Hibridación (química)

En química, se conoce como hibridación a la interacción de orbitales atómicos dentro de un átomo para formar nuevos orbitales híbridos.Los orbitales atómicos híbridos son los que se superponen en la formación de los enlaces, dentro de la teoría del enlace de valencia, y justifican la geometría molecular.[1]​ Este concepto fue desarrollado para este tipo de sistemas químicos sencillos, pero el enfoque fue más tarde aplicado más ampliamente, y hoy se considera una heurística eficaz para la racionalización de las estructuras de compuestos orgánicos.Los dos últimos electrones del carbono se ubicarían uno en el 2px, el otro en el 2py y el orbital 2pz permanece vacío (2px¹ 2py¹).El esquema de lo anterior es (cada flecha un electrón):Para satisfacer su energético inestable, un átomo de valencia como el del carbono, con orbitales parcialmente llenos (2px y 2py necesitarían tener dos electrones) tiende a formar enlaces con otros átomos que tengan electrones disponibles.Para ello, no basta simplemente colocar un electrón en cada orbital necesitado.En la naturaleza, este tipo de átomos redistribuyen sus electrones formando orbitales híbridos.En el caso del carbono, uno de los electrones del orbital 2s es extraído y se ubica en el orbital 2pz.Así, los cuatro últimos orbitales tienen un electrón cada uno:El estímulo para excitar al electrón del 2s al 2pz es aportado por el primer electrón en formar enlace con un átomo con este tipo de valencia.Por ejemplo, el hidrógeno en el caso del metano.Estos nuevos orbitales híbridos dejan de ser llamados 2s y 2p y son ahora llamados sp3 (un poco de ambos orbitales):De los cuatro orbitales así formados, uno (un 25%) es proveniente del orbital s (el 2s) del carbono y tres (un 75%) provenientes de los orbitales p (2p).Sin embargo todos se sobreponen al aportar la hibridación producto del enlace.Tridimensionalmente, la distancia entre un hidrógeno y el otro en el metano son equivalentes e iguales a un ángulo de 109,5°.Se define como la combinación de un orbital s y dos orbitales p, para formar 3 orbitales híbridos, que se disponen en un plano formando ángulos de 120° grados.Las reglas de ubicación de los electrones en estos casos, como el alqueno etileno obligan a una hibridación distinta llamada sp2, en la cual un electrón del 2s se mezcla solo con dos de los orbitales 2p: surge a partir o al unirse el orbital s con dos orbitales p; por consiguiente, se producen tres nuevos orbitales sp2, cada orbital nuevo produce enlaces covalentesTridimensionalmente, la distancia entre un hidrógeno y otro en algún carbono del etileno son equivalentes e iguales a un ángulo de 120°.Este es el tipo de enlace híbrido, con un ángulo de 180° y que se encuentra existente en compuestos con triples enlaces como los alquinos (por ejemplo el acetileno):Se caracteriza por la presencia de 2 enlaces pi (π).Las formas de las moléculas enlazadas por hibridaciones de sus orbitales es forzada por los ángulos entre sus átomos: El enlace hipervalente también ha sido descrito como orbitales híbridos sp3d y sp3d2, compuestos de orbitales s, p, y d a niveles de energía más altos.Sin embargo, avances en el estudio de cálculos ab initio han revelado que la contribución de los orbitales d al enlace hipervalente es demasiado pequeña para describir las propiedades del enlace, y esta descripción por orbitales híbridos es vista como muy poco importante.
Cuatro orbitales sp³.
Cuatro orbitales sp³. El carbono con hibridación sp 3 tiene 4 uniones (cuatro enlaces sencillos)
Configuración de los orbitales sp². El carbono con hibridación sp 2 se une con 3 átomos (dos enlaces simples y un doble enlace)
Configuración de los orbitales sp. El carbono con hibridación sp se une con 2 átomos (dos enlaces dobles)