Hoy en día, la forma del semiverseno sigue siendo interesante, ya que no tiene ningún coeficiente delante de la función sen2.En la época anterior a las calculadoras digitales, el uso de tablas náuticas detalladas para el semiverseno, arco-semiverseno y sus logaritmos (para ayudar en las multiplicaciones) ahorró a los navegantes calcular los cuadrados de los senos, el cálculo de raíces cuadradas, etc., un proceso arduo y que podía agravar los pequeños errores (ver también verseno).h sólo se aproxima a 1 en los puntos antipodales (en los lados opuestos de la esfera) —en esta región, tienden a surgir en la fórmula errores numéricos relativamente grandes cuando se utiliza una precisión finita—.Sin embargo, ya que d es entonces bastante grande (se acerca a π · R, la mitad de la circunferencia) un pequeño error a menudo no es una preocupación importante en este caso inusual (aunque hay otras fórmulas de distancia de círculo máximo que evitan este problema).Como se describe a continuación, en lugar de semiversenos, también se puede escribir una fórmula similar, en términos del coseno —a veces llamada la ley esférica del coseno; a no confundir con la ley del coseno para la geometría plana—, pero para el caso común de distancias pequeñas ... un pequeño error en los datos de entrada de la función "arccos" lleva a un gran error en el resultado final.suponiendo la media geométrica R = 6367,45 kilómetros que se utiliza en todas partes), a causa de esta ligera forma elipsoidal del planeta.Para obtener la fórmula del semiverseno de la sección anterior de esta ley, simplemente se considera el caso especial donde u es el polo norte, mientras que w y v son los dos puntos entre los que se quiere determinar la distancia d. En este caso, a y b son π / 2 - φ 1,2 (es decir, 90° – latitud), C es el incremento de longitud Δλ y c es la distancia d / R que se quiere calcular.Tomando nota de que sen (π / 2 - φ) = cos (φ), la fórmula del semiverseno se calcula como sigue: Para deducir la ley del semiverseno, se parte de la ley esférica del coseno: Como se ha mencionado anteriormente, esta fórmula no es demasiado buena para la resolución de c cuando c es pequeño.En su lugar, se sustituye la identidad: cos (θ) = 1 - 2 semiversin (θ), y para obtener la ley del semiverseno citada más arriba, también se utiliza la identidad de la suma: Scibor * Ireneo Romualdo '-Marchocki, [] https://web.archive.org/web/19991010004728/http://www.geocities.com/ResearchTriangle/2363/trig02.html trigonometría esférica, Primaria-Geometría Trigonometría página web (1997).
Triángulo esférico resuelto por la ley del semiverseno.