En geometría , un dodecaedro (del griego antiguo δωδεκάεδρον ( dōdekáedron ) ; de δώδεκα ( dṓdeka ) 'doce' y ἕδρα ( hédra ) 'base, asiento, cara') o duodecaedro [1] es cualquier poliedro con doce caras planas. El dodecaedro más conocido es el dodecaedro regular con pentágonos regulares como caras, que es un sólido platónico . También hay tres dodecaedros estrella regulares , que se construyen como estelaciones de forma convexa. Todos estos tienen simetría icosaédrica , orden 120.
Algunos dodecaedros tienen la misma estructura combinatoria que el dodecaedro regular (en términos del gráfico formado por sus vértices y aristas), pero sus caras pentagonales no son regulares: el piritoedro, una forma cristalina común en la pirita , tiene simetría piritoédrica , mientras que el tetartoide tiene simetría tetraédrica .
El dodecaedro rómbico puede considerarse un caso límite del piritoedro y tiene simetría octaédrica . Las variantes del dodecaedro alargado y del dodecaedro trapezoidal , junto con los dodecaedros rómbicos, son dodecaedros que ocupan el espacio . Existen muchos otros dodecaedros.
Si bien el dodecaedro regular comparte muchas características con otros sólidos platónicos, una propiedad única es que se puede comenzar en una esquina de la superficie y dibujar una cantidad infinita de líneas rectas a través de la figura que regresan al punto original sin cruzar ninguna otra esquina. [2]
El dodecaedro regular convexo es uno de los cinco sólidos platónicos regulares y puede representarse mediante su símbolo Schläfli {5, 3}.
El poliedro dual es el icosaedro regular {3, 5}, que tiene cinco triángulos equiláteros alrededor de cada vértice.
El dodecaedro regular convexo también tiene tres estelaciones , todas las cuales son dodecaedros estrellados regulares. Forman tres de los cuatro poliedros de Kepler-Poinsot . Son el pequeño dodecaedro estrellado {5/2, 5}, el gran dodecaedro {5, 5/2} y el gran dodecaedro estrellado {5/2, 3}. El pequeño dodecaedro estrellado y el gran dodecaedro son duales entre sí; el gran dodecaedro estrellado es dual con el gran icosaedro {3, 5/2}. Todos estos dodecaedros estrellados regulares tienen caras pentagonales o pentagrámicas regulares . El dodecaedro regular convexo y el gran dodecaedro estrellado son diferentes realizaciones del mismo poliedro regular abstracto ; El pequeño dodecaedro estrellado y el gran dodecaedro son realizaciones diferentes de otro poliedro regular abstracto.
En cristalografía , dos dodecaedros importantes pueden aparecer como formas cristalinas en algunas clases de simetría del sistema cristalino cúbico que son topológicamente equivalentes al dodecaedro regular pero menos simétricos: el piritoedro con simetría piritoédrica y el tetartoide con simetría tetraédrica :
Un piritoedro es un dodecaedro con simetría piritoédrica (T h ). Al igual que el dodecaedro regular , tiene doce caras pentagonales idénticas, con tres que se encuentran en cada uno de los 20 vértices (ver figura). [3] Sin embargo, los pentágonos no están obligados a ser regulares, y la disposición atómica subyacente no tiene un verdadero eje de simetría quíntuple. Sus 30 aristas se dividen en dos conjuntos, que contienen 24 y 6 aristas de la misma longitud. Los únicos ejes de simetría rotacional son tres ejes dobles mutuamente perpendiculares y cuatro ejes triples.
Aunque los dodecaedros regulares no existen en los cristales, la forma piritoédrica se da en los cristales del mineral pirita y puede ser una inspiración para el descubrimiento de la forma sólida platónica regular. El verdadero dodecaedro regular puede presentarse como una forma para cuasicristales (como el cuasicristal de holmio-magnesio-cinc ) con simetría icosaédrica , que incluye verdaderos ejes de rotación quíntuple.
El nombre de pirita cristalina proviene de uno de los dos hábitos cristalinos comunes que muestra la pirita (el otro es el cubo ). En la pirita piritoédrica, las caras tienen un índice de Miller de (210), lo que significa que el ángulo diedro es 2·arctan(2) ≈ 126,87° y cada cara pentagonal tiene un ángulo de aproximadamente 121,6° entre dos ángulos de aproximadamente 106,6° y dos ángulos opuestos de aproximadamente 102,6°. Las siguientes fórmulas muestran las medidas de la cara de un cristal perfecto (que rara vez se encuentra en la naturaleza).
Los ocho vértices de un cubo tienen las coordenadas (±1, ±1, ±1).
Las coordenadas de los 12 vértices adicionales son ( 0, ±(1 + h ), ±(1 − h 2 ) ) , ( ±(1 + h ), ±(1 − h 2 ), 0 ) y ( ±(1 − h 2 ), 0, ±(1 + h ) ) .
h es la altura del "techo" en forma de cuña sobre las caras de ese cubo con longitud de arista 2.
Un caso importante es h = 1/2( un cuarto de la longitud de la arista del cubo) para la pirita natural perfecta (también el piritoedro en la estructura Weaire-Phelan ).
Otra es h = 1/φ = 0,618... para el dodecaedro regular . Véase la sección Libertad geométrica para otros casos.
Dos piritoedros con coordenadas intercambiadas distintas de cero están en posiciones duales entre sí, como los dodecaedros en el compuesto de dos dodecaedros .
El piritoedro tiene un grado de libertad geométrico con casos límite de una envoltura cúbica convexa en un límite de aristas colineales y un dodecaedro rómbico como el otro límite, ya que 6 aristas se degeneran hasta una longitud cero. El dodecaedro regular representa un caso intermedio especial donde todas las aristas y ángulos son iguales.
Es posible superar estos casos límite, creando piritoedros cóncavos o no convexos. El endododecaedro es cóncavo y equilátero; puede teselar el espacio con el dodecaedro regular convexo. Continuando desde allí en esa dirección, pasamos por un caso degenerado donde doce vértices coinciden en el centro, y al gran dodecaedro estrellado regular donde todas las aristas y ángulos son nuevamente iguales, y las caras han sido distorsionadas en pentagramas regulares . Por otro lado, más allá del dodecaedro rómbico, obtenemos un dodecaedro equilátero no convexo con caras pentagonales equiláteras que se autointersecan en forma de pez.
Un tetartoide (también dodecaedro pentagonal tetragonal , pentágono-tritetraedro y pentágono dodecaedro tetraédrico ) es un dodecaedro con simetría tetraédrica quiral (T). Al igual que el dodecaedro regular , tiene doce caras pentagonales idénticas , con tres que se encuentran en cada uno de los 20 vértices. Sin embargo, los pentágonos no son regulares y la figura no tiene ejes de simetría quíntuple.
Aunque los dodecaedros regulares no existen en los cristales, sí existe la forma tetartoide. El nombre tetartoide proviene de la raíz griega que significa un cuarto, ya que tiene una cuarta parte de simetría octaédrica completa y la mitad de simetría piritoédrica. [4] El mineral cobaltita puede tener esta forma de simetría. [5]
Se pueden crear abstracciones que compartan la topología y la simetría del sólido a partir del cubo y el tetraedro. En el cubo, cada cara está bisecada por una arista inclinada. En el tetraedro, cada arista está trisecada y cada uno de los nuevos vértices está conectado al centro de una cara. (En la notación de poliedros de Conway, se trata de un girotetraedro).
Los siguientes puntos son vértices de un pentágono tetartoide bajo simetría tetraédrica :
en las siguientes condiciones: [6]
El dodecaedro regular es un tetartoide con más simetría de la requerida. El triakistetraedro es un caso degenerado con 12 aristas de longitud cero. (En términos de los colores utilizados anteriormente, esto significa que los vértices blancos y las aristas verdes son absorbidos por los vértices verdes).
Una forma de simetría inferior del dodecaedro regular se puede construir como el dual de un poliedro construido a partir de dos anticúpulas triangulares conectadas base con base, llamada girobianticúpula triangular. Tiene simetría D 3d , orden 12. Tiene 2 conjuntos de 3 pentágonos idénticos en la parte superior e inferior, conectados 6 pentágonos alrededor de los lados que se alternan hacia arriba y hacia abajo. Esta forma tiene una sección transversal hexagonal y las copias idénticas se pueden conectar como un panal hexagonal parcial, pero no todos los vértices coincidirán.
El dodecaedro rómbico es un zonohedro con doce caras rómbicas y simetría octaédrica. Es dual del cuboctaedro cuasirregular (un sólido de Arquímedes ) y se presenta en la naturaleza como una forma cristalina. El dodecaedro rómbico se compacta para llenar el espacio.
El dodecaedro rómbico puede verse como un piritoedro degenerado donde las 6 aristas especiales se han reducido a longitud cero, reduciendo los pentágonos a caras rómbicas.
El dodecaedro rómbico tiene varias estelaciones , la primera de las cuales es también un relleno espacial paraleloédrico .
Otro dodecaedro rómbico importante, el dodecaedro de Bilinski , tiene doce caras congruentes con las del triacontaedro rómbico , es decir, las diagonales están en la proporción de la proporción áurea . También es un zonoedro y fue descrito por Bilinski en 1960. [7] Esta figura es otro relleno espacial, y también puede aparecer en rellenos espaciales no periódicos junto con el triacontaedro rómbico, el icosaedro rómbico y los hexaedros rómbicos. [8]
Hay 6.384.634 dodecaedros convexos topológicamente distintos , excluidas las imágenes especulares; el número de vértices varía de 8 a 20. [9] (Dos poliedros son "topológicamente distintos" si tienen disposiciones intrínsecamente diferentes de caras y vértices, de modo que es imposible distorsionar uno en el otro simplemente cambiando las longitudes de los bordes o los ángulos entre los bordes o las caras).
Dodecaedros topológicamente distintos (excluidas las formas pentagonales y rómbicas)
Armand Spitz utilizó un dodecaedro como equivalente de "globo" para su proyector planetario Digital Dome , [10] basado en una sugerencia de Albert Einstein .
Los dodecaedros regulares se utilizan a veces como dados, conocidos como d12, especialmente en juegos como Dungeons and Dragons .