En matemáticas, el teorema de Brunn-Minkowski (o desigualdad de Brunn-Minkowski) es una desigualdad que relaciona los volúmenes (o más generalmente medidas de Lebesgue) de subconjuntos compactos del espacio euclidiano.
La versión original del teorema de Brunn-Minkowski (Hermann Brunn 1887; Hermann Minkowski 1896) se aplicó a conjuntos convexos; la generalización a conjuntos compactos no convexos que se indica aquí se debe a Lazar Lyusternik (1935).
Sea n ≥ 1 y sea μ la medida de Lebesgue en Rn.
Sean A y B dos subconjuntos compactos no vacíos de Rn.
Entonces se cumple la siguiente desigualdad: donde A + B denota la suma de Minkowski: La demostración del teorema de Brunn-Minkowski establece que la función es cóncavo en el sentido de que, para cada par de subconjuntos compactos no vacíos A y B de R n y cada 0 ≤ t ≤ 1, Para los conjuntos convexos A y B de medida positiva, la desigualdad en el teorema es estricta para 0 < t <1 a menos que A y B sean homotéticos positivos, es decir, sean iguales hasta la traslación y dilatación por un factor positivo.