stringtranslate.com

Prisma (geometría)

En geometría , un prisma es un poliedro que comprende una base poligonal de n lados , una segunda base que es una copia trasladada (movida rígidamente sin rotación) de la primera, y otras n caras , necesariamente todas paralelogramos , que unen los lados correspondientes de las dos bases. Todas las secciones transversales paralelas a las bases son traslaciones de las bases. Los prismas se nombran según sus bases, por ejemplo, un prisma con una base pentagonal se llama prisma pentagonal. Los prismas son una subclase de prismatoides . [2]

Al igual que muchos términos geométricos básicos, la palabra prisma (del griego πρίσμα (prisma)  'algo aserrado') se utilizó por primera vez en los Elementos de Euclides . Euclides definió el término en el Libro XI como "una figura sólida contenida por dos planos opuestos, iguales y paralelos, mientras que el resto son paralelogramos". Sin embargo, esta definición ha sido criticada por no ser lo suficientemente específica con respecto a la naturaleza de las bases (una causa de cierta confusión entre generaciones de escritores de geometría posteriores). [3] [4]

Oblicuo vs derecho

Un prisma oblicuo es un prisma en el que los bordes y caras de unión no son perpendiculares a las caras de la base.

Ejemplo: un paralelepípedo es un prisma oblicuo cuya base es un paralelogramo , o equivalentemente un poliedro con seis caras de paralelogramo.

Prisma recto

Un prisma recto es un prisma en el que los bordes y caras de unión son perpendiculares a las caras de la base. [5] Esto se aplica si y solo si todas las caras de unión son rectangulares .

El dual de un n -prisma recto es una n - bipirámide recta .

Un prisma recto (con lados rectangulares) con bases n -gonos regulares tiene el símbolo de Schläfli { }×{ n }. Se aproxima a un cilindro cuando n tiende al infinito . [6]

Casos especiales

Nota: algunos textos pueden aplicar el término prisma rectangular o prisma cuadrado tanto a un prisma recto de base rectangular como a un prisma recto de base cuadrada.

Tipos

Prisma regular

Un prisma regular es un prisma con bases regulares .

Prisma uniforme

Un prisma uniforme o prisma semirregular es un prisma recto con bases regulares y todas las aristas de la misma longitud.

Por lo tanto, todas las caras laterales de un prisma uniforme son cuadrados .

Por tanto, todas las caras de un prisma uniforme son polígonos regulares. Además, estos prismas son isogonales , por lo que son poliedros uniformes . Forman una de las dos series infinitas de poliedros semirregulares , siendo la otra serie la formada por los antiprismas .

Un prisma n -gonal uniforme tiene símbolo de Schläfli t{2, n }.

Propiedades

Volumen

El volumen de un prisma es el producto del área de la base por la altura, es decir, la distancia entre las dos caras de la base (en el caso de un prisma no recto, tenga en cuenta que esto significa la distancia perpendicular).

El volumen por tanto es:

donde B es el área de la base y h es la altura.

El volumen de un prisma cuya base es un polígono regular de n lados con longitud lateral s es por tanto:

Área de superficie

El área superficial de un prisma recto es:

donde B es el área de la base, h la altura y P el perímetro de la base .

El área superficial de un prisma recto cuya base es un polígono regular de n lados con longitud de lado s y altura h , es por lo tanto:

Simetría

El grupo de simetría de un prisma recto de n lados con base regular es D n h de orden 4 n , excepto en el caso de un cubo, que tiene el grupo de simetría mayor O h de orden 48, que tiene tres versiones de D 4h como subgrupos . El grupo de rotación es D n de orden 2 n , excepto en el caso de un cubo, que tiene el grupo de simetría mayor O de orden 24, que tiene tres versiones de D 4 como subgrupos .

El grupo de simetría D n h contiene inversión si y solo si n es par.

Los hosoedros y diedros también poseen simetría diedra, y un prisma n -gonal se puede construir mediante el truncamiento geométrico de un hosoedro n -gonal, así como mediante la cantelación o expansión de un diedro n -gonal.

Diagramas de Schlegel

Politopos similares

Prisma truncado

Ejemplo de prisma triangular truncado. Su cara superior está truncada en un ángulo oblicuo, pero no es un prisma oblicuo.

Un prisma truncado se forma cuando un plano que no es paralelo a sus bases corta el prisma . Las bases de un prisma truncado no son congruentes y sus lados no son paralelogramos. [7]

Prisma torcido

Un prisma torcido es un poliedro no convexo construido a partir de un prisma n uniforme con cada cara lateral bisecada en la diagonal cuadrada, girando la parte superior, generalmente medianteπ/norte radianes ( 180/norte grados) en la misma dirección, lo que hace que los lados sean cóncavos. [8] [9]

Un prisma torcido no se puede dividir en tetraedros sin añadir nuevos vértices. El prisma torcido más simple tiene bases triangulares y se denomina poliedro de Schönhardt .

Un prisma torcido n -gonal es topológicamente idéntico al antiprisma uniforme n -gonal , pero tiene la mitad del grupo de simetría : D n , [ n ,2] + , orden 2 n . Puede verse como un antiprisma no convexo, con tetraedros eliminados entre pares de triángulos.

Tronco

Un tronco es una construcción similar a un prisma, con caras laterales trapezoidales y polígonos superiores e inferiores de diferentes tamaños.

Ejemplo de tronco pentagonal

Prisma estelar

Un prisma estrellado es un poliedro no convexo formado por dos caras poligonales estrelladas idénticas en la parte superior e inferior, que son paralelas y están desfasadas una distancia entre sí y conectadas por caras rectangulares. Un prisma estrellado uniforme tendrá el símbolo de Schläfli { p / q } × { }, con p rectángulos y 2 caras { p / q } . Es topológicamente idéntico a un prisma p -gonal.

Prisma cruzado

Un prisma cruzado es un poliedro no convexo construido a partir de un prisma, donde los vértices de una base están invertidos alrededor del centro de esta base (o rotados 180°). Esto transforma las caras rectangulares laterales en rectángulos cruzados . Para una base de polígono regular, la apariencia es la de un reloj de arena n -gonal . Todas las aristas oblicuas pasan por un único centro del cuerpo. Nota: ningún vértice se encuentra en este centro del cuerpo. Un prisma cruzado es topológicamente idéntico a un prisma n -gonal.

Prisma toroidal

Un prisma toroidal es un poliedro no convexo como un prisma cruzado , pero sin caras de base inferior y superior, y con caras laterales rectangulares simples que cierran el poliedro. Esto solo se puede hacer para polígonos de base de lados pares. Estos son toros topológicos, con característica de Euler de cero. La red poliédrica topológica se puede cortar a partir de dos filas de un mosaico cuadrado (con configuración de vértices 4.4.4.4 ): una banda de n cuadrados, cada uno unido a un rectángulo cruzado . Un prisma toroidal n -gonal tiene 2 n vértices, 2 n caras: n cuadrados y n rectángulos cruzados, y 4 n aristas. Es topológicamente autodual .

Politopo prismático

Un politopo prismático es una generalización de un prisma de dimensiones superiores. Un politopo prismático de n dimensiones se construye a partir de dos politopos de ( n − 1 ) dimensiones, traducidos a la siguiente dimensión.

Los elementos prismáticos del politopo n se duplican a partir de los elementos del politopo ( n − 1 ) y luego se crean nuevos elementos a partir del siguiente elemento inferior.

Tomemos un politopo n con F i i -elementos de cara ( i = 0, ..., n ). Su prisma politópico ( n + 1 ) tendrá 2 F i + F i −1 i -elementos de cara. (Con F −1 = 0 , F n = 1 .)

Por dimensión:

Politopo prismático uniforme

Un n -politopo regular representado por el símbolo de Schläfli { p , q ,..., t } puede formar un ( n + 1 )-politopo prismático uniforme representado por un producto cartesiano de dos símbolos de Schläfli : { p , q ,..., t }×{ }.

Por dimensión:

Un duoprisma de {23}×{29} , que muestra sus aristas en proyección estereográfica . Los cuadrados forman un toro plano con una cuadrícula de 23×29 .

Los politopos prismáticos de orden superior también existen como productos cartesianos de dos o más politopos. La dimensión de un politopo producto es la suma de las dimensiones de sus elementos. Los primeros ejemplos de estos existen en el espacio de cuatro dimensiones; se denominan duoprismas , ya que son el producto de dos polígonos de cuatro dimensiones.

Los duoprismas regulares se representan como { p }×{ q }, con pq vértices, 2 pq aristas, pq caras cuadradas, p caras q -gonos, q caras p -gonos y delimitados por p prismas q -gonales y q prismas p -gonales.

Por ejemplo, {4}×{4}, un duoprisma 4-4 , es una forma de simetría inferior de un teseracto , al igual que {4,3}×{ }, un prisma cúbico . {4}×{4}×{ } (prisma de duoprisma 4-4), {4,3}×{4} (duoprisma cubo-4) y {4,3,3}×{ } (prisma teseractico) son formas de simetría inferior de un 5-cubo .

Véase también

Referencias

  1. ^ Johnson, N. W. (2018). "Capítulo 11: Grupos de simetría finitos". Geometrías y transformaciones. ISBN 978-1-107-10340-5.Véase 11.3 Pirámides, prismas y antiprismas, Figura 11.3b.
  2. ^ Grünbaum, Branko (1997). "Prismatoides isogonales". Geometría discreta y computacional . 18 : 13–52. doi : 10.1007/PL00009307 .
  3. ^ Malton, Thomas (1774). Un camino real hacia la geometría: o una introducción fácil y familiar a las matemáticas. Autor y vendido. Pág. 360.
  4. ^ Elliot, James (1845). Clave para el tratado completo sobre geometría práctica y medición: contiene demostraciones completas de las reglas. Longman, Brown, Green y Longmans. pág. 3.
  5. ^ Kern, William F.; Bland, James R. (1938). Medición de sólidos con pruebas . pág. 28.
  6. ^ Geretschlager, Robert (2020). Involucrar a los estudiantes jóvenes en las matemáticas a través de competencias: perspectivas y prácticas mundiales. Vol. 1. World Scientific . p. 39. ISBN 978-981-120-582-8.
  7. ^ Kern y Bland (1938), pág. 81.
  8. ^ Gorini, Catherine A. (2003). Los hechos en el expediente: Manual de geometría. p. 172. ISBN 0-8160-4875-4.
  9. ^ "Imágenes de prismas retorcidos".

Enlaces externos