stringtranslate.com

Corteza cerebral

La corteza cerebral , también conocida como manto cerebral , [1] es la capa externa de tejido neural del cerebro en humanos y otros mamíferos . La corteza cerebral está formada principalmente por la neocorteza de seis capas , y solo el 10% está compuesta por la alocorteza . [2] Está separado en dos cortezas , por la fisura longitudinal que divide el cerebro en los hemisferios cerebrales izquierdo y derecho . Los dos hemisferios están unidos debajo de la corteza por el cuerpo calloso . La corteza cerebral es el sitio más grande de integración neuronal en el sistema nervioso central . [3] Desempeña un papel clave en la atención , la percepción , la conciencia , el pensamiento , la memoria , el lenguaje y la conciencia . La corteza cerebral es parte del cerebro responsable de la cognición .

En la mayoría de los mamíferos, aparte de los pequeños mamíferos que tienen cerebros pequeños, la corteza cerebral está plegada, proporcionando una mayor superficie en el volumen confinado del cráneo . Además de minimizar el volumen cerebral y craneal, el plegamiento cortical es crucial para los circuitos cerebrales y su organización funcional. [4] En los mamíferos con cerebros pequeños no hay pliegues y la corteza es lisa. [5] [6]

Un pliegue o cresta en la corteza se denomina circunvolución (circunvoluciones plural) y un surco se denomina surco (surcos plural). Estas circunvoluciones superficiales aparecen durante el desarrollo fetal y continúan madurando después del nacimiento mediante el proceso de girificación . En el cerebro humano, la mayor parte de la corteza cerebral no es visible desde el exterior, sino que está enterrada en los surcos. [7] Los surcos y circunvoluciones principales marcan las divisiones del cerebro en los lóbulos del cerebro . Los cuatro lóbulos principales son el frontal , el parietal , el occipital y el temporal . Otros lóbulos son el lóbulo límbico y la corteza insular , a menudo denominada lóbulo insular .

Hay entre 14 y 16 mil millones de neuronas en la corteza cerebral humana. [3] Estos se organizan en capas corticales horizontales y radialmente en columnas y minicolumnas corticales . Las áreas corticales tienen funciones específicas como el movimiento en la corteza motora y la vista en la corteza visual . La corteza motora se encuentra principalmente en la circunvolución precentral y la corteza visual se encuentra en el lóbulo occipital.

Estructura

Vista lateral del cerebro que muestra varias cortezas.

La corteza cerebral es la cubierta exterior de las superficies de los hemisferios cerebrales y está plegada en picos llamados circunvoluciones y surcos llamados surcos . En el cerebro humano oscila entre 2 y 3-4 mm. de espesor, [8] y constituye el 40% de la masa del cerebro. [3] El 90% de la corteza cerebral es neocorteza de seis capas, mientras que el otro 10% está formado por alocorteza de tres o cuatro capas . [3] Hay entre 14 y 16 mil millones de neuronas en la corteza, [3] y éstas están organizadas radialmente en columnas corticales y minicolumnas en las capas organizadas horizontalmente de la corteza. [9] [10]

La neocorteza es separable en diferentes regiones de la corteza conocidas en plural como cortezas, e incluyen la corteza motora y la corteza visual . Aproximadamente dos tercios de la superficie cortical están enterrados en los surcos y la corteza insular está completamente oculta. La corteza es más gruesa en la parte superior de una circunvolución y más delgada en la parte inferior de un surco. [11]

Pliegues

La corteza cerebral está plegada de manera que permite que una gran superficie de tejido neural quepa dentro de los límites del neurocráneo . Cuando se despliega en el ser humano, cada corteza hemisférica tiene una superficie total de aproximadamente 0,12 metros cuadrados (1,3 pies cuadrados). [12] El pliegue está hacia adentro, lejos de la superficie del cerebro, y también está presente en la superficie medial de cada hemisferio dentro de la fisura longitudinal . La mayoría de los mamíferos tienen una corteza cerebral que está retorcida con los picos conocidos como circunvoluciones y los valles o surcos conocidos como surcos. Algunos pequeños mamíferos, incluidos algunos pequeños roedores, tienen superficies cerebrales lisas sin girificación . [6]

Lóbulos

Los surcos y circunvoluciones más grandes marcan las divisiones de la corteza del cerebro en los lóbulos del cerebro . [8] Hay cuatro lóbulos principales: el lóbulo frontal , el lóbulo parietal , el lóbulo temporal y el lóbulo occipital . La corteza insular a menudo se incluye como lóbulo insular. [13] El lóbulo límbico es un borde de corteza en el lado medial de cada hemisferio y a menudo también se incluye. [14] También se describen tres lóbulos del cerebro: el lóbulo paracentral , el lóbulo parietal superior y el lóbulo parietal inferior .

Espesor

En el caso de las especies de mamíferos, los cerebros más grandes (en términos absolutos, no sólo en relación con el tamaño corporal) tienden a tener cortezas más gruesas. [15] Los mamíferos más pequeños, como las musarañas , tienen un espesor neocortical de aproximadamente 0,5 mm; los que tienen los cerebros más grandes, como los humanos y los rorcuales, tienen un grosor de 2 a 4 mm. [3] [8] Existe una relación aproximadamente logarítmica entre el peso del cerebro y el grosor cortical. [15] La resonancia magnética del cerebro (MRI) permite obtener una medida del grosor de la corteza cerebral humana y relacionarla con otras medidas. El grosor de las diferentes áreas corticales varía pero, en general, la corteza sensorial es más delgada que la corteza motora. [16] Un estudio ha encontrado cierta asociación positiva entre el grosor cortical y la inteligencia . [17] Otro estudio ha encontrado que la corteza somatosensorial es más gruesa en pacientes con migraña , aunque no se sabe si esto es el resultado de los ataques de migraña, la causa de los mismos o si ambos son el resultado de una causa compartida. [18] [19] Un estudio posterior que utilizó una población de pacientes más grande no informa cambios en el grosor cortical en pacientes con migraña. [20] Un trastorno genético de la corteza cerebral, por el cual la disminución del plegamiento en ciertas áreas da como resultado un microgiro , donde hay cuatro capas en lugar de seis, en algunos casos se considera relacionado con la dislexia . [21]

Capas de neocorteza

Diagrama del patrón de capas. Células agrupadas a la izquierda, capas axonales a la derecha.
Tres dibujos de laminación cortical de Santiago Ramón y Cajal , mostrando cada uno de ellos una sección transversal vertical, con la superficie de la corteza en la parte superior. Izquierda: corteza visual teñida con Nissl de un adulto humano. Centro: corteza motora teñida con Nissl de un adulto humano. Derecha: corteza teñida de Golgi de 1+Bebé de 1⁄2 meses . La tinción de Nissl muestra los cuerpos celulares de las neuronas; la tinción de Golgi muestra las dendritas y los axones de un subconjunto aleatorio de neuronas.
Micrografía que muestra la corteza visual (predominantemente rosa). En la parte inferior de la imagen se ve materia blanca subcortical (predominantemente azul). Tinción HE-LFB .
Neuronas teñidas de Golgi en la corteza ( macaco )

La neocorteza está formada por seis capas, numeradas del I al VI, desde la capa más externa I, cerca de la piamadre , hasta la capa más interna VI, cerca de la sustancia blanca subyacente . Cada capa cortical tiene una distribución característica de diferentes neuronas y sus conexiones con otras regiones corticales y subcorticales. Existen conexiones directas entre diferentes áreas corticales y conexiones indirectas a través del tálamo.

Uno de los ejemplos más claros de estratificación cortical es la línea de Gennari en la corteza visual primaria . Se trata de una banda de tejido más blanco que se puede observar a simple vista en el surco calcarino del lóbulo occipital. La línea de Gennari está compuesta por axones que llevan información visual desde el tálamo a la capa IV de la corteza visual .

La tinción de secciones transversales de la corteza para revelar la posición de los cuerpos celulares neuronales y los tractos axónicos intracorticales permitió a los neuroanatomistas de principios del siglo XX producir una descripción detallada de la estructura laminar de la corteza en diferentes especies. El trabajo de Korbinian Brodmann (1909) estableció que la neocorteza de los mamíferos se divide consistentemente en seis capas.

Capa I

La capa I es la capa molecular y contiene pocas neuronas dispersas, incluidas las neuronas GABAérgicas de rosa mosqueta . [22] La capa I consiste en gran parte en extensiones de mechones dendríticos apicales de neuronas piramidales y axones orientados horizontalmente, así como células gliales . [4] Durante el desarrollo, las células de Cajal-Retzius [23] y las células de la capa granular subpial [24] están presentes en esta capa. Además, aquí se pueden encontrar algunas células estrelladas espinosas. Se cree que las entradas a los mechones apicales son cruciales para las interacciones de retroalimentación en la corteza cerebral involucradas en el aprendizaje asociativo y la atención. [25] Si bien alguna vez se pensó que la entrada a la capa I provenía de la corteza misma, [26] ahora se comprende que la capa I a través del manto de la corteza cerebral recibe una entrada sustancial de la matriz o de las células del tálamo de tipo M [27] ( a diferencia de los núcleos o tipo C que van a la capa IV). [28]

Capa II

La capa II, la capa granular externa , contiene pequeñas neuronas piramidales y numerosas neuronas estrelladas.

Capa III

La capa III, la capa piramidal externa , contiene predominantemente neuronas piramidales de tamaño pequeño y mediano, así como neuronas no piramidales con axones intracorticales orientados verticalmente; las capas I a III son el objetivo principal de las aferencias corticocorticales interhemisféricas , y la capa III es la fuente principal de las aferencias corticocorticales .

Capa IV

La capa IV, la capa granular interna , contiene diferentes tipos de células estrelladas y piramidales, y es el objetivo principal de las aferencias talamocorticales de las neuronas del tálamo tipo C (tipo central) [28] , así como de las aferencias corticocorticales intrahemisféricas. Las capas por encima de la capa IV también se denominan capas supragranulares (capas I-III), mientras que las capas inferiores se denominan capas infragranulares (capas V y VI).

Capa V

La capa V, la capa piramidal interna , contiene grandes neuronas piramidales. Los axones de estos abandonan la corteza y se conectan con estructuras subcorticales, incluidos los ganglios basales . En la corteza motora primaria del lóbulo frontal, la capa V contiene células piramidales gigantes llamadas células de Betz , cuyos axones viajan a través de la cápsula interna , el tronco del encéfalo y la médula espinal formando el tracto corticoespinal , que es la vía principal para el control motor voluntario. .

Capa VI

La capa VI, la capa polimórfica o capa multiforme , contiene pocas neuronas piramidales grandes y muchas neuronas pequeñas piramidales y multiformes en forma de huso; la capa VI envía fibras eferentes al tálamo, estableciendo una interconexión recíproca muy precisa entre la corteza y el tálamo. [29] Es decir, las neuronas de la capa VI de una columna cortical se conectan con las neuronas del tálamo que proporcionan información a la misma columna cortical. Estas conexiones son tanto excitadoras como inhibidoras. Las neuronas envían fibras excitadoras a las neuronas del tálamo y también envían fibras colaterales al núcleo reticular talámico que inhiben estas mismas neuronas del tálamo o las adyacentes a ellas. [30] Una teoría es que debido a que la producción inhibidora se reduce mediante la entrada colinérgica a la corteza cerebral, esto proporciona al tronco encefálico un "control de ganancia ajustable para la retransmisión de entradas lemniscales ". [30]

columnas

Las capas corticales no están simplemente apiladas una sobre otra; Existen conexiones características entre diferentes capas y tipos neuronales, que abarcan todo el espesor de la corteza. Estos microcircuitos corticales se agrupan en columnas corticales y minicolumnas . [31] Se ha propuesto que las minicolumnas son las unidades funcionales básicas de la corteza. [32] En 1957, Vernon Mountcastle demostró que las propiedades funcionales de la corteza cambian abruptamente entre puntos lateralmente adyacentes; sin embargo, son continuos en la dirección perpendicular a la superficie. Trabajos posteriores han proporcionado evidencia de la presencia de columnas corticales funcionalmente distintas en la corteza visual (Hubel y Wiesel , 1959), [33] corteza auditiva y corteza asociativa.

Las áreas corticales que carecen de capa IV se denominan agranulares . Las áreas corticales que tienen sólo una capa IV rudimentaria se denominan disgranulares. [34] El procesamiento de información dentro de cada capa está determinado por diferentes dinámicas temporales: el de las capas II/III tiene una  oscilación lenta de 2 Hz , mientras que el de la capa V tiene una oscilación rápida de 10 a 15 Hz. [35]

Tipos de corteza

Según las diferencias en la organización laminar , la corteza cerebral se puede clasificar en dos tipos, el área grande de neocorteza que tiene seis capas de células y el área mucho más pequeña de alocorteza que tiene tres o cuatro capas: [2]

Existe una zona de transición entre la neocorteza y la alocorteza llamada corteza paralímbica , donde se fusionan las capas 2, 3 y 4. Esta área incorpora la proisocorteza de la neocorteza y la periallocorteza de la alocorteza. Además, la corteza cerebral se puede clasificar en cuatro lóbulos : el lóbulo frontal , el lóbulo temporal , el lóbulo parietal y el lóbulo occipital , nombrados así por los huesos que se encuentran encima del cráneo.

Suministro y drenaje de sangre.

Irrigación arterial que muestra las regiones irrigadas por las arterias cerebrales posterior, media y anterior .

El suministro de sangre a la corteza cerebral es parte de la circulación cerebral . Las arterias cerebrales suministran la sangre que perfunde el cerebro. Esta sangre arterial transporta oxígeno, glucosa y otros nutrientes a la corteza. Las venas cerebrales drenan la sangre desoxigenada y los desechos metabólicos, incluido el dióxido de carbono, de regreso al corazón.

Las principales arterias que irrigan la corteza son la arteria cerebral anterior , la arteria cerebral media y la arteria cerebral posterior . La arteria cerebral anterior irriga las porciones anteriores del cerebro, incluida la mayor parte del lóbulo frontal. La arteria cerebral media irriga los lóbulos parietales, los lóbulos temporales y partes de los lóbulos occipitales. La arteria cerebral media se divide en dos ramas para irrigar los hemisferios izquierdo y derecho, donde se ramifican aún más. La arteria cerebral posterior irriga los lóbulos occipitales.

El círculo de Willis es el sistema sanguíneo principal que se ocupa del suministro de sangre al cerebro y la corteza cerebral.

Suministro de sangre cortical

Desarrollo

El desarrollo prenatal de la corteza cerebral es un proceso complejo y finamente sintonizado llamado corticogénesis , influenciado por la interacción entre los genes y el medio ambiente. [36]

Tubo neural

La corteza cerebral se desarrolla a partir de la parte más anterior, la región del prosencéfalo, del tubo neural . [37] [38] La placa neural se pliega y se cierra para formar el tubo neural . A partir de la cavidad del interior del tubo neural se desarrolla el sistema ventricular , y, a partir de las células neuroepiteliales de sus paredes, las neuronas y la glía del sistema nervioso. La parte más anterior (frontal o craneal) de la placa neural, el prosencéfalo , que es evidente antes de que comience la neurulación , da origen a los hemisferios cerebrales y posteriormente a la corteza. [39]

Desarrollo de neuronas corticales

Las neuronas corticales se generan dentro de la zona ventricular , al lado de los ventrículos . Al principio, esta zona contiene células madre neurales , que pasan a células gliales radiales , células progenitoras, que se dividen para producir células gliales y neuronas. [40]

Glía radial

La neurogénesis se muestra en rojo y la laminación se muestra en azul. Adaptado de (Sur et al. 2001)

La corteza cerebral está compuesta por una población heterogénea de células que dan lugar a diferentes tipos celulares. La mayoría de estas células derivan de la migración de la glía radial que forma los diferentes tipos celulares del neocórtex y es un periodo asociado a un aumento de la neurogénesis . De manera similar, el proceso de neurogénesis regula la laminación para formar las diferentes capas de la corteza. Durante este proceso hay un aumento en la restricción del destino celular que comienza con progenitores anteriores que dan lugar a cualquier tipo de célula en la corteza y progenitores posteriores que dan lugar sólo a neuronas de capas superficiales. Este destino celular diferencial crea una topografía de adentro hacia afuera en la corteza con neuronas más jóvenes en las capas superficiales y neuronas más viejas en las capas más profundas. Además, las neuronas laminares se detienen en la fase S o G2 para poder distinguir con precisión las diferentes capas corticales. La diferenciación laminar no está completamente completa hasta después del nacimiento, ya que durante el desarrollo las neuronas laminares todavía son sensibles a señales extrínsecas y señales ambientales. [41]

Aunque la mayoría de las células que componen la corteza se derivan localmente de la glía radial, existe un subconjunto de neuronas que migran desde otras regiones. La glía radial da lugar a neuronas que tienen forma piramidal y utilizan el glutamato como neurotransmisor , sin embargo estas células migratorias aportan neuronas que tienen forma estrellada y utilizan GABA como su principal neurotransmisor. Estas neuronas GABAérgicas son generadas por células progenitoras en la eminencia ganglionar medial (MGE) que migran tangencialmente a la corteza a través de la zona subventricular . Esta migración de neuronas GABAérgicas es particularmente importante ya que los receptores GABA son excitadores durante el desarrollo. Esta excitación es impulsada principalmente por el flujo de iones de cloruro a través del receptor GABA; sin embargo, en los adultos las concentraciones de cloruro cambian provocando un flujo de cloruro hacia adentro que hiperpolariza las neuronas postsinápticas . [42] Las fibras gliales producidas en las primeras divisiones de las células progenitoras están orientadas radialmente, abarcando el espesor de la corteza desde la zona ventricular hasta la superficie pial exterior , y proporcionan un andamiaje para la migración de las neuronas hacia afuera desde la zona ventricular . [43] [44]

Al nacer, hay muy pocas dendritas en el cuerpo celular de la neurona cortical y el axón no está desarrollado. Durante el primer año de vida, el número de dendritas aumenta drásticamente, de modo que pueden acomodar hasta cien mil conexiones sinápticas con otras neuronas. El axón puede desarrollarse para extenderse muy lejos del cuerpo celular. [45]

división asimétrica

Las primeras divisiones de las células progenitoras son simétricas, lo que duplica el número total de células progenitoras en cada ciclo mitótico . Luego, algunas células progenitoras comienzan a dividirse asimétricamente, produciendo una célula posmitótica que migra a lo largo de las fibras gliales radiales, saliendo de la zona ventricular , y una célula progenitora, que continúa dividiéndose hasta el final del desarrollo, cuando se diferencia en una célula glial o una célula ependimaria . A medida que se alarga la fase G1 de la mitosis , en lo que se considera un alargamiento selectivo del ciclo celular, las neuronas recién nacidas migran a capas más superficiales de la corteza. [46] Las células hijas migratorias se convierten en las células piramidales de la corteza cerebral. [47] El proceso de desarrollo está ordenado y regulado en el tiempo por cientos de genes y mecanismos reguladores epigenéticos . [48]

Organización de capas

Desarrollo cortical humano entre las 26 y 39 semanas de edad gestacional.

La estructura en capas de la corteza cerebral madura se forma durante el desarrollo. Las primeras neuronas piramidales generadas migran fuera de la zona ventricular y la zona subventricular , junto con las neuronas de Cajal-Retzius productoras de reelina , desde la preplaca . A continuación, una cohorte de neuronas que migran hacia el centro de la preplaca divide esta capa transitoria en la zona marginal superficial , que se convertirá en la capa I de la neocorteza madura, y la subplaca , [49] formando una capa intermedia llamada placa cortical . Estas células formarán las capas profundas de la corteza madura, las capas cinco y seis. Las neuronas que nacen posteriormente migran radialmente hacia la placa cortical más allá de las neuronas de la capa profunda y se convierten en las capas superiores (dos a cuatro). Por lo tanto, las capas de la corteza se crean en orden de adentro hacia afuera. [50] La única excepción a esta secuencia de neurogénesis de adentro hacia afuera se produce en la capa I de los primates , en los que, a diferencia de los roedores , la neurogénesis continúa durante todo el período de corticogénesis . [51]

Patrones corticales

Representado en azul, Emx2 se expresa altamente en el polo caudomedial y se disipa hacia afuera. La expresión de Pax6 está representada en violeta y está altamente expresada en el polo lateral rostral. (Adaptado de Sanes, D., Reh, T. y Harris, W. (2012). Desarrollo del sistema nervioso (3.ª ed.). Burlington: Elsevier Science)

El mapa de áreas corticales funcionales, que incluyen la corteza motora primaria y visual, se origina a partir de un " protomapa ", [52] que está regulado por señales moleculares como el factor de crecimiento de fibroblastos FGF8 en las primeras etapas del desarrollo embrionario. [53] [54] Estas señales regulan el tamaño, la forma y la posición de las áreas corticales en la superficie del primordio cortical, en parte regulando los gradientes de expresión del factor de transcripción , a través de un proceso llamado patrón cortical . Ejemplos de tales factores de transcripción incluyen los genes EMX2 y PAX6 . [55] Juntos, ambos factores de transcripción forman un gradiente de expresión opuesto. Pax6 se expresa mucho en el polo lateral rostral , mientras que Emx2 se expresa mucho en el polo caudomedial . El establecimiento de este gradiente es importante para un correcto desarrollo. Por ejemplo, las mutaciones en Pax6 pueden hacer que los niveles de expresión de Emx2 se expandan fuera de su dominio de expresión normal, lo que en última instancia conduciría a una expansión de las áreas normalmente derivadas de la corteza medial caudal, como la corteza visual . Por el contrario, si se producen mutaciones en Emx2, puede hacer que el dominio que expresa Pax6 se expanda y provoque un agrandamiento de las regiones corticales frontal y motora . Por tanto, los investigadores creen que gradientes similares y centros de señalización próximos a la corteza podrían contribuir a la expresión regional de estos factores de transcripción. [42] Dos señales de patrones muy bien estudiados para la corteza incluyen el FGF y el ácido retinoico . Si los FGF se expresan mal en diferentes áreas de la corteza en desarrollo, se altera el patrón cortical . Específicamente, cuando Fgf8 aumenta en el polo anterior , Emx2 se regula a la baja y se produce un desplazamiento caudal en la región cortical. En última instancia, esto provoca una expansión de las regiones rostrales. Por lo tanto, Fgf8 y otros FGF desempeñan un papel en la regulación de la expresión de Emx2 y Pax6 y representan cómo la corteza cerebral puede especializarse para diferentes funciones. [42]

La rápida expansión del área de la superficie cortical está regulada por la cantidad de autorrenovación de las células gliales radiales y está regulada en parte por los genes FGF y Notch . [56] Durante el período de neurogénesis cortical y formación de capas, muchos mamíferos superiores inician el proceso de girificación , que genera los pliegues característicos de la corteza cerebral. [57] [58] La girificación está regulada por una proteína Trnp1 asociada al ADN [59] y por la señalización de FGF y SHH [60] [61]

Evolución

De todas las diferentes regiones del cerebro, la corteza cerebral muestra la mayor variación evolutiva y ha evolucionado más recientemente. [6] A diferencia del circuito altamente conservado del bulbo raquídeo , por ejemplo, que cumple funciones críticas como la regulación de la frecuencia cardíaca y respiratoria, muchas áreas de la corteza cerebral no son estrictamente necesarias para la supervivencia. Así, la evolución de la corteza cerebral ha visto la aparición y modificación de nuevas áreas funcionales, en particular áreas de asociación que no reciben información directamente desde fuera de la corteza. [6]

Una teoría clave de la evolución cortical está incorporada en la hipótesis de la unidad radial y la hipótesis del protomapa relacionada , propuesta por primera vez por Rakic. [62] Esta teoría establece que se forman nuevas áreas corticales mediante la adición de nuevas unidades radiales, lo que se logra a nivel de células madre . La hipótesis del protomapa establece que la identidad celular y molecular y las características de las neuronas en cada área cortical están especificadas por las células madre corticales , conocidas como células gliales radiales , en un mapa primordial. Este mapa está controlado por proteínas de señalización secretadas y factores de transcripción posteriores . [63] [64] [65]

Función

Algunas áreas funcionales de la corteza

Conexiones

La corteza cerebral está conectada a varias estructuras subcorticales como el tálamo y los ganglios basales , enviándoles información a través de conexiones eferentes y recibiendo información de ellos a través de conexiones aferentes . La mayor parte de la información sensorial se dirige a la corteza cerebral a través del tálamo. La información olfativa, sin embargo, pasa a través del bulbo olfatorio hasta la corteza olfativa ( corteza piriforme ). La mayoría de las conexiones son de un área de la corteza a otra, más que de áreas subcorticales; Braitenberg y Schüz (1998) afirman que en las áreas sensoriales primarias, en el nivel cortical donde terminan las fibras de entrada, hasta el 20% de las sinapsis son suministradas por aferencias extracorticales, pero que en otras áreas y otras capas el porcentaje probablemente sea mucho mayor. más bajo. [66]

áreas corticales

La totalidad de la corteza cerebral fue dividida en 52 áreas diferentes en una presentación temprana de Korbinian Brodmann . Estas áreas conocidas como áreas de Brodmann , se basan en su citoarquitectura pero también se relacionan con diversas funciones. Un ejemplo es el área 17 de Brodmann, que es la corteza visual primaria .

En términos más generales, la corteza cerebral se describe típicamente como compuesta de tres partes: áreas sensoriales, motoras y de asociación.

Áreas sensoriales

Regiones motoras y sensoriales de la corteza cerebral.

Las áreas sensoriales son las áreas corticales que reciben y procesan información de los sentidos . Las partes de la corteza que reciben información sensorial del tálamo se denominan áreas sensoriales primarias. Los sentidos de la visión, el oído y el tacto son atendidos por la corteza visual primaria, la corteza auditiva primaria y la corteza somatosensorial primaria , respectivamente. En general, los dos hemisferios reciben información del lado opuesto (contralateral) del cuerpo . Por ejemplo, la corteza somatosensorial primaria derecha recibe información de las extremidades izquierdas y la corteza visual derecha recibe información del campo visual izquierdo . La organización de los mapas sensoriales en la corteza refleja la del órgano sensorial correspondiente, en lo que se conoce como mapa topográfico . Los puntos vecinos de la corteza visual primaria , por ejemplo, corresponden a puntos vecinos de la retina . Este mapa topográfico se llama mapa retinotópico . De la misma manera, existe un mapa tonotópico en la corteza auditiva primaria y un mapa somatotópico en la corteza sensorial primaria. Este último mapa topográfico del cuerpo en la circunvolución central posterior se ha ilustrado como una representación humana deformada, el homúnculo somatosensorial , donde el tamaño de las diferentes partes del cuerpo refleja la densidad relativa de su inervación. Las áreas con mucha inervación sensorial, como las yemas de los dedos y los labios, requieren más área cortical para procesar sensaciones más finas.

Áreas motoras

Las áreas motoras están ubicadas en ambos hemisferios de la corteza. Las áreas motoras están muy relacionadas con el control de los movimientos voluntarios, especialmente los movimientos finos y fragmentados realizados por la mano. La mitad derecha del área motora controla el lado izquierdo del cuerpo y viceversa.

Comúnmente se hace referencia a dos áreas de la corteza como motoras:

Además, se han descrito funciones motoras para:

Justo debajo de la corteza cerebral hay masas subcorticales interconectadas de materia gris llamadas ganglios basales (o núcleos). Los ganglios basales reciben información de la sustancia negra del mesencéfalo y las áreas motoras de la corteza cerebral, y envían señales a ambas ubicaciones. Están involucrados en el control motor. Se encuentran laterales al tálamo. Los principales componentes de los ganglios basales son el núcleo caudado , el putamen , el globo pálido , la sustancia negra , el núcleo accumbens y el núcleo subtalámico . El putamen y el globo pálido también se conocen colectivamente como núcleo lenticular , porque juntos forman un cuerpo con forma de lente. El putamen y el núcleo caudado también se denominan colectivamente cuerpo estriado por su apariencia rayada. [67] [68]

Áreas de asociación

Áreas corticales implicadas en el procesamiento del habla.

Las áreas de asociación son las partes de la corteza cerebral que no pertenecen a las regiones primarias. Funcionan para producir una experiencia perceptiva significativa del mundo, nos permiten interactuar de manera efectiva y respaldan el pensamiento y el lenguaje abstractos. Los lóbulos parietal , temporal y occipital , todos ubicados en la parte posterior de la corteza, integran información sensorial e información almacenada en la memoria. El lóbulo frontal o complejo de asociación prefrontal interviene en la planificación de acciones y movimientos, así como en el pensamiento abstracto. Globalmente, las áreas de asociación están organizadas como redes distribuidas. [69] Cada red conecta áreas distribuidas en regiones de la corteza ampliamente espaciadas. Se colocan redes distintas una al lado de la otra, lo que produce una serie compleja de redes entretejidas. La organización específica de las redes de asociaciones se debate con evidencia de interacciones, relaciones jerárquicas y competencia entre redes.

En los seres humanos, las redes de asociación son particularmente importantes para la función del lenguaje. En el pasado se teorizó que las habilidades del lenguaje se localizan en el área de Broca en áreas de la circunvolución frontal inferior izquierda , BA44 y BA45 , para la expresión del lenguaje y en el área de Wernicke BA22 , para la recepción del lenguaje. Sin embargo, se ha demostrado que los procesos de expresión y recepción del lenguaje ocurren en áreas distintas a las estructuras alrededor del surco lateral , incluido el lóbulo frontal, los ganglios basales , el cerebelo y la protuberancia . [70]

Significación clínica

Cambios hemodinámicos observados en la corteza cerebral girencefálica después de una oclusión de un vaso arterial en IOS. El vídeo tiene una velocidad de 50x para apreciar mejor la despolarización que se extiende por la corteza cerebral. Las imágenes se restan dinámicamente a una imagen de referencia 40 s antes. Primero vemos el área inicial de cambio en el momento exacto en que se ocluye el grupo de arterias cerebrales medias (izquierda). El área está resaltada con una línea blanca. Posteriormente apreciamos la señal producida por las Despolarizaciones Propagantes. Vemos marcadamente el frente de olas. [71] https://doi.org/10.1007/s00701-019-04132-8

Las enfermedades neurodegenerativas como la enfermedad de Alzheimer , muestran como marcador una atrofia de la materia gris de la corteza cerebral. [72]

Otras enfermedades del sistema nervioso central incluyen trastornos neurológicos como la epilepsia , trastornos del movimiento y diferentes tipos de afasia (dificultades en la expresión o comprensión del habla).

El daño cerebral causado por una enfermedad o un traumatismo puede implicar daño a un lóbulo específico, como en el trastorno del lóbulo frontal , y las funciones asociadas se verán afectadas. La barrera hematoencefálica que sirve para proteger el cerebro de infecciones puede verse comprometida permitiendo la entrada de patógenos .

El feto en desarrollo es susceptible a una variedad de factores ambientales que pueden causar defectos de nacimiento y problemas en el desarrollo posterior. El consumo materno de alcohol, por ejemplo, puede provocar un trastorno del espectro alcohólico fetal . [ 73] Otros factores que pueden causar trastornos del desarrollo neurológico son los tóxicos como las drogas y la exposición a la radiación , como los rayos X. Las infecciones también pueden afectar el desarrollo de la corteza. Una infección viral es una de las causas de la lisencefalia , que da como resultado una corteza lisa sin girificación .

Un tipo de electrocorticografía llamado mapeo de estimulación cortical es un procedimiento invasivo que implica colocar electrodos directamente sobre el cerebro expuesto para localizar las funciones de áreas específicas de la corteza. Se utiliza en aplicaciones clínicas y terapéuticas, incluido el mapeo prequirúrgico. [74]

Genes asociados con trastornos corticales.

Hay una serie de mutaciones genéticas que pueden causar una amplia gama de trastornos genéticos de la corteza cerebral, incluyendo microcefalia , esquizencefalia y tipos de lisencefalia . [75] También pueden producirse anomalías cromosómicas que causen una serie de trastornos del desarrollo neurológico , como el síndrome del X frágil y el síndrome de Rett .

MCPH1 codifica microcefalina , y los trastornos en esta y en ASPM están asociados con microcefalia. [75] Las mutaciones en el gen NBS1 que codifica la nibrina pueden causar el síndrome de rotura de Nijmegen , caracterizado por microcefalia. [75]

Las mutaciones en EMX2 , [76] y COL4A1 están asociadas con esquizencefalia , [77] una condición marcada por la ausencia de grandes partes de los hemisferios cerebrales.

Historia

En 1909, Korbinian Brodmann distinguió diferentes áreas de la neocorteza basándose en diferencias citoarquitectónicas y dividió la corteza cerebral en 52 regiones. [78]

Rafael Lorente de Nó , alumno de Santiago Ramón y Cajal identificó más de 40 tipos diferentes de neuronas corticales en función de la distribución de sus dendritas y axones. [78]

Otros animales

La corteza cerebral se deriva del palio , una estructura en capas que se encuentra en el prosencéfalo de todos los vertebrados . La forma básica del palio es una capa cilíndrica que encierra ventrículos llenos de líquido. Alrededor de la circunferencia del cilindro hay cuatro zonas, el palio dorsal, el palio medial, el palio ventral y el palio lateral, que se cree que son homólogos de la neocorteza , el hipocampo , la amígdala y la corteza olfatoria , respectivamente.

Hasta hace poco no se había reconocido en los invertebrados ningún homólogo de la corteza cerebral. Sin embargo, un estudio publicado en la revista Cell en 2010, basado en perfiles de expresión genética, informó fuertes afinidades entre la corteza cerebral y los cuerpos fúngicos del gusano Platynereis dumerilii . [79] Los cuerpos de los hongos son estructuras en el cerebro de muchos tipos de gusanos y artrópodos que se sabe que desempeñan funciones importantes en el aprendizaje y la memoria; la evidencia genética indica un origen evolutivo común y, por tanto, indica que los orígenes de los primeros precursores de la corteza cerebral se remontan a la era Precámbrica .

Imágenes Adicionales

Ver también

Referencias

  1. ^ "manto cerebral". TheFreeDictionary.com .
  2. ^ ab Strominger, Norman L.; Demarest, Robert J.; Laemle, Lois B. (2012). "Corteza cerebral". El sistema nervioso humano de Noback, séptima edición . Prensa Humana. págs. 429–451. doi :10.1007/978-1-61779-779-8_25. ISBN 978-1-61779-778-1.
  3. ^ abcdef Saladino, Kenneth (2011). Anatomía humana (3ª ed.). McGraw-Hill. págs. 416–422. ISBN 9780071222075.
  4. ^ ab Shipp, Stewart (17 de junio de 2007). "Estructura y función de la corteza cerebral". Biología actual . 17 (12): R443–9. doi :10.1016/j.cub.2007.03.044. PMC 1870400 . PMID  17580069. 
  5. ^ Fernández, V; Llinares-Benadero, C; Borrell, V (17 de mayo de 2016). "Expansión y plegamiento de la corteza cerebral: ¿qué hemos aprendido?". La Revista EMBO . 35 (10): 1021–44. doi :10.15252/embj.201593701. PMC 4868950 . PMID  27056680. 
  6. ^ abcd Rakic, P (octubre de 2009). "Evolución del neocórtex: una perspectiva desde la biología del desarrollo". Reseñas de la naturaleza Neurociencia . 10 (10): 724–35. doi :10.1038/nrn2719. PMC 2913577 . PMID  19763105. 
  7. ^ Principios de la ciencia neuronal (4ª ed.). McGraw-Hill, División de Profesiones de la Salud. 2000-01-05. ISBN 978-0838577011.
  8. ^ abc Roberts, P (1992). Neuroanatomía (3ª ed.). Springer-Verlag. págs. 86–92. ISBN 9780387977775.
  9. ^ Lodato, Simona; Arlotta, Paola (13 de noviembre de 2015). "Generación de diversidad neuronal en la corteza cerebral de mamíferos". Revisión anual de biología celular y del desarrollo . 31 (1): 699–720. doi : 10.1146/annurev-cellbio-100814-125353. PMC 4778709 . PMID  26359774. Las columnas funcionales fueron definidas por primera vez en la corteza por Mountcastle (1957), quien propuso la hipótesis columnar, que establece que la corteza está compuesta de columnas de neuronas modulares discretas, caracterizadas por un perfil de conectividad consistente. 
  10. ^ Ansen-Wilson, LJ; Lipinski, RJ (enero de 2017). "Interacciones gen-ambiente en el desarrollo y disfunción de interneuronas corticales: una revisión de estudios preclínicos". Neurotoxicología . 58 : 120-129. doi :10.1016/j.neuro.2016.12.002. PMC 5328258 . PMID  27932026. 
  11. ^ Carpintero (1985). Texto central de neuroanatomía (3ª ed.). Williams y Wilkins. págs. 348–358. ISBN 978-0683014556.
  12. ^ Toro, Roberto; Perron, Michel; Pike, Bruce; Más rico, Luis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš (1 de octubre de 2008). "Tamaño del cerebro y plegamiento de la corteza cerebral humana". Corteza cerebral . 18 (10): 2352–2357. doi : 10.1093/cercor/bhm261 . ISSN  1047-3211. PMID  18267953.
  13. ^ Nieuwenhuys, R (2012). La corteza insular: una revisión . Progreso en la investigación del cerebro. vol. 195, págs. 123–63. doi :10.1016/B978-0-444-53860-4.00007-6. PMID  22230626.
  14. ^ Tortora, G; Derrickson, B (2011). Principios de anatomía y fisiología (13ª ed.). Wiley. pag. 549.ISBN _ 9780470646083.
  15. ^ ab Nieuwenhuys R, Donkelaar HJ, Nicholson C (1998). El sistema nervioso central de los vertebrados, Volumen 1 . Saltador. págs. 2011-2012. ISBN 978-3-540-56013-5.
  16. ^ Frithjof Kruggel; Martina K. Brückner; Tomás Arendt; Christopher J. Wiggins; D. Yves von Cramon (2003). "Análisis de la estructura fina neocortical". Análisis de Imágenes Médicas . 7 (3): 251–264. doi :10.1016/S1361-8415(03)00006-9. hdl : 11858/00-001M-0000-0010-9C60-3 . PMID  12946467.
  17. ^ Katherine L. Narr; Roger P. Woods; Paul M. Thompson; Felipe Szeszko; Dilbert Robinson; Teodora Dimtcheva; Mala Gurbani; Arthur W. Toga; Robert M. Bilder (2007). "Relaciones entre el coeficiente intelectual y el espesor regional de la materia gris cortical en adultos sanos". Corteza cerebral . 17 (9): 2163–2171. doi : 10.1093/cercor/bhl125 . PMID  17118969.
  18. ^ Alejandro FM DaSilva; Cristina Granziera; Josh Snyder; Nouchine Hadjikhani (2007). "Engrosamiento de la corteza somatosensorial de pacientes con migraña". Neurología . 69 (21): 1990–1995. doi :10.1212/01.wnl.0000291618.32247.2d. PMC 3757544 . PMID  18025393. 
  19. ^ Catharine Paddock (20 de noviembre de 2007). "Las personas que padecen migraña tienen una corteza cerebral más gruesa". Noticias médicas hoy . Archivado desde el original el 11 de mayo de 2008.
  20. ^ Datte R, Detre JA, et al. (octubre de 2011). "Ausencia de cambios en el espesor cortical en pacientes con migraña". Cefalalgia . 31 (14): 1452–8. doi :10.1177/0333102411421025. PMC 3512201 . PMID  21911412. 
  21. ^ Habib M (2000). "La base neurológica de la dislexia del desarrollo: una visión general y una hipótesis de trabajo". Cerebro . 123 (12): 2373–99. doi : 10.1093/cerebro/123.12.2373 . PMID  11099442.
  22. ^ "Los científicos identifican un nuevo tipo de célula cerebral humana". Instituto Allen . 27 de agosto de 2018.
  23. ^ Meyer, Gundela; Goffinet, André M.; Fairén, Alfonso (1999). "Artículo destacado: ¿Qué es una célula de Cajal-Retzius? Una reevaluación de un tipo de célula clásica basada en observaciones recientes en la neocorteza en desarrollo". Corteza cerebral . 9 (8): 765–775. doi :10.1093/cercor/9.8.765. PMID  10600995.
  24. ^ Judas, Milos; Pletikós, Mihovil (2010). "El descubrimiento de la capa granular subpial en la corteza cerebral humana". Neurociencia traslacional . 1 (3): 255–260. doi : 10.2478/v10134-010-0037-4 . S2CID  143409890.
  25. ^ Gilbert CD, Sigman M (2007). "Estados cerebrales: influencias de arriba hacia abajo en el procesamiento sensorial". Neurona . 54 (5): 677–96. doi : 10.1016/j.neuron.2007.05.019 . hdl : 11336/67502 . PMID  17553419.
  26. ^ Cauller L (1995). "Capa I de la neocorteza sensorial primaria: donde converge de arriba hacia abajo y de abajo hacia arriba". Comportamiento Res. Cerebral . 71 (1–2): 163–70. doi :10.1016/0166-4328(95)00032-1. PMID  8747184. S2CID  4015532.
  27. ^ Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009). "La entrada talámica a las dendritas apicales distales en la capa neocortical 1 es masiva y altamente convergente". Corteza cerebral . 19 (10): 2380–95. doi : 10.1093/cercor/bhn259 . PMID  19188274.
  28. ^ ab Jones EG (1998). "Punto de vista: el núcleo y la matriz de la organización talámica". Neurociencia . 85 (2): 331–45. doi :10.1016/S0306-4522(97)00581-2. PMID  9622234. S2CID  17846130.
  29. ^ Creutzfeldt, O. 1995. Corteza cerebral . Springer-Verlag.
  30. ^ ab Lam YW, Sherman SM (2010). "Organización funcional de la retroalimentación de la capa cortical somatosensorial 6 al tálamo". Corteza cerebral . 20 (1): 13–24. doi :10.1093/cercor/bhp077. PMC 2792186 . PMID  19447861. 
  31. ^ Suzuki, IK; Hirata, T (enero de 2013). "La neurogénesis neocortical no es realmente" neo ": un nuevo modelo evolutivo derivado de un estudio comparativo del desarrollo palial de los polluelos" (PDF) . Desarrollo, Crecimiento y Diferenciación . 55 (1): 173–87. doi : 10.1111/dgd.12020 . PMID  23230908. S2CID  36706690.
  32. ^ Montecastillo V (1997). "La organización columnar de la neocorteza". Cerebro . 120 (4): 701–722. doi : 10.1093/cerebro/120.4.701 . PMID  9153131.
  33. ^ Hubel DH, Wiesel TN (octubre de 1959). "Campos receptivos de neuronas individuales en la corteza estriada del gato". La Revista de Fisiología . 148 (3): 574–91. doi : 10.1113/jphysiol.1959.sp006308. PMC 1363130 . PMID  14403679. 
  34. ^ SM Dombrowski, CC Hilgetag y H. Barbas. La arquitectura cuantitativa distingue los sistemas corticales prefrontales en el mono Rhesus Archivado el 29 de agosto de 2008 en Wayback Machine.Cereb . Corteza 11: 975–988. "... o carecen (agranular) o tienen sólo una rudimentaria capa granular IV (disgranular)".
  35. ^ Sol W, Dan Y (2009). "Oscilación de red específica de capa y campo receptivo espaciotemporal en la corteza visual". Proc Natl Acad Sci Estados Unidos . 106 (42): 17986–17991. Código bibliográfico : 2009PNAS..10617986S. doi : 10.1073/pnas.0903962106 . PMC 2764922 . PMID  19805197. 
  36. ^ Pletikos, Mihovil; Sousa, André MM; et al. (22 de enero de 2014). "Especificación temporal y bilateralidad de la expresión del gen topográfico neocortical humano". Neurona . 81 (2): 321–332. doi :10.1016/j.neuron.2013.11.018. PMC 3931000 . PMID  24373884. 
  37. ^ Wolpert, Lewis (2015). Principios de desarrollo (Quinta ed.). Reino Unido: Oxford University Press. pag. 533.ISBN _ 9780199678143.
  38. ^ Warren N, Caric D, Pratt T, Clausen JA, Asavaritikrai P, Mason JO, Hill RE, Price DJ (1999). "El factor de transcripción Pax6 es necesario para la proliferación y diferenciación celular en la corteza cerebral en desarrollo". Corteza cerebral . 9 (6): 627–35. doi : 10.1093/cercor/9.6.627 . PMID  10498281.
  39. ^ Larsen, W J. Embriología humana, tercera edición 2001. págs. 421-422 ISBN 0-443-06583-7 
  40. ^ Stephen C.Noctor; Alejandro C. Pedernal; Tamily A. Weissman ; Ryan S. Dammerman y Arnold R. Kriegstein (2001). "Las neuronas derivadas de células gliales radiales establecen unidades radiales en la neocorteza". Naturaleza . 409 (6821): 714–720. Código Bib :2001Natur.409..714N. doi :10.1038/35055553. PMID  11217860. S2CID  3041502.
  41. ^ Sur, Mriganka; Leamey, Catherine A. (2001). "Desarrollo y Plasticidad de Áreas y Redes Corticales". Reseñas de la naturaleza Neurociencia . 2 (4): 251–262. doi :10.1038/35067562. PMID  11283748. S2CID  893478.
  42. ^ abcSanes , Dan H.; Reh, Thomas A.; Harris, William A. (2012). Desarrollo del Sistema Nervioso . Elsevier Inc. ISBN 978-0-12-374539-2.
  43. ^ Rakic, P (octubre de 2009). "Evolución de la neocorteza: una perspectiva desde la biología del desarrollo". Reseñas de la naturaleza Neurociencia . 10 (10): 724–35. doi :10.1038/nrn2719. PMC 2913577 . PMID  19763105. 
  44. ^ Rakic, P (noviembre de 1972). "Determinantes citológicos extrínsecos del patrón dendrítico de células estrelladas y en cesta en la capa molecular cerebelosa". La Revista de Neurología Comparada . 146 (3): 335–54. doi :10.1002/cne.901460304. PMID  4628749. S2CID  31900267.
  45. ^ Gilbert, Scott (2006). Biología del desarrollo (8ª ed.). Editores asociados de Sinauer. págs. 394–395. ISBN 9780878932504.
  46. ^ Calegari, F; Haubensack W; Haffner C; Huttner WB (2005). "Alargamiento selectivo del ciclo celular en la subpoblación neurogénica de células progenitoras neurales durante el desarrollo del cerebro de ratón". La Revista de Neurociencia . 25 (28): 6533–8. doi :10.1523/jneurosci.0778-05.2005. PMC 6725437 . PMID  16014714. 
  47. ^ P. Rakic ​​(1988). "Especificación de áreas corticales cerebrales". Ciencia . 241 (4862): 170–176. Código Bib : 1988 Ciencia... 241.. 170R. doi : 10.1126/ciencia.3291116. PMID  3291116.
  48. ^ Hu, XL; Wang, Y.; Shen, Q. (2012). "Control epigenético sobre la elección del destino celular en células madre neurales". Proteína y célula . 3 (4): 278–290. doi :10.1007/s13238-012-2916-6. PMC 4729703 . PMID  22549586. 
  49. ^ Kostovic, Ivica (1990). "Historia del desarrollo de la zona de subplaca transitoria en la corteza visual y somatosensorial del mono macaco y el cerebro humano". Revista de Neurología Comparada . 297 (3): 441–470. doi :10.1002/cne.902970309. PMID  2398142. S2CID  21371568.
  50. ^ Rakic, P (1 de febrero de 1974). "Neuronas en la corteza visual del mono rhesus: relación sistemática entre el tiempo de origen y la disposición final". Ciencia . 183 (4123): 425–7. Código Bib : 1974 Ciencia... 183.. 425R. doi : 10.1126/ciencia.183.4123.425. PMID  4203022. S2CID  10881759.
  51. ^ Zecevic N, Rakic ​​P (2001). "Desarrollo de neuronas de la capa I en la corteza cerebral de primates". La Revista de Neurociencia . 21 (15): 5607–19. doi :10.1523/JNEUROSCI.21-15-05607.2001. PMC 6762645 . PMID  11466432. 
  52. ^ Rakic, P (8 de julio de 1988). "Especificación de áreas corticales cerebrales". Ciencia . 241 (4862): 170–6. Código Bib : 1988 Ciencia... 241.. 170R. doi : 10.1126/ciencia.3291116. PMID  3291116.
  53. ^ Fukuchi-Shimogori, T; Grove, EA (2 de noviembre de 2001). "Patrón de neocorteza por la molécula de señalización secretada FGF8". Ciencia . 294 (5544): 1071–4. Código bibliográfico : 2001 Ciencia... 294.1071F. doi : 10.1126/ciencia.1064252 . PMID  11567107. S2CID  14807054.
  54. ^ Garel, S; Huffman, KJ; Rubenstein, JL (mayo de 2003). "La regionalización molecular de la neocorteza se altera en los mutantes hipomórficos Fgf8". Desarrollo . 130 (9): 1903–14. doi :10.1242/dev.00416. PMID  12642494. S2CID  6533589.
  55. ^ Obispo, KM; Goudreau, G; O'Leary, DD (14 de abril de 2000). "Regulación de la identidad del área en la neocorteza de los mamíferos por Emx2 y Pax6". Ciencia . 288 (5464): 344–9. Código bibliográfico : 2000Sci...288..344B. doi : 10.1126/ciencia.288.5464.344. PMID  10764649.
  56. ^ Erupción, BG; Lim, HD; Breunig, JJ; Vaccarino, FM (26 de octubre de 2011). "La señalización de FGF expande el área de la superficie cortical embrionaria regulando la neurogénesis dependiente de Notch". La Revista de Neurociencia . 31 (43): 15604–17. doi :10.1523/jneurosci.4439-11.2011. PMC 3235689 . PMID  22031906. 
  57. ^ Rajagopalan, V; Scott, J; Habas, Pensilvania; Kim, K; Corbett-Detig, J; Rousseau, F; Barkovich, AJ; Glenn, OA; Studholme, C (23 de febrero de 2011). "Patrones de crecimiento de tejido local que subyacen a la girificación normal del cerebro humano fetal cuantificados en el útero". La Revista de Neurociencia . 31 (8): 2878–87. doi :10.1523/jneurosci.5458-10.2011. PMC 3093305 . PMID  21414909. 
  58. ^ Lui, enero H.; Hansen, David V.; Kriegstein, Arnold R. (8 de julio de 2011). "Desarrollo y evolución de la neocorteza humana". Celúla . 146 (1): 18–36. doi :10.1016/j.cell.2011.06.030. ISSN  1097-4172. PMC 3610574 . PMID  21729779. 
  59. ^ Stahl, Ronny; Walcher, Tessa; De Juan Romero, Camino; Pilz, Gregorio Alejandro; Capello, Silvia; Irmler, Martín; Sanz-Aquela, José Miguel; Beckers, Johannes; Blum, Robert (25 de abril de 2013). "Trnp1 regula la expansión y el plegamiento de la corteza cerebral de los mamíferos mediante el control del destino de la glial radial". Celúla . 153 (3): 535–549. doi : 10.1016/j.cell.2013.03.027 . hdl : 10261/338716 . ISSN  1097-4172. PMID  23622239.
  60. ^ Wang, Lei; Hou, Shirui; Han, Young-Goo (23 de mayo de 2016). "La señalización de Hedgehog promueve la expansión de los progenitores basales y el crecimiento y plegamiento de la neocorteza". Neurociencia de la Naturaleza . 19 (7): 888–96. doi :10.1038/nn.4307. ISSN  1546-1726. PMC 4925239 . PMID  27214567. 
  61. ^ Erupción, Brian G.; Tomasi, Simone; Lim, H. David; Suh, Carol Y.; Vaccarino, Flora M. (26 de junio de 2013). "Girificación cortical inducida por el factor de crecimiento de fibroblastos 2 en el cerebro de ratón". La Revista de Neurociencia . 33 (26): 10802–10814. doi :10.1523/JNEUROSCI.3621-12.2013. ISSN  1529-2401. PMC 3693057 . PMID  23804101. 
  62. ^ Rakic, P (8 de julio de 1988). "Especificación de áreas corticales cerebrales". Ciencia . 241 (4862): 170–6. Código Bib : 1988 Ciencia... 241.. 170R. doi : 10.1126/ciencia.3291116. PMID  3291116.
  63. ^ Fukuchi-Shimogori, T; Grove, EA (2 de noviembre de 2001). "Patrón de neocorteza por la molécula de señalización secretada FGF8". Ciencia . 294 (5544): 1071–4. Código bibliográfico : 2001 Ciencia... 294.1071F. doi : 10.1126/ciencia.1064252 . PMID  11567107. S2CID  14807054.
  64. ^ Obispo, KM; Goudreau, G; O'Leary, DD (14 de abril de 2000). "Regulación de la identidad del área en la neocorteza de los mamíferos por Emx2 y Pax6". Ciencia . 288 (5464): 344–9. Código bibliográfico : 2000Sci...288..344B. doi : 10.1126/ciencia.288.5464.344. PMID  10764649.
  65. ^ Arboleda, EA; Fukuchi-Shimogori, T (2003). "Generación del mapa del área cortical cerebral". Revista Anual de Neurociencia . 26 : 355–80. doi :10.1146/annurev.neuro.26.041002.131137. PMID  14527269. S2CID  12282525.
  66. ^ Braitenberg, V y Schüz, A 1998. "Cortex: Estadísticas y geometría de la conectividad neuronal. Segunda edición completamente revisada" Nueva York: Springer-Verlag
  67. ^ Saladino, Kenneth. Anatomía y fisiología: la unidad de forma y función, 5ª ed. Nueva York: McGraw-Hill Companies Inc., 2010. Imprimir.
  68. ^ Diccionario médico de Dorland para consumidores de productos sanitarios, 2008.
  69. ^ Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011). "La organización de la corteza cerebral humana estimada por la conectividad funcional intrínseca". Revista de Neurofisiología . 106 (3): 1125-1165. doi :10.1152/jn.00338.2011. PMC 3174820 . PMID  21653723. 
  70. ^ Cathy J. Precio (2000). "La anatomía del lenguaje: aportaciones de la neuroimagen funcional". Revista de Anatomía . 197 (3): 335–359. doi :10.1046/j.1469-7580.2000.19730335.x. PMC 1468137 . PMID  11117622. 
  71. ^ Kentar, Modar; Mann, Martina; Sahm, Félix; Olivares-Rivera, Arturo; Sánchez-Porras, Renán; Zerelles, Roland; Sakowitz, Oliver W.; Unterberg, Andreas W.; Santos, Édgar (15 de enero de 2020). "Detección de despolarizaciones propagadas en un modelo de oclusión de la arteria cerebral media en cerdos". Acta Neuroquirúrgica . 162 (3): 581–592. doi :10.1007/s00701-019-04132-8. ISSN  0942-0940. PMID  31940093. S2CID  210196036.
  72. ^ Nakazawa T, Ohara T, Hirabayashi N, Furuta Y, Hata J, Shibata M, Honda T, Kitazono T, Nakao T, Ninomiya T (marzo de 2022). "Atrofia de la materia gris de múltiples regiones como predictor del desarrollo de demencia en una comunidad: el estudio Hisayama". J Neurol Neurocirugía Psiquiatría . 93 (3): 263–271. doi : 10.1136/jnnp-2021-326611. PMC 8862082 . PMID  34670843. 
  73. ^ Mukherjee, Raja AS; Hollins, Sheila (2006). "Trastorno del espectro alcohólico fetal: descripción general". Revista de la Real Sociedad de Medicina . 99 (6): 298–302. doi :10.1177/014107680609900616. PMC 1472723 . PMID  16738372. 
  74. ^ Tarapore, PE; et al. (Agosto 2012). "Mapeo motor multimodal preoperatorio: una comparación de imágenes de magnetoencefalografía, estimulación magnética transcraneal navegada y estimulación cortical directa". Revista de Neurocirugía . 117 (2): 354–62. doi :10.3171/2012.5.JNS112124. PMC 4060619 . PMID  22702484. 
  75. ^ abc Walsh, Christopher A.; Mochida, Ganeshwaran H. (1 de mayo de 2004). "Base genética de las malformaciones del desarrollo de la corteza cerebral". Archivos de Neurología . 61 (5): 637–640. doi :10.1001/archneur.61.5.637. PMID  15148137.
  76. ^ "Homeobox 2 de espiráculos vacíos de EMX2 [Homo sapiens (humano)] - Gen - NCBI". www.ncbi.nlm.nih.gov .
  77. ^ Smigiel, R; Cábala, M; Jakubiak, A; Kodera, H; Sasiadek, MJ; Matsumoto, N; Sasiadek, MM; Saitsu, H (abril de 2016). "Nueva mutación COL4A1 en un bebé con síndrome dismórfico grave con esquizencefalia, calcificaciones periventriculares y cataratas que se asemejan a una infección congénita". Investigación sobre defectos de nacimiento. Parte A, Teratología clínica y molecular . 106 (4): 304–7. doi :10.1002/bdra.23488. PMID  26879631.
  78. ^ ab Principios de la ciencia neuronal . Kandel, Eric R. (5ª ed.). Nueva York. 2013. págs. 347–348. ISBN 9780071390118. OCLC  795553723.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  79. ^ Tomer, R; Denes, AS; Tessmar-Raible, K; Arendt, D; Tomer R; Denes AS; Tessmar-Raible K; Arendt D (2010). "La elaboración de perfiles mediante registro de imágenes revela el origen común de los cuerpos de los hongos anélidos y el palio de los vertebrados". Celúla . 142 (5): 800–809. doi : 10.1016/j.cell.2010.07.043 . PMID  20813265. S2CID  917306.

enlaces externos