Lógica de clases

La lógica de clases analiza la proposición lógica considerando la pertenencia o no pertenencia de un elemento o individuo clasificado por poseer una determinada propiedad.

[1]​ Sobre esta lógica se formaliza como modelo científico la teoría matemática de conjuntos.

Por clase se entiende a una propiedad común que tienen un conjunto de posibles individuos.

Nótese que la clase define una propiedad, no al individuo; lo que diferencia la lógica de clases de la lógica de predicados.

La relación entre individuo, conjunto de individuos y clase es compleja y no siempre es clara en el lenguaje.

A veces se confunden en el lenguaje los individuos o el conjunto de individuos con la clase lógica o un Todo-lógico, distribuido o no-distribuido, como si fuera un conjunto de individuos existentes.

Tal puede ocurrir cuando se utilizan lingüísticamente pronombres vagos como: algún, cualquiera o todos (considerando tales pronombres como sustitución de uno, uno por uno o cualquiera de todos o algunos de los posibles elementos de la clase lógica como si fueran individuos reales y existentes).

Se confunde de este modo la propiedad de una clase lógica, como unidad lógica del pensamiento, con la clase natural formada por individuos; como si fuera aquella un conjunto numerable.

[2]​[3]​ La clase tiene sentido aun cuando no existan individuos.

De la misma forma que existe el concepto de "caballos con alas", aun cuando no existan pegasos.

Pero ni el concepto pegaso es un "pegaso" ni el concepto hombre es un "individuo humano" que pertenezca al conjunto.

[4]​ Así, no es lo mismo decir: "Hs = Sócrates es un hombre" (donde atribuimos una cualidad que atañe al ser mismo de Sócrates), que decir: "S

H = Sócrates pertenece a la clase de los hombres."

Observemos que equivale a la negación.

Observamos que equivale a la disyunción.

Observamos que equivale a la conjunción.

c)Diferencia: clase diferencia es la clase formada por los elementos de A que no pertenecen a B.

a) Identidad o equivalencia: puede suceder que todos los miembros de una clase lo sean también de otra, y viceversa.

A = Todos los niños que tienen un año de edad.

B = Todos los niños nacidos hace un año.

Pongamos atención en que la equivalencia se refiere a la extensión de los individuos que pertenecen a la clase, pero formalmente la propiedad que la define puede ser diversa.

Por ello tiene sentido decir A = B como clases diferentes, pero equivalentes.

b) Inclusión: cuando todos los miembros de una clase pertenecen a otra

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle A | B} ;

La clásica clasificación aristotélica: Tipo A: todos los S son P. "Todos los hombres son mortales", se interpreta como:[7]​

Tipo I: algún S es P. "Algún hombre es mortal", se interpreta como

Tipo O: algún S es No-P. ´"Algún hombre no es mortal", se interpreta como

Como leyes lógicas, es decir tautologías que se pueden comprobar mediante tablas de pertenencia, se establecen algunas reglas que resultan útiles para los algoritmos de cálculo de deducción de proposiciones: Leyes asociativas:

Ley de contraposición: Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «http://localhost:6011/es.wikipedia.org/v1/»:): {\displaystyle A \subset B = \bar B \subset \bar A} Ley de la transitividad:

Junto con estas leyes específicas se mantienen las mismas reglas del cálculo de enunciados, en las relaciones de unas proposiciones con otras.

Clase universal.
Equivalencia de clases.
Inclusión de clasesl.
Disyunción de clases.