Medida de Lebesgue
Se usa en el análisis real, especialmente para definir la integración de Lebesgue.Para demostrar que un conjunto arbitrario A es Lebesgue-medible, usualmente se intenta hallar un conjunto "más presentable" B cuya diferencia simétrica con A sea un conjunto nulo, y luego se demuestra que B se puede generar usando uniones e intersecciones numerables de conjuntos abiertos y cerrados.Cuando una propiedad P se cumple en un conjunto X, excepto quizá en un subconjunto de X de medida nula, se dice que "la propiedad P se cumple en X casi en todas partes".que no son Lebesgue-medibles, por ejemplo el conjunto de Vitali.La medida de Borel coincide con la de Lebesgue en los conjuntos para los que está definida; sin embargo, hay muchos más conjuntos Lebesgue-medibles que Borel-medibles.