Grupo parcialmente ordenado

Si el orden del grupo es retículo (matemáticas), es decir, dos elementos cualesquiera tienen un límite superior mínimo, entonces es un grupo ordenado en celosía (en breve grupo-l, aunque normalmente está compuesto con a script l: ℓ-grupo).

Los grupos parcialmente ordenados, junto con esta noción de morfismo, forman una categoría.

Un grupo parcialmente ordenado G se llama integralmente cerrado si para todos los elementos a y b de G, si an ≤ ' 'b para todos los n naturales, entonces a ≤ 1.

[1]​ Esta propiedad es algo más fuerte que el hecho de que un grupo parcialmente ordenado sea arquimediano, aunque para un grupo ordenado en retículo ser integralmente cerrado y ser de Arquímedes es equivalente.

[2]​ Existe el teorema de que todo grupo dirigido integralmente cerrado ya es abeliano.