Decimoctavo problema de Hilbert

[1]​ La primera parte del problema se pregunta si solo hay un número finito de grupos espaciales esencialmente diferentes en el espacio euclídeo de dimensión

La segunda parte del problema pregunta si existe un poliedro que recubra el espacio euclídeo tridimensional pero que no sea la región fundamental de ningún grupo espacial; es decir, mosaicos que no sean isoédricos (mosaicos-transitivos).

Al plantear el problema en tres dimensiones, Hilbert probablemente estaba asumiendo que no existía tal mosaico en dos dimensiones; esta suposición más tarde resultó ser incorrecta.

El primer mosaico de este tipo en tres dimensiones fue encontrado por Karl Reinhardt en 1928.

[2]​ El problema de "einstein"[3]​ es una cuestión relacionada que requiere una forma que pueda enlosar el espacio pero no con un grupo cíclico de simetrías.