Retículo vectorial topológico

En matemáticas, específicamente en análisis funcional y en teoría del orden, un retículo vectorial topológico es un espacio vectorial topológico (EVT) de Hausdorffque lo convierte en un espacio de Riesz que posee una base de entornos en el origen que consta de conjuntos sólidos.[1]​ Las redes vectoriales ordenadas tienen aplicaciones importantes en teoría espectral.es un retículo vectorial, entonces se denominan operaciones de retículos vectoriales a las siguientes aplicaciones: Sies un EVT sobre los números reales y un retículo vectorial, entonceses localmente sólido si y solo si (1) su cono positivo es un cono normal y (2) las operaciones del retículo vectorial son continuas.es un retículo vectorial y un espacio vectorial topológico ordenado que también es un espacio de Fréchet en el que el cono positivo es un cono normal, entonces las operaciones del retículo son continuas.es un espacio vectorial topológico (EVT) y un espacio vectorial ordenado, entoncesse denomina localmente sólido siposee una base de entornos en el origen que consta de conjuntos sólidos.[1]​ Un retículo vectorial topológico es un EVT de Hausdorffque lo convierte en un espacio de Riesz que es localmente sólido.[1]​ Cada retículo vectorial topológico tiene un cono positivo cerrado y, por lo tanto, es un espacio vectorial topológico ordenado.el conjunto de todos los subconjuntos acotados de un retículo vectorial topológico con cono positivodel retículo vectorial topológico es un conoposee orden completo, entonces cada banda está cerrada en) son retículos de Banach según su ordenamiento canónico.Estos espacios son órdenes completos para