Número colosalmente abundante

Formalmente, se dice que un número n es colosalmente abundante si existe un ε > 0 tal que para todo k > 1, donde σ denota la función suma de divisores.[2]​ Desafortunadamente, el editor de la revista a la que Ramanujan envió su trabajo, la London Mathematical Society, estaba en dificultades financieras en ese momento y Ramanujan acordó eliminar algunos aspectos del trabajo para reducir el costo de impresión.[6]​ Por lo tanto, los números colosalmente abundantes capturan la noción de tener muchos divisores al exigirles que maximicen, para algún ε > 0, el valor de la función sobre todos los valores de n. Los resultados de Bachmann y Grönwall aseguran que para cada ε > 0 esta función tiene un máximo y que a medida que ε tiende a cero estos máximos aumentarán.Por lo tanto, hay infinitos números colosalmente abundantes, aunque son bastante escasos, con solo 22 de ellos hasta 1018.La conjetura de Alaoglu y Erdős sigue abierta, aunque se ha comprobado hasta al menos 107.[9]​ Si es cierto significaría que existe una secuencia de números primos no distintos p1, p2, p3,... tal que el número colosalmente abundante n sea de la forma Asumiendo que la conjetura se cumple, esta secuencia de primos comienza por 2, 3, 2, 5, 2, 3, 7, 2 (sucesión A073751 en OEIS).
Función sigma σ 1 ( n ) hasta n = 250
Factores de potencia prima