stringtranslate.com

Riego

Riego de campos agrícolas en Andalucía , España. Canal de riego a la izquierda.

El riego (también conocido como riego de plantas ) es la práctica de aplicar cantidades controladas de agua a la tierra para ayudar a que crezcan los cultivos , las plantas ornamentales y el césped . El riego ha sido un aspecto clave de la agricultura durante más de 5000 años y ha sido desarrollado por muchas culturas en todo el mundo. El riego ayuda a cultivar cultivos, mantener los paisajes y revegetar suelos perturbados en áreas secas y durante épocas de precipitaciones inferiores a la media. Además de estos usos, el riego también se emplea para proteger los cultivos de las heladas , [1] suprimir el crecimiento de malezas en los campos de cereales y prevenir la consolidación del suelo . También se utiliza para enfriar el ganado , reducir el polvo , eliminar las aguas residuales y apoyar las operaciones mineras . El drenaje , que implica la eliminación de agua superficial y subterránea de una ubicación determinada, a menudo se estudia junto con el riego.

Existen varios métodos de riego que difieren en la forma en que se suministra agua a las plantas. El riego superficial , también conocido como riego por gravedad, es la forma más antigua de riego y se ha utilizado durante miles de años. En el riego por aspersión , el agua se canaliza a una o más ubicaciones centrales dentro del campo y se distribuye mediante dispositivos de agua de alta presión en la parte superior. El microrriego es un sistema que distribuye agua a baja presión a través de una red de tuberías y la aplica como una pequeña descarga a cada planta. El microrriego utiliza menos presión y flujo de agua que el riego por aspersión. El riego por goteo suministra agua directamente a la zona de raíces de las plantas. El sub-irrigación se ha utilizado en cultivos de campo en áreas con niveles freáticos altos durante muchos años. Implica elevar artificialmente el nivel freático para humedecer el suelo debajo de la zona de raíces de las plantas.

El agua de riego puede proceder de aguas subterráneas (extraídas de manantiales o mediante pozos ), de aguas superficiales (extraídas de ríos , lagos o embalses ) o de fuentes no convencionales como aguas residuales tratadas , agua desalinizada , agua de drenaje o recolección de niebla . El riego puede ser complementario a las precipitaciones , lo que es común en muchas partes del mundo como la agricultura de secano , o puede ser riego completo, donde los cultivos rara vez dependen de algún aporte de las precipitaciones. El riego completo es menos común y solo ocurre en paisajes áridos con precipitaciones muy bajas o cuando los cultivos se cultivan en áreas semiáridas fuera de las estaciones lluviosas.

Los efectos ambientales del riego se relacionan con los cambios en la cantidad y calidad del suelo y el agua como resultado del riego y los efectos posteriores en las condiciones naturales y sociales en las cuencas fluviales y aguas abajo de un sistema de riego . Los efectos se derivan de las condiciones hidrológicas alteradas causadas por la instalación y el funcionamiento del sistema de riego. Entre algunos de estos problemas está el agotamiento de los acuíferos subterráneos por sobreexplotación . El suelo puede ser sobre irrigado debido a una mala uniformidad de distribución o gestión que desperdicia agua, productos químicos y puede conducir a la contaminación del agua . El riego excesivo puede causar un drenaje profundo a partir del aumento de los niveles freáticos que puede conducir a problemas de salinidad de riego que requieren el control del nivel freático mediante alguna forma de drenaje subterráneo .

Medida

Porcentaje de tierras agrícolas irrigadas (2015)
Superficie equipada para riego por región

En 2000, la superficie total de tierra fértil era de 2.788.000 km2 ( 689 millones de acres) y estaba equipada con infraestructura de riego en todo el mundo. Alrededor del 68% de esta superficie se encuentra en Asia, el 17% en América, el 9% en Europa, el 5% en África y el 1% en Oceanía. Las mayores áreas contiguas de alta densidad de riego se encuentran en el norte y el este de la India y Pakistán a lo largo de los ríos Ganges e Indo; en las cuencas de Hai He, Huang He y Yangtze en China; a lo largo del río Nilo en Egipto y Sudán; y en la cuenca de los ríos Misisipi-Misuri, las Grandes Llanuras del Sur y en partes de California en los Estados Unidos. Las áreas de riego más pequeñas se extienden por casi todas las partes pobladas del mundo. [2]

En 2012, la superficie de tierras irrigadas había aumentado hasta un total estimado de 3.242.917 km2 ( 801 millones de acres), que es casi el tamaño de la India. [3] La irrigación del 20% de las tierras agrícolas representa la producción del 40% de la producción alimentaria. [4] [5]

Panorama global

La escala de irrigación aumentó dramáticamente durante el siglo XX. En 1800, se irrigaban 8 millones de hectáreas en todo el mundo, en 1950, 94 millones de hectáreas, y en 1990, 235 millones de hectáreas. Para 1990, el 30% de la producción mundial de alimentos provenía de tierras irrigadas. [6] Las técnicas de irrigación en todo el mundo incluyen canales que redirigen el agua superficial, [7] [8] el bombeo de agua subterránea y la desviación del agua de las represas. Los gobiernos nacionales lideran la mayoría de los esquemas de irrigación dentro de sus fronteras, pero los inversores privados [9] y otras naciones, [8] especialmente Estados Unidos , [10] China , [11] y países europeos como el Reino Unido , [12] también financian y organizan algunos esquemas dentro de otras naciones.

En 2021, la superficie terrestre mundial equipada para riego alcanzó los 352 millones de ha, un aumento del 22% con respecto a los 289 millones de ha de 2000 y más del doble de la superficie terrestre equipada para riego de la década de 1960. La gran mayoría se encuentra en Asia (70%), donde el riego fue un componente clave de la revolución verde; las Américas representan el 16% y Europa el 8% del total mundial. India (76 millones de ha) y China (75 millones de ha) tienen la mayor superficie equipada para riego, muy por delante de los Estados Unidos de América (27 millones de ha). China y la India también tienen las mayores ganancias netas en superficie equipada entre 2000 y 2020 (+21 millones de ha para China y +15 millones de ha para la India). Todas las regiones experimentaron aumentos en la superficie equipada para riego, siendo África la que creció más rápidamente (+29%), seguida de Asia (+25%), Oceanía (+24%), las Américas (+19%) y Europa (+2%). [13]

El riego permite la producción de más cultivos, especialmente de productos básicos en zonas que de otro modo no podrían soportarlos. Los países invirtieron con frecuencia en riego para aumentar la producción de trigo , arroz o algodón , a menudo con el objetivo general de aumentar la autosuficiencia. [12]

Valores de ejemplo para cultivos

Fuentes de agua

Aguas subterráneas y aguas superficiales

Canal de riego tradicional en Suiza, que recoge agua de los altos Alpes
El riego se lleva a cabo mediante extracción con bombas directamente del Gumti , que se ve al fondo, en Comilla , Bangladesh.
Las uvas en Petrolina , Brasil, solo son posibles gracias al riego por goteo en esta zona semiárida

El agua de riego puede provenir de aguas subterráneas (extraídas de manantiales o mediante pozos ), de aguas superficiales (extraídas de ríos , lagos o embalses ) o de fuentes no convencionales como aguas residuales tratadas , agua desalinizada , agua de drenaje o recogida de niebla .

Si bien la captación de agua de inundación pertenece a los métodos de riego aceptados, la captación de agua de lluvia no suele considerarse una forma de riego. La captación de agua de lluvia consiste en recolectar el agua de escorrentía de los tejados o de terrenos no utilizados y concentrarla.

Aguas residuales tratadas o no tratadas

El riego con aguas residuales municipales recicladas también puede servir para fertilizar las plantas si contiene nutrientes, como nitrógeno, fósforo y potasio. El uso de agua reciclada para riego tiene ventajas, como el menor coste en comparación con otras fuentes y la consistencia del suministro independientemente de la estación, las condiciones climáticas y las restricciones hídricas asociadas. Cuando se utiliza agua recuperada para riego en la agricultura, el contenido de nutrientes (nitrógeno y fósforo) de las aguas residuales tratadas tiene la ventaja de actuar como fertilizante . [15] Esto puede hacer que la reutilización de los excrementos contenidos en las aguas residuales sea atractiva. [16]

El agua de riego se puede utilizar de diferentes maneras en diferentes cultivos, como por ejemplo para cultivos alimentarios que se consumen crudos o para cultivos destinados al consumo humano que se consumen crudos o sin procesar. Para cultivos alimentarios procesados: cultivos destinados al consumo humano que no se consumen crudos sino después de su procesamiento (es decir, cocinados, procesados ​​industrialmente). [17] También se puede utilizar en cultivos que no se destinan al consumo humano (por ejemplo, pastos, forrajes, fibras, cultivos ornamentales, semillas, bosques y césped). [18]

En los países en desarrollo , la agricultura utiliza cada vez más aguas residuales municipales no tratadas para el riego, a menudo de forma insegura. Las ciudades ofrecen mercados lucrativos para los productos frescos, por lo que resultan atractivas para los agricultores. Sin embargo, como la agricultura tiene que competir con la industria y los usuarios municipales por unos recursos hídricos cada vez más escasos , a menudo los agricultores no tienen otra alternativa que utilizar agua contaminada con desechos urbanos directamente para regar sus cultivos.

El uso de aguas residuales sin tratar en la agricultura puede entrañar importantes riesgos para la salud. Las aguas residuales municipales pueden contener una mezcla de contaminantes químicos y biológicos. En los países de bajos ingresos, suele haber altos niveles de patógenos procedentes de los excrementos. En los países emergentes , donde el desarrollo industrial supera a la reglamentación medioambiental, los productos químicos orgánicos e inorgánicos suponen cada vez más riesgos. La Organización Mundial de la Salud elaboró ​​en 2006 directrices para el uso seguro de las aguas residuales [16] , en las que abogaba por un enfoque de "múltiples barreras" para el uso de las aguas residuales, por ejemplo animando a los agricultores a adoptar diversas conductas de reducción de riesgos, como dejar de regar unos días antes de la cosecha para permitir que los patógenos mueran con la luz del sol, aplicar el agua con cuidado para que no contamine las hojas que probablemente se coman crudas, limpiar las verduras con desinfectante o dejar que los lodos fecales utilizados en la agricultura se sequen antes de utilizarlos como abono humano [15] .

Entre los inconvenientes o riesgos que se mencionan con frecuencia se encuentran el contenido de sustancias potencialmente nocivas como bacterias, metales pesados ​​o contaminantes orgánicos (incluidos productos farmacéuticos, productos de cuidado personal y pesticidas). El riego con aguas residuales puede tener efectos tanto positivos como negativos sobre el suelo y las plantas, dependiendo de la composición de las aguas residuales y de las características del suelo o de las plantas. [19]

Otras fuentes

El agua de riego también puede provenir de fuentes no convencionales como aguas residuales tratadas , [20] agua desalinizada , agua de drenaje o recolección de niebla .

En los países donde el aire húmedo sopla por la noche, se puede obtener agua por condensación sobre superficies frías. Esto se practica en los viñedos de Lanzarote, donde se utilizan piedras para condensar el agua. Los colectores de niebla también se hacen con lonas o láminas de aluminio. El uso del agua condensada de los aparatos de aire acondicionado como fuente de agua también se está haciendo cada vez más popular en las grandes áreas urbanas.

En noviembre de 2019, una empresa emergente de Glasgow ayudó a un agricultor de Escocia a establecer cultivos comestibles en marismas irrigados con agua de mar. Se ha puesto a cultivar un acre de tierra anteriormente marginal para cultivar hinojo marino , blite marino y aster marino ; estas plantas producen mayores ganancias que las papas. La tierra se riega por inundación dos veces al día para simular inundaciones por mareas; el agua se bombea desde el mar utilizando energía eólica. Los beneficios adicionales son la remediación del suelo y el secuestro de carbono . [21] [22]

Competencia por los recursos hídricos

Hasta la década de 1960, había menos de la mitad de la cantidad de personas en el planeta en 2024. Las personas no eran tan ricas como hoy, consumían menos calorías y comían menos carne , por lo que necesitaban menos agua para producir sus alimentos. Necesitaban un tercio del volumen de agua que los humanos extraen actualmente de los ríos. Hoy, la competencia por los recursos hídricos es mucho más intensa, porque ahora hay más de siete mil millones de personas en el planeta, lo que aumenta la probabilidad de un consumo excesivo de alimentos producidos por la agricultura animal sedienta de agua y las prácticas agrícolas intensivas . Esto crea una creciente competencia por el agua por parte de la industria , la urbanización y los cultivos de biocombustibles . Los agricultores tendrán que esforzarse por aumentar la productividad para satisfacer las crecientes demandas de alimentos , mientras que la industria y las ciudades encuentran formas de usar el agua de manera más eficiente. [23]

El éxito de la agricultura depende de que los agricultores tengan acceso suficiente al agua. Sin embargo, la escasez de agua ya es una limitación crítica para la agricultura en muchas partes del mundo.

Métodos de riego

Existen varios métodos de riego, que varían en la forma en que se suministra el agua a las plantas. El objetivo es aplicar el agua a las plantas de la forma más uniforme posible, de modo que cada planta tenga la cantidad de agua que necesita, ni demasiada ni demasiado poca. El riego también puede entenderse como complementario a las lluvias, como sucede en muchas partes del mundo, o como " riego completo ", en el que los cultivos rara vez dependen de algún aporte de las lluvias. El riego completo es menos común y solo ocurre en paisajes áridos con precipitaciones muy escasas o cuando los cultivos se cultivan en áreas semiáridas fuera de cualquier estación lluviosa.

Riego superficial

Riego por inundación de cuencas de trigo

El riego superficial, también conocido como riego por gravedad, es la forma más antigua de riego y se ha utilizado durante miles de años. En los sistemas de riego superficial ( surcos, inundaciones o cuencas niveladas ), el agua se mueve a través de la superficie de las tierras agrícolas para humedecerlas e infiltrarse en el suelo. El agua se mueve siguiendo la gravedad o la pendiente del terreno. El riego superficial se puede subdividir en riego por surcos, franjas de borde o cuencas . A menudo se llama riego por inundación cuando el riego da como resultado inundaciones o casi inundaciones de la tierra cultivada. Históricamente, el riego superficial es el método más común para regar tierras agrícolas en la mayor parte del mundo. La eficiencia de la aplicación de agua del riego superficial suele ser menor que otras formas de riego, debido en parte a la falta de control de las profundidades aplicadas. El riego superficial implica un costo de capital y un requisito de energía significativamente menores que los sistemas de riego presurizado. Por lo tanto, a menudo es la opción de riego para las naciones en desarrollo, para cultivos de bajo valor y para campos grandes. Cuando los niveles de agua de la fuente de riego lo permiten, los niveles se controlan mediante diques ( diques ), generalmente tapados con tierra. Este método se utiliza a menudo en los arrozales en terrazas, donde se inunda o se controla el nivel del agua en cada campo. En algunos casos, el agua se bombea o se eleva hasta el nivel del terreno mediante fuerza humana o animal.

Riego por inundación residencial en Phoenix, Arizona, EE. UU.

El riego superficial se utiliza incluso para regar huertos urbanos en ciertas zonas, por ejemplo, en Phoenix (Arizona) y sus alrededores . La zona irrigada está rodeada por un terraplén y el agua se distribuye según un cronograma establecido por un distrito de riego local . [24]

Una forma especial de riego que utiliza aguas superficiales es el riego por crecidas , también llamado recolección de aguas de inundación. En caso de inundación (crecida), el agua se desvía hacia cauces de ríos normalmente secos (wadis) mediante una red de presas, compuertas y canales y se distribuye por grandes áreas. La humedad almacenada en el suelo se utilizará posteriormente para cultivar. Las áreas de riego por crecidas se encuentran en particular en regiones montañosas semiáridas o áridas.

Micro-irrigación

Riego por goteo: un gotero en acción

El microrriego , a veces llamado riego localizado , riego de bajo volumen o riego por goteo, es un sistema en el que el agua se distribuye a baja presión a través de una red de tuberías, en un patrón predeterminado, y se aplica como una pequeña descarga a cada planta o adyacente a ella. El riego por goteo tradicional utiliza emisores individuales, el riego por goteo subterráneo (SDI), los microaspersores y el riego con miniburbujas pertenecen a esta categoría de métodos de riego. [25]

Riego por goteo

Disposición de un sistema de riego por goteo y sus partes

El riego por goteo, también conocido como microirrigación o riego por goteo, funciona como su nombre lo sugiere. En este sistema, el agua se suministra en la zona de las raíces de las plantas o cerca de ella, gota a gota. Este método puede ser el método de riego más eficiente en términos de consumo de agua, [26] si se gestiona correctamente; la evaporación y la escorrentía se reducen al mínimo. La eficiencia del agua de campo del riego por goteo suele estar en el rango del 80 al 90 % cuando se gestiona correctamente.

En la agricultura moderna, el riego por goteo suele combinarse con mantillo plástico , lo que reduce aún más la evaporación, y también es el medio de suministro de fertilizantes. El proceso se conoce como fertirrigación .

La percolación profunda, en la que el agua se desplaza por debajo de la zona de las raíces, puede producirse si un sistema de goteo se utiliza durante demasiado tiempo o si la tasa de suministro es demasiado alta. Los métodos de riego por goteo varían desde los de alta tecnología y computarizados hasta los de baja tecnología y mano de obra intensiva. Por lo general, se necesitan presiones de agua más bajas que para la mayoría de los otros tipos de sistemas, con la excepción de los sistemas de pivote central de bajo consumo de energía y los sistemas de riego de superficie, y el sistema puede diseñarse para que sea uniforme en todo el campo o para un suministro de agua preciso a plantas individuales en un paisaje que contenga una mezcla de especies de plantas. Aunque es difícil regular la presión en pendientes pronunciadas, existen emisores que compensan la presión, por lo que el campo no tiene que estar nivelado. Las soluciones de alta tecnología implican emisores calibrados con precisión ubicados a lo largo de líneas de tuberías que se extienden desde un conjunto de válvulas computarizadas . [27]

Riego por aspersión

Aspersores de cultivos cerca de Rio Vista, California , EE. UU.
Un aspersor móvil en Millets Farm Centre, Oxfordshire , Reino Unido

En el riego por aspersión o por aspersión aérea, el agua se transporta por tuberías a una o más ubicaciones centrales dentro del campo y se distribuye mediante aspersores o pistolas de alta presión en altura. Un sistema que utiliza aspersores, pulverizadores o pistolas montados en altura sobre tubos ascendentes instalados permanentemente se suele denominar sistema de riego de instalación fija . Los aspersores de mayor presión que giran se denominan rotores y son accionados por un mecanismo de transmisión por bolas, engranajes o impacto. Los rotores pueden diseñarse para girar en un círculo completo o parcial. Las pistolas son similares a los rotores, excepto que generalmente funcionan a presiones muy altas de 275 a 900 kPa (40 a 130 psi) y flujos de 3 a 76 L/s (50 a 1200 galones estadounidenses/min), generalmente con diámetros de boquilla en el rango de 10 a 50 mm (0,5 a 1,9 pulgadas). Las pistolas se utilizan no solo para riego, sino también para aplicaciones industriales como la supresión de polvo y la tala .

Los aspersores también pueden montarse en plataformas móviles conectadas a la fuente de agua mediante una manguera. Los sistemas con ruedas que se mueven automáticamente, conocidos como aspersores móviles, pueden regar áreas como granjas pequeñas, campos deportivos, parques, pastizales y cementerios sin necesidad de supervisión. La mayoría de estos utilizan un tramo de tubo de polietileno enrollado en un tambor de acero. A medida que el tubo se enrolla en el tambor impulsado por el agua de riego o un pequeño motor de gas, el aspersor se desplaza por el campo. Cuando el aspersor regresa al carrete, el sistema se apaga. Este tipo de sistema es conocido por la mayoría de las personas como aspersores móviles de riego "waterreel" y se utilizan ampliamente para la supresión de polvo, el riego y la aplicación de aguas residuales en la tierra.

Otros viajeros utilizan una manguera de goma plana que se arrastra detrás mientras la plataforma del rociador es tirada por un cable.

Pivote central

Un pequeño sistema de pivote central de principio a fin.
Rociador con aplicador pivotante tipo rotador
Pivote central con aspersores de caída
Sistema de riego por líneas de ruedas en Idaho , EE. UU., 2001
Riego por pivote central
Riego por pivote central

El riego por pivote central es una forma de riego por aspersión que utiliza varios segmentos de tubería (generalmente de acero galvanizado o aluminio) unidos y sostenidos por cerchas , montados sobre torres con ruedas con aspersores colocados a lo largo de su longitud. [28] El sistema se mueve en un patrón circular y se alimenta con agua desde el punto de pivote en el centro del arco. Estos sistemas se encuentran y se utilizan en todas partes del mundo y permiten el riego de todo tipo de terrenos. Los sistemas más nuevos tienen cabezales de aspersores de caída, como se muestra en la imagen que sigue.

A partir de 2017, la mayoría de los sistemas de pivote central tienen gotas que cuelgan de un tubo en forma de U unido en la parte superior del tubo con cabezales de aspersores que se colocan a unos pocos pies (como máximo) por encima del cultivo, lo que limita las pérdidas por evaporación. Las gotas también se pueden utilizar con mangueras de arrastre o burbujeadores que depositan el agua directamente en el suelo entre los cultivos. Los cultivos a menudo se plantan en un círculo para adaptarse al pivote central. Este tipo de sistema se conoce como LEPA (Low Energy Precision Application). Originalmente, la mayoría de los pivotes centrales funcionaban con agua. Estos fueron reemplazados por sistemas hidráulicos ( TL Irrigation ) y sistemas impulsados ​​por motores eléctricos (Reinke, Valley, Zimmatic). Muchos pivotes modernos cuentan con dispositivos GPS . [29]

Riego por movimiento lateral (rotación lateral, línea de ruedas, movimiento de ruedas)

Una serie de tubos, cada uno con una rueda de aproximadamente 1,5 m de diámetro fijada permanentemente en su punto medio, y aspersores a lo largo de su longitud, se acoplan entre sí. El agua se suministra en un extremo mediante una manguera grande. Después de que se haya aplicado suficiente riego a una franja del campo, se quita la manguera, se drena el agua del sistema y el conjunto se hace rodar a mano o con un mecanismo construido especialmente, de modo que los aspersores se muevan a una posición diferente en el campo. La manguera se vuelve a conectar. El proceso se repite en un patrón hasta que se haya regado todo el campo.

Este sistema es menos costoso de instalar que un pivote central, pero su funcionamiento requiere mucho más trabajo: no se desplaza automáticamente por el campo: aplica agua en una franja fija, debe drenarse y luego rodarse hasta una nueva franja. La mayoría de los sistemas utilizan tuberías de aluminio de 100 o 130 mm (4 o 5 pulgadas) de diámetro. La tubería funciona tanto como transporte de agua como eje para girar todas las ruedas. Un sistema de accionamiento (que suele encontrarse cerca del centro de la línea de ruedas) hace girar las secciones de tubería unidas con abrazaderas como un solo eje, haciendo rodar toda la línea de ruedas. Puede ser necesario un ajuste manual de las posiciones de las ruedas individuales si el sistema se desalinea.

Los sistemas de líneas de ruedas tienen limitaciones en cuanto a la cantidad de agua que pueden transportar y a la altura de los cultivos que se pueden regar. Una característica útil de un sistema de movimiento lateral es que consta de secciones que se pueden desconectar fácilmente, adaptándose a la forma del campo a medida que se mueve la línea. Se utilizan con mayor frecuencia para campos pequeños, rectilíneos o de formas irregulares, regiones montañosas o accidentadas, o en regiones donde la mano de obra es barata. [30] [31]

Sistemas de riego por aspersión de césped

Un sistema de riego por aspersión de césped se instala de forma permanente, a diferencia de un aspersor de extremo de manguera, que es portátil. Los sistemas de riego por aspersión se instalan en céspedes residenciales, en paisajes comerciales, para iglesias y escuelas, en parques públicos y cementerios, y en campos de golf . La mayoría de los componentes de estos sistemas de riego están ocultos bajo tierra, ya que la estética es importante en un paisaje. Un sistema de riego por aspersión de césped típico constará de una o más zonas, limitadas en tamaño por la capacidad de la fuente de agua. Cada zona cubrirá una parte designada del paisaje. Las secciones del paisaje generalmente se dividirán por microclima , tipo de material vegetal y tipo de equipo de riego. Un sistema de riego de paisaje también puede incluir zonas que contengan riego por goteo, burbujeadores u otros tipos de equipos además de aspersores.

Aunque todavía se utilizan sistemas manuales, la mayoría de los sistemas de riego por aspersión de césped pueden funcionar automáticamente mediante un controlador de riego , a veces llamado reloj o temporizador. La mayoría de los sistemas automáticos emplean válvulas solenoides eléctricas . Cada zona tiene una o más de estas válvulas que están conectadas al controlador. Cuando el controlador envía energía a la válvula, esta se abre, lo que permite que el agua fluya a los aspersores de esa zona.

Existen dos tipos principales de aspersores que se utilizan en el riego de césped: los aspersores emergentes y los rotores. Los aspersores tienen un patrón de aspersión fijo, mientras que los rotores tienen uno o más chorros que giran. Los aspersores se utilizan para cubrir áreas más pequeñas, mientras que los rotores se utilizan para áreas más grandes. Los rotores de los campos de golf a veces son tan grandes que un solo aspersor se combina con una válvula y se denomina "válvula en el cabezal". Cuando se utilizan en una zona de césped, los aspersores se instalan con la parte superior del cabezal al ras de la superficie del suelo. Cuando el sistema está presurizado, el cabezal emergerá del suelo y regará el área deseada hasta que la válvula se cierre y cierre esa zona. Una vez que ya no haya presión en la línea lateral, el cabezal del aspersor se retraerá nuevamente hacia el suelo. En macizos de flores o áreas de arbustos, los aspersores se pueden montar en elevadores sobre el suelo o incluso se pueden utilizar aspersores emergentes más altos e instalarlos al ras como en una zona de césped.

Rociadores de extremo de manguera

Un aspersor de impacto que riega un césped, un ejemplo de un aspersor de extremo de manguera

Los aspersores de extremo de manguera son dispositivos que se colocan en el extremo de una manguera de jardín y se utilizan para regar césped, jardines o plantas. Vienen en una variedad de diseños y estilos, lo que le permite ajustar el flujo de agua, el patrón y el alcance para un riego eficiente. Algunos tipos comunes de aspersores de extremo de manguera incluyen:

Aspersores oscilantes: rocían agua de un lado a otro siguiendo un patrón rectangular o cuadrado. Son buenos para cubrir áreas grandes y planas de manera uniforme.

Aspersores de impacto (o pulsantes): estos crean un chorro rotatorio y pulsante que puede cubrir un área circular o semicircular. Son útiles para regar céspedes grandes.

Aspersores estacionarios: tienen un patrón de rociado fijo y son mejores para áreas o jardines más pequeños.

Aspersores rotativos: utilizan brazos giratorios para distribuir el agua en un patrón circular o semicircular.

Aspersores viajeros: se mueven a lo largo del recorrido de la manguera por sí solos, regando a medida que avanzan, ideales para cubrir espacios largos y estrechos.

Cada tipo ofrece diferentes ventajas según el tamaño y la forma del jardín, la presión del agua y las necesidades específicas de riego.

Subirrigación

La subirrigación se ha utilizado durante muchos años en cultivos extensivos en zonas con niveles freáticos altos . Es un método de elevación artificial del nivel freático para permitir que el suelo se humedezca desde debajo de la zona de las raíces de las plantas . A menudo, estos sistemas se ubican en pastizales permanentes en tierras bajas o valles fluviales y se combinan con infraestructura de drenaje. Un sistema de estaciones de bombeo, canales, presas y compuertas permite aumentar o disminuir el nivel del agua en una red de zanjas y, de ese modo, controlar el nivel freático.

El riego por subsuelo también se utiliza en la producción comercial en invernaderos , generalmente para plantas en macetas . El agua se suministra desde abajo, se absorbe hacia arriba y el exceso se recoge para reciclar. Por lo general, una solución de agua y nutrientes inunda un recipiente o fluye a través de un canal durante un corto período de tiempo, 10 a 20 minutos, y luego se bombea de nuevo a un tanque de retención para su reutilización. El riego por subsuelo en invernaderos requiere un equipo y una gestión bastante sofisticados y costosos. Las ventajas son la conservación del agua y los nutrientes y el ahorro de mano de obra mediante un menor mantenimiento y automatización del sistema . Es similar en principio y acción al riego por cuencas subterráneas.

Otro tipo de subirrigación es el contenedor de riego automático, también conocido como jardinera sub-irrigada . Este consiste en una jardinera suspendida sobre un depósito con algún tipo de material absorbente, como una cuerda de poliéster. El agua es aspirada por la mecha a través de la acción capilar. [32] [33] Una técnica similar es el lecho absorbente ; este también utiliza la acción capilar.

Eficiencia

Los métodos de riego modernos son lo suficientemente eficientes como para abastecer de agua a todo el campo de manera uniforme, de modo que cada planta tenga la cantidad de agua que necesita, ni demasiada ni muy poca. [34] La eficiencia del uso del agua en el campo se puede determinar de la siguiente manera:

El aumento de la eficiencia del riego tiene una serie de resultados positivos para el agricultor, la comunidad y el medio ambiente en general. Una baja eficiencia de aplicación implica que la cantidad de agua aplicada al campo es superior a las necesidades del cultivo o del campo. Aumentar la eficiencia de la aplicación significa que aumenta la cantidad de cultivo producido por unidad de agua. Se puede lograr una mayor eficiencia aplicando menos agua a un campo existente o utilizando el agua de manera más inteligente, logrando así mayores rendimientos en la misma superficie de tierra. En algunas partes del mundo, a los agricultores se les cobra por el agua de riego, por lo que la aplicación excesiva tiene un costo financiero directo para el agricultor. El riego a menudo requiere energía de bombeo (ya sea electricidad o combustible fósil) para llevar agua al campo o suministrar la presión operativa correcta. Por lo tanto, una mayor eficiencia reducirá tanto el costo del agua como el costo de la energía por unidad de producción agrícola. Una reducción del uso de agua en un campo puede significar que el agricultor pueda regar una superficie de tierra más grande, lo que aumenta la producción agrícola total. La baja eficiencia generalmente significa que el exceso de agua se pierde por filtraciones o escorrentías, lo que puede resultar en pérdida de nutrientes de los cultivos o pesticidas con posibles impactos adversos sobre el medio ambiente circundante.

La mejora de la eficiencia del riego se consigue normalmente de dos maneras: mejorando el diseño del sistema o optimizando la gestión del riego. La mejora del diseño del sistema incluye la conversión de una forma de riego a otra (por ejemplo, de riego por surcos a riego por goteo) y también mediante pequeños cambios en el sistema actual (por ejemplo, modificando los caudales y las presiones de funcionamiento). La gestión del riego se refiere a la programación de los eventos de riego y a las decisiones sobre la cantidad de agua que se aplica.

Desafíos

Impactos ambientales

En un largo período de agotamiento de las aguas subterráneas en el Valle Central de California , los cortos períodos de recuperación han sido impulsados ​​principalmente por fenómenos climáticos extremos que generalmente causaron inundaciones y tuvieron consecuencias sociales, ambientales y económicas negativas. [35]

Los impactos negativos acompañan frecuentemente a la irrigación extensiva. [36] Algunos proyectos que desviaron el agua superficial para irrigación secaron las fuentes de agua, lo que llevó a un clima regional más extremo. [37] Los proyectos que dependían del agua subterránea y bombeaban demasiado de los acuíferos subterráneos crearon hundimientos y salinización . La salinización del agua de irrigación a su vez dañó los cultivos y se filtró al agua potable. [37] Las plagas y los patógenos también prosperaron en los canales de irrigación o estanques llenos de agua estancada, lo que creó brotes regionales de enfermedades como la malaria y la esquistosomiasis . [38] [39] [40] Los gobiernos también utilizaron esquemas de irrigación para alentar la migración, especialmente de poblaciones más deseables en un área. [41] [42] [43] Además, algunos de estos grandes esquemas nacionales no dieron frutos en absoluto, costando más que cualquier beneficio obtenido del aumento de los rendimientos de los cultivos. [44] [45]

Sobreexplotación (agotamiento) de los acuíferos subterráneos : a mediados del siglo XX, la aparición de motores diésel y eléctricos dio lugar a sistemas que podían bombear agua subterránea de los principales acuíferos a una velocidad superior a la que permitía rellenar las cuencas de drenaje . Esto puede provocar una pérdida permanente de la capacidad de los acuíferos, una disminución de la calidad del agua, hundimientos del suelo y otros problemas. Este fenómeno amenaza el futuro de la producción de alimentos en zonas como la llanura del norte de China , la región del Punjab en la India y el Pakistán y las Grandes Llanuras de los Estados Unidos. [46] [47]

El impacto ambiental del riego se relaciona con los cambios en la cantidad y calidad del suelo y el agua como resultado del riego y los efectos subsiguientes sobre las condiciones naturales y sociales en las cuencas fluviales y aguas abajo de un sistema de riego . Los efectos se derivan de las condiciones hidrológicas alteradas causadas por la instalación y el funcionamiento del sistema de riego.

Entre algunos de estos problemas está el agotamiento de los acuíferos subterráneos por sobreexplotación . El suelo puede ser irrigado en exceso debido a una mala uniformidad de distribución o manejo que desperdicia agua, productos químicos y puede conducir a la contaminación del agua . El riego excesivo puede causar un drenaje profundo debido al aumento de los niveles freáticos que puede conducir a problemas de salinidad de riego que requieren el control del nivel freático mediante alguna forma de drenaje subterráneo . Sin embargo, si el suelo está irrigado de manera insuficiente, el control de la salinidad del suelo es deficiente , lo que conduce a un aumento de la salinidad del suelo con la consiguiente acumulación de sales tóxicas en la superficie del suelo en áreas con alta evaporación . Esto requiere lixiviación para eliminar estas sales o un método de drenaje para eliminar las sales. El riego con agua salina o con alto contenido de sodio puede dañar la estructura del suelo debido a la formación de suelo alcalino .

Desafíos técnicos

Riego excesivo por mala uniformidad de distribución en los surcos. Plantas de papa oprimidas y amarilleadas

Los sistemas de riego implican la solución de numerosos problemas económicos y de ingeniería, minimizando al mismo tiempo las consecuencias ambientales negativas. [36] Estos problemas incluyen:

Social aspects

History

Ancient history

Animal-powered irrigation, Upper Egypt, ca. 1846

Archaeological investigation has found evidence of irrigation in areas lacking sufficient natural rainfall to support crops for rainfed agriculture. Some of the earliest known use of the technology dates to the 6th millennium BCE in Khuzistan in the south-west of Iran.[56][57] The site of Choga Mami, in present-day Iraq on the border with Iran, is believed to be the earliest to show the first canal irrigation in operation at about 6000 BCE.[58]

Irrigation was used as a means of manipulation of water in the alluvial plains of the Indus valley civilization, the application of which is estimated to have begun around 4500 BCE and drastically increased the size and prosperity of their agricultural settlements.[59] The Indus Valley Civilization developed sophisticated irrigation and water-storage systems, including artificial reservoirs at Girnar dated to 3000 BCE, and an early canal irrigation system from c. 2600 BCE. Large-scale agriculture was practiced, with an extensive network of canals used for the purpose of irrigation.[59][60]

Farmers in the Mesopotamian plain used irrigation from at least the third-millennium BCE.[61]They developed perennial irrigation, regularly watering crops throughout the growing season by coaxing water through a matrix of small channels formed in the field.[62]Ancient Egyptians practiced basin irrigation using the flooding of the Nile to inundate land plots which had been surrounded by dikes. The flood water remained until the fertile sediment had settled before the engineers returned the surplus to the watercourse.[63] There is evidence of the ancient Egyptian pharaoh Amenemhet III in the twelfth dynasty (about 1800 BCE) using the natural lake of the Faiyum Oasis as a reservoir to store surpluses of water for use during dry seasons. The lake swelled annually from the flooding of the Nile.[64]

Young engineers restoring and developing the old Mughal irrigation system in 1847 during the reign of the Mughal Emperor Bahadur Shah II in Indian subcontinent

The Ancient Nubians developed a form of irrigation by using a waterwheel-like device called a sakia. Irrigation began in Nubia between the third and second millennia BCE.[65] It largely depended upon the flood waters that would flow through the Nile River and other rivers in what is now the Sudan.[66]

In sub-Saharan Africa, irrigation reached the Niger River region cultures and civilizations by the first or second millennium BCE and was based on wet-season flooding and water harvesting.[67][68]

Evidence of terrace irrigation occurs in pre-Columbian America, early Syria, India, and China.[63] In the Zana Valley of the Andes Mountains in Peru, archaeologists have found remains of three irrigation canals radiocarbon-dated from the 4th millennium BCE, the 3rd millennium BCE and the 9th century CE. These canals provide the earliest record of irrigation in the New World. Traces of a canal possibly dating from the 5th millennium BCE were found under the 4th-millennium canal.[69]

Ancient Persia (modern-day Iran) used irrigation as far back as the 6th millennium BCE to grow barley in areas with insufficient natural rainfall.[70][56] The Qanats, developed in ancient Persia about 800 BCE, are among the oldest known irrigation methods still in use today. They are now found in Asia, the Middle East, and North Africa. The system comprises a network of vertical wells and gently sloping tunnels driven into the sides of cliffs and steep hills to tap groundwater.[71] The noria, a water wheel with clay pots around the rim powered by the flow of the stream (or by animals where the water source was still), first came into use at about this time among Roman settlers in North Africa. By 150 BCE, the pots were fitted with valves to allow smoother filling as they were forced into the water.[72]

Sri Lanka

The irrigation works of ancient Sri Lanka, the earliest dating from about 300 BCE in the reign of King Pandukabhaya, and under continuous development for the next thousand years, were one of the most complex irrigation systems of the ancient world. In addition to underground canals, the Sinhalese were the first to build completely artificial reservoirs to store water.[citation needed] These reservoirs and canal systems were used primarily to irrigate paddy fields, which require a lot of water to cultivate. Most of these irrigation systems still exist undamaged up to now, in Anuradhapura and Polonnaruwa, because of the advanced and precise engineering. The system was extensively restored and further extended during the reign of King Parakrama Bahu (1153–1186 CE).[73]

China

Inside a karez tunnel at Turpan, Xinjiang, China

The oldest known hydraulic engineers of China were Sunshu Ao (6th century BCE) of the Spring and Autumn period and Ximen Bao (5th century BCE) of the Warring States period, both of whom worked on large irrigation projects. In the Sichuan region belonging to the state of Qin of ancient China, the Dujiangyan Irrigation System devised by the Qin Chinese hydrologist and irrigation engineer Li Bing was built in 256 BCE to irrigate a vast area of farmland that today still supplies water.[74] By the 2nd century CE, during the Han dynasty, the Chinese also used chain pumps which lifted water from a lower elevation to a higher one.[75] These were powered by manual foot-pedal, hydraulic waterwheels, or rotating mechanical wheels pulled by oxen.[76] The water was used for public works, providing water for urban residential quarters and palace gardens, but mostly for irrigation of farmland canals and channels in the fields.[77]

Korea

Korea, Jang Yeong-sil, a Korean engineer of the Joseon dynasty, under the active direction of the king, Sejong the Great, invented the world's first rain gauge, uryanggye (Korean우량계) in 1441. It was installed in irrigation tanks as part of a nationwide system to measure and collect rainfall for agricultural applications. Planners and farmers could better use the information gathered in the[which?] survey with this instrument.[78]

North America

A Cheugugi at Jang Yeong-sil Science Garden in Busan

The earliest agricultural irrigation canal system known in the area of the present-day United States dates to between 1200 BCE and 800 BCE and was discovered by Desert Archaeology, Inc. in Marana, Arizona (adjacent to Tucson) in 2009.[79] The irrigation-canal system predates the Hohokam culture by two thousand years and belongs to an unidentified culture. In North America, the Hohokam were the only culture known to rely on irrigation canals to water their crops, and their irrigation systems supported the largest population in the Southwest by CE 1300. The Hohokam constructed various simple canals combined with weirs in their various agricultural pursuits. Between the 7th and 14th centuries, they built and maintained extensive irrigation networks along the lower Salt and middle Gila Rivers that rivaled the complexity of those used in the ancient Near East, Egypt, and China. These were constructed using relatively simple excavation tools, without the benefit of advanced engineering technologies, and achieved drops of a few feet per mile, balancing erosion and siltation. The Hohokam cultivated cotton, tobacco, maize, beans, and squash varieties and harvested an assortment of wild plants. Late in the Hohokam Chronological Sequence, they used extensive dry-farming systems, primarily to grow agave for food and fiber. Their reliance on agricultural strategies based on canal irrigation, vital in their less-than-hospitable desert environment and arid climate, provided the basis for the aggregation of rural populations into stable urban centers.[80]

South America

The oldest known irrigation canals in the Americas are in the desert of northern Peru in the Zaña Valley near the hamlet of Nanchoc. The canals have been radiocarbon dated to at least 3400 BCE and possibly as old as 4700 BCE. The canals at that time irrigated crops such as peanuts, squash, manioc, chenopods, a relative of Quinoa, and later maize.[69]

Modern history

The scale of global irrigation increased dramatically over the 20th century. In 1800, 8 million hectares were irrigated; in 1950, 94 million hectares, and in 1990, 235 million hectares. By 1990, 30% of the global food production came from irrigated land.[6] Irrigation techniques across the globe included canals redirecting surface water,[7][8] groundwater pumping, and diverting water from dams. National governments led most irrigation schemes within their borders, but private investors[9] and other nations,[8] especially the United States,[10] China,[11] and European countries like the United Kingdom,[12] funded and organized some schemes within other nations. Irrigation enabled the production of more crops, especially commodity crops in areas that otherwise could not support them. Countries frequently invested in irrigation to increase wheat, rice, or cotton production, often with the overarching goal of increasing self-sufficiency.[12] In the 20th century, global anxiety, specifically about the American cotton monopoly, fueled many empirical irrigation projects: Britain began developing irrigation in India, the Ottomans in Egypt, the French in Algeria, the Portuguese in Angola, the Germans in Togo, and Soviets in Central Asia.[8]

Negative impacts frequently accompany extensive irrigation. Some projects that diverted surface water for irrigation dried up the water sources, which led to a more extreme regional climate.[37] Projects that relied on groundwater and pumped too much from underground aquifers created subsidence and salinization. Salinization of irrigation water damaged the crops and seeped into drinking water.[37] Pests and pathogens also thrived in the irrigation canals or ponds full of still water, which created regional outbreaks of diseases like malaria and schistosomiasis.[38][39][40] Governments also used irrigation schemes to encourage migration, especially of more desirable populations into an area.[41][42][43] Additionally, some of these large nationwide schemes failed to pay off at all, costing more than any benefit gained from increased crop yields.[44][45]

American West

Irrigated land in the United States increased from 300,000 acres in 1880 to 4.1 million in 1890 to 7.3 million in 1900.[45] Two thirds of this irrigation sources from groundwater or small ponds and reservoirs, while the other one third comes from large dams.[81] One of the main attractions of irrigation in the West was its increased dependability compared to rainfall-watered agriculture in the East. Proponents argued that farmers with a dependable water supply could more easily get loans from bankers interested in this more predictable farming model.[82] Most irrigation in the Great Plains region derived from underground aquifers. Euro-American farmers who colonized the region in the 19th century tried to grow the commodity crops that they were used to, like wheat, corn, and alfalfa, but rainfall stifled their growing capacity. Between the late 1800s and the 1930s, farmers used wind-powered pumps to draw groundwater. These windpumps had limited power, but the development of gas-powered pumps in the mid-1930s pushed wells deep into the Ogallala Aquifer. Farmers irrigated fields by laying pipes across the field with sprinklers at intervals, a labor-intensive process, until the advent of the center-pivot sprinkler after WWII, which made irrigation significantly easier.[83] By the 1970s farmers drained the aquifer ten times faster than it could recharge, and by 1993 they had removed half of the accessible water.[84]

Large-scale federal funding and intervention pushed through the majority of irrigation projects in the West, especially in California, Colorado, Arizona, and Nevada. At first, plans to increase irrigated farmland, largely by giving land to farmers and asking them to find water, failed across the board. Congress passed the Desert Land Act in 1877 and the Carey Act in 1894, which only marginally increased irrigation.[85] Only in 1902 did Congress pass the National Reclamation Act, which channeled money from the sale of western public lands, in parcels up to 160 acres large, into irrigation projects on public or private land in the arid West.[86] The Congressmen who passed the law and their wealthy supporters supported Western irrigation because it would increase American exports, ‘reclaim’ the West, and push the Eastern poor out West for a better life.[87]

While the National Reclamation Act was the most successful piece of federal irrigation legislation, the implementation of the act did not go as planned. The Reclamation Service chose to push most of the Act's money toward construction rather than settlement, so the Service overwhelmingly prioritized building large dams like the Hoover Dam.[88] Over the 20th century, Congress and state governments grew more frustrated with the Reclamation Service and the irrigation schemes. Frederick Newell, head of the Reclamation Service, proving uncompromising and challenging to work with, falling crop prices, resistance to delay debt payments, and refusal to begin new projects until the completion of old ones all contributed.[89] The Reclamation Extension Act of 1914, transferring a significant amount of irrigation decision-making power regarding irrigation projects from the Reclamation Service to Congress, was in many ways a result of increasing political unpopularity of the Reclamation Service.[90]

In the lower Colorado Basin of Arizona, Colorado, and Nevada, the states derive irrigation water largely from rivers, especially the Colorado River, which irrigates more than 4.5 million acres of land, with a less significant amount coming from groundwater.[91] In the 1952 case Arizona v. California, Arizona sued California for increased access to the Colorado River, under the grounds that their groundwater supply could not sustain their almost entirely irrigation-based agricultural economy, which they won.[92] California, which began irrigating in earnest in the 1870s in San Joaquin Valley,[93] had passed the Wright Act of 1887 permitting agricultural communities to construct and operate needed irrigation works.[94] The Colorado River also irrigates large fields in California's Imperial Valley, fed by the National Reclamation Act-built All-American Canal.[95][96]

Soviet Central Asia

When the Bolsheviks conquered Central Asia in 1917, the native Kazakhs, Uzbeks, and Turkmens used minimal irrigation. The Slavic immigrants pushed into the area by the Tsarist government[97] brought their irrigation methods, including waterwheels, the use of rice paddies to restore salted land, and underground irrigation channels. Russians dismissed these techniques as crude and inefficient. Despite this, tsarist officials maintained these systems through the late 19th century without other solutions.[98]

Before conquering the area, the Russian government accepted a 1911 American proposal to send hydraulic experts to Central Asia to investigate the potential for large-scale irrigation. A 1918 decree by Lenin then encouraged irrigation development in the region, which began in the 1930s. When it did, Stalin and other Soviet leaders prioritized large-scale, ambitious hydraulic projects, especially along the Volga River. The Soviet irrigation push stemmed mainly from their late 19th century fears of the American cotton monopoly and subsequent desire to achieve cotton self-sufficiency.[99] They had built up their textile manufacturing industry in the 19th century, requiring increased cotton and irrigation, as the region did not receive enough rainfall to support cotton farming.[98]

The Russians built dams on the Don and Kuban Rivers for irrigation, removing freshwater flow from the Sea of Azov and making it much saltier. Depletion and salinization scourged other areas of the Russian irrigation project. In the 1950s, Soviet officials began also diverting the Syr Darya and the Amu Darya, which fed the Aral Sea. Before diversion, the rivers delivered 55km3 of water to the Aral Sea per year, but after, they only delivered 6km3 to the Sea. Because of its reduced inflow, the Aral Sea covered less than half of its original seabed, which made the regional climate more extreme and created airborne salinization, lowering nearby crop yields.[100]

By 1975, the USSR used eight times as much water as they had in 1913, mostly for irrigation. Russia's expansion of irrigation began to decrease in the late 1980s, and irrigated hectares in Central Asia capped out at 7 million. Mikhail Gorbachev killed a proposed plan to reverse the Ob and Yenisei for irrigation in 1986, and the breakup of the USSR in 1991 ended Russian investment in Central Asian cotton irrigation.[101]

Africa

Different irrigation schemes with various goals and success rates have been implemented across Africa in the 20th century but have all been influenced by colonial forces. The Tana River Irrigation Scheme in eastern Kenya, completed between 1948 and 1963, opened up new lands for agriculture. The Kenyan government attempted to resettle the area with detainees from the Mau Mau uprising.[102] Italian oil drillers discovered Libya's underground water resources during the Italian colonization of Libya. This water lay dormant until 1969, when Muammar al-Gaddafi and American Armand Hammer built the Great Man-Made River to deliver the Saharan water to the coast. The water largely contributed to irrigation but cost four to ten times more than the crops it produced were worth.[103]

In 1912, the Union of South Africa created an irrigation department and began investing in water storage infrastructure and irrigation. The government used irrigation and dam-building to further social goals like poverty relief by creating construction jobs for poor whites and by creating irrigation schemes to increase white farming. One of their first significant irrigation projects was the Hartbeespoort Dam, begun in 1916 to elevate the living conditions of the ‘poor whites’ in the region and eventually completed as a ‘whites only’ employment opportunity.[104] The Pretoria irrigation scheme, Kammanassie project, and Buchuberg irrigation scheme on the Orange River all followed in the same vein in the 1920s and 30s.[42]

In Egypt, modern irrigation began with Muhammad Ali Pasha in the mid-1800s, who sought to achieve Egyptian independence from the Ottomans through increased trade with Europe—specifically cotton exportation.[105] His administration proposed replacing the traditional Nile basin irrigation, which took advantage of the annual ebb and flow of the Nile, with irrigation barrages in the lower Nile, which better suited cotton production. Egypt devoted 105,000 ha to cotton in 1861, which increased fivefold by 1865. Most of their exports were shipped to England, and the United-States-Civil-War-induced cotton scarcity in the 1860s cemented Egypt as England's cotton producer.[106] As the Egyptian economy became more dependent on cotton in the 20th century, controlling even small Nile floods became more important. Cotton production was more at risk of destruction than more common crops like barley or wheat.[107] After the British occupation of Egypt in 1882, the British intensified the conversion to perennial irrigation with the construction of the Delta Barrage, the Assiut Barrage, and the first Aswan Dam. Perennial irrigation decreased local control over water and made traditional subsistence farming or the farming of other crops incredibly difficult, eventually contributing to widespread peasant bankruptcy and the 1879-1882 ‘Urabi revolt.[108]

Examples by country

Gallery

See also

References

  1. ^ Snyder, R. L.; Melo-Abreu, J. P. (2005). Frost protection: fundamentals, practice, and economics. Vol. 1. Food and Agriculture Organization of the United Nations. ISBN 978-92-5-105328-7. ISSN 1684-8241.
  2. ^ Siebert, S.; J. Hoogeveen; P. Döll; J-M. Faurès; S. Feick; K. Frenken (November 10, 2006). "The Digital Global Map of Irrigation Areas – Development and Validation of Map Version 4" (PDF). Tropentag 2006 – Conference on International Agricultural Research for Development. Bonn, Germany. Retrieved March 14, 2007.
  3. ^ The World. The World Factbook. Central Intelligence Agency.
  4. ^ "On Water". European Investment Bank. Retrieved December 7, 2020.
  5. ^ "Water in Agriculture". World Bank. Retrieved December 7, 2020.
  6. ^ a b McNeill 2000 pp.180–181.
  7. ^ a b McNeill 2000 pp.174.
  8. ^ a b c d e Peterson 2016
  9. ^ a b McNeill 2000 pp.153.
  10. ^ a b Ekbladh 2002 pp.337.
  11. ^ a b Bosshard 2009.
  12. ^ a b c d McNeill 2000 pp.169-170.
  13. ^ World Food and Agriculture – Statistical Yearbook 2023 | FAO | Food and Agriculture Organization of the United Nations. 2023. doi:10.4060/cc8166en. ISBN 978-92-5-138262-2. Retrieved December 13, 2023 – via FAODocuments.
  14. ^ Natural Resource Management and Environmental Dept. "Crops Need Water". Archived from the original on 16 January 2012. Retrieved 17 March 2012.
  15. ^ a b Otoo, Miriam; Drechsel, Pay (2018). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon, UK: Routledge - Earthscan.
  16. ^ a b WHO (2006). WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater – Volume IV: Excreta and greywater use in agriculture. World Health Organization (WHO), Geneva, Switzerland
  17. ^ Garcia-Garcia, Guillermo; Jagtap, Sandeep (January 2021). "Enhancement of a Spent Irrigation Water Recycling Process: A Case Study in a Food Business". Applied Sciences. 11 (21): 10355. doi:10.3390/app112110355. ISSN 2076-3417.
  18. ^ "ISO 16075-1:2015 – Guidelines for treated wastewater use for irrigation projects – Part 1: The basis of a reuse project for irrigation". ISO. March 21, 2018.
  19. ^ Ofori, Solomon; Puškáčová, Adéla; Růžičková, Iveta; Wanner, Jiří (2021). "Treated wastewater reuse for irrigation: Pros and cons". Science of the Total Environment. 760: 144026. Bibcode:2021ScTEn.76044026O. doi:10.1016/j.scitotenv.2020.144026. ISSN 0048-9697. PMID 33341618. S2CID 229341652.
  20. ^ Moreira da Silva, Manuela; Resende, Flávia C.; Freitas, Bárbara; Aníbal, Jaime; Martins, António; Duarte, Amílcar (January 2022). "Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes". Sustainability. 14 (17): 10715. doi:10.3390/su141710715. hdl:10400.1/18203.
  21. ^ McDill, Stuart (November 27, 2019). "Startup helps Scottish farmers grow gourmet plants with sea water". Reuters. Thomson Reuters. Retrieved December 2, 2019. Seawater Solutions is helping farmers on Scotland's west coast adapt to the reality of less rain by choosing salt-resistant plants and developing saltmarshes - land flooded by tidal waters - for them to grow in.
  22. ^ O'Toole, Emer (July 29, 2019). "Seawater Solutions is tacking agriculture's impact on climate change". The National. Newsquest Media Group Ltd. Retrieved December 2, 2019. A system of farming that creates wetland ecosystems on which food can be grown, while carbon is captured at a rate of up to 40 times higher than the same area of rainforest, and profits are more than eight times more profitable than the average potato field.
  23. ^ Chartres, C. and Varma, S. Out of water. From Abundance to Scarcity and How to Solve the World's Water Problems FT Press (USA), 2010
  24. ^ "Flood Irrigation Service". City of Tempe, Arizona. Retrieved July 29, 2017.
  25. ^ Frenken, K. (2005). "Irrigation in Africa in figures – AQUASTAT Survey – 2005". Water Report 29 (PDF). Food and Agriculture Organization of the United Nations. ISBN 978-92-5-105414-7. Archived from the original (PDF) on July 6, 2017. Retrieved March 14, 2007.
  26. ^ Provenzano, Giuseppe (2007). "Using HYDRUS-2D Simulation Model to Evaluate Wetted Soil Volume in Subsurface Drip Irrigation Systems". Journal of Irrigation and Drainage Engineering. 133 (4): 342–350. doi:10.1061/(ASCE)0733-9437(2007)133:4(342).
  27. ^ "Drip Irrigation System for sustainable agriculture". Agriculture land usa. Retrieved March 7, 2024.
  28. ^ Mader, Shelli (May 25, 2010). "Center pivot irrigation revolutionizes agriculture". The Fence Post Magazine. Archived from the original on September 8, 2016. Retrieved June 6, 2012.
  29. ^ Gaines, Tharran (January 7, 2017). "GPS SWING ARMS PROVE THEIR WORTH". Successful Farming. Retrieved February 1, 2018.
  30. ^ Peters, Troy. "Managing Wheel - Lines and Hand - Lines for High Profitability" (PDF). Archived from the original (PDF) on October 21, 2016. Retrieved May 29, 2015.
  31. ^ Hill, Robert. "Wheelmove Sprinkler Irrigation Operation and Management" (PDF). Archived (PDF) from the original on October 9, 2022. Retrieved May 29, 2015.
  32. ^ "Polyester ropes natural irrigation technique". Entheogen.com. Archived from the original on April 12, 2012. Retrieved June 19, 2012.
  33. ^ "DIY instructions for making self-watering system using ropes". Instructables.com. March 17, 2008. Retrieved June 19, 2012.
  34. ^ "Water use efficiency - agriwaterpedia.info".
  35. ^ Liu, Pang-Wei; Famiglietti, James S.; Purdy, Adam J.; Adams, Kyra H.; et al. (December 19, 2022). "Groundwater depletion in California's Central Valley accelerates during megadrought". Nature Communications. 13 (7825): 7825. Bibcode:2022NatCo..13.7825L. doi:10.1038/s41467-022-35582-x. PMC 9763392. PMID 36535940. (Archive of chart itself)
  36. ^ a b ILRI, 1989, Effectiveness and Social/Environmental Impacts of Irrigation Projects: a Review. In: Annual Report 1988, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, pp. 18 – 34 . On line: [1]
  37. ^ a b c d McNeill 2000 pp.164-165.
  38. ^ a b McNeill 2019.
  39. ^ a b Worster 1992 pp.112-13.
  40. ^ a b McNeill 2000 pp.171.
  41. ^ a b Parker 2020
  42. ^ a b c Visser 2018
  43. ^ a b Worster 1992 pp.156-57.
  44. ^ a b Pisani 2002 p.5.
  45. ^ a b c McNeill 2000
  46. ^ "A new report says we're draining our aquifers faster than ever". High Country News. June 22, 2013. Retrieved February 11, 2014.
  47. ^ "Management of aquifer recharge and discharge processes and aquifer storage equilibrium" (PDF). Archived from the original (PDF) on September 21, 2018. Retrieved February 11, 2014.
  48. ^ EOS magazine, September 2009
  49. ^ Hukkinen, Janne, Emery Roe, and Gene I. Rochlin. "A salt on the land: A narrative analysis of the controversy over irrigation-related salinity and toxicity in California's San Joaquin Valley." Policy Sciences 23.4 (1990): 307–329. online Archived 2015-01-02 at the Wayback Machine
  50. ^ Drainage Manual: A Guide to Integrating Plant, Soil, and Water Relationships for Drainage of Irrigated Lands. Interior Dept., Bureau of Reclamation. 1993. ISBN 978-0-16-061623-5.
  51. ^ "Free articles and software on drainage of waterlogged land and soil salinity control in irrigated land". Retrieved July 28, 2010.
  52. ^ Gordon L., D. M. (2003). "Land cover change and water vapour flows: learning from Australia". Philosophical Transactions of the Royal Society B: Biological Sciences. 358 (1440): 1973–1984. doi:10.1098/rstb.2003.1381. JSTOR 3558315. PMC 1693281. PMID 14728792.
  53. ^ Lankford, Bruce; Closas, Alvar; Dalton, James; López Gunn, Elena; Hess, Tim; Knox, Jerry W.; Van Der Kooij, Saskia; Lautze, Jonathan; Molden, David; Orr, Stuart; Pittock, Jamie; Richter, Brian; Riddell, Philip J.; Scott, Christopher A.; Venot, Jean-Philippe; Vos, Jeroen; Zwarteveen, Margreet (November 1, 2020). "A scale-based framework to understand the promises, pitfalls and paradoxes of irrigation efficiency to meet major water challenges". Global Environmental Change. 65: 102182. doi:10.1016/j.gloenvcha.2020.102182. hdl:1885/224453. ISSN 0959-3780.
  54. ^ Rosegrant, Mark W., and Hans P. Binswanger. "Markets in tradable water rights: potential for efficiency gains in developing country water resource allocation." World development (1994) 22#11 pp: 1613–1625.
  55. ^ Venot, Jean-Philippe (July 6, 2017). Venot, Jean-Philippe; Kuper, Marcel; Zwarteveen, Margreet (eds.). Drip Irrigation for Agriculture. doi:10.4324/9781315537146. ISBN 9781315537146.
  56. ^ a b Flannery, Kent V. (1969). "Origins and ecological effects of early domestication in Iran and the Near East". In Ucko, Peter John; Dimbleby, G. W. (eds.). The Domestication and Exploitation of Plants and Animals. New Brunswick, New Jersey: Transaction Publishers (published 2007). p. 89. ISBN 9780202365572. Retrieved January 12, 2019.
  57. ^ Lawton, H. W.; Wilke, P. J. (1979). "Ancient Agricultural Systems in Dry Regions of the Old World". In Hall, A. E.; Cannell, G. H.; Lawton, H.W. (eds.). Agriculture in Semi-Arid Environments. Ecological Studies. Vol. 34 (reprint ed.). Berlin: Springer Science & Business Media (published 2012). p. 13. ISBN 9783642673283. Retrieved January 12, 2019.
  58. ^ Alexander R. Thomas, Gregory M. Fulkerson (2021), City and Country: The Historical Evolution of Urban-Rural Systems. Rowman & Littlefield. p.137
  59. ^ a b Rodda, J. C.; Ubertini, Lucio, eds. (2004). The Basis of Civilization--water Science?. International Association of Hydrological Science. ISBN 9781901502572.
  60. ^ "Ancient India Indus Valley Civilization". Minnesota State University "e-museum". Archived from the original on February 5, 2007. Retrieved January 10, 2007.
  61. ^ Crawford, Harriet, ed. (2013). The Sumerian World. Routledge Worlds. Abingdon, Oxfordshire: Routledge. ISBN 9781136219115. Retrieved January 12, 2019.
  62. ^ Hill, Donald (1984). "2: Irrigation and Water supply". A History of Engineering in Classical and Medieval Times (reprint ed.). London: Routledge (published 2013). p. 18. ISBN 9781317761570. Retrieved January 12, 2019.
  63. ^ a b p19 Hill, A History of Engineering in Classical and Medieval Times
  64. ^ "Amenemhet III". Britannica Concise. Archived from the original on May 10, 2007. Retrieved January 10, 2007.
  65. ^ G. Mokhtar (January 1, 1981). Ancient civilizations of Africa. Unesco. International Scientific Committee for the Drafting of a General History of Africa. p. 309. ISBN 9780435948054. Retrieved June 19, 2012 – via Books.google.com.
  66. ^ Bulliet, Richard; Crossley, Pamela Kyle; Headrick, Daniel; Hirsch, Steven (June 18, 2008). The Earth and Its Peoples, Volume I: A Global History, to 1550. Wadsworth. pp. 53–56. ISBN 978-0618992386.
  67. ^ "Traditional technologies". Fao.org. Retrieved June 19, 2012.
  68. ^ "Africa, Emerging Civilizations In Sub-Sahara Africa. Various Authors; Edited By: R. A. Guisepi". History-world.org. Archived from the original on June 12, 2010. Retrieved June 19, 2012.
  69. ^ a b Dillehay, Tom D.; Eling, Herbert H. Jr.; Rossen, Jack (2005). "Preceramic irrigation canals in the Peruvian Andes" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 102 (47). National Academy of Science: 17241–17244. Bibcode:2005PNAS..10217241D. doi:10.1073/pnas.0508583102. PMC 1288011. PMID 16284247. Archived (PDF) from the original on October 9, 2022. Retrieved November 20, 2020.
  70. ^ The History of Technology – Irrigation. Encyclopædia Britannica, 1994 edition.
  71. ^ "Qanat Irrigation Systems and Homegardens (Iran)". Globally Important Agriculture Heritage Systems. UN Food and Agriculture Organization. Archived from the original on June 24, 2008. Retrieved January 10, 2007.
  72. ^ Encyclopædia Britannica, 1911 and 1989 editions
  73. ^ de Silva, Sena (1998). "Reservoirs of Sri Lanka and their fisheries". UN Food and Agriculture Organization. Retrieved January 10, 2007.
  74. ^ China – history. Encyclopædia Britannica,1994 edition.
  75. ^ Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. Pages 344–346.
  76. ^ Needham, Volume 4, Part 2, 340–343.
  77. ^ Needham, Volume 4, Part 2, 33, 110.
  78. ^ Baek Seok-gi 백석기 (1987). Jang Yeong-sil 장영실. Woongjin Wiin Jeon-gi 웅진위인전기 11. Woongjin Publishing Co., Ltd.
  79. ^ "Earliest Canals in America – Archaeology Magazine Archive".
  80. ^ James M. Bayman, "The Hohokam of Southwest North America." Journal of World Prehistory 15.3 (2001): 257–311.
  81. ^ McCully 2001 p. 166.
  82. ^ Worster 1992 pp.114-15.
  83. ^ How Center Pivot Irrigation Brought the Dust Bowl Back to Life, retrieved May 6, 2022
  84. ^ McNeill 2000 pp. 151-52
  85. ^ Worster 1992 pp.156-157.
  86. ^ Worster 1992 p. 161.
  87. ^ Worster 1992 pp.166-67.
  88. ^ Pisani 2002 p.30.
  89. ^ Pisani 2002 p.152.
  90. ^ Pisani 2002.
  91. ^ Colorado River Basin Studies, retrieved May 6, 2022
  92. ^ August JL (2007). Dividing western waters: Mark Wilmer and Arizona v. California. TCU Press.
  93. ^ Worster 1992 p. 102.
  94. ^ Worster 1992 p. 108.
  95. ^ McNeill 2000 p. 178
  96. ^ Worster 1992 p.208.
  97. ^ Morrison A, Slavic peasant settlers in Russian Turkestan, 1886-1917, retrieved May 6, 2022
  98. ^ a b Peterson 2016.
  99. ^ McNeill 2000 p. 163
  100. ^ McNeill 2000 pp. 164-5
  101. ^ McNeill 2000 p. 166
  102. ^ Parker 2020.
  103. ^ McNeill 2000 p. 155
  104. ^ Clynick T (2007). "A Search for Origins: Science, history and South Africa's "Cradle of Humankind"". In Esterhuysen A, Jenkins T, Bonner P (eds.). White South Africa's 'weak sons': Poor whites and the Hartbeespoort Dam. Wits University Press. pp. 248–274. ISBN 978-1-86814-669-7.
  105. ^ Ross 2017 p. 33.
  106. ^ Ross 2017 p. 32.
  107. ^ McNeill 2000 p. 167
  108. ^ Ross 2017 p. 37-38.

Sources

Sources

 This article incorporates text from a free content work. Licensed under CC BY-SA IGO 3.0 (license statement/permission). Text taken from World Food and Agriculture – Statistical Yearbook 2023​, FAO, FAO.

External links