Los canales de calcio dependientes de voltaje ( VGCC ), también conocidos como canales de calcio dependientes de voltaje ( VDCC ), son un grupo de canales iónicos dependientes de voltaje que se encuentran en la membrana de las células excitables ( por ejemplo , músculos , células gliales , neuronas ) con una permeabilidad al ion calcio Ca 2+ . [1] [2] Estos canales son ligeramente permeables a los iones sodio , por lo que también se denominan canales Ca 2+ –Na + , pero su permeabilidad al calcio es aproximadamente 1000 veces mayor que al sodio en condiciones fisiológicas normales. [3]
En el potencial de membrana fisiológico o en reposo , los VGCC normalmente están cerrados. Se activan ( es decir , se abren) en potenciales de membrana despolarizados y esta es la fuente del epíteto "dependiente del voltaje" . La concentración de calcio (iones Ca 2+ ) normalmente es varios miles de veces mayor fuera de la célula que en el interior. La activación de VGCC particulares permite una afluencia de Ca 2+ a la célula, lo que, dependiendo del tipo de célula, da como resultado la activación de los canales de potasio sensibles al calcio , la contracción muscular , [4] la excitación de las neuronas, la regulación positiva de la expresión génica o la liberación de hormonas o neurotransmisores .
Los VGCC se han inmunolocalizado en la zona glomerular de las glándulas suprarrenales humanas normales e hiperplásicas , así como en los adenomas productores de aldosterona (APA), y en estos últimos, los VGCC de tipo T se correlacionaron con los niveles plasmáticos de aldosterona de los pacientes. [5] La activación excesiva de los VGCC es un componente principal de la excitotoxicidad , ya que los niveles severamente elevados de calcio intracelular activan enzimas que, en niveles suficientemente altos, pueden degradar estructuras celulares esenciales.
Los canales de calcio dependientes del voltaje se forman como un complejo de varias subunidades diferentes: α 1 , α 2 δ, β 1-4 y γ. La subunidad α 1 forma el poro conductor de iones, mientras que las subunidades asociadas tienen varias funciones, incluida la modulación de la activación. [6]
Existen varios tipos diferentes de canales de calcio dependientes de alto voltaje (HVGCC). Son estructuralmente homólogos entre varios tipos; todos son similares, pero no estructuralmente idénticos. En el laboratorio, es posible distinguirlos estudiando sus funciones fisiológicas y/o la inhibición por toxinas específicas . Los canales de calcio dependientes de alto voltaje incluyen el canal neuronal de tipo N bloqueado por la ω- conotoxina GVIA, el canal de tipo R (R significa Resistente a los demás bloqueadores y toxinas, excepto SNX-482 ) involucrado en procesos mal definidos en el cerebro , el canal de tipo P/Q estrechamente relacionado bloqueado por ω- agatoxinas y los canales de tipo L sensibles a la dihidropiridina responsables del acoplamiento de excitación-contracción del músculo esquelético , liso y cardíaco y de la secreción de hormonas en las células endocrinas.
La referencia para la tabla se puede encontrar en Dunlap, Luebke y Turner (1995). [7]
El poro de la subunidad α 1 (~190 kDa de masa molecular) es la subunidad primaria necesaria para el funcionamiento del canal en el HVGCC y consta de los cuatro dominios homólogos I–IV característicos que contienen seis hélices α transmembrana cada uno. La subunidad α 1 forma el poro selectivo de Ca 2+ , que contiene la maquinaria de detección de voltaje y los sitios de unión de fármacos/toxinas. Se han identificado un total de diez subunidades α 1 en humanos: [1] La subunidad α 1 contiene 4 dominios homólogos (etiquetados I–IV), cada uno de los cuales contiene 6 hélices transmembrana (S1–S6). Esta disposición es análoga a un homotetrámero formado por subunidades de dominio único de canales de potasio dependientes de voltaje (que también contienen cada uno 6 hélices TM). La arquitectura de 4 dominios (y varios sitios reguladores clave, como la mano EF y el dominio IQ en el extremo C) también es compartida por los canales de sodio dependientes de voltaje, que se cree que están relacionados evolutivamente con los VGCC. [8] Las hélices transmembrana de los 4 dominios se alinean para formar el canal propiamente dicho; se cree que las hélices S5 y S6 alinean la superficie del poro interno, mientras que las hélices S1-4 tienen funciones en la activación y detección de voltaje (S4 en particular). [9] Los VGCC están sujetos a una inactivación rápida, que se cree que consta de 2 componentes: dependiente de voltaje (VGI) y dependiente de calcio (CGI). [10] Estos se distinguen por usar Ba 2+ o Ca 2+ como portador de carga en la solución de registro externa ( in vitro ). El componente CGI se atribuye a la unión de la proteína de señalización de unión a Ca 2+ calmodulina (CaM) a al menos un sitio en el canal, ya que los mutantes CaM sin Ca 2+ eliminan el componente CGI en los canales de tipo L. No todos los canales exhiben las mismas propiedades reguladoras y los detalles específicos de estos mecanismos aún son en gran parte desconocidos.
El gen α 2 δ forma dos subunidades: α 2 y δ (que son ambas producto del mismo gen). Están unidas entre sí a través de un enlace disulfuro y tienen un peso molecular combinado de 170 kDa. La α 2 es la subunidad glucosilada extracelular que más interactúa con la subunidad α 1. La subunidad δ tiene una única región transmembrana con una porción intracelular corta, que sirve para anclar la proteína en la membrana plasmática. Existen 4 genes α 2 δ:
La coexpresión de la subunidad α 2 δ aumenta el nivel de expresión de la subunidad α 1 y provoca un aumento de la amplitud de la corriente, una cinética de activación e inactivación más rápida y un cambio hiperpolarizante en la dependencia del voltaje de la inactivación. Algunos de estos efectos se observan en ausencia de la subunidad beta, mientras que, en otros casos, se requiere la coexpresión de beta.
Las subunidades α 2 δ-1 y α 2 δ-2 son el sitio de unión de los gabapentinoides . Esta clase de fármacos incluye dos fármacos anticonvulsivos, la gabapentina (Neurontin) y la pregabalina (Lyrica), que también se utilizan en el tratamiento del dolor neuropático crónico. La subunidad α 2 δ también es un sitio de unión del depresor central y ansiolítico fenibut , además de actuar sobre otros objetivos. [11]
La subunidad β intracelular (55 kDa) es una proteína intracelular similar a MAGUK (guanilato quinasa asociada a membrana) que contiene un dominio guanilato quinasa (GK) y un dominio SH3 (homología src 3). El dominio guanilato quinasa de la subunidad β se une al bucle citoplasmático de la subunidad α 1 I-II y regula la actividad de HVGCC. Hay cuatro genes conocidos para la subunidad β:
Se ha planteado la hipótesis de que la subunidad β citosólica tiene un papel importante en la estabilización de la conformación final de la subunidad α 1 y su entrega a la membrana celular por su capacidad de enmascarar una señal de retención del retículo endoplásmico en la subunidad α 1. El freno de retención endoplásmico está contenido en el bucle I-II en la subunidad α 1 que se enmascara cuando se une la subunidad β. [12] Por lo tanto, la subunidad β funciona inicialmente para regular la densidad de corriente al controlar la cantidad de subunidad α 1 expresada en la membrana celular.
Además de esta función de tráfico, la subunidad β tiene las importantes funciones adicionales de regular la cinética de activación e inactivación, e hiperpolarizar la dependencia del voltaje para la activación del poro de la subunidad α 1 , de modo que pase más corriente para despolarizaciones más pequeñas . La subunidad β tiene efectos sobre la cinética del α 1 C cardíaco en ovocitos de Xenopus laevis coexpresados con subunidades β. La subunidad β actúa como un modulador importante de las propiedades electrofisiológicas del canal.
Hasta hace muy poco, se pensaba que la interacción entre una región de 18 aminoácidos altamente conservada en el enlace intracelular de la subunidad α1 entre los dominios I y II (el dominio de interacción alfa, AID) y una región en el dominio GK de la subunidad β (bolsillo de unión del dominio de interacción alfa) era la única responsable de los efectos reguladores de la subunidad β. Recientemente, se ha descubierto que el dominio SH3 de la subunidad β también proporciona efectos reguladores adicionales sobre la función del canal, lo que abre la posibilidad de que la subunidad β tenga múltiples interacciones reguladoras con el poro de la subunidad α1 . Además, la secuencia AID no parece contener una señal de retención del retículo endoplásmico, y esta puede estar ubicada en otras regiones del enlace de la subunidad α1 I–II .
Se sabe que la subunidad γ1 está asociada con los complejos VGCC del músculo esquelético, pero la evidencia no es concluyente con respecto a otros subtipos de canales de calcio. La subunidad γ1 glicoproteína (33 kDa) está compuesta por cuatro hélices que se extienden a través de la membrana. La subunidad γ1 no afecta el tráfico y, en su mayor parte, no es necesaria para regular el complejo del canal. Sin embargo, γ 2 , γ 3 , γ 4 y γ 8 también están asociados con los receptores de glutamato AMPA.
Hay 8 genes para las subunidades gamma:
Cuando una célula muscular lisa se despolariza, provoca la apertura de los canales de calcio dependientes del voltaje (tipo L). [13] [14] La despolarización puede producirse por el estiramiento de la célula, la unión del agonista a su receptor acoplado a proteína G ( GPCR ) o la estimulación del sistema nervioso autónomo . La apertura del canal de calcio de tipo L provoca la entrada de Ca 2+ extracelular , que luego se une a la calmodulina . La molécula de calmodulina activada activa la quinasa de cadena ligera de miosina (MLCK), que fosforila la miosina en filamentos gruesos . La miosina fosforilada puede formar puentes cruzados con filamentos delgados de actina , y la fibra muscular lisa (es decir, la célula) se contrae a través del mecanismo de filamento deslizante . (Véase la referencia [13] para una ilustración de la cascada de señalización que implica a los canales de calcio de tipo L en el músculo liso).
Los canales de calcio de tipo L también se enriquecen en los túbulos T de las células musculares estriadas , es decir, las miofibras esqueléticas y cardíacas . Cuando estas células se despolarizan, los canales de calcio de tipo L se abren como en el músculo liso. En el músculo esquelético, la apertura real del canal, que está controlado mecánicamente por un canal de liberación de calcio (también conocido como receptor de rianodina o RYR) en el retículo sarcoplásmico (SR), provoca la apertura del RYR. En el músculo cardíaco , la apertura del canal de calcio de tipo L permite la entrada de calcio en la célula. El calcio se une a los canales de liberación de calcio (RYR) en el SR, abriéndolos; este fenómeno se denomina " liberación de calcio inducida por calcio " o CICR. Independientemente de cómo se abran los RYR, ya sea mediante activación mecánica o CICR, el Ca 2+ se libera del SR y puede unirse a la troponina C en los filamentos de actina. Luego, los músculos se contraen a través del mecanismo de filamentos deslizantes, lo que provoca el acortamiento de los sarcómeros y la contracción muscular.
Temprano en el desarrollo, hay una gran cantidad de expresión de canales de calcio de tipo T. Durante la maduración del sistema nervioso, la expresión de corrientes de tipo N o L se vuelve más prominente. [15] Como resultado, las neuronas maduras expresan más canales de calcio que solo se activarán cuando la célula esté significativamente despolarizada . Los diferentes niveles de expresión de canales activados por bajo voltaje (LVA) y activados por alto voltaje (HVA) también pueden desempeñar un papel importante en la diferenciación neuronal . En las neuronas espinales en desarrollo de Xenopus, los canales de calcio LVA transportan un transitorio de calcio espontáneo que puede ser necesario para que la neurona adopte un fenotipo GABAérgico , así como para que procese el crecimiento . [16]
Los anticuerpos contra los canales de calcio dependientes de voltaje están asociados con el síndrome miasténico de Lambert-Eaton y también se han implicado en la degeneración cerebelosa paraneoplásica . [17]
Los canales de calcio dependientes de voltaje también están asociados con la hipertermia maligna [18] y el síndrome de Timothy . [19]
Las mutaciones del gen CACNA1C , con un polimorfismo de un solo nucleótido en el tercer intrón del gen Cav1.2, [20] están asociadas con una variante del síndrome de QT largo llamado síndrome de Timothy [21] y también con el síndrome de Brugada . [22] Los análisis genéticos a gran escala han demostrado la posibilidad de que CACNA1C esté asociado con el trastorno bipolar [23] y posteriormente también con la esquizofrenia . [24] [25] [26] Además, un alelo de riesgo CACNA1C se ha asociado a una alteración en la conectividad cerebral en pacientes con trastorno bipolar, mientras que no o solo en un grado menor, en sus familiares no afectados o controles sanos. [27]
{{cite journal}}
: Requiere citar revista |journal=
( ayuda ) [ aclaración necesaria ]