Si el orden del grupo es retículo (matemáticas), es decir, dos elementos cualesquiera tienen un límite superior mínimo, entonces es un grupo ordenado en celosía (en breve grupo-l, aunque normalmente está compuesto con a script l: ℓ-grupo).
Los grupos parcialmente ordenados, junto con esta noción de morfismo, forman una categoría.
Un grupo parcialmente ordenado G se llama integralmente cerrado si para todos los elementos a y b de G, si an ≤ ' 'b para todos los n naturales, entonces a ≤ 1.
[1] Esta propiedad es algo más fuerte que el hecho de que un grupo parcialmente ordenado sea arquimediano, aunque para un grupo ordenado en retículo ser integralmente cerrado y ser de Arquímedes es equivalente.
[2] Existe el teorema de que todo grupo dirigido integralmente cerrado ya es abeliano.