Un giroscopio (del griego antiguo γῦρος gŷros , «redondo» y σκοπέω skopéō , «mirar») es un dispositivo utilizado para medir o mantener la orientación y la velocidad angular . [1] [2] Es una rueda o disco giratorio en el que el eje de rotación (eje de giro) es libre de asumir cualquier orientación por sí mismo. Al girar, la orientación de este eje no se ve afectada por la inclinación o rotación del soporte, de acuerdo con la conservación del momento angular .
También existen giroscopios basados en otros principios operativos, como los giroscopios MEMS empaquetados en microchip que se encuentran en los dispositivos electrónicos (a veces llamados girómetros ), los láseres de anillo de estado sólido , los giroscopios de fibra óptica y el giroscopio cuántico extremadamente sensible . [3]
Las aplicaciones de los giroscopios incluyen sistemas de navegación inercial , como en el telescopio espacial Hubble , o dentro del casco de acero de un submarino sumergido. Debido a su precisión, los giroscopios también se utilizan en giroteodolitos para mantener la dirección en la minería de túneles. [4] Los giroscopios se pueden utilizar para construir girocompases , que complementan o reemplazan a las brújulas magnéticas (en barcos, aviones y naves espaciales, vehículos en general), para ayudar en la estabilidad (bicicletas, motocicletas y barcos) o usarse como parte de un sistema de guía inercial .
Los giroscopios MEMS son populares en algunos productos electrónicos de consumo, como los teléfonos inteligentes.
Un giroscopio es un instrumento que consiste en una rueda montada sobre dos o tres cardanes que proporcionan soportes pivotantes para permitir que la rueda gire alrededor de un solo eje. Se puede utilizar un conjunto de tres cardanes, uno montado sobre el otro con ejes de pivote ortogonales, para permitir que una rueda montada en el cardán más interno tenga una orientación que permanezca independiente de la orientación, en el espacio, de su soporte.
En el caso de un giroscopio con dos cardanes, el cardán exterior, que es el armazón del giroscopio, está montado de forma que pivote sobre un eje en su propio plano determinado por el soporte. Este cardán exterior posee un grado de libertad de rotación y su eje no posee ninguno. El segundo cardán, el cardán interior, está montado en el armazón del giroscopio (cardán exterior) de forma que pivote sobre un eje en su propio plano que siempre es perpendicular al eje de pivote del armazón del giroscopio (cardán exterior). Este cardán interior tiene dos grados de libertad de rotación.
El eje de la rueda giratoria (el rotor) define el eje de giro. El rotor está obligado a girar alrededor de un eje, que siempre es perpendicular al eje del cardán interior. Por lo tanto, el rotor posee tres grados de libertad de rotación y su eje posee dos. El rotor responde a una fuerza aplicada al eje de entrada mediante una fuerza de reacción en el eje de salida.
Un volante de inercia giroscópico girará o resistirá alrededor del eje de salida dependiendo de si los cardanes de salida tienen una configuración libre o fija. Un ejemplo de algunos dispositivos con cardán de salida libre son los giroscopios de control de actitud que se utilizan para detectar o medir los ángulos de inclinación, balanceo y guiñada en una nave espacial o una aeronave.
El centro de gravedad del rotor puede estar en una posición fija. El rotor gira simultáneamente sobre un eje y es capaz de oscilar sobre los otros dos ejes, y es libre de girar en cualquier dirección sobre el punto fijo (excepto por su resistencia inherente causada por el giro del rotor). Algunos giroscopios tienen equivalentes mecánicos que sustituyen a uno o más de los elementos. Por ejemplo, el rotor giratorio puede estar suspendido en un fluido, en lugar de estar montado en cardanes. Un giroscopio de momento de control (CMG) es un ejemplo de un dispositivo de cardán de salida fija que se utiliza en naves espaciales para mantener un ángulo de actitud o una dirección de apuntamiento deseados utilizando la fuerza de resistencia giroscópica.
En algunos casos especiales, se puede omitir el cardán externo (o su equivalente) para que el rotor tenga solo dos grados de libertad. En otros casos, el centro de gravedad del rotor puede estar desplazado respecto del eje de oscilación y, por lo tanto, el centro de gravedad del rotor y el centro de suspensión del rotor pueden no coincidir.
En esencia, un giroscopio es una peonza combinada con un par de cardanes . Las peonzas se inventaron en muchas civilizaciones diferentes, incluidas la Grecia clásica, Roma y China. [5] La mayoría de ellas no se utilizaban como instrumentos.
El primer aparato conocido similar a un giroscopio (el "espéculo giratorio" o "espéculo de Serson") fue inventado por John Serson en 1743. Se utilizaba como nivel para localizar el horizonte en condiciones de niebla o neblina.
El primer instrumento utilizado de forma más parecida a un giroscopio real fue fabricado por Johann Bohnenberger de Alemania, quien escribió sobre él por primera vez en 1817. Al principio lo llamó la "Máquina". [6] [7] [8] La máquina de Bohnenberger se basaba en una esfera masiva giratoria. [9] En 1832, el estadounidense Walter R. Johnson desarrolló un dispositivo similar que se basaba en un disco giratorio. [10] [11] El matemático francés Pierre-Simon Laplace , que trabajaba en la École Polytechnique de París, recomendó la máquina para su uso como ayuda didáctica, y así llegó a la atención de Léon Foucault . [12]
En 1852, Foucault lo utilizó en un experimento que demostraba la rotación de la Tierra. [13] [14]
Fue Foucault quien dio al dispositivo su nombre moderno, en un experimento para ver (del griego skopeein , ver) la rotación de la Tierra (del griego gyros , círculo o rotación), [15] [16] que era visible entre 8 y 10 minutos antes de que la fricción ralentizara el rotor giratorio.
En la década de 1860, la llegada de los motores eléctricos hizo posible que un giroscopio girara indefinidamente; esto condujo al primer prototipo de indicadores de rumbo y a un dispositivo bastante más complicado, la girobrújula . La primera girobrújula funcional fue patentada en 1904 por el inventor alemán Hermann Anschütz-Kaempfe . [17] El estadounidense Elmer Sperry siguió con su propio diseño más tarde ese año, y otras naciones pronto se dieron cuenta de la importancia militar de la invención, en una época en la que la destreza naval era la medida más significativa del poder militar, y crearon sus propias industrias de giroscopios. La Sperry Gyroscope Company se expandió rápidamente para proporcionar también estabilizadores para aeronaves y barcos, y otros desarrolladores de giroscopios siguieron su ejemplo. [18] [ cita completa requerida ]
Hacia 1911, la empresa LT Hurst Mfg Co. de Indianápolis comenzó a producir el "giroscopio Hurst", un giroscopio de juguete con una cuerda para tirar y un pedestal. En algún momento, la fabricación pasó a manos de Chandler Mfg Co (que todavía llevaba la marca Hurst). Más tarde, el producto pasó a llamarse "giroscopio Chandler", probablemente porque Chandler Mfg Co. se hizo cargo de los derechos del giroscopio. Chandler siguió produciendo el juguete hasta que la empresa fue adquirida por TEDCO Inc. en 1982. TEDCO sigue produciendo el giroscopio en la actualidad. [19] [20]
En las primeras décadas del siglo XX, otros inventores intentaron (sin éxito) utilizar giroscopios como base para los primeros sistemas de navegación de caja negra creando una plataforma estable desde la que se pudieran realizar mediciones precisas de aceleración (para evitar la necesidad de observar estrellas para calcular la posición). Principios similares se emplearon más tarde en el desarrollo de sistemas de navegación inercial para misiles balísticos . [21] [ cita completa requerida ]
Durante la Segunda Guerra Mundial, el giroscopio se convirtió en el componente principal de las miras de los aviones y de los cañones antiaéreos. [22] Después de la guerra, la carrera por miniaturizar los giroscopios para misiles guiados y sistemas de navegación de armas dio como resultado el desarrollo y la fabricación de los llamados giroscopios enanos que pesaban menos de 3 onzas (85 g) y tenían un diámetro de aproximadamente 1 pulgada (2,5 cm). Algunos de estos giroscopios miniaturizados podían alcanzar una velocidad de 24.000 revoluciones por minuto en menos de 10 segundos. [23]
Los giroscopios siguen siendo un desafío para la ingeniería. Por ejemplo, los cojinetes de los ejes deben ser extremadamente precisos. Se introduce deliberadamente una pequeña cantidad de fricción en los cojinetes, ya que de lo contrario se requeriría una precisión de más de una pulgada (2,5 nm). [24]
Los giroscopios basados en MEMS de tres ejes también se están utilizando en dispositivos electrónicos portátiles como tabletas , [25] teléfonos inteligentes , [26] y relojes inteligentes . [27] Esto se suma a la capacidad de detección de aceleración de 3 ejes disponible en generaciones anteriores de dispositivos. Juntos, estos sensores proporcionan detección de movimiento de 6 componentes; acelerómetros para movimiento X, Y y Z, y giroscopios para medir la extensión y la velocidad de rotación en el espacio (balanceo, cabeceo y guiñada). Algunos dispositivos [28] [29] incorporan además un magnetómetro para proporcionar mediciones angulares absolutas relativas al campo magnético de la Tierra. Las unidades de medición inercial basadas en MEMS más nuevas incorporan hasta los nueve ejes de detección en un solo paquete de circuito integrado, lo que proporciona detección de movimiento económica y ampliamente disponible. [30]
Todos los objetos giratorios tienen propiedades giroscópicas. Las principales propiedades que puede experimentar un objeto en cualquier movimiento giroscópico son la rigidez en el espacio y la precesión .
La rigidez en el espacio describe el principio según el cual un giroscopio permanece en una posición fija en el plano en el que gira, sin verse afectado por la rotación de la Tierra. Por ejemplo, una rueda de bicicleta. Las primeras formas de giroscopio (que entonces no se conocían por ese nombre) se utilizaron para demostrar el principio. [31]
Un caso simple de precesión, también conocido como precesión constante, se puede describir mediante la siguiente relación con el momento:
donde representa la precesión, se representa el espín, es el ángulo de nutación y representa la inercia a lo largo de su respectivo eje. Esta relación solo es válida con el momento a lo largo de los ejes Y y Z iguales a 0.
La ecuación se puede reducir aún más observando que la velocidad angular a lo largo del eje z es igual a la suma de la precesión y el giro: , donde representa la velocidad angular a lo largo del eje z.
o
La precesión giroscópica es inducida por el par motor. Es la tasa de cambio del momento angular que se produce por el par motor aplicado. La precesión produce resultados dinámicos contraintuitivos, como que una peonza no se caiga. La precesión se utiliza en aplicaciones aeroespaciales para detectar cambios de actitud y dirección.
Durante el rodaje de la película El retorno del Jedi de 1983 se empleó una plataforma Steadicam junto con dos giroscopios para una estabilización adicional, para filmar las placas de fondo de la persecución en motos speeder . El inventor de la Steadicam, Garrett Brown, manejó la toma, caminando por un bosque de secuoyas, haciendo funcionar la cámara a un fotograma por segundo. Cuando se proyectó a 24 fotogramas por segundo, dio la impresión de volar por el aire a velocidades peligrosas. [33] [34]
El indicador de rumbo o giroscopio direccional tiene un eje de rotación que se encuentra en posición horizontal y apunta hacia el norte. A diferencia de una brújula magnética, no busca el norte. Cuando se utiliza en un avión, por ejemplo, se alejará lentamente del norte y será necesario reorientarlo periódicamente, utilizando una brújula magnética como referencia. [35]
A diferencia de un giroscopio direccional o un indicador de rumbo, una brújula giroscópica busca el norte. Detecta la rotación de la Tierra sobre su eje y busca el norte verdadero , en lugar del norte magnético . Las brújulas giroscópicas suelen tener amortiguación incorporada para evitar que se sobrepase la línea cuando se recalibra debido a un movimiento repentino.
Al determinar la aceleración de un objeto e integrarla en el tiempo, se puede calcular la velocidad del objeto. Integrando nuevamente, se puede determinar la posición. El acelerómetro más simple es un peso que puede moverse libremente en forma horizontal, que está unido a un resorte y a un dispositivo para medir la tensión en el resorte. Esto se puede mejorar introduciendo una fuerza que contrarreste el movimiento del peso y mida la fuerza necesaria para evitar que se mueva. Un diseño más complicado consiste en un giroscopio con un peso en uno de los ejes. El dispositivo reaccionará a la fuerza generada por el peso cuando se acelera, integrando esa fuerza para producir una velocidad. [36]
Un girostato consiste en un volante macizo oculto en una carcasa sólida. [37] [38] Su comportamiento sobre una mesa, o con diversos modos de suspensión o soporte, sirve para ilustrar la curiosa inversión de las leyes ordinarias del equilibrio estático debido al comportamiento girostático del volante invisible interior cuando gira rápidamente. El primer girostato fue diseñado por Lord Kelvin para ilustrar el estado de movimiento más complicado de un cuerpo giratorio cuando es libre de moverse sobre un plano horizontal, como un trompo que gira sobre el pavimento o una bicicleta en la carretera. [39] Kelvin [40] también hizo uso de girostatos para desarrollar teorías mecánicas de la elasticidad de la materia y del éter. [41] En la mecánica del medio continuo moderna hay una variedad de estos modelos, basados en las ideas de Lord Kelvin. Representan un tipo específico de teorías de Cosserat (propuestas por primera vez por Eugène Cosserat y François Cosserat ), que pueden utilizarse para la descripción de materiales inteligentes fabricados artificialmente, así como de otros medios complejos. Una de ellas, el llamado medio de Kelvin, tiene las mismas ecuaciones que los aislantes magnéticos cerca del estado de saturación magnética en la aproximación de la cuasimagnetostática. [42]
En la época moderna, el concepto de girostato se utiliza en el diseño de sistemas de control de actitud para naves espaciales y satélites en órbita. [43] Por ejemplo, la estación espacial Mir tenía tres pares de volantes montados internamente conocidos como girodinos o giroscopios de momento de control . [44]
En física, existen varios sistemas cuyas ecuaciones dinámicas se asemejan a las ecuaciones de movimiento de un girostato. [45] Algunos ejemplos incluyen un cuerpo sólido con una cavidad llena de un líquido homogéneo, incompresible y no viscoso, [46] la configuración de equilibrio estático de una varilla elástica estresada en la teoría elástica , [47] la dinámica de polarización de un pulso de luz que se propaga a través de un medio no lineal, [48] el sistema de Lorenz en la teoría del caos, [49] y el movimiento de un ion en un espectrómetro de masas con trampa de Penning . [50]
Un giroscopio de sistemas microelectromecánicos (MEMS) es un giroscopio miniaturizado que se encuentra en dispositivos electrónicos. Toma la idea del péndulo de Foucault y utiliza un elemento vibratorio. Este tipo de giroscopio se utilizó primero en aplicaciones militares, pero desde entonces se ha adoptado cada vez más para usos comerciales. [51]
El giroscopio resonador hemisférico (HRG), también llamado giroscopio de copa de vino [52] o giroscopio de hongo, utiliza una delgada carcasa hemisférica de estado sólido, anclada por un vástago grueso. Esta carcasa se impulsa a una resonancia flexural mediante fuerzas electrostáticas generadas por electrodos que se depositan directamente sobre estructuras separadas de cuarzo fundido que rodean la carcasa. El efecto giroscópico se obtiene a partir de la propiedad inercial de las ondas estacionarias flexurales. [53]
Un giroscopio de estructura vibratoria (VSG), también llamado giroscopio vibratorio Coriolis (CVG), [54] utiliza un resonador hecho de diferentes aleaciones metálicas. Ocupa una posición intermedia entre el giroscopio MEMS de baja precisión y bajo costo y el giroscopio de fibra óptica de mayor precisión y mayor costo. Los parámetros de precisión se incrementan mediante el uso de materiales de amortiguación intrínseca baja, vacuización del resonador y electrónica digital para reducir la deriva dependiente de la temperatura y la inestabilidad de las señales de control. [55]
Se utilizan resonadores de copa de vino de alta calidad para sensores precisos como HRG. [56]
Un giroscopio sintonizado dinámicamente (DTG) es un rotor suspendido por una junta universal con pivotes de flexión. [57] La rigidez del resorte de flexión es independiente de la velocidad de giro. Sin embargo, la inercia dinámica (del efecto de reacción giroscópica) del cardán proporciona una rigidez de resorte negativa proporcional al cuadrado de la velocidad de giro (Howe y Savet, 1964; Lawrence, 1998). Por lo tanto, a una velocidad particular, llamada velocidad de sintonización, los dos momentos se cancelan entre sí, liberando al rotor del torque, una condición necesaria para un giroscopio ideal.
Un giroscopio láser de anillo se basa en el efecto Sagnac para medir la rotación midiendo el patrón de interferencia cambiante de un haz dividido en dos haces separados que viajan alrededor del anillo en direcciones opuestas.
Cuando el Boeing 757-200 entró en servicio en 1983, estaba equipado con el primer giroscopio láser de anillo adecuado. Este giroscopio tardó muchos años en desarrollarse, y los modelos experimentales sufrieron muchos cambios antes de que los ingenieros y gerentes de Honeywell y Boeing lo consideraran listo para producción . Fue el resultado de la competencia con los giroscopios mecánicos, que siguieron mejorando. La razón por la que Honeywell, de todas las empresas, eligió desarrollar el giroscopio láser fue que eran los únicos que no tenían una línea exitosa de giroscopios mecánicos, por lo que no competirían entre sí. El primer problema que tuvieron que resolver fue que con los giroscopios láser, las rotaciones por debajo de un cierto mínimo no se podían detectar en absoluto, debido a un problema llamado "lock-in", por el cual los dos haces actúan como osciladores acoplados y atraen las frecuencias del otro hacia la convergencia y, por lo tanto, la salida cero. La solución fue agitar el giroscopio rápidamente para que nunca se quedara bloqueado. Paradójicamente, un movimiento de vibración demasiado regular produjo una acumulación de breves períodos de bloqueo cuando el dispositivo estaba en reposo en los extremos de su movimiento de vibración. Esto se solucionó aplicando un ruido blanco aleatorio a la vibración. El material del bloque también se cambió de cuarzo a una nueva cerámica de vidrio Cer-Vit , fabricada por Owens Corning , debido a fugas de helio. [58]
Un giroscopio de fibra óptica también utiliza la interferencia de la luz para detectar la rotación mecánica. Las dos mitades del haz dividido viajan en direcciones opuestas en una bobina de cable de fibra óptica de hasta 5 km de longitud. Al igual que el giroscopio láser de anillo , utiliza el efecto Sagnac . [59]
Un giroscopio de momento London se basa en el fenómeno de la mecánica cuántica, por el cual un superconductor giratorio genera un campo magnético cuyo eje se alinea exactamente con el eje de giro del rotor giroscópico. Un magnetómetro determina la orientación del campo generado, que se interpola para determinar el eje de rotación. Los giroscopios de este tipo pueden ser extremadamente precisos y estables. Por ejemplo, los utilizados en el experimento Gravity Probe B midieron cambios en la orientación del eje de giro del giroscopio con una precisión de más de 0,5 milisegundos de arco (1,4 × 10-7 grados, o aproximadamente2,4 × 10 −9 radianes ) durante un período de un año. [60] Esto equivale a una separación angular del ancho de un cabello humano visto desde 32 kilómetros (20 millas) de distancia. [61]
El giroscopio GP-B consiste en una masa giratoria esférica casi perfecta hecha de cuarzo fundido , que proporciona un soporte dieléctrico para una capa delgada de material superconductor de niobio . Para eliminar la fricción que se encuentra en los cojinetes convencionales, el conjunto del rotor está centrado por el campo eléctrico de seis electrodos. Después del giro inicial mediante un chorro de helio que lleva el rotor a 4000 RPM , la carcasa pulida del giroscopio se evacua a un vacío ultra alto para reducir aún más la resistencia en el rotor. Siempre que la electrónica de la suspensión permanezca alimentada, la simetría rotacional extrema , la falta de fricción y la baja resistencia permitirán que el momento angular del rotor lo mantenga girando durante aproximadamente 15 000 años. [62]
Un SQUID DC sensible que puede discriminar cambios tan pequeños como un quantum, o aproximadamente 2 × 10−15 Wb , se utiliza para controlar el giroscopio. Una precesión , o inclinación, en la orientación del rotor hace que el campo magnético del momento de London se desplace con respecto a la carcasa. El campo móvil pasa a través de un bucle de captación superconductor fijado a la carcasa, lo que induce una pequeña corriente eléctrica. La corriente produce un voltaje a través de una resistencia de derivación, que se resuelve en coordenadas esféricas mediante un microprocesador. El sistema está diseñado para minimizar el par de Lorentz en el rotor. [63] [64]
El rotor principal de un helicóptero actúa como un giroscopio. Su movimiento está influenciado por el principio de precesión giroscópica, que es el concepto de que una fuerza aplicada a un objeto giratorio tendrá una reacción máxima aproximadamente 90 grados después. La reacción puede diferir de los 90 grados cuando intervienen otras fuerzas más fuertes. [65] Para cambiar de dirección, los helicópteros deben ajustar el ángulo de cabeceo y el ángulo de ataque. [66]
Prototipo de vehículo Gyro X creado por Alex Tremulis y Thomas Summers en 1967. El coche utilizaba la precesión giroscópica para desplazarse sobre dos ruedas. Un conjunto formado por un volante montado en una carcasa de cardán bajo el capó del vehículo actuaba como un gran giroscopio. El volante giraba mediante bombas hidráulicas que creaban un efecto giroscópico en el vehículo. Un ariete de precesión era el responsable de girar el giroscopio para cambiar la dirección de la fuerza de precesión y contrarrestar cualquier fuerza que provocara el desequilibrio del vehículo. El prototipo único en su tipo se encuentra ahora en el Museo Lane Motor de Nashville, Tennessee. [67]
Además de utilizarse en brújulas, aviones, dispositivos señaladores de ordenador, etc., los giroscopios se han introducido en la electrónica de consumo.
Dado que el giroscopio permite el cálculo de la orientación y la rotación, los diseñadores los han incorporado a la tecnología moderna. La integración del giroscopio ha permitido un reconocimiento más preciso del movimiento dentro de un espacio 3D que el acelerómetro solitario anterior dentro de una serie de teléfonos inteligentes. Los giroscopios en la electrónica de consumo se combinan con frecuencia con acelerómetros para una detección más robusta de la dirección y el movimiento. Ejemplos de tales aplicaciones incluyen teléfonos inteligentes como el Samsung Galaxy Note 4 , [68] HTC Titan , [69] Nexus 5 , iPhone 5s , [70] Nokia 808 PureView [71] y Sony Xperia , periféricos de consola de juegos como el controlador de PlayStation 3 y el Wii Remote , y auriculares de realidad virtual como Oculus Rift . [72]
Nintendo ha integrado un giroscopio en el control remoto Wii de la consola Wii mediante una pieza adicional de hardware llamada " Wii MotionPlus " . [73] También está incluido en los controladores Joy-Con y Pro de Nintendo Switch , que detectan el movimiento al girar y agitar.
Los cruceros utilizan giroscopios para nivelar dispositivos sensibles al movimiento, como mesas de billar autonivelantes. [74]
Como alternativa a las ruedas de entrenamiento se vende un giroscopio con volante eléctrico insertado en una rueda de bicicleta. [75] Algunas funciones de los teléfonos Android, como PhotoSphere o la cámara 360, y el uso de dispositivos de realidad virtual no funcionan sin un sensor de giroscopio en el teléfono. [76]
Bajo el título de instrumentos de precesión, se han utilizado durante varios años varios aparatos que utilizan el principio del giroscopio para ilustrar la precesión de los equinoccios y el paralelismo del eje de la Tierra a medida que gira alrededor del Sol.
{{cite web}}
: CS1 maint: numeric names: authors list (link)