Cuadrivector

Los trabajos de H. A. Lorentz, H. Poincaré, A. Einstein y H. Minkowski sobre el electromagnetismo clásico llevaron a la idea de que no es posible definir un tiempo absoluto que transcurre de manera idéntica para todos los observadores con independencia de su estado de movimiento.

La no existencia de un tiempo absoluto requería que existiera una medida de tiempo para cada observador.

Así, el conjunto de eventos (puntos del espacio-tiempo) llevaban de manera natural a definir vectores de cuatro dimensiones:

= ( c t , x , y , z )

donde los cuatro componentes anteriores representaban el instante en que sucedía algo y las tres coordenadas espaciales donde ocurrían y c es simplemente la velocidad de la luz (introducida aquí por conveniencia, para que todas las coordenadas tengan dimensiones de longitud).

Los experimentos mostraban que cuando diversos observadores se ponían a medir sus respectivas coordenadas para el evento obtenían números diferentes pero éstos guardaban entre sí cierta relación dadas por unas ecuaciones que más tarde se llamaron transformaciones de Lorentz.

Esas transformaciones de Lorentz de hecho al ser aplicadas a las ecuaciones de Maxwell y a la fuerza electromagnética que nota una partícula cargada, las dejaban invariantes en forma.

Es decir, diversos observadores medían coordenadas espaciales y temporales diferentes, encontraban diferentes medidas para la intensidad de campo eléctrico y magnético, pero las ecuaciones que relacionaban para un mismo observador tenían la misma forma para todos los observadores inerciales.

Matemáticamente esas transformaciones o relaciones de Lorentz involucran los componentes de las magnitudes vectoriales y ciertas magnitudes escalares.

Un paso importante fue dado por Poincaré y Minkowski cuando probaron que las transformaciones de Lorentz podían ser concebidas como rotaciones espacio-temporales en un espacio-tiempo de cuatro dimensiones.

Así, cuando Albert Einstein formuló su teoría especial de la relatividad, postuló el principio de covariancia, según el cual las ecuaciones de la física tenían que tener la misma forma para todos los sistemas de referencia inerciales, eso añadido a que los componentes de ciertas magnitudes se relacionaban de acuerdo con las transformaciones de Lorentz llevaba a considerar vectores y tensores sobre un espacio vectorial de cuatro dimensiones: tres dimensiones espaciales y una dimensión temporal.

es plano, eso significa que existe un difeomorfismo entre

Los cuadrivectores en este caso se obtienen simplemente añadiendo a los tres componentes de cualquier magnitud vectorial de la mecánica newtoniana un «escalar newtoniano» de tal manera que formemos vectores con tres componentes espaciales (las del vector newtoniano) y un componente temporal (el «escalar newtoniano»), a continuación se presenta la compleción covariante de algunas magnitudes vectoriales de la mecánica newtoniana:

{\displaystyle \mathbf {V} =(\gamma c;\gamma v_{x},\gamma v_{y},\gamma v_{z})=\left({\frac {c}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}};{\frac {\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\right)\in \mathbb {R} \times \mathbb {R} ^{3}}

{\displaystyle \mathbf {v} =(v_{x},v_{y},v_{z})}

Además algunas otras magnitudes tratadas en mecánica newtoniana como pseudovectores o vectores axiales, como el momento angular y el campo magnético corresponden en mecánica relativista al dual de Hodge de los componentes espaciales de un tensor antisimétrico:

Puede verse que los tres componentes espaciales forman el momento angular de la mecánica newtoniana

describen el movimiento del centro de masas relativista.

Además de cuadrivectores y cuadritensores algunas magnitudes relativistas son tensores de orden cero, es decir, escalares.

Entre los escalares relativistas más importantes están: En la teoría general de la relatividad el espacio-tiempo

se representa por una variedad pseudoriemanniana definida por un tensor métrico que varía de un punto a otro del espacio.

Además debido a la curvatura del espacio-tiempo los espacios tangentes de dos puntos diferentes del espacio-tiempo tienen en general orientaciones diferentes.

con el espacio vectorial tangente de dicha variedad.

Un campo vectorial sobre un espacio-tiempo curvo es una aplicación que a cada punto de la variedad le asigna un elemento del fibrado tangente de la variedad:

Por eso todos los cuadrivectores y cuadritensores en teoría de la relatividad general en cada punto son elementos del espacio tangente de ese punto.

Eso complica el aparato matemático porque cuando se comparan magnitudes tensoriales o vectoriales en diferentes puntos del espacio, los espacios vectoriales tangentes sobre los que están definidos no tienen la misma orientación.

Para poder hacer comparaciones entre diferentes puntos, calcular derivadas de magnitudes físicas, etc., se requiere una conexión matemática que permita definir una derivada covariante, de tal manera que las magnitudes físicas satisfacen ecuaciones que cumplen con el principio de covariancia.

La cuadrivelocidad y el cuadrimomento en relatividad general se definen como:

el tiempo propio de la partícula, que en general dependerá de la trayectoria seguida por la partícula

Por otra parte la cuadriaceleración y la cuadrifuerza requieren el uso de la derivada covariante y por tanto de la conexión matemática asociada a la métrica y expresada mediante los símbolos de Christoffel:

N
Diagrama 1. Apariencia del espacio-tiempo a lo largo de una línea de universo de un observador acelerado.

La dirección vertical indica el tiempo, la horizontal indica la distancia espacial, la línea punteada es la trayectoria del observador en el espacio-tiempo. El cuarto inferior representa el conjunto de sucesos pasados visibles al observador. Los puntos pueden representar cualquier tipo de sucesos en el espacio-tiempo.

La pendiente de la línea de universo o trayectoria de la vertical da la velocidad relativa del observador.