicado (IRST) se degradó de multicolor a un solo color y luego también se eliminó. Se mantuvieron las disposiciones de espacio y refrigeración para permitir la adición posterior de estos componentes. El requisito del asiento eyectable se degradó de un diseño nuevo al McDonnell Douglas ACES II existente . A pesar de los esfuerzos de los equipos de contratistas para controlar el peso, las estimaciones de peso bruto de despegue aumentaron de 50.000 a 60.000 lb (22.700 a 27.200 kg), lo que resultó en un aumento del requisito de empuje del motor de 30.000 a 35.000 lbf (133 a 156 kN). [17]

Cada equipo construyó dos prototipos de vehículos aéreos para Dem/Val, uno para cada una de las dos opciones de motor. El YF-22 tuvo su vuelo inaugural el 29 de septiembre de 1990 en Palmdale, California y en las pruebas de vuelo demostró con éxito maniobras de supercrucero, alto ángulo de ataque y el disparo de misiles aire-aire desde bahías de armas internas. Después de la prueba de vuelo Dem/Val de los prototipos de demostración en la Base Aérea Edwards , los equipos presentaron los resultados y las propuestas de diseño de sistema completo (o Concepto de Sistema Preferido, PSC) para el desarrollo a gran escala en diciembre de 1990; el 23 de abril de 1991, el Secretario de la USAF Donald Rice anunció al equipo Lockheed y Pratt & Whitney como los ganadores de las competiciones ATF y de motor. [18] Ambos diseños cumplieron o superaron todos los requisitos de rendimiento; El YF-23 se consideraba más furtivo y rápido, pero el YF-22, con sus toberas de vectorización de empuje, era más maniobrable y menos costoso y arriesgado, habiendo volado considerablemente más misiones de prueba y horas que su contraparte. [19] La prensa también especuló que el diseño del equipo de Lockheed era más adaptable al NATF de la Armada, [N 6] pero para el año fiscal (FY) 1992, la Armada había abandonado el NATF debido al costo. [20]

Desarrollo a gran escala

A medida que el programa pasó a la fase de desarrollo a gran escala, o Desarrollo de Ingeniería y Fabricación (EMD), el diseño de producción del F-22 (designado internamente como Configuración 645) evolucionó hasta presentar diferencias notables con respecto al demostrador inmaduro YF-22, a pesar de tener una configuración similar. La geometría externa experimentó alteraciones significativas; el ángulo de barrido del borde de ataque del ala se redujo de 48° a 42°, mientras que los estabilizadores verticales se desplazaron hacia atrás y se redujo su área en un 20%. [21] La forma del radomo se modificó para mejorar el rendimiento del radar, las puntas de las alas se recortaron para colocar antenas y se eliminó el aerofreno dedicado. Para mejorar la visibilidad del piloto y la aerodinámica, la cubierta se movió hacia adelante 7 pulgadas (18 cm) y las entradas de los motores se movieron hacia atrás 14 pulgadas (36 cm). Las formas del fuselaje, el ala y los bordes de salida del estabilizador se refinaron para mejorar la aerodinámica, la resistencia y las características de sigilo. El diseño estructural interno fue refinado y reforzado, y el fuselaje de producción fue diseñado para una vida útil de 8000 horas. [22] [23] La forma revisada se validaría con más de 17 000 horas adicionales de pruebas en túnel de viento y más pruebas RCS en Helendale y el campo de tiro RATSCAT de la USAF antes del primer vuelo. El aumento de peso durante el EMD debido a los exigentes requisitos de supervivencia balística y las capacidades adicionales provocaron ligeras reducciones en el alcance proyectado y el rendimiento de maniobra. [24]

Un EMD F-22 junto al banco de pruebas de vuelo

Aparte de los avances en la tecnología de los vehículos aéreos y de la propulsión, el sistema de aviónica integrado y el software del F-22 no tenían precedentes en términos de complejidad y escala para un avión de combate, con la fusión de múltiples sistemas de sensores y antenas, incluyendo guerra electrónica integrada y comunicación, navegación e identificación (CNI) integradas, y la integración de software de 1,7 millones de líneas de código escritas en Ada ; de hecho, la aviónica a menudo se convirtió en el factor que marcaba el ritmo de todo el programa. A la luz del rápido avance de la tecnología informática y de semiconductores, la aviónica debía emplear la arquitectura de sistemas PAVE PILLAR del Departamento de Defensa (DoD) e incorporar el trabajo del programa de Circuito Integrado de Muy Alta Velocidad (VHSIC); la aviónica tenía requisitos de computación y procesamiento equivalentes a múltiples supercomputadoras Cray contemporáneas para lograr la fusión de sensores y se probó ampliamente en prototipos terrestres. [25] [26] Para permitir una visión temprana y la resolución de problemas para el desarrollo del software de la misión, el software fue probado en tierra en el Laboratorio de Integración de Aviónica (AIL) de Boeing y probado en vuelo en un Boeing 757 modificado con sistemas de misión F-22 para servir como laboratorio de aviónica de prueba de vuelo. [27] [28] Debido a que gran parte del diseño de la aviónica del F-22 se produjo en la década de 1990, cuando la industria electrónica estaba pasando de aplicaciones militares a comerciales como el mercado predominante, los esfuerzos de actualización de la aviónica fueron inicialmente difíciles y prolongados debido a los estándares cambiantes de la industria; por ejemplo, C / C++ en lugar de Ada se convirtieron en los lenguajes de programación predominantes. [29]

Fabricantes del F-22

La división aproximadamente igualitaria del trabajo entre el equipo se trasladó en gran medida de Dem/Val a EMD, con el contratista principal Lockheed responsable del fuselaje delantero y las superficies de control, General Dynamics del fuselaje central y Boeing del fuselaje trasero y las alas. Lockheed adquirió la cartera de cazas de General Dynamics en Fort Worth, Texas en 1993 y, por lo tanto, tenía la mayor parte de la fabricación del fuselaje, y se fusionaría con Martin Marietta en 1995 para formar Lockheed Martin . Si bien Lockheed realizó principalmente el trabajo de Dem/Val en sus sitios de Skunk Works en Burbank y Palmdale, California , trasladaría su oficina de programas y el trabajo de EMD de Burbank a Marietta, Georgia , donde realizó el ensamblaje final; Boeing fabricó los componentes del fuselaje, realizó la integración de aviónica y desarrolló los sistemas de entrenamiento en Seattle, Washington . El contrato EMD originalmente ordenaba siete F-22A monoplaza y dos F-22B biplaza, aunque este último fue cancelado en 1996 para reducir los costos de desarrollo y los pedidos se convirtieron en monoplazas. [30] El primer F-22A, un avión EMD con número de cola 4001, fue presentado en la Base de la Reserva Aérea Dobbins en Marietta el 9 de abril de 1997 y voló por primera vez el 7 de septiembre de 1997. [31] [32]

Debido a que el F-22 había sido diseñado para derrotar a los cazas soviéticos contemporáneos y proyectados , el final de la Guerra Fría y la disolución de la Unión Soviética en 1991 tendrían importantes impactos en la financiación del programa; el Departamento de Defensa redujo su urgencia por nuevos sistemas de armas y los años siguientes verían reducciones sucesivas en su presupuesto. Esto dio como resultado que el EMD del F-22 se reprogramara y alargara varias veces. Además, las numerosas nuevas tecnologías necesarias para los ambiciosos requisitos de rendimiento del F-22 exacerbaron los sobrecostos y los problemas para cumplir con los hitos programados. [33] Algunas capacidades también se pospusieron a actualizaciones posteriores al servicio, lo que redujo el costo inicial pero aumentó el costo total del programa. [34] Después de extensas pruebas y evaluaciones, el programa pasó a producción a plena capacidad en marzo de 2005 y completó el EMD ese diciembre cuando el avión entró en servicio operativo, mientras que la actividad de Investigación, Desarrollo, Pruebas y Evaluación (RTD&E) continuó para actualizaciones y modificaciones. [35] A finales de los años 1990 y principios de los 2000 se propusieron derivados como el avión de investigación con vectorización de empuje X-44 y el bombardero regional de alcance medio FB-22 , aunque finalmente se abandonaron. En 2006, el equipo de desarrollo del F-22 ganó el Trofeo Collier , el premio más prestigioso de la aviación estadounidense. [36] Debido a las sofisticadas capacidades de la aeronave, los contratistas han sido blanco de ciberataques y robo de tecnología. [37]

Producción y adquisiciones

La USAF originalmente tenía previsto encargar 750 ATF por un coste total del programa de 44.300 millones de dólares y un coste de adquisición de 26.200 millones de dólares en dólares del año fiscal 1985, con inicio de la producción en 1994 y entrada en servicio a mediados o finales de los años 1990. La Major Aircraft Review (MAR) de 1990 dirigida por el Secretario de Defensa Dick Cheney redujo esta cifra a 648 aviones a partir de 1996 y en servicio a principios o mediados de los años 2000. Después del final de la Guerra Fría, este requisito se redujo aún más a 442 en la Revisión de Abajo hacia Arriba de 1993, mientras que la USAF finalmente estableció su requisito en 381 para apoyar adecuadamente su estructura de Fuerza Expedicionaria Aérea con las últimas entregas en 2013. A lo largo del desarrollo y la producción, el programa fue examinado continuamente por sus costos y se propusieron alternativas menos costosas, como variantes modernizadas del F-15 o F-16, a pesar de que la USAF determinó que el F-22 proporcionaba el mayor aumento de capacidad para la inversión. Sin embargo, la inestabilidad financiera había reducido el total a 339 en 1997 y la producción fue casi detenida por el Congreso en 1999. [N 7] Aunque los fondos fueron finalmente restaurados, el número planeado continuó disminuyendo debido a retrasos y sobrecostos durante el EMD, cayendo a 277 en 2003. [39] [40] En 2004, con su enfoque en la guerra de contrainsurgencia asimétrica en Irak y Afganistán , el Departamento de Defensa bajo el secretario Donald Rumsfeld redujo aún más la adquisición planificada del F-22 a 183 aviones de producción, a pesar del requisito de la USAF de 381; [41] [42] la financiación para esta cifra se alcanzó mediante un contrato de adquisición plurianual adjudicado en 2006, con aviones distribuidos a siete escuadrones de combate; el costo total del programa se proyectó en $62 mil millones (~$90,2 mil millones en 2023). [43] En 2008, el Congreso aprobó un proyecto de ley de gastos de defensa que aumentó el total de pedidos de aviones de producción a 187. [44] [45]

La producción del F-22 sustentaría a más de 1.000 subcontratistas y proveedores de 46 estados y hasta 95.000 puestos de trabajo, y se extendió por 15 años a un ritmo máximo de aproximadamente dos aviones por mes, aproximadamente la mitad de la tasa inicialmente planificada a partir del MAR de 1990; después de los contratos de aeronaves EMD, el primer lote de producción se adjudicó en septiembre de 2000. [46] [47] [48] Cuando la producción disminuyó en 2011, el costo total del programa se estimó en alrededor de $ 67.3 mil millones (alrededor de $ 360 millones por cada avión de producción entregado), con $ 32.4 mil millones gastados en Investigación, Desarrollo, Prueba y Evaluación (RDT&E) y $ 34.9 mil millones en adquisiciones y construcción militar (MILCON) en dólares de ese año. El costo incremental para un F-22 adicional se estimó en $ 138 millones (~ $ 191 millones en 2023) en 2009. [49] [35]

En total, se construyeron 195 F-22. Los dos primeros eran aviones EMD en la configuración Bloque 1.0 [N 8] para pruebas iniciales de vuelo y expansión de la envolvente, mientras que el tercero era un avión Bloque 2.0 construido para representar la estructura interna de los fuselajes de producción y permitirle probar cargas de vuelo completas. Se construyeron seis aviones EMD más en la configuración Bloque 10 para pruebas de desarrollo y actualización, y los dos últimos se consideraron esencialmente aviones de calidad de producción. La producción para escuadrones operativos consistió en 74 aviones de entrenamiento Bloque 10/20 y 112 aviones de combate Bloque 30/35 para un total de 186 (o 187 si se tienen en cuenta los vehículos de prueba representativos de la producción); [N 1] uno de los aviones Bloque 30 está dedicado a las ciencias de vuelo en la Base Aérea Edwards, California. [50] [51] Para 2020, las aeronaves del Bloque 20 del Lote 3 en adelante se actualizaron a los estándares del Bloque 30 bajo el Plan de Configuración Común, aumentando la flota del Bloque 30/35 a 149 aeronaves, mientras que 37 permanecieron en la configuración del Bloque 20 para entrenamiento. [N 9] [53] [54]

Prohibición de exportaciones

Dos F-22 sobrevolando montañas cubiertas de nieve.
Dos F-22 durante pruebas de vuelo, siendo el de arriba el primer F-22 EMD, el Raptor 4001

Para evitar la divulgación inadvertida de la tecnología furtiva del avión y las capacidades clasificadas a los adversarios de los EE. UU., [55] [56] las leyes de asignaciones anuales del Departamento de Defensa desde el año fiscal 1998 han incluido una disposición que prohíbe el uso de los fondos disponibles en cada ley para aprobar o licenciar la venta del F-22 a cualquier gobierno extranjero. [57] Los clientes de los cazas estadounidenses están adquiriendo diseños anteriores, como el F-15 Eagle y el F-16 Fighting Falcon o el más nuevo F-35 Lightning II , que contiene tecnología del F-22 pero fue diseñado para ser más barato, más flexible y disponible para la exportación. [58] En septiembre de 2006, el Congreso confirmó la prohibición de las ventas extranjeras del F-22. [59] A pesar de la prohibición, el proyecto de ley de autorización de defensa de 2010 incluyó disposiciones que requieren que el Departamento de Defensa informe sobre los costos y la viabilidad de una variante de exportación del F-22, y otro informe sobre el efecto de las ventas de exportación del F-22 en la industria aeroespacial estadounidense. [60] [61]

Algunos funcionarios de defensa y políticos australianos han expresado su interés en adquirir el F-22; en 2008, el Jefe de la Fuerza de Defensa , el Mariscal Jefe del Aire Angus Houston , declaró que la Real Fuerza Aérea Australiana (RAAF) estaba considerando la compra del avión como un posible complemento del F-35. [62] [63] Algunos comentaristas de defensa incluso han abogado por la compra en lugar de los F-35 planeados, citando las capacidades conocidas del F-22 y los retrasos e incertidumbres del desarrollo del F-35. [64] [65] [66] Sin embargo, las consideraciones para el F-22 se abandonaron más tarde y el F/A-18E/F Super Hornet serviría como avión provisional de la RAAF antes de la entrada en servicio del F-35. [67]

El gobierno japonés también mostró interés en el F-22. Según se informa, la Fuerza de Autodefensa Aérea de Japón (JASDF) requeriría menos cazas para su misión si obtuviera el F-22, reduciendo así los costos de ingeniería y personal. [68] [69] Con el fin de la producción del F-22, Japón eligió el F-35 en diciembre de 2011. [70] En un momento dado, la Fuerza Aérea israelí había esperado comprar hasta 50 F-22. Sin embargo, en noviembre de 2003, los representantes israelíes anunciaron que después de años de análisis y discusiones con Lockheed Martin y el Departamento de Defensa, habían llegado a la conclusión de que Israel no podía permitirse el avión. [71] Israel finalmente compró el F-35. [72] [73]

Terminación de la producción

A lo largo de la década de 2000, cuando el Departamento de Defensa estaba principalmente luchando en guerras de contrainsurgencia en Irak y Afganistán, la meta de adquisición de la USAF de 381 F-22 fue cuestionada por el aumento de los costos, los problemas iniciales de confiabilidad y disponibilidad, la versatilidad multifunción limitada y la falta de adversarios relevantes para misiones de combate aéreo. [58] [74] En 2006, el Contralor General de los Estados Unidos, David Walker, encontró que "el Departamento de Defensa no ha demostrado la necesidad" de una mayor inversión en el F-22, [75] y la oposición adicional fue expresada por el Secretario de Defensa de la Administración Bush , Rumsfeld, y su sucesor, Robert Gates , el Subsecretario de Defensa, Gordon R. England , y el Presidente del Comité de Servicios Armados del Senado de los EE. UU. (SASC), los senadores John Warner y John McCain . [76] [77] Bajo Rumsfeld, la adquisición se redujo severamente a 183 aviones. El F-22 perdió partidarios influyentes en 2008 después de las renuncias forzadas del Secretario de la Fuerza Aérea Michael Wynne y el Jefe de Estado Mayor de la Fuerza Aérea General T. Michael Moseley . [78] En noviembre de 2008, Gates declaró que el F-22 carecía de relevancia en los conflictos asimétricos posteriores a la Guerra Fría, [79] y en abril de 2009, bajo la Administración Obama , pidió que la producción terminara en el año fiscal 2011 después de completar 187 F-22. [80]

Dos F-22A en formación de estela cerrada

La pérdida de defensores acérrimos del F-22 en los escalones superiores del Departamento de Defensa resultó en la erosión de su apoyo político. En julio de 2008, el general James Cartwright , vicepresidente del Estado Mayor Conjunto , declaró al SASC sus razones para apoyar la terminación de la producción del F-22, incluyendo el cambio de recursos al F-35 multiservicio y la preservación de la línea de producción del F/A-18 para las capacidades de guerra electrónica del EA-18G Growler . [81] Aunque los desarrollos de cazas rusos y chinos alimentaron la preocupación por la USAF, Gates desestimó esto y en 2010, estableció el requisito del F-22 en 187 aviones al reducir el número de preparativos para conflictos regionales importantes de dos a uno, a pesar de un esfuerzo de los sucesores de Wynne y Moseley, Michael Donley y el general Norton Schwartz, para aumentar el número a 243; Según Schwartz, él y Donley finalmente cedieron para convencer a Gates de preservar el programa de bombarderos de ataque de largo alcance . [82] [83] Después de que el presidente Barack Obama amenazara con vetar una mayor producción a instancias de Gates, el Senado votó en julio de 2009 a favor de terminar la producción y la Cámara acordó cumplir con el límite de 187. [84] [85] Gates destacó el papel del F-35 en la decisión, [86] y en 2011, explicó que los desarrollos de cazas chinos se habían tenido en cuenta cuando se establecieron los números del F-22, y que Estados Unidos tendría una ventaja considerable en aviones furtivos en 2025 incluso con los retrasos del F-35. [87] En diciembre de 2011, se completó el 195.º y último F-22 de 8 aviones de prueba y 187 de producción construidos; el avión se entregó el 2 de mayo de 2012. [88] [89]

Aunque la producción terminó, las herramientas del F-22 se conservaron para respaldar las reparaciones y el mantenimiento, así como la posibilidad de un reinicio de la producción o un Programa de extensión de la vida útil (SLEP). [90] Un documento de RAND Corporation de un estudio de la USAF de 2010 estimó que reiniciar la producción y construir 75 F-22 adicionales costaría $ 17 mil millones, lo que resultaría en $ 227 millones por aeronave, $ 54 millones más que el costo del vuelo. [91] En ese momento, Lockheed Martin declaró que reiniciar la línea de producción en sí costaría alrededor de $ 200 millones (~ $ 273 millones en 2023). [92] Las herramientas de producción y la documentación asociada se almacenaron posteriormente en el Depósito del Ejército Sierra para respaldar el ciclo de vida de la flota mientras que su espacio de la planta de Marietta se reutilizó para respaldar el C-130J y el F-35; el trabajo de ingeniería para el mantenimiento y las actualizaciones continuó en Fort Worth, Texas y Palmdale, California. [93] [94] La producción reducida obligó a la USAF a extender el servicio de 179 F-15C/D hasta 2026, mucho más allá de su retiro planificado, y reemplazarlos con F-15EX de nueva construcción , que aprovecharon una línea de producción activa para clientes de exportación para minimizar los costos iniciales no recurrentes, con el fin de retener un número adecuado de cazas de superioridad aérea. [95] [96]

En abril de 2016, el Subcomité de Fuerzas Aéreas y Terrestres Tácticas del Comité de Servicios Armados de la Cámara de Representantes (HASC) , citando los avances en los sistemas de guerra aérea de Rusia y China, ordenó a la USAF que realizara un estudio de costos y una evaluación asociados con la reanudación de la producción del F-22. [97] El 9 de junio de 2017, la USAF presentó su informe al Congreso indicando que no tenían planes de reiniciar la línea de producción del F-22 debido a desafíos económicos y logísticos prohibitivos en términos de costos; estimó que costaría aproximadamente $50 mil millones adquirir 194 F-22 adicionales a un costo de $206-216 millones por aeronave, incluidos aproximadamente $9,9 mil millones para costos de inicio no recurrentes y $40,4 mil millones para costos de adquisición de aeronaves con la primera entrega a mediados o fines de la década de 2020. El largo lapso de tiempo transcurrido desde el final de la producción significó contratar nuevos trabajadores y buscar proveedores sustitutos, así como encontrar nuevo espacio en la planta, lo que contribuyó a los altos costos iniciales y los plazos de entrega. La USAF creyó que la financiación se invertiría mejor en su esfuerzo de superioridad aérea de próxima generación 2030, que evolucionó hacia el dominio aéreo de próxima generación . [98] [94]

Modernización y actualizaciones

El F-22 y sus subsistemas fueron diseñados para ser actualizados a lo largo de su ciclo de vida en previsión de los avances tecnológicos y las amenazas en evolución, aunque esto inicialmente resultó difícil y costoso debido a la arquitectura de los sistemas de aviónica altamente integrados. La modernización y las actualizaciones consisten en modificaciones de software y hardware capturadas bajo Incrementos numerados, originalmente llamados Espirales, así como Actualizaciones del Programa de Vuelo Operacional (OFP) solo de software. [99] En medio de debates sobre la relevancia del avión en la guerra de contrainsurgencia asimétrica, los primeros Incrementos y Actualizaciones OFP se centraron principalmente en el ataque terrestre o capacidades de ataque. El Incremento 2, el primer programa de actualización, se implementó en 2005 para los aviones del Bloque 20 en adelante y permitió el empleo de Municiones de Ataque Directo Conjunto (JDAM). El radar AN/APG-77(V)1 mejorado, que incorpora modos aire-tierra, fue certificado en marzo de 2007 y se instaló en fuselajes a partir del Lote 5 en adelante. [100] El Incremento 3.1 y las Actualizaciones 3 y 4 para los aviones del Bloque 30/35 mejoraron las capacidades de ataque terrestre a través del mapeo de radar de apertura sintética (SAR) y la radiogoniometría de emisores de radio , ataque electrónico e integración de bombas de diámetro pequeño (SDB); las pruebas comenzaron en 2009 y el primer avión mejorado se entregó en 2011. [101] [102] Para abordar los problemas de privación de oxígeno , los F-22 fueron equipados con un sistema automático de oxígeno de respaldo (ABOS) y un sistema de soporte vital modificado a partir de 2012. [103]

Un F-22A Bloque 30, número de serie 06-4132, del 411.º Escuadrón de Pruebas de Vuelo prueba un AIM-9X en 2015.

A diferencia de las actualizaciones anteriores, el Incremento 3.2 para las aeronaves del Bloque 30/35 enfatizó las capacidades de combate aéreo, así como las comunicaciones mejoradas, y fue un proceso de dos partes. 3.2A se centró en la guerra electrónica, las comunicaciones y la identificación, incluida la capacidad de solo recepción Link 16 y la capacidad provisional AIM-9X y AIM-120D , mientras que 3.2B incluyó mejoras de geolocalización e integración completa del AIM-9X/AIM-120D; los lanzamientos de la flota comenzaron en 2013 y 2019, respectivamente. Simultáneamente con el Incremento 3.2, la Actualización 5 en 2016 agregó el Sistema Automático de Prevención de Colisiones en Tierra (AGCAS), actualizaciones de enlace de datos y más. [104] [105] La Actualización 6, implementada en conjunto con 3.2B, incorporó mejoras de estabilidad criptográfica y aviónica. El Sistema de Distribución de Información Multifuncional - Sistema de Radio Táctica Conjunta (MIDS-JTRS) para Mandatos Tácticos, que incluye capacidad de transmisión/recepción de Modo 5 IFF y Enlace 16, se instaló a partir de 2021, y el avión también puede usar el Nodo de Comunicaciones Aerotransportadas del Campo de Batalla (BACN) como puerta de enlace de comunicación bidireccional. [106] [29]

Debido a que el mercado de la electrónica fue superado por el sector comercial en lugar de las aplicaciones militares durante el curso del desarrollo del F-22, aspectos de su sistema de aviónica como su diseño de circuito integrado y el uso del lenguaje de programación Ada se volvieron obsoletos. Debido a estos problemas, además de las dificultades de modernización debido al diseño de la arquitectura de los sistemas de aviónica integrados, las computadoras de misión del F-22 se actualizaron en 2021 después del Incremento 3.2B con módulos de procesador de sistema de misión abierta (OMS) comercialmente listos para usar (COTS) reforzados para uso militar con una arquitectura de sistemas abiertos modulares (MOSA), mientras que se implementó un proceso de desarrollo de software ágil junto con un sistema de orquestación para permitir mejoras más rápidas de proveedores adicionales. Desde entonces, las actualizaciones de software posteriores se han alejado de las versiones de Incremento desarrolladas utilizando el modelo en cascada y, en su lugar, se han implementado a través de versiones numeradas sobre una base anual. [107] [108]

Las actualizaciones adicionales que se están probando actualmente incluyen nuevos sensores y antenas, integración de nuevas armas, incluido el AIM-260 JATM , y mejoras de confiabilidad como recubrimientos furtivos más duraderos; el sistema de búsqueda y seguimiento infrarrojo dedicado (IRST), originalmente eliminado durante Dem/Val, es uno de los sensores agregados. [109] [110] Otros desarrollos incluyen la funcionalidad IRST en todos los aspectos para el detector de lanzamiento de misiles (MLD), capacidad de trabajo en equipo tripulado y no tripulado (MUM-T) con aeronaves de combate colaborativas no tripuladas (CCA) o "compañeros leales", y mejoras en la cabina. [29] [111] [112] Para preservar el sigilo de la aeronave y al mismo tiempo permitir una carga útil y una capacidad de combustible adicionales, se ha investigado un transporte externo furtivo desde principios de la década de 2000, con un tanque externo de 600 galones de baja resistencia y baja observabilidad y un pilón actualmente en desarrollo para aumentar el radio de combate furtivo. [113] El F-22 también se ha utilizado para probar la tecnología de su futuro sucesor del programa Next Generation Air Dominance (NGAD); algunos avances también se aplicarán al F-22. [114]

No se han implementado todas las mejoras propuestas. La integración del enlace de datos avanzado multifunción (MADL) planificada se canceló debido a retrasos en el desarrollo y la falta de proliferación entre las plataformas de la USAF. Aunque el sistema de señalización montado en el casco (HMCS) de Thales Scorpion se probó con éxito en el F-22 en 2013, los recortes de financiación impidieron su implementación. [115] Si bien los aviones del bloque 20 a partir del lote 3 se han actualizado al bloque 30/35 según el Plan de configuración común, Lockheed Martin en 2017 también había propuesto actualizar todos los aviones de entrenamiento restantes del bloque 20 al bloque 30/35 también para aumentar los números disponibles para el combate; esto no se llevó a cabo debido a otras prioridades presupuestarias. [54]

Además de las mejoras de capacidad, el diseño estructural y la construcción del F-22 se mejoraron a lo largo de la producción [N 10] y la flota se sometió a un "programa de modernización de estructuras" de 350 millones de dólares para abordar el tratamiento térmico de titanio inadecuado en las piezas de ciertos lotes. [117] [118] Para enero de 2021, todas las aeronaves habían pasado por el Programa de Reparación Estructural para garantizar una vida útil completa de todas las aeronaves. [119] [120] Si bien se actualizará continuamente hasta su retiro, a largo plazo, se espera que el F-22 sea reemplazado por el componente de combate tripulado de la NGAD. [121] [122]

Diseño

Descripción general

Vídeo de demostración del vuelo del F-22

El F-22 Raptor (designado internamente Configuración 645) es un caza de superioridad aérea de quinta generación que la USAF considera de cuarta generación en tecnología de aviones furtivos . [123] Es el primer avión operativo que combina supercrucero, supermaniobrabilidad , sigilo y aviónica integrada (o fusión de sensores) en una única plataforma de armas para permitirle sobrevivir y llevar a cabo misiones, principalmente operaciones antiaéreas ofensivas y defensivas, en entornos altamente disputados. [124]

La forma del F-22 combina sigilo y rendimiento aerodinámico. La planta y los bordes de los paneles están alineados y las superficies tienen una curvatura continua para minimizar su sección transversal de radar. [125] Sus alas delta recortadas en forma de diamante se mezclan suavemente con el fuselaje angular con cuatro superficies de empenaje y extensiones de raíz de borde de ataque que corren hasta la esquina exterior superior de las entradas de careta; los bordes superiores de las entradas también se encuentran con los chines del cuerpo delantero del fuselaje. Las superficies de control de vuelo incluyen flaps de borde de ataque , flaperones , alerones , timones en los estabilizadores verticales inclinados y colas horizontales completamente móviles ( estabilizadores ); para la función de freno de velocidad , los alerones se desvían hacia arriba, los flaperones hacia abajo y los timones hacia afuera para aumentar la resistencia. [126] [27] Debido al enfoque en el rendimiento supersónico, la regla del área se aplica ampliamente a la forma del avión y casi todo el volumen del fuselaje se encuentra por delante del borde de salida del ala, con los estabilizadores pivotando desde los brazos de cola que se extienden detrás de las toberas del motor. [127] Las armas se llevan internamente en el fuselaje para lograr sigilo. El avión tiene un receptáculo para el brazo de reabastecimiento centrado en su columna vertebral y un tren de aterrizaje triciclo retráctil, así como un gancho de cola de emergencia ; se instalan un sistema de extinción de incendios y un sistema de inertización del tanque de combustible para la capacidad de supervivencia. [27]

Los dos motores turbofán aumentados Pratt & Whitney F119 del avión están muy juntos e incorporan toberas de vectorización de empuje en el eje de paso con un rango de ±20 grados; las toberas están completamente integradas en los controles de vuelo y el sistema de gestión del vehículo del F-22. Cada motor tiene un control digital del motor de autoridad total ( FADEC ) Hamilton Standard redundante doble y un empuje máximo en la clase de 35.000  lbf (156 kN). La relación empuje-peso del F-22 con un peso de combate típico es casi la unidad en potencia militar máxima y 1,25 en postcombustión completa . Las entradas de aire fijas montadas en los hombros están desplazadas del fuselaje delantero para desviar la capa límite turbulenta y generar choques oblicuos con las esquinas interiores superiores para garantizar una buena recuperación de la presión total y una compresión de flujo supersónico eficiente. [128] La velocidad máxima sin almacenes externos es de aproximadamente Mach 1,8 en supercrucero a potencia militar/intermedia y mayor que Mach 2 con postcombustión. [N 11] Con 18.000 lb (8.165 kg) de combustible interno y 8.000 lb (3.629 kg) adicionales en dos tanques externos de 600 galones, el avión tiene un alcance de transbordador de más de 1.600 millas náuticas (1.840 millas; 2.960 km). [130]

Vista trasera de un avión a reacción en pleno vuelo al amanecer o al anochecer sobre las montañas. Los motores están en plena postcombustión, como se evidencia por la presencia de rombos de choque.
El F-22 vuela con sus motores Pratt & Whitney F119 en postcombustión completa durante las pruebas

La alta velocidad de crucero y altitud operativa del F-22 sobre los cazas anteriores mejoran la efectividad de sus sensores y sistemas de armas, y aumentan la capacidad de supervivencia contra defensas terrestres como misiles tierra-aire . [131] [132] Su capacidad de supercrucero, o mantener un vuelo supersónico sin usar postcombustión, le permite interceptar objetivos que los aviones dependientes de postcombustión carecerían del combustible para alcanzar. El uso de bahías de armas internas permite que la aeronave mantenga un rendimiento comparativamente más alto que la mayoría de los demás cazas configurados para el combate debido a la falta de resistencia parásita de los almacenes externos. [133] El empuje y la aerodinámica del F-22 permiten velocidades de combate regulares de Mach 1,5 a 50.000 pies (15.000 m), proporcionando así un 50% más de alcance de empleo para misiles aire-aire y el doble de alcance efectivo para JDAM que con plataformas anteriores. [N 12] [135] [136] Su estructura contiene una cantidad significativa de materiales de alta resistencia para soportar la tensión y el calor del vuelo supersónico sostenido. Respectivamente, las aleaciones de titanio y los compuestos de bismaleimida /epoxi comprenden el 42% y el 24% del peso estructural; los materiales y el diseño estructural de múltiples trayectorias de carga también permiten una buena capacidad de supervivencia balística. [N 13] [138] [139]

La aerodinámica del avión, su relajada estabilidad y sus potentes motores de empuje vectorial le otorgan una excelente maniobrabilidad y potencial energético en toda su envolvente de vuelo, capaz de realizar maniobras de 9 g con un peso bruto de despegue. Sus grandes superficies de control, sus quillas generadoras de vórtices y LERX, y sus toberas de empuje vectorial proporcionan excelentes características de alfa ( ángulo de ataque ) alto, y es capaz de volar a un alfa recortado de más de 60° mientras mantiene el control del alabeo y realiza maniobras como la maniobra Herbst (giro en J) y la Cobra de Pugachev . [140] [141] El sistema de control fly-by-wire redundante triplex computarizado y el FADEC hacen que la aeronave sea altamente resistente a las salidas y controlable, lo que le da al piloto un manejo sin preocupaciones. [142] [133]

Sigilo

Para facilitar su sigilo, el F-22 lleva armas en compartimentos internos. Las puertas de los compartimentos central y lateral están abiertas; son visibles los seis lanzadores de eyección vertical (AVEL) LAU-142/A AMRAAM.

El F-22 fue diseñado para ser altamente difícil de detectar y rastrear por radar, con ondas de radio reflejadas, dispersadas o difractadas lejos de la fuente emisora ​​hacia sectores específicos, o absorbidas y atenuadas. Las medidas para reducir el RCS incluyen la conformación del fuselaje, como la alineación de los bordes y la curvatura continua de las superficies, el transporte interno de armas, entradas serpentinas de geometría fija y álabes curvados que impiden la línea de visión de las caras del motor y las turbinas desde cualquier vista exterior, el uso de material absorbente de radar (RAM) y la atención al detalle, como bisagras y cascos de piloto que podrían proporcionar un retorno de radar. [125] El F-22 también fue diseñado para tener emisiones de radiofrecuencia reducidas, firma infrarroja y firma acústica , así como visibilidad reducida a simple vista . [143] Las toberas planas de vectorización de empuje del avión aplanan la columna de escape y facilitan su mezcla con el aire ambiente a través de vórtices de vertido, lo que reduce las emisiones infrarrojas para mitigar la amenaza de los misiles tierra-aire o aire-aire de búsqueda de calor por infrarrojos . [144] Las medidas adicionales para reducir la firma infrarroja incluyen una capa superior especial y un enfriamiento activo para controlar la acumulación de calor durante el vuelo supersónico. [145]

En comparación con los diseños furtivos anteriores como el F-117 , el F-22 depende menos de RAM, que requiere un mantenimiento intensivo y es susceptible a las condiciones climáticas adversas. A diferencia del B-2 , que requiere hangares con clima controlado, el F-22 puede someterse a reparaciones en la línea de vuelo o en un hangar normal. El F-22 incorpora un sistema de evaluación de firma que emite advertencias cuando la firma del radar se degrada y necesita reparación. [140] Si bien el RCS exacto del F-22 está clasificado , en 2009 Lockheed Martin publicó información que indica que desde ciertos ángulos el avión tiene un RCS de 0,0001 m 2 o −40 dBsm , equivalente al reflejo del radar de una "canica de acero"; el avión puede montar un reflector de lente Luneburg para enmascarar su RCS. [146] [147] Para misiones en las que se requiere sigilo, la tasa de capacidad de misión es del 62 al 70%. [N 14]

Detalle del fuselaje delantero de un F-22

La eficacia de las características furtivas es difícil de medir. El valor RCS es una medida restrictiva del área frontal o lateral de la aeronave desde la perspectiva de un radar estático. Cuando una aeronave maniobra, expone un conjunto completamente diferente de ángulos y área de superficie, lo que aumenta potencialmente la observabilidad del radar. Además, el contorno furtivo del F-22 y los materiales absorbentes del radar son principalmente efectivos contra radares de alta frecuencia, que generalmente se encuentran en otras aeronaves. Los efectos de la dispersión de Rayleigh y la resonancia significan que los radares de baja frecuencia , como los radares meteorológicos y los radares de alerta temprana, tienen más probabilidades de detectar al F-22 debido a su tamaño físico. Estos también son visibles, susceptibles a la interferencia y tienen baja precisión. [149] Además, si bien los contactos de radar débiles o fugaces hacen que los defensores sepan que hay una aeronave furtiva presente, dirigir de manera confiable la intercepción para atacar la aeronave es mucho más desafiante. [150] [151]

A partir de 2021, se ha visto al F-22 probar un nuevo revestimiento superficial similar al cromo. [152] [153] Esta superficie altamente pulida parece cambiar de color según la orientación del observador hacia la aeronave. Se especula que el nuevo revestimiento ayudará a reducir la detectabilidad del F-22 por parte de IRST y otros sistemas de seguimiento infrarrojo y misiles. Este revestimiento también se ha visto en algunos aviones de prueba F-35 y F-117. [154]

Aviónica

Un F-22 lanza una bengala durante un vuelo de entrenamiento

El avión tiene un sistema aviónico integrado donde, a través de la fusión de sensores, los datos de todos los sistemas de sensores de a bordo, así como las entradas externas, se filtran y procesan en una imagen táctica combinada, mejorando así la conciencia situacional del piloto y reduciendo la carga de trabajo. Los sistemas de misión clave incluyen el sistema de guerra electrónica Sanders /General Electric AN/ALR-94, el detector de lanzamiento de misiles infrarrojos y ultravioleta Martin Marietta AN/AAR-56 (MLD), el radar de matriz de barrido electrónico activo (AESA) Westinghouse / Texas Instruments AN/APG-77 , el conjunto de comunicaciones/navegación/identificación (CNI) de TRW y el sistema avanzado de búsqueda y seguimiento infrarrojo (IRST) de Raytheon (que actualmente se está probando). [112] [155] [156]

El radar APG-77 tiene una antena de baja observación, de apertura activa y escaneado electrónico con seguimiento de múltiples objetivos durante el escaneo en todas las condiciones climáticas; la antena está inclinada hacia atrás para lograr sigilo. Sus emisiones se pueden enfocar para sobrecargar los sensores enemigos como una capacidad de ataque electrónico . El radar cambia de frecuencia más de 1000 veces por segundo para reducir la probabilidad de intercepción y tiene un alcance estimado de 125 a 150 millas (201 a 241 km) contra un objetivo de 11 pies cuadrados (1 m 2 ) y 250 millas (400 km) o más en haces estrechos. El APG-77(V)1 mejorado proporciona funcionalidad aire-tierra a través de mapeo de radar de apertura sintética (SAR), indicación/seguimiento de objetivos en movimiento terrestre (GMTI/GMTT) y modos de ataque. [100] [140] Junto al radar se encuentra el sistema de guerra electrónica ALR-94, uno de los equipos técnicamente más complejos del F-22, que integra más de 30 antenas fusionadas en las alas y el fuselaje para una cobertura de receptor de advertencia de radar (RWR) integral y geolocalización de amenazas. Puede usarse como un detector pasivo capaz de buscar objetivos a distancias (250+ nmi ) superiores a las del radar, y puede proporcionar suficiente información para un bloqueo de radar y emisiones de señal a un haz estrecho (hasta 2° por 2° en acimut y elevación). Dependiendo de la amenaza detectada, los sistemas defensivos pueden indicar al piloto que lance contramedidas como bengalas o chaff. El MLD usa seis sensores para proporcionar una cobertura infrarroja esférica completa mientras que el IRST avanzado, alojado en una cápsula de ala furtiva, es un sensor de campo de visión estrecho para identificación pasiva y selección de objetivos de largo alcance. [157] Para garantizar el sigilo en el espectro de radiofrecuencia, las emisiones de CNI están estrictamente controladas y confinadas a sectores específicos, y la comunicación táctica entre los F-22 se realiza mediante el enlace de datos direccional entre vuelos y dentro de ellos (IFDL); el sistema CNI integrado también gestiona TACAN , IFF (incluido el modo 5 a través de la terminal MIDS-JTRS) y la comunicación a través de HAVE QUICK /SATURN, SINCGARS y JTIDS . [158] [159] La aeronave también se ha actualizado para incorporar un sistema automático de prevención de colisiones en tierra (GCAS). [160]

Una unidad CIP para el F-22

La información del radar, CNI y otros sensores es procesada por dos computadoras de misión Hughes Common Integrated Processor (CIP), cada una capaz de procesar hasta 10.5 mil millones de instrucciones por segundo . [161] [162] El software de base del F-22 tiene alrededor de 1,7 millones de líneas de código , la mayoría relacionadas con los sistemas de misión, como el procesamiento de datos de radar. [163] La naturaleza altamente integrada del sistema de arquitectura de aviónica, así como el uso del lenguaje de programación Ada , [N 15] ha hecho que el desarrollo y la prueba de actualizaciones sean un desafío. Para permitir actualizaciones más rápidas, los CIP se actualizaron con módulos de procesador de sistemas de misión abierta (OMS) de Curtiss-Wright , así como con una arquitectura modular de sistemas abiertos llamada plataforma de orquestación Open Systems Enclave (OSE) para permitir que la suite de aviónica interactúe con software en contenedores de proveedores externos. [29] [165]

La capacidad del F-22 de operar cerca del campo de batalla le da a la aeronave una capacidad de detección e identificación de amenazas comparable con la del RC-135 Rivet Joint , y la capacidad de funcionar como un "mini- AWACS ", aunque su radar es menos potente que los de las plataformas dedicadas. Esto permite al F-22 designar rápidamente objetivos para los aliados y coordinar aeronaves amigas. [140] [166] Aunque la comunicación con otros tipos de aeronaves se limitaba inicialmente a la voz, las actualizaciones han permitido transferir datos a través de un BACN o mediante tráfico Link 16 a través de MIDS-JTRS. [106] El bus IEEE 1394 B desarrollado para el F-22 se derivó del sistema de bus IEEE 1394 "FireWire" comercial. [167] En 2007, el radar del F-22 se probó como un transceptor de datos inalámbrico, transmitiendo datos a 548 megabits por segundo y recibiendo a velocidad de gigabit, mucho más rápido que el sistema Link 16. [168] Los receptores de radiofrecuencia del sistema de medidas de apoyo electrónico (ESM) otorgan a la aeronave la capacidad de realizar tareas de inteligencia, vigilancia y reconocimiento (ISR). [169] [170]

Carlinga

Cabina del F-22, que muestra los instrumentos, la pantalla de visualización frontal y la parte superior del acelerador (abajo a la izquierda)

El F-22 tiene una cabina de cristal con instrumentos de vuelo totalmente digitales. La pantalla de visualización frontal monocromática ofrece un amplio campo de visión y sirve como instrumento de vuelo principal ; la información también se muestra en seis paneles de pantalla de cristal líquido (LCD) en color. [171] Los controles de vuelo principales son un controlador de palanca lateral sensible a la fuerza y ​​un par de aceleradores. La USAF inicialmente quería implementar controles de entrada de voz directa (DVI), pero se consideró que esto era demasiado arriesgado técnicamente y se abandonó. [172] Las dimensiones de la cubierta son aproximadamente 140 pulgadas de largo, 45 pulgadas de ancho y 27 pulgadas de alto (355 cm × 115 cm × 69 cm) y pesa 360 libras. [173] La cubierta fue rediseñada después de que el diseño original durara un promedio de 331 horas en lugar de las 800 horas requeridas. [74]

El F-22 tiene una funcionalidad de radio integrada, los sistemas de procesamiento de señales están virtualizados en lugar de ser un módulo de hardware separado. [174] El panel de control integrado (ICP) es un sistema de teclado para ingresar datos de comunicaciones, navegación y piloto automático. Dos pantallas frontales de 3 pulgadas × 4 pulgadas (7,6 cm × 10,2 cm) ubicadas alrededor del ICP se utilizan para mostrar datos integrados de advertencia/precaución (ICAW), datos CNI y también sirven como grupo de instrumentación de vuelo de reserva e indicador de cantidad de combustible para redundancia. [175] El grupo de vuelo de reserva muestra un horizonte artificial , para condiciones meteorológicas instrumentales básicas . La pantalla multifunción primaria (PMFD) de 8 pulgadas × 8 pulgadas (20 cm × 20 cm) está ubicada debajo del ICP y se utiliza para la navegación y la evaluación de la situación. Alrededor del PMFD hay tres pantallas multifunción secundarias de 15,9 cm × 15,9 cm (6,25 pulgadas × 6,25 pulgadas) para información táctica y gestión de almacenes. [176]

El asiento eyectable es una versión del ACES II comúnmente utilizado en los aviones de la USAF, con un control de eyección montado en el centro. [177] El F-22 tiene un sistema de soporte vital complejo , que incluye el sistema de generación de oxígeno a bordo (OBOGS), prendas protectoras para el piloto y una válvula reguladora de respiración/anti-g (BRAG) que controla el flujo y la presión hacia la máscara y las prendas del piloto. Las prendas del piloto se desarrollaron bajo el proyecto Advanced Technology Anti-G Suit (ATAGS) y protegen contra peligros químicos/biológicos y la inmersión en agua fría , contrarrestan las fuerzas g y la baja presión a grandes altitudes, y brindan alivio térmico. [178] Después de una serie de problemas relacionados con la hipoxia, el sistema de soporte vital se revisó para incluir un sistema automático de oxígeno de respaldo y una nueva válvula de chaleco de vuelo. [103] En entornos de combate, el asiento eyectable incluye una carabina M4 modificada designada como GAU-5/A. [179]

Armamento

Un AIM-120 AMRAAM (derecha) y cuatro GBU-39 SDB (izquierda) instalados en el compartimento principal de armas de un F-22

El F-22 tiene tres bahías de armas internas: una gran bahía principal en la parte inferior del fuselaje y dos bahías más pequeñas en los lados del fuselaje, detrás de las entradas de los motores; una pequeña bahía para contramedidas como bengalas se encuentra detrás de cada bahía lateral. [180] La bahía principal está dividida a lo largo de la línea central y puede acomodar seis lanzadores LAU-142/A para misiles más allá del alcance visual (BVR) y cada bahía lateral tiene un lanzador LAU-141/A para misiles de corto alcance. Los principales misiles aire-aire son el AIM-120 AMRAAM y el AIM-9 Sidewinder , con la integración planificada del AIM-260 JATM . [181] Los lanzamientos de misiles requieren que las puertas de la bahía estén abiertas durante menos de un segundo, durante el cual los brazos neumáticos o hidráulicos empujan los misiles fuera de la aeronave; esto es para reducir la vulnerabilidad a la detección y para desplegar misiles durante el vuelo a alta velocidad. [182] Un cañón rotatorio M61A2 Vulcan de 20 mm montado internamente está incrustado en la raíz del ala derecha del avión con la boca cubierta por una puerta retráctil. [183] ​​La proyección de radar de la trayectoria del fuego del cañón se muestra en la pantalla de visualización frontal del piloto. [184]

Aunque está diseñado para misiles aire-aire, la bahía principal puede reemplazar cuatro lanzadores con dos bastidores de bombas que pueden transportar cada uno una bomba de 1000 lb (450 kg) o cuatro bombas de 250 lb (110 kg) para un total de 2000 libras (910 kg) de municiones aire-superficie. [185] [124] Si bien es capaz de transportar armas con guía GPS como JDAM y SDB, el F-22 no puede autodesignar armas guiadas por láser. [186]

F-22 con pilones de armas externos

Aunque el F-22 suele llevar armas internamente, las alas incluyen cuatro puntos duros , cada uno de ellos con una capacidad de 2300 kg (5000 lb). Cada punto duro puede alojar un pilón que puede llevar un tanque de combustible externo desmontable de 2270 L (600 galones ) o un lanzador que contenga dos misiles aire-aire; los dos puntos duros interiores están "conectados" para tanques de combustible externos. Los dos puntos duros exteriores se han dedicado desde entonces a un par de cápsulas furtivas que albergan el IRST y los sistemas de misión. El avión puede deshacerse de los tanques externos y sus accesorios de pilón para restaurar sus características de baja observabilidad y rendimiento cinemático . [187]

Mantenimiento

Cada F-22 requiere un plan de mantenimiento empaquetado (PMP) de tres semanas cada 300 horas de vuelo. [188] Sus recubrimientos furtivos fueron diseñados para ser más robustos y resistentes a la intemperie que los de los aviones furtivos anteriores, [140] sin embargo, los primeros recubrimientos fallaron contra la lluvia y la humedad cuando los F-22 fueron enviados inicialmente a Guam en 2009. [189] Las medidas de sigilo representan casi un tercio del mantenimiento, y los recubrimientos son particularmente exigentes; se están desarrollando recubrimientos más duraderos para reducir los esfuerzos de mantenimiento. [190] [29] El mantenimiento del depósito del F-22 se realiza en el Complejo de Logística Aérea Ogden en Hill AFB , Utah; se tiene mucho cuidado durante el mantenimiento debido al pequeño tamaño de la flota y la reserva de desgaste limitada. [191]

En 2015, los F-22 estuvieron disponibles para misiones el 63% del tiempo en promedio, frente al 40% cuando se introdujo en 2005. Las horas de mantenimiento por hora de vuelo también mejoraron de 30 al principio a 10,5 en 2009, menos que el requisito de 12; las horas-hombre por hora de vuelo fueron 43 en 2014. Cuando se introdujo, el F-22 tenía un tiempo medio entre mantenimientos (MTBM) de 1,7 horas, menos de las 3,0 requeridas; esto aumentó a 3,2 horas en 2012. [74] [118] Para el año fiscal 2015, el costo por hora de vuelo fue de $59.116. [192]

Historial operativo

Designación y pruebas

Vista posterior/estribor del avión cisterna de reabastecimiento en vuelo que transfiere combustible a un avión de combate a través de una pértiga larga. Los dos aviones están ligeramente inclinados hacia la izquierda.
Un F-22 de EMD se reabastece de combustible desde un KC-135 durante una prueba; el accesorio en la parte superior trasera es para un conducto de recuperación giratorio

El YF-22 recibió originalmente el nombre no oficial de "Lightning II", en honor al caza Lockheed P-38 Lightning de la Segunda Guerra Mundial , que persistió hasta mediados de los años 1990, cuando la USAF denominó oficialmente al F-22 "Raptor". El nombre "Lightning II" se le dio más tarde al F-35. El avión también fue apodado brevemente "SuperStar" y "Rapier". [193] En septiembre de 2002, la USAF cambió la designación del Raptor a F/A-22, imitando al McDonnell Douglas F/A-18 Hornet de la Armada y con la intención de destacar una capacidad de ataque terrestre planificada en medio del debate sobre el papel y la relevancia del avión. La designación F-22 se restableció en diciembre de 2005, cuando el avión entró en servicio. [124] [194]

El programa de pruebas de vuelo del F-22 consistió en ciencias de vuelo, pruebas de desarrollo (DT) y pruebas y evaluación operacionales iniciales (IOT&E) por parte del 411.º Escuadrón de Pruebas de Vuelo en la Base de la Fuerza Aérea Edwards, California, así como OT&E de seguimiento y desarrollo de tácticas y empleo operativo por parte del 422.º Escuadrón de Pruebas y Evaluación en la Base de la Fuerza Aérea Nellis , Nevada . Las pruebas de vuelo comenzaron en 1997 con el Raptor 4001, el primer F-22 de Desarrollo de Ingeniería y Fabricación (EMD), y ocho aviones EMD más asignados al 411.º FLTS participarían en el programa de pruebas bajo la Fuerza de Prueba Combinada (CTF) en Edwards. Los dos primeros aviones realizaron pruebas de expansión de la envolvente, como cualidades de vuelo, rendimiento del vehículo aéreo, propulsión y separación de las tiendas. El tercer avión, el primero en tener una estructura interna a nivel de producción, probó cargas de vuelo, aleteo y separación JDAM, mientras que se construyeron dos F-22 que no volaban para probar cargas estáticas y fatiga. Los aviones EMD posteriores y el Boeing 757 FTB probaron aviónica, CNI, calificaciones ambientales y observables, y el primer software Block 3.0 con capacidad de combate voló en 2001. [195] El Raptor 4001 se retiró de las pruebas de vuelo en 2000 y posteriormente se envió a la Base de la Fuerza Aérea Wright-Patterson para realizar pruebas de supervivencia, incluidas pruebas de fuego real y entrenamiento de reparación de daños en batalla. [196] Otros F-22 EMD retirados se han utilizado como entrenadores de mantenimiento. [197]

Un EMD F-22 del 411th FLTS vuela sobre la Base Aérea Edwards, California, en 2018

La sofisticación del F-22 y sus numerosas innovaciones tecnológicas requirieron pruebas exhaustivas que resultaron en repetidos retrasos, particularmente en la aviónica de la misión. Si bien el primer avión de producción fue entregado a Edwards en octubre de 2002 para IOT&E y el primer avión para el 422nd TES en Nellis llegó en enero de 2003, el IOT&E se retrasó desde su inicio planeado a mediados de 2003, ya que la estabilidad de la aviónica de la misión fue particularmente desafiante. [198] Después de una evaluación preliminar, llamada OT&E Fase 1, el IOT&E formal comenzó en abril de 2004 y se completó en diciembre de ese año. Esto marcó la demostración exitosa de la capacidad de misión aire-aire del jet, aunque también requirió un mantenimiento más intensivo de lo esperado. [199] Una OT&E de seguimiento (FOT&E) en 2005 aprobó la capacidad de misión aire-tierra del F-22. [200] La entrega de aeronaves operativas para entrenamiento de pilotos en la Base de la Fuerza Aérea Tyndall , Florida, comenzó en septiembre de 2003, y el primer F-22 listo para el combate del 1.er Ala de Cazas llegó a la Base de la Fuerza Aérea Langley , Virginia, en enero de 2005. [196] Como el F-22 fue diseñado para actualizaciones a lo largo de su ciclo de vida, el 411.º FLTS y el 422.º TES continuarían con el desarrollo de DT/OT&E y tácticas de estas actualizaciones. La flota del 411.º FLTS se incrementó aún más con un avión de prueba Block 30 dedicado en 2010. [197]

En agosto de 2008, un F-22 sin modificar del 411th FLTS realizó el primer reabastecimiento de combustible aire-aire de una aeronave utilizando combustible sintético para aviones como parte de un esfuerzo más amplio de la USAF para calificar a las aeronaves para usar el combustible, una mezcla 50/50 de JP-8 y un combustible a base de gas natural producido mediante el proceso Fischer-Tropsch . [201] En 2011, un F-22 voló supersónico con una mezcla del 50% de biocombustible derivado de camelina . [202]

Capacitación

2005: Un F-22 del 43º Escuadrón de Cazas vuela junto a un F-15 del 27º Escuadrón de Cazas .

El 43.º Escuadrón de Cazas fue reactivado en 2002 como Unidad de Entrenamiento Formal (FTU) del F-22 para el curso básico del tipo en la Base de la Fuerza Aérea Tyndall. Tras los graves daños sufridos por la instalación a raíz del huracán Michael en 2018, el escuadrón y sus aviones fueron trasladados a la cercana Base de la Fuerza Aérea Eglin; aunque inicialmente se temió que se perdieran varios aviones debido a los daños causados ​​por la tormenta, todos fueron posteriormente reparados y trasladados. [203] La FTU y sus aviones fueron reasignados al 71.º Escuadrón de Cazas en la Base de la Fuerza Aérea Langley en 2023. [204]

A partir de 2014, los estudiantes del Curso B requieren 38 salidas para graduarse (anteriormente 43 salidas). Los pilotos del Curso 1, pilotos que se reciclan desde otras aeronaves, también vieron una reducción en el número de salidas necesarias para graduarse, de 19 a 12 salidas. [205] Los estudiantes del F-22 primero se entrenan en el avión de entrenamiento T-38 Talon . El entrenamiento adicional de los pilotos se lleva a cabo en el F-16 porque el viejo T-38 no está calificado para soportar fuerzas G más altas y carece de aviónica moderna. [206] Debido a la falta de un entrenador moderno que pueda emular con precisión al F-22, la Fuerza Aérea a menudo usa F-22 para complementar el entrenamiento, lo cual es costoso ya que el F-22 cuesta casi 10 veces más que el T-38 por hora de vuelo. [207] El próximo T-7 Red Hawk presenta aviónica moderna que se aproxima mejor a las del F-22 y el F-35. [208] Está previsto que entre en capacidad operativa inicial en 2027, varios años después de lo previsto. [209] En 2014, la Fuerza Aérea creó el 2º Escuadrón de Entrenamiento de Cazas en la Base de la Fuerza Aérea Tyndall, que estaba equipado con T-38 para servir como avión adversario con el fin de reducir los vuelos de entrenamiento de adversarios en los F-22. [210] Para reducir los costes operativos y prolongar la vida útil del F-22, algunas salidas de entrenamiento de pilotos se realizan utilizando simuladores de vuelo. [188] El curso avanzado de instructor de armas del F-22 en la Escuela de Armas de la USAF lo imparte el 433º Escuadrón de Armas en la Base de la Fuerza Aérea Nellis. [211]

Introducción al servicio

Avión de combate volando sobre un misil que se desplazaba rápidamente y que momentos antes había sido lanzado por el primero.
Un F-22 dispara un misil AIM-120 AMRAAM

En diciembre de 2005, la USAF anunció que el F-22 había alcanzado la capacidad operativa inicial (IOC) con el 94.º escuadrón de cazas. [212] Posteriormente, la unidad participó en el ejercicio Northern Edge 06 en Alaska en junio de 2006 y en el ejercicio Red Flag 07-2 en la base de la fuerza aérea Nellis en febrero de 2007, donde demostró las capacidades de combate aéreo enormemente mejoradas del F-22 al volar contra los Red Force Aggressor F-15 y F-16 con una tasa de derribo simulada de 108-0. Estos ejercicios de gran fuerza también refinaron aún más las tácticas operativas y el empleo del F-22. [43] [213]

El F-22 alcanzó su capacidad operativa completa (FOC) en diciembre de 2007, cuando el general John Corley del Comando de Combate Aéreo (ACC) declaró oficialmente que los F-22 del 1.er Ala de Cazas en servicio activo integrado y el 192.º Ala de Cazas de la Guardia Nacional Aérea de Virginia estaban plenamente operativos. [214] A esto le siguió una Inspección de Preparación Operacional (ORI) del ala integrada en abril de 2008, en la que fue calificado como "excelente" en todas las categorías, con una tasa de derribos simulados de 221-0. [215] La puesta en servicio del F-22 con su capacidad de ataque de precisión también contribuyó al retiro del F-117 del servicio operativo en 2008, con el 49.º Ala de Cazas operando el F-22 durante un breve período antes de una serie de consolidaciones de la flota. [216]

Problemas operativos iniciales

Durante los primeros años de servicio, los pilotos del F-22 experimentaron síntomas como resultado de problemas con el sistema de oxígeno que incluyen pérdida de conciencia, pérdida de memoria, labilidad emocional y cambios neurológicos, así como problemas respiratorios persistentes y tos crónica; los problemas resultaron en un accidente fatal en 2010 y una inmovilización durante cuatro meses en 2011 y posteriores restricciones de altitud y distancia de vuelo. [217] [218] En agosto de 2012, el Departamento de Defensa encontró que la válvula BRAG, que inflaba el chaleco del piloto durante maniobras de alta g , estaba defectuosa y restringía la respiración y el OBOGS (sistema de generación de oxígeno a bordo) fluctuaba inesperadamente los niveles de oxígeno a alta g . [219] [220] Un Grupo de Trabajo Aeromédico Raptor había recomendado cambios en 2005 con respecto al suministro de oxígeno que no estaban financiados pero que recibieron mayor consideración en 2012. [221] [222] El F-22 CTF y el 412th Aerospace Medicine Squadron finalmente determinaron las restricciones respiratorias como la causa principal. Los síntomas de tos se atribuyeron a la atelectasia por aceleración [N 16] debido a la exposición a altas fuerzas g y a la excesiva concentración de oxígeno que proporcionaba el OBOGS . La presencia de toxinas y partículas en algunos miembros de la tripulación de tierra se consideró no relacionada. [223] Las modificaciones a los sistemas de soporte vital y de oxígeno, incluida la instalación de un sistema de respaldo automático, permitieron que se levantaran las restricciones de altitud y distancia en abril de 2013. [224]

Servicio operativo

Vista aérea del puerto de dos aviones en vuelo, uno sobre el otro. El avión de abajo es un cuatrimotor propulsado por hélice, que está escoltado por un caza a reacción.
Un F-22 de la Base de la Fuerza Aérea Elmendorf, Alaska, intercepta un bombardero ruso Tupolev Tu-95 cerca del espacio aéreo estadounidense

Tras la IOC y ejercicios a gran escala, el F-22 voló su primera misión de defensa nacional en enero de 2007 en el marco de la Operación Noble Eagle . En noviembre de 2007, los F-22 del 90.º Escuadrón de Cazas de la Base de la Fuerza Aérea Elmendorf , en Alaska, realizaron su primera intercepción por parte del Comando de Defensa Aeroespacial de América del Norte (NORAD) de dos bombarderos rusos Tu-95MS . [225] Desde entonces, los F-22 también han escoltado a los bombarderos Tu-160 en fase de sondeo . [226]

El F-22 fue desplegado por primera vez en el extranjero en febrero de 2007 con el 27.º Escuadrón de Cazas en la Base Aérea de Kadena en Okinawa, Japón. [227] Este primer despliegue en el extranjero se vio empañado inicialmente por problemas cuando seis F-22 que volaban desde la Base de la Fuerza Aérea Hickam , Hawái, experimentaron múltiples fallos del sistema relacionados con el software al cruzar la Línea Internacional de Cambio de Fecha ( meridiano de longitud 180 ). La aeronave regresó a Hawái siguiendo a un avión cisterna . En 48 horas, se resolvió el error y se reanudó el viaje. [228] [229] Kadena sería una rotación frecuente para las unidades F-22; también han participado en ejercicios de entrenamiento en Corea del Sur, Malasia y Filipinas. [230] [231] [232]

El Secretario de Defensa Gates se negó inicialmente a desplegar los F-22 en Oriente Medio en 2007; [233] el modelo hizo su primer despliegue en la región en la base aérea de Al Dhafra en los Emiratos Árabes Unidos en 2009. En abril de 2012, los F-22 han estado rotando en Al Dhafra, a menos de 200 millas de Irán. [234] [235] En marzo de 2013, la USAF anunció que un F-22 había interceptado un F-4 Phantom II iraní que se acercó a 16 millas de un MQ-1 Predator que volaba frente a la costa iraní. [236]

Un F-22 reabasteciendo combustible antes de las operaciones de combate en Siria, septiembre de 2014

El 22 de septiembre de 2014, los F-22 realizaron las primeras salidas de combate del tipo al realizar algunos de los ataques iniciales de la Operación Inherent Resolve , la intervención liderada por Estados Unidos en Siria ; los aviones lanzaron bombas guiadas por GPS de 1.000 libras sobre objetivos del Estado Islámico cerca de la presa de Tishrin . [237] [238] Entre septiembre de 2014 y julio de 2015, los F-22 volaron 204 salidas sobre Siria, arrojando 270 bombas en unos 60 lugares. [239] A lo largo de su despliegue, los F-22 realizaron apoyo aéreo cercano (CAS) y también disuadieron a los aviones sirios, iraníes y rusos de atacar a las fuerzas kurdas respaldadas por Estados Unidos e interrumpir las operaciones estadounidenses en la región. [240] [241] [242] Los F-22 también participaron en los ataques estadounidenses que derrotaron a las fuerzas paramilitares pro- Assad y rusas del Grupo Wagner cerca de Khasham en el este de Siria el 7 de febrero de 2018. [243] [244] [245] A pesar de estos ataques, el papel principal del F-22 en la operación fue realizar inteligencia, vigilancia y reconocimiento . [246]

El F-22 también realizó misiones en otras regiones de Oriente Medio; en noviembre de 2017, los F-22 que operaban junto con los B-52 bombardearon instalaciones de producción y almacenamiento de opio en regiones de Afganistán controladas por los talibanes . [247] En 2019, el F-22 costaba 35.000 dólares (unos 41.145 dólares en 2023) por hora de vuelo para operar. [248]

Un F-22 aterriza en Iōtō (Iwo Jima) en abril de 2024 durante Agile Reaper 24-1

Para aumentar la capacidad de respuesta en caso de despliegue y reducir la huella logística en un conflicto entre dos países, la USAF desarrolló un concepto de despliegue llamado Rapid Raptor, que implica de dos a cuatro F-22 y un C-17 para apoyo logístico, propuesto por primera vez en 2008 por dos pilotos de F-22. El objetivo era que el modelo pudiera prepararse y entrar en combate en 24 horas en entornos más pequeños y austeros que permitieran una disposición de fuerzas más dispersa y con mayor capacidad de supervivencia. Este concepto se probó en la isla Wake en 2013 y en Guam a finales de 2014. [249] [250] [251] Se desplegaron cuatro F-22 en la base aérea de Spangdahlem en Alemania, la base aérea de Łask en Polonia y la base aérea de Ämari en Estonia en agosto y septiembre de 2015 para probar aún más el concepto y entrenar con los aliados de la OTAN en respuesta a la anexión rusa de Crimea en 2014. [252] La USAF se basaría en los principios de Rapid Raptor y eventualmente lo integraría en su nuevo concepto operativo llamado Agile Combat Employment, que se desplaza hacia operaciones distribuidas durante los conflictos entre pares; por ejemplo, destacamentos de F-22 han operado desde aeródromos austeros en Tinian e Iwo Jima durante los ejercicios. [253] [254]

El 4 de febrero de 2023, un F-22 del 1.er Ala de Cazas derribó un supuesto globo espía chino dentro del alcance visual frente a la costa de Carolina del Sur a una altitud de 60.000 a 65.000 pies (20.000 m), [255] lo que marcó el primer derribo aire-aire del F-22. [256] Los restos aterrizaron aproximadamente a 6 millas de la costa y posteriormente fueron asegurados por barcos de la Armada y la Guardia Costera de los EE . UU . [257] Los F-22 derribaron objetos adicionales a gran altitud cerca de la costa de Alaska el 10 de febrero y sobre Yukón el 11 de febrero. [258]

La USAF espera comenzar a retirar el F-22 en la década de 2030, cuando sea reemplazado por el caza tripulado Next Generation Air Dominance (NGAD). [259] En mayo de 2021, el Jefe de Estado Mayor de la Fuerza Aérea, Charles Q. Brown Jr., dijo que imaginaba una reducción en el número futuro de flotas de cazas a "cuatro más uno": el F-22 seguido por el NGAD, el F-35A, el F-15E seguido por el F-15EX, el F-16 seguido por el "MR-X", y el A-10 ; el A-10 luego se eliminaría de los planes debido al retiro acelerado de esa aeronave. [260] [261] En 2022, la Fuerza Aérea solicitó que se le permitiera deshacerse de todos menos tres de sus F-22 del Bloque 20 en la Base de la Fuerza Aérea Tyndall. [262] El Congreso rechazó la solicitud de desinvertir sus 33 aviones Block 20 no codificados para el combate y aprobó un texto que prohíbe la desinversión hasta el año fiscal 2026. [263] Si bien el F-22 Block 30/35 sigue siendo una de las principales prioridades de la USAF, el servicio cree que el avión Block 20 es obsoleto e inadecuado incluso para entrenar a los pilotos del F-22 y que actualizarlos a los estándares Block 30/35 tendría un costo prohibitivo de $3.5 mil millones. [5] [264]

Variantes

Dibujos en tres vistas del planeado avión biplaza F-22B
F-22A
Versión monoplaza, fue designada F/A-22A a principios de la década de 2000 antes de volver a ser F-22A en 2005; se construyeron 195, de los cuales 8 fueron de prueba y 187 fueron de producción. [N 1]
F-22B
Versión biplaza planeada con las mismas capacidades de combate que la versión monoplaza, cancelada en 1996 para ahorrar costes de desarrollo y los pedidos de aviones de prueba se convirtieron en F-22A. [265]
Variante naval del F-22
Nunca fue designado formalmente, pero fue planeado como una variante/deriva para portaaviones del programa Navy Advanced Tactical Fighter (NATF) de la Armada de los EE. UU. Debido a que el NATF necesitaba velocidades de aterrizaje más bajas que el F-22 para operaciones en portaaviones y al mismo tiempo alcanzar velocidades de clase Mach 2, el diseño habría incorporado alas de barrido variable ; también habría tenido una mayor capacidad de armamento, incluyendo el AIM-152 AAAM , el AGM-88 HARM y el AGM-84 Harpoon . El programa fue cancelado en 1991 debido a la restricción presupuestaria. [265] [266]

Derivados propuestos

El X-44 MANTA , o avión multieje sin cola , fue un avión experimental planeado basado en el F-22 con controles de vectorización de empuje mejorados y sin respaldo de superficie aerodinámica. [267] El avión iba a ser controlado únicamente por vectorización de empuje, sin contar con timones, alerones o elevadores. La financiación para este programa se detuvo en 2000. [268]

El FB-22 fue propuesto a principios de la década de 2000 como un bombardero supersónico furtivo regional para la USAF. [269] El diseño pasó por varias iteraciones y las últimas combinarían un fuselaje F-22 con alas delta muy agrandadas y se proyectó que llevaría hasta 30 bombas de diámetro pequeño a más de 1.600 millas náuticas (3.000 km), aproximadamente el doble del alcance de combate del F-22A. [270] Las propuestas del FB-22 se cancelaron con la Revisión Cuatrienal de Defensa de 2006 y los desarrollos posteriores, en lugar de un bombardero estratégico subsónico más grande con un alcance mucho mayor; este se convirtió en el bombardero de próxima generación , aunque se redefiniría en 2009 como el bombardero de ataque de largo alcance, lo que resultó en el B-21 Raider . [113] [271] [272]

En agosto de 2018, Lockheed Martin propuso a la USAF y a la Fuerza de Autodefensa Aérea de Japón (JASDF) un derivado del F-22 que combinaría un fuselaje modificado del F-22 con alas agrandadas para aumentar la capacidad de combustible y el radio de combate a 1200 millas náuticas (2200 km), así como la aviónica y los recubrimientos furtivos mejorados del F-35 . [273] [274] La propuesta no fue considerada por la USAF o la JASDF debido al costo, así como a las restricciones de exportación existentes y las preocupaciones por el trabajo compartido industrial. [275] [276]

Operadores

F-22 desde la base aérea Tyndall , Florida, sobrevolando el Panhandle de Florida
Un F-22 aterrizando en la Base de la Fuerza Aérea Holloman, Nuevo México
Un F-22, con base en la Base de la Fuerza Aérea Elmendorf, Alaska, sobre terreno montañoso
F-22 con tanques de combustible en tránsito hacia la base aérea de Kadena , Japón, desde Langley AFB, Virginia

La Fuerza Aérea de los Estados Unidos es el único operador del F-22. A fecha de agosto de 2022, tiene 183 aviones en su inventario. [124]

Comando de Combate Aéreo

Fuerzas Aéreas del Pacífico

Guardia Nacional Aérea

Comando de Reserva de la Fuerza Aérea

Comando de Material de la Fuerza Aérea

Accidentes

El primer accidente del F-22 se produjo durante el despegue en la Base de la Fuerza Aérea Nellis el 20 de diciembre de 2004, en el que el piloto se eyectó sin problemas antes del impacto. [283] La investigación reveló que una breve interrupción de la energía durante el apagado del motor antes del vuelo provocó un mal funcionamiento del sistema de control de vuelo; [284] en consecuencia, se corrigió el diseño de la aeronave para evitar el problema. Tras un breve aterrizaje en tierra, las operaciones del F-22 se reanudaron después de una revisión. [285]

El 25 de marzo de 2009, un EMD F-22 se estrelló a 35 millas (56 km) al noreste de Edwards AFB durante un vuelo de prueba , lo que resultó en la muerte del piloto de pruebas de Lockheed Martin David P. Cooley . Una investigación del Comando de Material de la Fuerza Aérea descubrió que Cooley perdió momentáneamente el conocimiento durante una maniobra de alta G, o g-LOC , y luego se eyectó cuando se encontró demasiado bajo para recuperarse. Cooley murió durante la eyección por un traumatismo contundente causado por la ráfaga de viento debido a la velocidad de la aeronave. La investigación no encontró problemas de diseño. [286] [287]

El 16 de noviembre de 2010, un F-22 de la Base de la Fuerza Aérea Elmendorf se estrelló, matando al piloto, el capitán Jeffrey Haney. Los F-22 fueron restringidos a volar por debajo de los 25.000 pies, y luego fueron puestos en tierra durante la investigación. [288] El accidente se atribuyó a un mal funcionamiento del sistema de aire de purga después de que se detectara una condición de sobrecalentamiento del motor, apagando el Sistema de Control Ambiental (ECS) y OBOGS. La junta de revisión de accidentes dictaminó que Haney era el culpable, ya que no reaccionó adecuadamente para activar el sistema de oxígeno de emergencia . [289] La viuda de Haney demandó a Lockheed Martin, alegando defectos en el equipo, y más tarde llegó a un acuerdo. [290] [291] [223] Después del fallo, la manija de activación del sistema de oxígeno de emergencia fue rediseñada y todo el sistema fue finalmente reemplazado por un sistema de respaldo automático. [292] [293] El 11 de febrero de 2013, el Inspector General del Departamento de Defensa publicó un informe en el que afirmaba que la USAF había cometido un error al culpar a Haney y que los hechos no respaldaban suficientemente las conclusiones; la USAF declaró que mantenía la decisión. [294]

Durante una misión de entrenamiento, un F-22 se estrelló al este de la Base de la Fuerza Aérea Tyndall el 15 de noviembre de 2012. El piloto se eyectó sin problemas y no se reportaron heridos en tierra. [295] La investigación determinó que un cable eléctrico "rozado" encendió el fluido en una línea hidráulica, provocando un incendio que dañó los controles de vuelo. [296]

El 15 de mayo de 2020, un F-22 de la base aérea de Eglin se estrelló durante una misión de entrenamiento de rutina poco después del despegue; el piloto se eyectó sin problemas. La causa del accidente se atribuyó a un error de mantenimiento después de un lavado de aeronaves que provocó lecturas defectuosas del sensor de datos aéreos. [297]

Aeronaves en exhibición

F-22A 91-4003 en el Museo Nacional de la Fuerza Aérea de los Estados Unidos en Dayton, Ohio

Especificaciones (F-22A)

Dibujos del F-22 Raptor en 3 vistas
Póster de la USAF con las características y el armamento clave del F-22
Parte inferior del F-22 con las puertas del compartimento principal abiertas

Datos de la USAF, [124] datos de los fabricantes, [300] [301] [302] Aviation Week , [140] [303] Air Forces Monthly , [130] y Journal of Electronic Defense [159]

Características generales

Performance

Armament

Avionics

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

Notes

  1. ^ a b c Total production run consisted of 9 EMD and 186 production aircraft; the last two EMD aircraft were Production Representative Test Vehicles (PRTV), while one of the production aircraft was a dedicated flight sciences vehicle. Thus, the production run is often listed as 8 test and 187 production aircraft.
  2. ^ Referring to statements made by the Secretary of Defense Robert Gates: "The secretary once again highlighted his ambitious next-year request for the more-versatile F-35s."[2]
  3. ^ The greatly increased stealth requirements arose from the SPO's discussions with Lockheed and Northrop, the two companies with prior stealth experience from the "Senior Trend"/F-117 and "Senior Ice"/B-2 respectively.
  4. ^ The seven bidding companies for Dem/Val were Lockheed, Northrop, General Dynamics, Boeing, McDonnell Douglas, Grumman, and Rockwell.
  5. ^ The contractor teams were to give the SPO "sealed envelope" flight performance predictions against which their prototypes would be evaluated against, rather than against each other.
  6. ^ The naval F-22 design was to be carrier-borne and had variable-sweep wings and additional sensors.
  7. ^ Another reason other than funding issues, the F-22’s superior combat capability, has been attributed to cuts to F-22 buys. In 1997, Defense Secretary William Cohen, for example, cited this as a reason for that year’s Quadrennial Defense Review’s (QDR) proposed reduction to 341 aircraft.[38]
  8. ^ Block number designates production variation groups.
  9. ^ The combat-coded fleet consist of 123 primary and 20 reserve airframes, while several Block 30 aircraft are devoted to operational testing and tactics development at Nellis AFB.[52]
  10. ^ For instance, aircraft from Lot 3 onwards had improved stabilators built by Vought.[116]
  11. ^ This capability was demonstrated in 2005 when General John P. Jumper exceeded Mach 1.7 in the F-22 without afterburners.[129]
  12. ^ In testing, an F-22 cruising at Mach 1.5 at 50,000 feet (15,000 m) struck a moving target 24 miles (39 km) away with a JDAM.[134]
  13. ^ The fuselage and wing structure was tested to validate survivability against 30 mm cannon fire.[137]
  14. ^ "... noting that Raptors are ready for a mission around 62 percent of the time, if its low-observable requirements are met (DAILY, 20 November). Reliability goes up above 70 percent for missions with lower stealth demands."[148]
  15. ^ Former Secretary of the USAF Michael Wynne blamed the use of the DoD's Ada for cost overruns and delays on many military projects, including the F-22, mistakenly referring to Ada as an operating system[citation needed] rather than a programming language, and citing "the scramble to retain talent for ADA when careers were being made in DOS, Apple and LINUX".[164]
  16. ^ Atelectasis is the collapse or closure of a lung resulting in reduced or absent gas exchange.
  17. ^ Actual thrust is up to 37,000 lbf (165 kN).[304]
  18. ^ 750 nmi (with 100 nmi in supercruise), 860 nmi subsonic with 2× 600 U.S. gal tanks. Figures include −6% routing factor, combat and 2× GBU-32 + 2× AIM-9 + 2× AIM-120.

References

Citations

  1. ^ Parsons, Gary. "Final F-22 Delivered" Archived 13 March 2016 at the Wayback Machine Combat Aircraft Monthly, 3 May 2012. Retrieved 10 April 2014.
  2. ^ Baron, Kevin (16 September 2009). "Gates outlines Air Force priorities and expectations". Stars and Stripes. Archived from the original on 31 October 2013. Retrieved 30 October 2013.
  3. ^ Aronstein and Hirschberg 1998, p. 254.
  4. ^ Force Structure: F-22 Organization and Utilization Changes Could Improve Aircraft Availability and Pilot Training (GAO-18-190) (Report). U.S. Government Accountability Office. 19 July 2018.
  5. ^ a b Marrow, Michael (7 March 2024). "F-22s 'highest priority' for near-term fight, Air Force acquisition boss says". Breaking Defense.
  6. ^ Jenkins, Dennis R. Lockheed Secret Projects: Inside the Skunk Works. St. Paul, Minnesota: MBI Publishing Company, 2001. ISBN 0-7603-0914-0. pp. 70.
  7. ^ "Lockheed Martin F-22A Raptor". National Museum of the U.S. Air Force.
  8. ^ Pace 1999, pp. 3–4.
  9. ^ Aronstein and Hirschberg 1998, pp. 51-54
  10. ^ Aronstein and Hirschberg 1998, p. 38
  11. ^ Aronstein and Hirschberg 1998, pp. 82–89
  12. ^ Jenkins and Landis 2008, pp. 233–234.
  13. ^ Williams 2002, pp. 5–6.
  14. ^ Aronstein and Hirschberg 1998, p. 119
  15. ^ Mullin 2019
  16. ^ Aronstein and Hirschberg 1998, pp. 104–125
  17. ^ Aronstein and Hirschberg 1998, pp. 105–108.
  18. ^ Jenkins and Landis 2008, p. 234.
  19. ^ Goodall 1992, p. 110.
  20. ^ Miller 2005, p. 76.
  21. ^ "F-22 Partners". NASA. Archived from the original on 18 January 2004. Retrieved 25 July 2009.
  22. ^ Hehs, Eric (16 October 1998). "F-22 Raptor Design Evolution, Part 2". Lockheed Martin. Archived from the original on 19 December 2022. Retrieved 13 March 2023.
  23. ^ Pace 1999, pp. 12–13.
  24. ^ "F-22 weight increase agreed". Flight International. 3 May 1995. Archived from the original on 12 January 2014.
  25. ^ Aronstein and Hirschberg 1998, p. 170.
  26. ^ "F-22 aircraft No. 4005 completes successful first flight." Archived 29 June 2017 at the Wayback Machine Federation of American Scientists. Retrieved 23 July 2009.
  27. ^ a b c Kohn, Lt. Col. Allen E. and Lt. Col. Steven M. Rainey. "F-22 Flight Test Program Update." 9 April 1999. Archived from original.
  28. ^ Norris, Guy (9 June 2008). "Boeing Readies F-22 Flying Lab for Tests". Aviation Week & Space Technology.
  29. ^ a b c d e Zazulia, Nick (11 October 2018). "Rejuvenating the Raptor: Roadmap for F-22 Modernization". Avionics Today. Archived from the original on 16 February 2019. Retrieved 15 February 2019.
  30. ^ Aronstein and Hirschberg 1998, p. 118.
  31. ^ "Chronology of the F-22 Program." Archived 7 March 2008 at the Wayback Machine F-22 Team, 4 November 2012. Retrieved 23 July 2009.
  32. ^ "F-22 Raptor". Lockheed Martin. Archived from original. Retrieved: 1 July 2014.
  33. ^ Younossi, Obaid et al. "Lessons Learned from the F/A–22 and F/A–18E/F Development Programs."Archived 25 April 2011 at the Wayback Machine RAND, 2005. Retrieved 27 August 2011.
  34. ^ Sweetman, Bill. "Rivals Target JSF." Archived 19 August 2016 at the Wayback Machine Aviation Week, 30 November 2010. Retrieved 31 August 2011.
  35. ^ a b "Selected Acquisition Report (SAR) – F-22, RCS: DD-A&T(Q&A)823–265." Department of Defense, 31 December 2010. Retrieved 13 March 2019.
  36. ^ "F-22 Raptor Wins 2006 Collier Trophy" (PDF). National Aeronautic Association (Press release). Archived from the original (PDF) on 1 April 2016. Retrieved 23 July 2009.
  37. ^ Minnick, Wendell (24 March 2016). "Chinese Businessman Pleads Guilty of Spying on F-35 and F-22". Defense News. Archived from the original on 13 March 2023. Retrieved 9 April 2019.
  38. ^ Bolkcom 2007, p. 8.
  39. ^ Wilson, George (23 September 1999). "Senate proposes deal to continue F-22 funding". Government Executive.
  40. ^ Williams 2002, p. 22.
  41. ^ Grant, Rebecca (December 2008). "Losing Air Dominance" (PDF). Air Force Magazine. Archived from the original (PDF) on 2 October 2013.
  42. ^ Hedgpeth, Dana (18 February 2009). "Air Force Pares Request for Additional Lockheed F-22s". The Washington Post. Archived from the original on 3 July 2017.
  43. ^ a b Lopez, C.T. (23 June 2006). "F-22 excels at establishing air dominance". U.S. Air Force. Archived from the original on 25 April 2016.
  44. ^ Trimble, Stephen (24 September 2008). "US Congress passes $487.7 defence spending bill, slashes aircraft". FlightGlobal. Archived from the original on 19 April 2013. Retrieved 10 November 2012.
  45. ^ Wolf, Jim (12 November 2008). "Pentagon OKs funds to preserve F-22 line". Reuters. Archived from the original on 19 October 2012. Retrieved 27 August 2011.
  46. ^ Kaplan, Fred (24 February 2009). "The Air Force tries to save a fighter plane that's never seen battle". Slate. Archived from the original on 21 October 2010. Retrieved 31 August 2011.
  47. ^ Brumby, Otis; Bill Kinney; Joe Kirby. (6 June 2011). "Around Town: As the F-35 program revs up the F-22 ramps down". The Marietta Daily Journal. Archived from the original on 11 July 2012. Retrieved 31 August 2011.
  48. ^ Barnes, Julian E. (11 February 2009). "Lockheed lobbies for F-22 production on job grounds". Los Angeles Times. Archived from the original on 14 September 2015.
  49. ^ "FY 2009 Budget Estimates", p. 1-13. Archived 7 November 2017 at the Wayback Machine U.S. Air Force, February 2008. Retrieved 23 July 2009.
  50. ^ "PBL Award Pkg 2008 System F-22 – Defense Acquisition University" (PDF). dau.mil. Archived (PDF) from the original on 6 March 2019. Retrieved 5 March 2019.
  51. ^ "Lockheed Martin F/A-22 Raptor". Joe Baugher. Archived from the original on 23 November 2010. Retrieved 10 January 2020.
  52. ^ Majumdar, David (16 May 2014). "Air Force Evaluating New Targeting Monocle for F-22 Raptor". USNI News. Archived from the original on 19 October 2021. Retrieved 19 October 2021.
  53. ^ Schanz, Marc V. (1 April 2012). "Raptors for the long haul". Air Force Magazine. Archived from the original on 11 August 2022. Retrieved 13 March 2023.
  54. ^ a b Drew, James (20 April 2016). "US lawmakers want cost data for building 194 more F-22s". FlightGlobal. Archived from the original on 18 April 2019.
  55. ^ "H.Amdt.295 to H.R.2266 – 105th Congress (1997–1998) | Congress.gov | Library of Congress" Archived 26 April 2019 at the Wayback Machine Library of Congress. Retrieved 9 May 2010.
  56. ^ "Senate panel seeks end to F-22 export ban". Reuters. 10 September 2009. Archived from the original on 24 September 2015. Retrieved 28 April 2019.
  57. ^ Gertler 2013, p. 13-14.
  58. ^ a b Smith, R. Jeffrey. "Premier U.S. fighter jet has major shortcomings: F-22's maintenance demands growing." Archived 12 September 2017 at the Wayback Machine The Washington Post, 10 July 2009. Retrieved 24 July 2009.
  59. ^ Bruno, M. "Appropriators Approve F-22A Multiyear, But Not Foreign Sales." Archived 25 June 2017 at the Wayback Machine Aviation Week, 27 September 2006. Retrieved 28 August 2011.
  60. ^ "H.R. 2647: National Defense Authorization Act for Fiscal Year 2010 (overview)." Archived 3 November 2013 at the Wayback Machine U.S. House of Representatives via Opencongress.org. Retrieved: 27 April 2012.
  61. ^ "H.R.2647 National Defense Authorization Act for Fiscal Year 2010 (see Sections 1250 & 8056.)". United States Congress. Archived from the original on 30 March 2019. Retrieved 23 September 2016.
  62. ^ Taylor, Rob (20 February 2008). "Australia mulls F-22 purchase in airpower re-think". Reuters.
  63. ^ "Fitzgibbon keen on US F-22 Raptors". Australia Broadcast Corporation. 22 March 2008.
  64. ^ "Defence committed to new fighters despite flaws". ABC News Online. 24 June 2006. Archived from the original on 25 June 2006. Retrieved 5 March 2024.
  65. ^ Carmen, G. "Rapped in the Raptor: why Australia must have the best." Archived 9 November 2006 at the Wayback Machine The Age, 2 October 2006. Retrieved 31 August 2011.
  66. ^ Kopp, Dr. Carlo. "Is The Joint Strike Fighter Right For Australia?" Archived 5 May 2012 at the Wayback Machine Air Power Australia. Retrieved 23 July 2009.
  67. ^ Houston, Angus (18 May 2023). "A Conversation with Sir. Angus Houston, Co-Lead of Australia's New Defence Strategic Review" (Interview). Interviewed by Charles Edel. Center for Strategic & International Studies (CSIS).
  68. ^ Bolkcom, Christopher and Chanlett-Avery, Emma. Potential F-22 Raptor Export to Japan. U.S. Congressional Research Service. 11 March 2009.
  69. ^ Govindasamy, Siva. "Japan makes another push for F-22." FlightGlobal, 10 June 2009.
  70. ^ "JASDF's Next Generation Fighter". Lockheed Martin. Archived from the original on 1 July 2014. Retrieved 31 May 2014.
  71. ^ Bolkcom 2007, p. 11.
  72. ^ "Israeli Plans to Buy F-35s Hitting Obstacles." Archived 18 August 2007 at the Wayback Machine Defense Industry Daily, 27 June 2006. Retrieved 23 July 2009.
  73. ^ Egozi, Arie. "Israel in talks with USA over F-22 orders". Archived 31 March 2019 at the Wayback Machine Flight Global, 20 April 2007. Retrieved 30 June 2014.
  74. ^ a b c "Assertion and Facts." Archived 3 July 2012 at the Wayback Machine senate.gov. Retrieved: 17 January 2012.
  75. ^ GAO-06-455R "Tactical Aircraft: DOD Should Present a New F-22A Business Case before Making Further Investments." Government Accountability Office. Retrieved 9 May 2010.
  76. ^ Wayne, Leslie. "Air Force Jet Wins Battle in Congress". The New York Times, 28 September 2006. Archived from original. Archived 4 April 2019 at the Wayback Machine Retrieved: 29 June 2014.
  77. ^ Carroll, Ward. "Dogfight Over F-22 Reveals DoD Schisms". Archived 3 July 2017 at the Wayback Machine Defense Tech, 19 November 2008. Retrieved 29 June 2014.
  78. ^ Wolf, Jim (18 June 2009). "Top general warns against ending F-22 fighter". Reuters. Archived from the original on 3 November 2013. Retrieved 1 November 2013.
  79. ^ Cole, August. "Lawmakers Pressure Pentagon to Release Funds for Controversial F-22 Fighter Jet". The Wall Street Journal, 5 November 2008. Archived from original. Retrieved: 29 June 2014.
  80. ^ Levine, Adam, Mike Mount and Alan Silverleib. "Gates Announces Major Pentagon Priority Shifts." CNN, 9 April 2009. Retrieved 31 August 2011.
  81. ^ "Transcripts." U.S. Senate, Committee on Armed Services, 9 July 2009. Archived 17 May 2013 at the Wayback Machine
  82. ^ Schwartz, Norton; Levinson, Ron; Schwartz, Suzie (2 January 2018). Journey: Memoirs of an Air Force Chief of Staff. Skyhorse Publishing. ISBN 9781510710344.
  83. ^ "CRS RL31673 Air Force F-22 Fighter Program: Background and Issues for Congress, p. 15." Archived 4 August 2009 at the Wayback Machine Assets.opencrs.com. Retrieved 26 September 2010.
  84. ^ Matthews, William. "House Reverses Itself, Votes To Kill F-22 Buy." Defense News, 31 July 2009. Archived from original.
  85. ^ Thomas "S.AMDT.1469 to cut F-22 funding." Archived 15 December 2012 at the Wayback Machine Thomas.loc.gov. Retrieved 13 June 2010.
  86. ^ Gates, Robert (16 July 2009). Economic Club of Chicago (Speech). Economic Club of Chicago. Chicago, Illinois: US Department of Defense. Archived from the original on 28 February 2010. Retrieved 1 November 2013.
  87. ^ Media Availability with Secretary Gates en route to Beijing, China from Andrews Air Force Base. Archived 30 September 2017 at the Wayback Machine U.S. Department of Defense, 11 January 2011.
  88. ^ Butler, Amy (27 December 2011). "Last Raptor Rolls Off Lockheed Martin Line". Aviation Week. Archived from the original on 24 March 2015. Retrieved 10 April 2014.
  89. ^ Majumdar, Dave (3 May 2012). "USAF receives last F-22 Raptor". FlightGlobal. Archived from the original on 28 May 2014. Retrieved 9 June 2014.
  90. ^ Trimble, Stephen (5 March 2010). "USAF considers options to preserve F-22 production tooling". FlightGlobal. Archived from the original on 31 October 2013. Retrieved 30 October 2013.
  91. ^ "RAND: Ending F-22A Production: Costs and Industrial Base Implications of Alternative Options." Archived 7 October 2012 at the Wayback Machine rand.org. Retrieved: 26 September 2010.
  92. ^ Wolf, Jim (12 December 2011). "U.S. to mothball gear to build top F-22 fighter". Reuters. Archived from the original on 22 October 2013. Retrieved 30 October 2013.
  93. ^ Wolf, Jim. "U.S. to mothball gear to build top F-22 fighter." Archived 30 March 2019 at the Wayback Machine Reuters, 12 December 2011.
  94. ^ a b Report to Congress: F-22A Production Restart Assessment. U.S. Air Force (Report). February 2017. Archived from the original on 9 December 2022. Retrieved 13 March 2023.
  95. ^ Trimble, Steve (10 December 2020). "Three Generations Of Fighters Compete For Limited Resources". Aviation Week. Archived from the original on 9 February 2023. Retrieved 13 March 2023.
  96. ^ Pawlyk, Oriana (22 March 2019). "Pentagon Buying F-15EX Alongside F-35s to Preserve Diversity, Official Says". Military.com. Archived from the original on 25 December 2023.
  97. ^ House Lawmakers Want Air Force to Study Restarting F-22 Production Archived 31 March 2019 at the Wayback Machine – Military.com, 19 April 2016
  98. ^ The F-22 Fighter Jet Restart Is Dead: Study Archived 6 March 2019 at the Wayback Machine – Military.com, 21 June 2017
  99. ^ Ayton, Mark (22 December 2016). "Testing the Combat Edge". Air Forces Monthly. Archived from the original on 13 September 2022. Retrieved 13 March 2023.
  100. ^ a b AN/APG-77(V). Archived 23 November 2016 at the Wayback Machine Forecast International. March 2012
  101. ^ DOT&E FY2013 Annual Report – F-22A Advanced Tactical Fighter (PDF), OSD, archived (PDF) from the original on 2 February 2014, retrieved 29 January 2014
  102. ^ Wall, Robert and Amy Butler. "USAF Weighs Future Priority Needs." Archived 29 December 2014 at the Wayback Machine Aviation Week, 21 November 2011.
  103. ^ a b "Air Force F-22 resumes normal flight operations". Air Combat Command Public Affairs. U.S. Air Force. 4 April 2013. Archived from the original on 1 November 2013. Retrieved 30 October 2013.
  104. ^ Majumdar, Dave (30 May 2011). "F-22 Getting New Brain". Defense News. Archived from the original on 29 July 2012. Retrieved 30 October 2013.
  105. ^ "A transitional year for military combat aircraft", Aviation Week and Space Technology, 1/8 December 2014, p. 60.
  106. ^ a b "BAE Systems receives certification for F-22 friend-or-foe capability". Intelligent Aerospace. 23 November 2020. Archived from the original on 26 September 2021. Retrieved 26 September 2021.
  107. ^ Trimble, Steve (12 January 2022). "USAF Seeks Third-Party Vendors For F-22 Sensor, Capability Upgrades". Aviation Week. Archived from the original on 26 November 2022. Retrieved 13 March 2023.
  108. ^ Everstine, Brian (4 August 2023). "USAF, Lockheed Plan F-22 Updates To Feed Next-Gen Fighter Tech". Aviation Week.
  109. ^ "Contracts for November 5, 2021". U.S. Department of Defense. 5 November 2021.
  110. ^ Losey, Stephen (5 November 2021). "Lockheed wins $10.9B contract to modernize F-22". Defense News. Archived from the original on 13 March 2023. Retrieved 8 November 2021.
  111. ^ Osborn, Kris. "Air Force upgrades F-22 sensors, weapons hardware." Archived 15 March 2017 at the Wayback Machine DefenseSystems.net, 14 March 2017.
  112. ^ a b Hunter, Jamie (11 August 2022). "F-22 Raptor Being Readied for AIM-260 Missile by Green Bats Testers". The War Zone. Archived from the original on 15 August 2022. Retrieved 21 August 2022.
  113. ^ a b Tirpak, John A. "The Raptor as Bomber." Archived 7 July 2011 at the Wayback Machine Air Force magazine, January 2005. Retrieved 25 July 2009.
  114. ^ "F-22 Being Used To Test Next Generation Air Dominance 'Fighter' Tech". The War Zone. 25 April 2022. Archived from the original on 16 December 2022. Retrieved 13 March 2023.
  115. ^ Osborn, Kris (14 May 2019). "Air Force Gives Stealthy F-22 Raptors New Air-to-Air Attack Weapons". Warrior Maven. Archived from the original on 18 April 2021. Retrieved 13 March 2023.
  116. ^ "New Horizontal Stabilator Design And Manufacturing Process To Save F-22 Raptor Program $1 Million Per Aircraft". Lockheed Martin (press release). 26 June 2002.
  117. ^ Offley, Ed (4 May 2006). "Flaw Could Shorten Raptors' Lives". News-Herald (Panama City, FL). Archived from the original on 11 June 2014. Retrieved 12 February 2014.
  118. ^ a b Drew, James (5 July 2015). "F-22 Raptor retrofit to take longer, but availability hits 63%". FlightGlobal. Archived from the original on 9 July 2015.
  119. ^ Lloyd, Alex R. (26 January 2021). "F-22 Raptor gets major upgrades courtesy of Hill AFB's 574th Aircraft Maintenance Squadron". dvidshub.net. Ogden Air Logistics Complex. Archived from the original on 27 January 2021. Retrieved 27 January 2021.
  120. ^ Rolfsen, Bruce. "F-22 design problems force expensive fixes." Air Force Times, 12 November 2007.
  121. ^ Sherman, Jason. "Air Force Sets Plan To Launch Sixth-Gen Fighter Program In 2018". Archived 12 March 2014 at the Wayback Machine Inside Defense, 11 March 2014. Retrieved 30 June 2014.
  122. ^ "New Force Design: NGAD Needed Soon, F-22 Sunset Begins in 2030". AFM. 13 May 2021. Archived from the original on 5 June 2022. Retrieved 18 May 2021.
  123. ^ Carlson, Maj. Gen. Bruce. "Subject: Stealth Fighters." Archived 29 August 2010 at the Wayback Machine U.S. Department of Defense Office of the Assistant Secretary of Defense (Public Affairs) News Transcript. Retrieved 28 August 2011.
  124. ^ a b c d e "F-22 Raptor fact sheet.". Archived 3 March 2016 at the Wayback Machine U.S. Air Force, March 2009. Retrieved 23 July 2009.
  125. ^ a b Miller 2005, pp. 25-27
  126. ^ Miller 2005, pp. 79-91
  127. ^ Sweetman 1998, pp. 34-36
  128. ^ Jeffrey W. Hamstra; Brent N. McCallum (15 September 2010). Tactical Aircraft Aerodynamic Integration. doi:10.1002/9780470686652.eae490. ISBN 9780470754405. Archived from the original on 19 October 2021. Retrieved 19 October 2021.
  129. ^ Powell, 2nd Lt. William. "General Jumper qualifies in F/A-22 Raptor." Archived 6 April 2016 at the Wayback Machine Air Force Link, 13 January 2005.
  130. ^ a b c Ayton, Mark. "F-22 Raptor". AirForces Monthly, August 2008, p. 75. Retrieved 19 July 2008.
  131. ^ Bedard, David (11 May 2012). "Bird of Prey: Bulldogs accept delivery of last Raptor". Joint Base Elmendorf-Richardson Public Affairs. Archived from the original on 12 May 2014. Retrieved 14 July 2012.
  132. ^ Grant, Rebecca. "Why The F-22 Is Vital Part 13." Archived 13 October 2012 at the Wayback Machine United Press International, 31 March 2009.
  133. ^ a b "F-22 Pilot Perspective". Code One Magazine, October 2000
  134. ^ "U.S. orders two dozen Raptors for 2010". United Press International. 22 November 2006. Archived from the original on 23 June 2011. Retrieved 24 June 2010.
  135. ^ "USAF Almanac." Air Force magazine, May 2006.
  136. ^ Tirpak, John A. "Airpower, led by the F-22, can 'kick the door down' for the other forces." Archived 20 November 2012 at the Wayback Machine Air Force Magazine, March 2001.
  137. ^ "Live Fire Testing of the F-22". National Research Council: 50. 1995. doi:10.17226/4971. ISBN 978-0-309-05333-4.
  138. ^ Anderson, William D.; Mortara, Sean (23–26 April 2007). "F-22 Aeroelastic Design and Test Validation". American Institute of Aeronautics and Astronautics (AIAA): 4. doi:10.2514/6.2007-1764. ISBN 978-1-62410-013-0.
  139. ^ Cotton, J.D.; Clark, L.P., and Phelps, Hank (May 2002). "Titanium alloys on the F-22 fighter airframe". Advanced Materials & Processes Magazine. 160 (5). American Society for Metals (ASM International).{{cite journal}}: CS1 maint: multiple names: authors list (link)
  140. ^ a b c d e f Fulghum, D.A. and M.J. Fabey. "F-22 Combat Ready." Aviation Week, 8 January 2007. Archived from original. Retrieved: 7 November 2009.
  141. ^ Peron, L. R. "F-22 Initial High Angle-of-Attack Flight Results." (Abstract). Air Force Flight Test Center. Retrieved 7 November 2009.
  142. ^ "F119 Engine". Pratt & Whitney. Archived from original.
  143. ^ Jenn, D. (Fall 2011). "RCS Reduction (Lecture Notes)" (PDF). Naval Postgraduate School. Archived (PDF) from the original on 22 December 2022. Retrieved 13 March 2023.
  144. ^ Katz, Dan (7 July 2017). "The Physics And Techniques of Infrared Stealth". Aviation Week. Penton Media. Archived from the original on 14 August 2018. Retrieved 12 April 2019.
  145. ^ "Analogues of Stealth" (PDF) (analysis paper). Northrop Grumman. 27 April 2012. Archived (PDF) from the original on 19 February 2018. Retrieved 10 April 2019.
  146. ^ Fulghum, David A. "F-22 Raptor To Make Paris Air Show Debut" Archived 19 August 2016 at the Wayback Machine Aviation Week, 4 February 2009. Retrieved 15 February 2009.
  147. ^ Lockie, Alex (5 May 2017). "This strange mod to the F-35 kills its stealth near Russian defenses—and there's good reason for that". Business Insider. Archived from the original on 24 August 2020. Retrieved 15 February 2020.
  148. ^ Butler, Amy. "USAF Chief Defends F-22 Need, Capabilities." Archived 19 August 2016 at the Wayback Machine Aviation Week, 17 February 2009. Retrieved 31 August 2011.
  149. ^ Ralston, J; Heagy, J; et al. "Environmental/Noise Effects on UHF/VHF UWB SAR". Archived 2 January 2015 at the Wayback Machine dtic.mil, September 1998. Retrieved 2 January 2015.
  150. ^ Plopsky, Guy and Fabrizio Bozzato. "The F-35 vs. The VHF Threat." Archived 26 December 2014 at the Wayback Machine The Diplomat, 21 August 2014.
  151. ^ Grant, Rebecca (September 2010). The Radar Game: Understanding Stealth and Aircraft Survivability (PDF). Mitchell Institute. Archived from the original (PDF) on 3 December 2016. Retrieved 28 April 2019.
  152. ^ "This Video Provides Another Look at the F-22 Raptor Covered with a Mirror-Like Coating". 10 December 2021. Archived from the original on 30 January 2023. Retrieved 13 March 2023.
  153. ^ "There's Now a Second 'Chrome' F-22 Raptor Flying with Mirror-Like Coating at Nellis AFB". 19 March 2022. Archived from the original on 12 December 2022. Retrieved 13 March 2023.
  154. ^ "F-35 and F-117 Spotted Flying with Mysterious Mirror-Like Skin". 23 January 2022. Archived from the original on 13 December 2022. Retrieved 13 March 2023.
  155. ^ Tirpak, John (20 August 2024). "New F-22 Sensors Could Help Extend the Raptor's Service Life". Air and Space Forces Magazine. Air and Space Forces Association.
  156. ^ "Raytheon Gets $1.05B Contract for F-22 Fighter Jet Enhancements". Market Watch. 29 August 2024.
  157. ^ "Missile Launch Detector (MLD)". Lockheed Martin. Archived from the original on 17 October 2012. Retrieved 10 November 2012.
  158. ^ Klass, Philip J. "Sanders Will Give BAE Systems Dominant Role in Airborne EW." Aviation Week, Volume 153, issue 5, 31 July 2000, p. 74.
  159. ^ a b Sweetman 2000, pp. 41–47.
  160. ^ Tirpak, John (25 July 2019). "Air Force Starts Fielding Auto Ground Collision Avoidance System in F-35s". Air Force Magazine. Archived from the original on 31 July 2020. Retrieved 31 March 2020.
  161. ^ "Air Dominance With The F-22 Raptor". Avionics Magazine. Rockville, MD: Access Intelligence. 2002. Retrieved 1 June 2023.
  162. ^ "Defense Science Board report on Concurrency and risk of the F-22 program." Archived 1 December 2012 at the Wayback Machine Dtic.mil, April 1995. Retrieved 31 August 2011.
  163. ^ Pace 1999, p. 58.
  164. ^ Wynne, Michael. "Michael Wynne on: The Industrial Impact of the Decision to Terminate the F-22 Program." Archived 31 March 2019 at the Wayback Machine Second Line of Defense, 2 October 2009. Retrieved 31 August 2011.
  165. ^ "Flight Test Clears F-22 Fleet To Accept Third-Party Software". Aviation Week. 30 August 2022. Archived from the original on 31 August 2022. Retrieved 31 August 2022.
  166. ^ Pawlyk, Oriana (27 June 2017). "The F-22 in Syria: Deconflicting, Not Dog-Fighting". Military.com.
  167. ^ Philips, E.H. "The Electric Jet." Aviation Week, 5 February 2007.
  168. ^ Page, Lewis. "F-22 superjets could act as flying Wi-Fi hotspots." Archived 5 October 2010 at the Wayback Machine The Register, 19 June 2007. Retrieved 7 November 2009.
  169. ^ Reed, John. (20 December 2009). "Official: Fighters should be used for spying". Air Force Times. Archived from the original on 4 June 2012. Retrieved 9 May 2010.
  170. ^ Freedberg, Sydney (7 November 2016). "F-22, F-35 Outsmart Test Ranges, AWACS". Breaking Defense.
  171. ^ Williams 2002, p. 10.
  172. ^ Goebel, Greg. "The Lockheed Martin F-22 Raptor." Archived 30 March 2019 at the Wayback Machine airvectors.net, 1 July 2011. Retrieved 10 November 2012. [unreliable source?]
  173. ^ "Lockheed Martin's Affordable Stealth" (PDF). Lockheed Martin. 15 November 2000. p. 2. Archived from the original (PDF) on 20 September 2013. Retrieved 3 December 2012.
  174. ^ Kopp, Carlo. "~Just How Good Is The F-22 Raptor?" Archived 7 December 2006 at the Wayback Machine "Australian Air Power", September 1998.
  175. ^ "Military Avionics Systems", Ian Moir and Allan Seabridge, Wiley, pp. 360
  176. ^ Williams 2002, p. 11.
  177. ^ "ACES II Pre-Planned Product Improvement (P3I) Program Update." Archived 22 February 2017 at the Wayback Machine dtic.mil. Retrieved: 24 December 2014.
  178. ^ "A preliminary investigation of a fluid-filled ECG-triggered anti-g suit", February 1994
  179. ^ "USAF Fighter Pilots Are Now Flying With These Converted M4 Rifles In Their Survival Kits". The War Zone. 10 May 2019.
  180. ^ Pace 1999, pp. 65–66.
  181. ^ "Technologies for Future Precision Strike Missile Systems – Missile/Aircraft Integration. ADA387602." Archived 21 March 2019 at the Wayback Machine dtic.mil.
  182. ^ "LAU-142/A – AVEL – AMRAAM Vertical Eject Launcher." Exelis. Retrieved 7 November 2009.
  183. ^ Miller 2005, p. 94.
  184. ^ DeMarban, Alex. "Target-towing Cessna pilot unconcerned about live-fire practice with F-22s." Alaska Dispatch, 3 May 2012.
  185. ^ Polmar 2005, p. 397.
  186. ^ "The F-22 Raptor: Program & Events". Defense Industry Daily. 13 October 2013. Archived from the original on 22 October 2013. Retrieved 1 November 2013.
  187. ^ Pace 1999, pp. 71–72.
  188. ^ a b Camelo, Maj. Wilson. "Tyndall AFB takes F-22 pilot training to next level". U.S. Air Force, 30 July 2014. Archived from original.
  189. ^ Holmes, Erik. "F-22 problems linked to rain in Guam." Air Force Times, 5 October 2009. Retrieved 9 May 2010.
  190. ^ Seligman, Lara (30 November 2016). "U.S. Air Force Tackles Repair To F-22 Stealth Coating". Aviation Week. Archived from the original on 20 July 2018. Retrieved 19 March 2019.
  191. ^ "Air Force to consolidate F-22 depot maintenance at Hill". Archived 14 July 2014 at the Wayback Machine U.S. Air Force, 29 May 2013. Retrieved 3 July 2014.
  192. ^ Drew, James (2 February 2015). "F-35A cost and readiness data improves in 2015 as fleet grows". FlightGlobal. Archived from the original on 6 March 2019. Retrieved 4 March 2019.
  193. ^ "Military Aircraft Names." Archived 12 October 2009 at the Portuguese Web Archive Aerospaceweb.org. Retrieved: 26 September 2010. [unreliable source?]
  194. ^ "U.S. to Declare F-22 Fighter Operational." Agence France-Presse, 15 December 2005.
  195. ^ "F-22 program completes program milestone in first flight of Block 3.0 software". Aviation Week. 8 January 2001. Archived from the original on 22 December 2022. Retrieved 13 March 2023.
  196. ^ a b "F-22 Milestones – Part 2". Code One Magazine. Archived from the original on 11 November 2013. Retrieved 16 November 2013.
  197. ^ a b Majumdar, Dave (7 May 2013). "Raptor 4007 starts testing Inc 3.2A upgrade on its 1000th sortie". FlightGlobal. Archived from the original on 11 November 2013. Retrieved 16 November 2013.
  198. ^ Warwick, Graham (8 September 2003). "Ready or not..." Flight International.
  199. ^ Miller 2005, pp. 64-65.
  200. ^ "F-22 Raptor Clears FOT&E". Air Force Magazine. 13 January 2006. Archived from the original on 21 December 2022. Retrieved 21 December 2022.
  201. ^ Delos Reyes, Julius. "Edwards F-22 Raptor performs aerial refueling using synthetic fuel." Archived 31 May 2017 at the Wayback Machine U.S. Air Force. 3 September 2008. Retrieved 14 September 2011.
  202. ^ Quick, Darren. "F-22 Raptor hits Mach 1.5 on camelina-based biofuel." Archived 26 February 2012 at the Wayback Machine Gizmag, 23 March 2011.
  203. ^ Cohen, Rachel (13 June 2021). "'A perfect storm': Airmen, F-22s struggle at Eglin nearly three years after Hurricane Michael". Air Force Times. Archived from the original on 13 March 2023. Retrieved 20 December 2022.
  204. ^ "F-22 Raptor FTU begins move to JBLE". U.S. Air Force (Air Combat Command). 1 March 2023. Archived from the original on 11 March 2023. Retrieved 13 March 2023.
  205. ^ Camelo, Maj. Wilson (30 July 2014). "Tyndall AFB takes F-22 pilot training to next level". Air Force. Retrieved 3 March 2024. Public Domain This article incorporates text from this source, which is in the public domain.
  206. ^ Freed, David (December 2017). "Meet the Jets Competing to Become the Next Air Force Trainer". Smithsonian Magazine. Retrieved 2 March 2024.
  207. ^ Ludwigson, Jon (May 2023). "Advanced Pilot Trainer Program Success Hinges on Better Managing Its Schedule and Providing Oversight" (PDF). Government Accountability Organization. pp. 24–25. Retrieved 2 March 2024.
  208. ^ Losey, Stephen (1 December 2021). "With T-7 on the way, why is ACC eyeing a new trainer?". Defense News. Retrieved 3 March 2024.
  209. ^ Losey, Stephen (28 April 2023). "Key milestone for new Boeing trainer aircraft delayed to 2027". Defense News. Retrieved 3 March 2024.
  210. ^ Albon, Courtney (2015). "Graduating 28-30 students per year: F-22 Training Squadron Healthy As Operational Deployments Grow". Inside the Air Force. Vol. 26, no. 40. Inside Defense. pp. 3–4. JSTOR 24803751. Retrieved 3 March 2024.
  211. ^ a b "433d Weapons Squadron." Archived 22 August 2007 at the Wayback Machine U.S. Air Force. Retrieved 5 April 2010.
  212. ^ a b "F-22A Raptor goes operational". U.S. Air Force. 15 December 2005. Archived from the original on 25 April 2016. Retrieved 11 April 2016.
  213. ^ Schanz, Marc V. (May 2007). "Aerospace World: Red Flag Raptors". Air Force Magazine. Archived from the original on 1 May 2008. Retrieved 9 February 2008.
  214. ^ Hopper, David (12 December 2007). "F-22s at Langley receive FOC status". U.S. Air Force. Archived from the original on 25 April 2016. Retrieved 1 November 2013.
  215. ^ 2nd Lt. Schultz, Georganne E. (22 April 2007). "Langley earns "excellent" in ORI". 1st Fighter Wing. Archived from the original on 22 April 2019. Retrieved 9 May 2010.{{cite web}}: CS1 maint: numeric names: authors list (link)
  216. ^ Topolsky, Joshua (11 March 2008). "Air Force's stealth fighters making final flights". CNN.
  217. ^ Cox, Bob. "Despite investigation, safety concerns linger on F-22." Star Telegram, 25 August 2012.
  218. ^ Sughrue, Karen (producer) and Lesley Stahl. "Is the Air Force's F-22 fighter jet making pilots sick?" 60 Minutes: CBS News, 6 May 2012. Retrieved 7 May 2012.
  219. ^ Hoffman, Michael (1 August 2012), "Air Force Confident F-22 Oxygen Riddle Solved", Military, archived from the original on 30 March 2019, retrieved 28 April 2019
  220. ^ Fabey, Michael. "USAF Still Reviewing Oxygen Concentration Levels For F-22 Cockpit." Archived 19 April 2013 at the Wayback Machine Aerospace Daily & Defense Report, 12 October 2012.
  221. ^ Talmadge, Eric. "AP Impact: Air Force insiders foresaw F-22 woes." Associated Press, 27 September 2012.
  222. ^ Axe, David (13 September 2012). "Stealth Fighter's Oxygen Woes Still A Mystery, Air Force Admits". Wired. Archived from the original on 3 December 2013. Retrieved 1 November 2013.
  223. ^ a b "H.A.S.C. No. 112-154, F-22 pilot physiological issues." Archived 25 September 2018 at the Wayback Machine GPO. Retrieved 16 August 2013.
  224. ^ Mowry, Laura (17 April 2013). "Edwards Airmen vital to Raptor's return". U.S. Air Force. Archived from the original on 3 June 2013. Retrieved 18 April 2013.
  225. ^ "Raptors Perform First Intercept of Russian Bombers." Archived 6 November 2018 at the Wayback Machine Air Force magazine, Daily Report, 14 December 2007. Retrieved 9 May 2010.
  226. ^ "Russia denies violating British Air Space". Deccan Herald. Moscow. 26 March 2010. Archived from the original on 11 October 2021. Retrieved 11 October 2021.
  227. ^ "12 F-22 Raptors deployed to Japan." Archived 29 March 2019 at the Wayback Machine Air Recognition, 14 January 2013.[unreliable source?]
  228. ^ Wastnage, Justin (14 February 2007). "Navigational software glitch forces Lockheed Martin F-22 Raptors back to Hawaii, abandoning first foreign deployment to Japan". FlightGlobal. Archived from the original on 16 May 2013. Retrieved 11 May 2012.
  229. ^ Johnson, Maj. Dani (19 February 2007). "Raptors arrive at Kadena". US Air Force. Archived from the original on 26 June 2010.
  230. ^ "US sends F-22 jets to join South Korea drills". Fox News. 1 April 2013. Archived from the original on 10 November 2013. Retrieved 31 October 2013.
  231. ^ Mahadzir, Dzirhan (4 June 2014). "F-22s land in Malaysia for first Southeast Asian exercise". Jane's 360. Kuala Lumpur: IHS. Archived from the original on 15 June 2014. Retrieved 29 June 2014.
  232. ^ Perez, Zamone; Simkins, Jon (21 March 2023). "US F-22s land in Philippines for first time, furthering defense ties". Air Force Times.
  233. ^ Clark, Colin. "Gates Opposed AF Plans to Deploy F-22 to Iraq." Archived 4 October 2011 at the Wayback Machine DOD Buzz, 30 June 2008. Retrieved 31 August 2011.
  234. ^ Butler, Amy (12 April 2012). "UAE-based F-22s a Signal to Iran". Aviation Week. Archived from the original on 15 July 2014. Retrieved 3 June 2014.
  235. ^ Munoz, Carlos. "Reports: DOD deploys F-22 fighters near Iranian border". The Hill, 27 April 2012.
  236. ^ "F-22 Flew to Drone's Rescue off Iran Coast". Military. 17 September 2013. Archived from the original on 27 April 2014. Retrieved 28 April 2019.
  237. ^ Butler, Amy. "F-22s takes first shot against ground, not air target". Aviation week. Archived from the original on 10 April 2019. Retrieved 28 April 2019.
  238. ^ Lara Seligman; Aaron Smith (23 May 2017). "Inside The Cockpit: Flying The F-22 Against Islamic State in Syria". Aviation Week & Space Technology. Archived from the original on 28 July 2018. Retrieved 28 April 2019.
  239. ^ F-22 Raptor Ensures other War-Fighting Aircraft Survive Over Syria Archived 30 March 2019 at the Wayback Machine – Military.com, 21 July 2015
  240. ^ F-22 adapts to OIR conflict, 'Cleared Hot' in Iraq, Syria Archived 27 September 2015 at the Wayback Machine – AF.mil, 7 September 2015
  241. ^ Starr, Barbara; Browne, Ryan. "Aerial close encounter between US, Syrian jets". CNN. Archived from the original on 11 April 2019. Retrieved 20 August 2016.
  242. ^ Lockie, Alex (6 November 2018). "F-22 stealth jets got 587 aircraft to back off in their combat surge over Syria". Air Force Times. Archived from the original on 13 March 2023. Retrieved 13 March 2023.
  243. ^ US-led coalition strikes kill pro-regime forces in Syria Archived 30 April 2018 at the Wayback Machine CNN, 8 February 2018.
  244. ^ Pawlyk, Oriana (8 February 2018). "US Scrambles Firepower to Defend SDF Against Pro-Assad Forces". Military.com. Archived from the original on 30 March 2019. Retrieved 23 February 2018.
  245. ^ News Transcript: Department Of Defense Press Briefing by Lieutenant General Harrigian via teleconference from Al Udeid Airbase, Qatar: Press Operations: Lieutenant General Jeffrey Harrigian, commander, U.S. Air Forces Central Command Archived 2 August 2018 at the Wayback Machine U.S. Department of Defense, 13 February 2018.
  246. ^ F-22 Continuing Operations in Syria – Defensenews.com, 29 September 2014
  247. ^ Nichols, Hans; Gains, Mosheh (20 November 2017). "U.S. bombs Afghan opium plants in new strategy to cut Taliban funds". NBC News. Archived from the original on 20 November 2017. Retrieved 20 November 2017.
  248. ^ "How the US military's opium war in Afghanistan was lost". BBC. 25 April 2019. p. 1. Archived from the original on 26 April 2019. Retrieved 28 April 2019.
  249. ^ "F-22s on Wake Island". Air Force Magazine. 3 July 2013.
  250. ^ Schanz, Marc (28 September 2013). "Rapid Raptor Package". Air force Magazine. Air Force Association. Archived from the original on 29 September 2013. Retrieved 1 October 2013.
  251. ^ Clark, Behak. "Hickam Airmen exercise Rapid Raptor in Guam." Archived 8 December 2014 at the Wayback Machine U.S. Air Force, 3 December 2014.
  252. ^ "F-22s Arrive in Estonia". U.S. Air Force. Archived from the original on 28 September 2015.
  253. ^ Hudson, Amy (7 March 2017). "Rapid Raptor 2.0". Air Force Magazine.
  254. ^ Harpley, Unshin Lee (29 April 2024). "Airmen, F-22s Scatter to Austere 'Spokes' for Pacific Exercise". Air & Space Forces Magazine.
  255. ^ "US shoots down Chinese 'spy' balloon over Atlantic". BBC News. 4 February 2023. Archived from the original on 11 February 2023. Retrieved 5 February 2023.
  256. ^ "F-22 Makes First Air-to-Air Strike in Chinese Balloon Takedown". Bloomberg.com. 5 February 2023. Retrieved 24 November 2023.
  257. ^ Garamone, Jim (4 February 2023). "F-22 Safely Shoots Down Chinese Spy Balloon Off South Carolina Coast". United States Department of Defense. Archived from the original on 11 February 2023. Retrieved 7 February 2023.
  258. ^ "US jet shoots down unknown object flying off Alaska coast". AP NEWS. 10 February 2023. Archived from the original on 11 February 2023. Retrieved 11 February 2023.
  259. ^ "Operational Imperative No. 4". Air & Space Forces Magazine. 27 July 2023. Retrieved 26 February 2024.
  260. ^ Tirpak, John (12 May 2021). "CSAF: F-22 Not in USAF's Long-Term Plan". Air & Space Forces Magazine. Retrieved 26 February 2024.
  261. ^ Copp, Tara; Weisgerber, Marcus (12 May 2021). "The Air Force Is Planning For a Future Without the F-22". Defense One. Retrieved 26 February 2024.
  262. ^ Cohen, Rachel (28 March 2022). "Air Force wants to send Tyndall's F-22 jets to the boneyard". Air Force Times. Retrieved 26 February 2024.
  263. ^ Insinna, Valerie (8 December 2022). "Congress protects F-22s from retirement, oks sending some A-10s to the boneyard". Breaking Defense. Retrieved 26 February 2024.
  264. ^ Tirpak, John (6 April 2023). "Moore: 'It's Time to Move On' from Block 20 F-22s, JATM Still on Schedule". Air & Space Forces Magazine. Retrieved 26 February 2024.
  265. ^ a b Pace 1999, p. 28.
  266. ^ Mullin 2012, pp. 38-39
  267. ^ Jenkins, Dennis R., Tony Landis and Jay Miller. "Monographs in Aerospace History, No. 31: American X-Vehicles: An Inventory, X-1 to X-50." Archived 17 November 2008 at the Wayback Machine NASA, June 2003. Retrieved 13 June 2010.
  268. ^ "X-Planes Explained". Archived from the original on 15 October 2007. Retrieved 1 June 2016. NASAExplores.com, 9 October 2003. Retrieved 23 July 2009.
  269. ^ Tirpak, John A. "Long Arm of the Air Force." Archived 7 July 2011 at the Wayback Machine Air Force magazine, October 2002. Retrieved 31 August 2011.
  270. ^ Bolkcom, Christopher. "Air Force FB-22 Bomber Concept." Archived 9 July 2017 at the Wayback Machine Digital.library.unt.edu. Retrieved 28 August 2011.
  271. ^ "Quadrennial Defense Review Report" Archived 28 October 2012 at the Wayback Machine. US Department of Defense, 6 February 2006. Retrieved 28 August 2011.
  272. ^ Hebert, Adam J. "The 2018 Bomber and Its Friends." Archived 23 September 2009 at the Wayback Machine Air Force magazine, October 2006. Retrieved 31 August 2011.
  273. ^ Tajima, Yukio (22 August 2018). "Lockheed offers Japan majority of work in plan for new fighter jet". Nikkei Asia.
  274. ^ "Lockheed Pitching F-22/F-35 Hybrid to U.S. Air Force". Defense One. 30 August 2018. Archived from the original on 3 September 2018. Retrieved 3 September 2018.
  275. ^ "Air Force not considering new F-15 or hybrid F-22/F-35, top civilian says". DefenseNews. 12 September 2018. Archived from the original on 13 March 2023. Retrieved 21 February 2019.
  276. ^ "Defense Ministry to develop own fighter jet to succeed F-2, may seek int'l project". Mainichi Shimbun. 4 October 2018. Archived from the original on 25 April 2019. Retrieved 28 April 2019.
  277. ^ DeMayo, Airman 1st Class Chase S. "Langley receives last Raptor, completes fleet."Archived 25 April 2016 at the Wayback Machine U.S. Air Force, 19 January 2007.
  278. ^ Del Oso, Senior Airman Tiffany (6 April 2023). "The 43d Fighter Squadron's final sting". Tyndall Air Force Base. 325th Fighter Wing Public Affairs. Retrieved 2 March 2024.
  279. ^ Reeves, Staff Sgt. Magen M.; Coffman, Staff Sgt. Peter (9 February 2022). "The 95th FS; part of Tyndall's proud fighter heritage". Tyndall Air Force Base. U.S. Air Force. Retrieved 2 March 2024.
  280. ^ Canfield, Tech. Sgt. Mikal (8 August 2007). "Elmendorf welcomes F-22 Raptor". U.S. Air Force. Archived from the original on 25 April 2016. Retrieved 11 April 2016.
  281. ^ "Air Force eyes Langley-Eustis as new F-22 training home". Air Force Times. 27 March 2019. Archived from the original on 13 March 2023. Retrieved 2 April 2020.
  282. ^ "302nd Fighter Squadron flagship". U.S. Air Force Reserve Command. 3 October 2012.
  283. ^ Mount, Mike. "Nevada crash grounds F-22 fighters." Archived 24 January 2012 at the Wayback Machine CNN, 22 December 2004. Retrieved 28 August 2011.
  284. ^ USAF AIB Report Executive Summary on 20 December 2004 F-22A mishap (PDF) (Report). Archived from the original (PDF) on 16 February 2013.
  285. ^ "Raptors cleared to fly again." af.mil, 6 January 2005. Archived from original.
  286. ^ "F-22 Crash Linked To G-Forces". The Washington Post. 5 August 2009. p. 2.
  287. ^ USAF AIB Report on 25 March 2009 F-22A mishap (PDF) (Report). Archived from the original (PDF) on 31 March 2019. Retrieved 31 May 2014.
  288. ^ Fontaine, Scott and Dave Majumdar. "Air Force grounds entire F-22 fleet." Military Times, 5 May 2011.
  289. ^ USAF AIB Report on 16 November 2010 F-22A mishap (PDF) (Report). Archived from the original (PDF) on 14 July 2014. Retrieved 1 July 2014.
  290. ^ Bouboushian, Jack (12 March 2012). "Pilot's Widow Calls F-22 Raptor Defective". Courthouse News Service. Archived from the original on 30 April 2012.
  291. ^ Majumdar, Dave (13 August 2012). "Settlement reached in Haney F-22 crash lawsuit". FlightGlobal. Archived from the original on 24 October 2013. Retrieved 30 October 2013.
  292. ^ "Fatal crash leads to change in F-22's backup oxygen system". Los Angeles Times. 20 March 2012. p. B1. Archived from the original on 13 March 2023. Retrieved 13 November 2020 – via Newspapers.com.
  293. ^ "Installation of backup oxygen system in F-22 combat fleet continues". U.S. Air Force. 10 April 2014. Archived from the original on 8 August 2022. Retrieved 13 March 2023.
  294. ^ DoD IG report on 16 November 2010 F-22A mishap AIB report (Report). Archived from the original on 15 February 2013. Retrieved 11 February 2013.
  295. ^ "Safety paramount as F-22 investigation continues (press release)". U.S. Air Force. 16 November 2012. Archived from the original on 15 December 2013. Retrieved 16 November 2013.
  296. ^ Everstine, Brian (9 August 2013). "Air Force: Faulty wire brought down F-22". Air Force Times. Archived from the original on 10 August 2013. Retrieved 16 August 2013.
  297. ^ Thompson, Jim (28 July 2021). "A $201M maintenance error: Air Force releases cause of F-22 crash at Eglin AFB in 2020". Northwest Florida Daily News Herald. Archived from the original on 31 July 2021. Retrieved 31 July 2021.
  298. ^ "Hill Aerospace Museum Receives a Raptor". U.S. Air Force. 21 December 2022. Archived from the original on 28 December 2022. Retrieved 28 December 2022.
  299. ^ "Museum adds the world's first stealthy air dominance fighter to collection". National Museum of the U.S. Air Force (Press release). Archived from the original on 30 March 2008. Retrieved 23 July 2009.
  300. ^ "F-22 Raptor Specifications". Lockheed Martin. Archived from the original on 3 June 2012. Retrieved 21 April 2012.
  301. ^ "F-22 Technical Specs." Boeing. Retrieved 16 October 2011.
  302. ^ "F-22 Combat Radius". Archived from the original on 5 November 2016. Retrieved 7 June 2016.
  303. ^ Bill Sweetman (3 November 2014). "J-20 Stealth Fighter Design Balances Speed And Agility". Aviation Week & Space Technology. Penton Media. Archived from the original on 5 November 2014. Retrieved 8 November 2014.
  304. ^ AIR International, July 2015, p. 63.
  305. ^ Miller 2005, pp. 94–100.
  306. ^ Wild, Lee. "US quick to return for Chemring's flares." Archived 16 July 2011 at the Wayback Machine Share cast, 26 March 2010. Retrieved 26 September 2010.

Bibliography

Further reading

External links