stringtranslate.com

Prisma triangular

En geometría , un prisma triangular o prisma trigonal [1] es un prisma con dos bases triangulares. Si las aristas se emparejan con el vértice de cada triángulo y son perpendiculares a la base, se trata de un prisma triangular rectángulo . Un prisma triangular rectángulo puede ser tanto semirregular como uniforme .

El prisma triangular se puede utilizar para construir otro poliedro. Algunos ejemplos son los sólidos de Johnson , el prisma triangular rectángulo truncado y el poliedro de Schönhardt .

Propiedades

Un prisma triangular tiene 6 vértices, 9 aristas y 5 caras. Cada prisma tiene 2 caras congruentes conocidas como sus bases , y las bases de un prisma triangular son triángulos . El triángulo tiene 3 vértices, cada uno de los cuales se empareja con el vértice de otro triángulo, formando otras 3 aristas. Estas aristas forman 3 paralelogramos como otras caras. [2] Si las aristas del prisma son perpendiculares a la base, las caras laterales son rectángulos y el prisma se llama prisma triangular rectángulo . [3] Este prisma también puede considerarse un caso especial de cuña . [4]

Modelo 3D de un prisma triangular (uniforme)

Si la base es equilátera y las caras laterales son cuadradas , entonces el prisma triangular rectángulo es semirregular . Un prisma semirregular significa que el número de aristas de su base poligonal es igual al número de sus caras cuadradas. [5] De manera más general, el prisma triangular es uniforme . Esto significa que un prisma triangular tiene caras regulares y tiene una simetría isogonal en los vértices. [6] El grupo de simetría tridimensional de un prisma triangular rectángulo es el grupo diedro D 3 h de orden 12: la apariencia no cambia si el prisma triangular se gira un ángulo y dos tercios completo alrededor de su eje de simetría que pasa por la base del centro y se refleja a través de un plano horizontal. El poliedro dual de un prisma triangular es una bipirámide triangular . La bipirámide triangular tiene la misma simetría que el prisma triangular. [1] El ángulo diedro entre dos caras cuadradas adyacentes es el ángulo interno de un triángulo equilátero π /3 = 60° , y el de un cuadrado y un triángulo es π /2 = 90° . [7]

El volumen de cualquier prisma es el producto del área de la base por la distancia entre las dos bases. [8] En el caso de un prisma triangular, su base es un triángulo, por lo que su volumen se puede calcular multiplicando el área de un triángulo por la longitud del prisma: donde b es la longitud de un lado del triángulo, h es la longitud de una altura dibujada a ese lado y l es la distancia entre las caras triangulares. [9] En el caso de un prisma triangular rectángulo, donde todas sus aristas tienen la misma longitud l , su volumen se puede calcular como el producto del área del triángulo equilátero por la longitud l : [10]

El prisma triangular se puede representar como el gráfico del prisma Π 3 . De manera más general, el gráfico del prisma Π n representa el prisma de n lados. [11]

Poliedro relacionado

En la construcción del poliedro

Más allá de la bipirámide triangular como su poliedro dual, muchos otros poliedros están relacionados con el prisma triangular. Un sólido de Johnson es un poliedro convexo con caras regulares, y esta definición a veces se omite en poliedros uniformes como los sólidos de Arquímedes , los sólidos de Catalan , los prismas y los antiprismas . [12] Hay 6 sólidos de Johnson con su construcción que involucra al prisma triangular: pirámide triangular alargada , bipirámide triangular alargada , girobifastigio , prisma triangular aumentado , prisma triangular biaumentado y prisma triangular triaumentado . La pirámide triangular alargada y la pirámide triangular giroelongada se construyen uniendo un tetraedro a la base de un prisma triangular. El prisma triangular aumentado, el prisma triangular biaumentado y el prisma triangular triaumentado se construyen uniendo pirámides cuadradas equiláteras a la cara cuadrada del prisma. El girobifastigio se construye uniendo dos prismas triangulares a lo largo de una de sus caras cuadradas. [13]

Prisma triangular rectángulo truncado

Un prisma triangular truncado es un prisma triangular construido truncando su parte en un ángulo oblicuo. Como resultado, las dos bases no son paralelas y cada altura tiene una longitud de arista diferente. Si las aristas que unen las bases son perpendiculares a una de sus bases, el prisma se llama prisma triangular rectángulo truncado . Dado que A es el área de la base del prisma triangular y las tres alturas h 1 , h 2 y h 3 , su volumen se puede determinar con la siguiente fórmula: [14]

Poliedro de Schönhardt

El poliedro de Schönhardt es otro poliedro construido a partir de un prisma triangular con bases de triángulos equiláteros. De esta manera, una de sus bases gira alrededor de la línea central del prisma y rompe las caras cuadradas en polígonos oblicuos . Cada cara cuadrada se puede volver a triangular con dos triángulos para formar un ángulo diedro no convexo. [15] Como resultado, el poliedro de Schönhardt no se puede triangular mediante una partición en tetraedros. También es que el poliedro de Schönhardt no tiene diagonales internas. [16] Recibe su nombre del matemático alemán Erich Schönhardt , quien lo describió en 1928, aunque la estructura relacionada fue exhibida por el artista Karlis Johansons en 1921. [17]

Un antiprisma triangular cruzado comparte su disposición de vértices con un prisma triangular a modo de facetado , con triángulos isósceles laterales .

Existen 4 compuestos uniformes de prismas triangulares: compuesto de cuatro prismas triangulares , compuesto de ocho prismas triangulares , compuesto de diez prismas triangulares y compuesto de veinte prismas triangulares . [18]

Panales de miel

Hay 9 panales uniformes que incluyen celdas prismáticas triangulares:

Panal cúbico alternado giroelongado , panal cúbico alternado alargado , panal prismático triangular girado , panal prismático cuadrado chato, panal prismático triangular , panal prismático triangular-hexagonal , panal prismático hexagonal truncado , panal prismático rombitriangular-hexagonal , panal prismático triangular-hexagonal chato , panal prismático triangular alargado

Politopos relacionados

El prisma triangular es el primero de una serie dimensional de politopos semirregulares . Cada politopo uniforme progresivo se construye a partir de la figura de vértice del politopo anterior. Thorold Gosset identificó esta serie en 1900 como la que contiene todas las facetas de los politopos regulares , que contienen todos los símplex y ortoplexes ( triángulos equiláteros y cuadrados en el caso del prisma triangular). En la notación de Coxeter , el prisma triangular recibe el símbolo −1 21 .

Espacio de cuatro dimensiones

El prisma triangular existe como células de una serie de 4-politopos uniformes de cuatro dimensiones , entre los que se incluyen:

Referencias

Citas

  1. ^ ab King (1994), pág. 113.
  2. ^
    • Rey (1994), pág. 113
    • Berman (1971)
  3. ^ Kern y Bland (1938), pág. 25.
  4. ^ Haul (1893), pág. 45.
  5. ^ O'Keeffe y Hyde (2020), pág. 139.
  6. ^
    • Berman y Williams (2009), pág. 100
    • Caballero (2002)
  7. ^ Johnson (1966).
  8. ^ Kern y Bland (1938), pág. 26.
  9. ^
    • Kinsey, Moore y Prassidis (2011), pág. 389
    • Haul (1893), pág. 45
  10. ^ Berman (1971).
  11. ^ Pisanski y Servatius (2013), pág. 21.
  12. ^
    • Todesco (2020), pág. 282
    • Williams y Monteleone (2021), pág. 23
  13. ^
    • Rajwade (2001)
    • Berman (1971)
  14. ^ Kern y Bland (1938), pág. 81.
  15. ^
    • Schönhardt (1928)
    • Bezdek y Carrigan (2016)
  16. ^ Berges (1948).
  17. ^
    • Schönhardt (1928)
    • Bansod, Nandanwar y Burša (2014)
  18. ^ Habilidad (1976).

Bibliografía