Es también posible que Borexino detecte neutrinos producidos por supernovas dentro de nuestra galaxia.El experimento está situado en los Laboratorios Nacionales del Gran Sasso (LNGS), cerca de L'Aquila, Italia, y está patrocinado por una colaboración internacional con investigadores de Italia, Estados Unidos, Alemania, Polonia, Francia y Rusia.El proyecto SOX (Short-distance neutrino Oscillations with boreXino, u Oscilaciones de neutrinos a Corta distancia con boreXino)[5] se hubiera encargado de estudiar la posible existencia de neutrinos estériles ligeros u otros efectos de oscilación anómalos a cortas distancias (en torno a metros) en la propagación de neutrinos, gracias a una fuente radiactiva situada a corta distancia del experimento.Una señal sólida en este sentido sería el primer descubrimiento de partículas más allá del Modelo Estándar (BSM), y tendría implicaciones profundas en el conocimiento actual de la física de partículas y del Universo en general.Este generador será emplazado a poca distancia (8.5 m) del detector: en realidad, bajo él: existe un pequeño túnel construido ex-profeso bajo Borexino antes de que se erigiese el detector, con la idea de que precisamente podría acoger fuentes radioactivas para experimentos que las necesitasen.El experimento comenzará en la primera mitad de 2018 y tomará datos durante aproximadamente dos años.
Las bandas grises comparan las regiones de energías, donde los tres telescopios de neutrinos solares capaces de medir la energía de los eventos son sensibles. Las predicciones para los neutrinos se muestran en una escala logarítmica. Super-Kamiokande y SNO pueden observar aproximadamente 0,02% del total, mientras que Borexino puede observar cada tipo de neutrino esperado.