Gradiente electroquímico
Básicamente indica cuál es la dirección en la que cambia más rápidamente la concentración y el potencial eléctrico de una solución no homogénea; esto es importante porque una partícula de una sustancia cualquiera con una cierta carga en solución se moverá tratando de seguir la dirección de mayor gradiente electroquímico, yendo desde donde esa sustancia en particular se encuentra más concentrada hacia donde está más diluida y desde donde tiene mayor potencial eléctrico hacia donde tiene menor potencial eléctrico.Un gradiente es, básicamente, una serie de vectores asociados a determinados puntos del espacio (campo vectorial), que indican cuáles son las direcciones de mayor cambio en un campo escalar (esto es una serie de puntos en el espacio con determinados valores escalares asociados).Para entender el caso particular del potencial electroquímico se puede pensar en principio en un mapa de líneas de nivel de una zona geográfica determinada, este será nuestro "campo"; donde a cada coordenada espacial (latitud, longitud) se le asocia una determinada altura (valor escalar).Y aproximándonos aún más, podemos imaginarnos una habitación lo suficientemente grande (campo tridimensional), en la que hay un gas desigualmente distribuido.Si arrojamos un pequeño cristal de azúcar dentro de un vaso que contiene agua, podemos ver que al principio el cristal parece no experimentar cambios, pero si esperamos un tiempo suficientemente largo, el cristal se disuelve completamente y se puede demostrar que las moléculas de azúcar se han distribuido uniformemente dentro del volumen del líquido.El potencial electroquímico es importante en la química electroanalítica y en la industria, en la cual tiene diversas aplicaciones (baterías, pilas de combustible…).Además, la energía puede ser utilizada para bombear el agua hasta el lago que se encuentra encima de la presa.El potencial electroquímico se mide en el laboratorio utilizando electrodos de referencia.El ATP se crea indirectamente utilizando el PMF como fuente de energía.Algunas arqueas (las más notables entre ellas son las halobacterias), crean gradientes de protones mediante el bombeo de protones del medio ambiente con la ayuda de la enzima bacteriorodopsina solar impulsada, que se utiliza en este caso para impulsar el motor molecular enzima ATP sintetasa para hacer los cambios necesarios en la conformación para que pueda ser sintetizado ATP.El mismo proceso tiene lugar en las mitocondrias, donde la ATP sintetasa se encuentra en la membrana mitocondrial interna, de modo que la parte F1 se une a la matriz mitocondrial, donde tiene lugar la síntesis de ATP.