stringtranslate.com

ecuaciones de maxwell

Las ecuaciones de Maxwell en una placa en su estatua en Edimburgo

Las ecuaciones de Maxwell , o ecuaciones de Maxwell-Heaviside , son un conjunto de ecuaciones diferenciales parciales acopladas que, junto con la ley de fuerza de Lorentz , forman la base del electromagnetismo clásico , la óptica clásica y los circuitos eléctricos y magnéticos . Las ecuaciones proporcionan un modelo matemático para tecnologías eléctricas, ópticas y de radio, como la generación de energía, motores eléctricos, comunicaciones inalámbricas , lentes, radares, etc. Describen cómo los campos eléctricos y magnéticos se generan mediante cargas , corrientes y cambios de la campos. [nota 1] Las ecuaciones llevan el nombre del físico y matemático James Clerk Maxwell , quien, en 1861 y 1862, publicó una forma temprana de las ecuaciones que incluía la ley de fuerza de Lorentz. Maxwell utilizó por primera vez las ecuaciones para proponer que la luz es un fenómeno electromagnético. La forma moderna de las ecuaciones en su formulación más común se atribuye a Oliver Heaviside . [1]

Las ecuaciones de Maxwell se pueden combinar para demostrar cómo las fluctuaciones en los campos electromagnéticos (ondas) se propagan a una velocidad constante en el vacío, c (299 792 458  m/s ). [2] Conocidas como radiación electromagnética , estas ondas se producen en varias longitudes de onda para producir un espectro de radiación que va desde ondas de radio hasta rayos gamma .

En forma de ecuación diferencial parcial y unidades SI , las ecuaciones microscópicas de Maxwell se pueden escribir como

permitividad del vacíopermeabilidad al vacío

Las ecuaciones tienen dos variantes principales. Las ecuaciones microscópicas tienen aplicabilidad universal pero son difíciles de manejar para cálculos comunes. Relacionan los campos eléctricos y magnéticos con la carga total y la corriente total, incluidas las complicadas cargas y corrientes en los materiales a escala atómica . Las ecuaciones macroscópicas definen dos nuevos campos auxiliares que describen el comportamiento a gran escala de la materia sin tener que considerar cargas a escala atómica y fenómenos cuánticos como los espines. Sin embargo, su uso requiere parámetros determinados experimentalmente para una descripción fenomenológica de la respuesta electromagnética de los materiales. El término "ecuaciones de Maxwell" también se utiliza a menudo para formulaciones alternativas equivalentes. Se prefieren las versiones de las ecuaciones de Maxwell basadas en los potenciales escalares eléctricos y magnéticos para resolver explícitamente las ecuaciones como un problema de valores límite , mecánica analítica o para su uso en mecánica cuántica . La formulación covariante (en el espacio-tiempo en lugar de en el espacio y el tiempo por separado) pone de manifiesto la compatibilidad de las ecuaciones de Maxwell con la relatividad especial . Las ecuaciones de Maxwell en el espacio-tiempo curvo , comúnmente utilizadas en física gravitacional y de alta energía , son compatibles con la relatividad general . [nota 2] De hecho, Albert Einstein desarrolló la relatividad especial y general para acomodar la velocidad invariante de la luz, una consecuencia de las ecuaciones de Maxwell, con el principio de que sólo el movimiento relativo tiene consecuencias físicas.

La publicación de las ecuaciones marcó la unificación de una teoría para fenómenos previamente descritos por separado: magnetismo, electricidad, luz y radiación asociada. Desde mediados del siglo XX se entiende que las ecuaciones de Maxwell no dan una descripción exacta de los fenómenos electromagnéticos, sino que son un límite clásico de la teoría más precisa de la electrodinámica cuántica .

Historia de las ecuaciones.

Descripciones conceptuales

ley de gauss

Campo eléctrico de cargas positivas a negativas.

La ley de Gauss describe la relación entre un campo eléctrico y las cargas eléctricas : un campo eléctrico apunta lejos de las cargas positivas y hacia las cargas negativas, y la salida neta del campo eléctrico a través de una superficie cerrada es proporcional a la carga encerrada, incluida la carga unida debido a polarización del material. El coeficiente de la proporción es la permitividad del espacio libre .

Ley de Gauss para el magnetismo.

Ley de Gauss para el magnetismo : las líneas del campo magnético nunca comienzan ni terminan, sino que forman bucles o se extienden hasta el infinito, como se muestra aquí con el campo magnético debido a un anillo de corriente.

La ley de Gauss para el magnetismo establece que las cargas eléctricas no tienen análogos magnéticos, llamados monopolos magnéticos ; No existen polos magnéticos norte o sur aislados. [3] En cambio, el campo magnético de un material se atribuye a un dipolo , y la salida neta del campo magnético a través de una superficie cerrada es cero. Los dipolos magnéticos pueden representarse como bucles de corriente o pares inseparables de "cargas magnéticas" iguales y opuestas. Precisamente, el flujo magnético total a través de una superficie gaussiana es cero, y el campo magnético es un campo vectorial solenoidal . [nota 3]

ley de faraday

En una tormenta geomagnética , el plasma del viento solar impacta el campo magnético de la Tierra provocando un cambio en el campo dependiente del tiempo, induciendo así campos eléctricos en la atmósfera de la Tierra y en la litosfera conductora que pueden desestabilizar las redes eléctricas . (No a escala).

La versión de Maxwell-Faraday de la ley de inducción de Faraday describe cómo un campo magnético variable en el tiempo corresponde a la curvatura de un campo eléctrico . [3] En forma integral, establece que el trabajo por unidad de carga requerido para mover una carga alrededor de un circuito cerrado es igual a la tasa de cambio del flujo magnético a través de la superficie cerrada.

La inducción electromagnética es el principio de funcionamiento de muchos generadores eléctricos : por ejemplo, una barra magnética giratoria crea un campo magnético cambiante y genera un campo eléctrico en un cable cercano.

Ley de Ampère con la suma de Maxwell

La memoria de núcleo magnético (1954) es una aplicación de la ley de Ampère . Cada núcleo almacena un bit de datos.

La ley original de Ampère establece que los campos magnéticos se relacionan con la corriente eléctrica . La adición de Maxwell establece que los campos magnéticos también se relacionan con los campos eléctricos cambiantes, a los que Maxwell llamó corriente de desplazamiento . La forma integral establece que las corrientes eléctricas y de desplazamiento están asociadas con un campo magnético proporcional a lo largo de cualquier curva envolvente.

La adición de Maxwell a la ley de Ampère es importante porque, de lo contrario, las leyes de Ampère y Gauss deben ajustarse para los campos estáticos. [4] [ se necesita aclaración ] Como consecuencia, predice que se produce un campo magnético giratorio con un campo eléctrico cambiante. [3] [5] Otra consecuencia es la existencia de ondas electromagnéticas autosostenidas que viajan a través del espacio vacío .

La velocidad calculada para las ondas electromagnéticas, que podría predecirse a partir de experimentos con cargas y corrientes, [nota 4] coincide con la velocidad de la luz ; de hecho, la luz es una forma de radiación electromagnética (al igual que los rayos X , las ondas de radio y otras). Maxwell comprendió la conexión entre las ondas electromagnéticas y la luz en 1861, unificando así las teorías del electromagnetismo y la óptica .

Formulación en términos de campos eléctricos y magnéticos (microscópicos o en versión vacío)

En la formulación del campo eléctrico y magnético hay cuatro ecuaciones que determinan los campos para una carga y distribución de corriente determinadas. Una ley de la naturaleza separada , la ley de fuerza de Lorentz , describe cómo, a la inversa, actúan los campos eléctricos y magnéticos sobre partículas y corrientes cargadas. Maxwell incluyó una versión de esta ley en las ecuaciones originales pero, por convención, ya no se incluye. El formalismo del cálculo vectorial que aparece a continuación, obra de Oliver Heaviside , [6] [7] se ha convertido en estándar. Es manifiestamente invariante de rotación y, por lo tanto, matemáticamente mucho más transparente que las 20 ecuaciones originales de Maxwell en componentes x,y,z. Las formulaciones relativistas son aún más simétricas y manifiestamente invariantes de Lorentz. Para las mismas ecuaciones expresadas mediante cálculo tensorial o formas diferenciales, consulte § Formulaciones alternativas .

Las formulaciones diferencial e integral son matemáticamente equivalentes; ambos son útiles. La formulación integral relaciona campos dentro de una región del espacio con campos en el límite y, a menudo, puede usarse para simplificar y calcular directamente campos a partir de distribuciones simétricas de cargas y corrientes. Por otro lado, las ecuaciones diferenciales son puramente locales y son un punto de partida más natural para calcular los campos en situaciones más complicadas (menos simétricas), por ejemplo usando análisis de elementos finitos . [8]

Clave de la notación

Los símbolos en negrita representan cantidades vectoriales y los símbolos en cursiva representan cantidades escalares , a menos que se indique lo contrario. Las ecuaciones introducen el campo eléctrico , E , un campo vectorial , y el campo magnético , B , un campo pseudovectorial , cada uno de los cuales generalmente tiene una dependencia del tiempo y la ubicación. Las fuentes son

Las constantes universales que aparecen en las ecuaciones (las dos primeras explícitamente sólo en la formulación de unidades SI) son:

Ecuaciones diferenciales

En las ecuaciones diferenciales,

Ecuaciones integrales

En las ecuaciones integrales,

Las ecuaciones son un poco más fáciles de interpretar con superficies y volúmenes independientes del tiempo. Las superficies y los volúmenes independientes del tiempo son "fijos" y no cambian durante un intervalo de tiempo determinado. Por ejemplo, dado que la superficie es independiente del tiempo, podemos llevar la diferenciación bajo el signo integral en la ley de Faraday:

Convención de formulación en unidades SI

Formulación en convención de unidades gaussianas.

Las definiciones de carga, campo eléctrico y campo magnético se pueden modificar para simplificar el cálculo teórico, absorbiendo factores dimensionados de ε 0 y μ 0 en las unidades de cálculo, por convención. Con un cambio correspondiente en la convención de la ley de fuerza de Lorentz , esto produce la misma física, es decir, trayectorias de partículas cargadas o trabajo realizado por un motor eléctrico. Estas definiciones se prefieren a menudo en física teórica y de altas energías, donde es natural tomar el campo eléctrico y magnético con las mismas unidades, para simplificar la apariencia del tensor electromagnético : el objeto covariante de Lorentz que unifica el campo eléctrico y magnético contendría entonces componentes con unidad y dimensión uniformes. [9] : vii  Estas definiciones modificadas se utilizan convencionalmente con las unidades gaussianas ( CGS ). Usando estas definiciones y convenciones, coloquialmente "en unidades gaussianas", [10] las ecuaciones de Maxwell se convierten en: [11]

Las ecuaciones se simplifican ligeramente cuando se elige un sistema de cantidades en la velocidad de la luz, c , se utiliza para la adimensionalización , de modo que, por ejemplo, segundos y segundos luz son intercambiables, y c = 1.

Es posible realizar más cambios absorbiendo factores de 4 π . Este proceso, llamado racionalización, afecta si la ley de Coulomb o la ley de Gauss incluyen tal factor (ver unidades de Heaviside-Lorentz , utilizadas principalmente en física de partículas ).

Relación entre formulaciones diferenciales e integrales.

La equivalencia de las formulaciones diferencial e integral es consecuencia del teorema de divergencia de Gauss y del teorema de Kelvin-Stokes .

Flujo y divergencia

Volumen Ω y su límite cerrado ∂Ω , que contienen ( respectivamente encierran) una fuente (+) y un sumidero (-) de un campo vectorial F. Aquí, F podría ser el campo E con cargas eléctricas de origen, pero no el campo B , que no tiene cargas magnéticas como se muestra. La unidad normal de salida es n .

Según el teorema de divergencia de Gauss (puramente matemático) , el flujo eléctrico a través de la superficie límite ∂Ω se puede reescribir como

\unto

Por tanto, la versión integral de la ecuación de Gauss se puede reescribir como

Ωsi y sólo si

De manera similar, reescribir el flujo magnético en la ley de Gauss para el magnetismo en forma integral da

\unto

que se satisface para todos los Ω si y sólo si en todas partes.

Circulación y rizo

Superficie Σ con límite cerrado ∂Σ . F podrían ser los campos E o B. Nuevamente, n es la unidad normal . (La curvatura de un campo vectorial no se parece literalmente a las "circulaciones", esta es una representación heurística).

Mediante el teorema de Kelvin-Stokes podemos reescribir las integrales de línea de los campos alrededor de la curva límite cerrada ∂Σ a una integral de la "circulación de los campos" (es decir, sus rizos ) sobre una superficie que limita, es decir

Σsi y sólo si

Las integrales de línea y los rizos son análogos a las cantidades en la dinámica de fluidos clásica : la circulación de un fluido es la integral de línea del campo de velocidad del flujo del fluido alrededor de un circuito cerrado, y la vorticidad del fluido es el rizo del campo de velocidades.

Conservación de carga

La invariancia de la carga puede derivarse como corolario de las ecuaciones de Maxwell. El lado izquierdo de la ley de Ampere modificada tiene divergencia cero según la identidad div-curl . Ampliando la divergencia del lado derecho, intercambiando derivadas y aplicando la ley de Gauss se obtiene:

\unto

En particular, en un sistema aislado se conserva la carga total.

Ecuaciones del vacío, ondas electromagnéticas y velocidad de la luz.

Este diagrama 3D muestra una onda plana polarizada linealmente que se propaga de izquierda a derecha, definida por E = E 0 sin(− ωt + kr ) y B = B 0 sin(− ωt + kr ) Los campos oscilantes se detectan en el punto de inflamación. La longitud de onda horizontal es λ . mi 0segundo 0 = 0 = mi 0k = segundo 0k

En una región sin cargas ( ρ = 0 ) y sin corrientes ( J = 0 ), como en el vacío, las ecuaciones de Maxwell se reducen a:

Tomando el rizo (∇×) de las ecuaciones de rizo y usando el rizo de la identidad del rizo obtenemos

La cantidad tiene la dimensión de (tiempo/longitud) 2 . Definiendo , las ecuaciones anteriores tienen la forma de ecuaciones de onda estándar.

Ya en vida de Maxwell se descubrió que los valores conocidos de y dan , entonces ya se conocía la velocidad de la luz en el espacio libre. Esto le llevó a proponer que la luz y las ondas de radio se propagaban como ondas electromagnéticas, algo que desde entonces ha sido ampliamente confirmado. En el antiguo sistema de unidades SI , los valores de y son constantes definidas (lo que significa que por definición ) definen el amperio y el metro. En el nuevo sistema SI , sólo c mantiene su valor definido y la carga del electrón obtiene un valor definido.

En materiales con permitividad relativa , ε r , y permeabilidad relativa , μ r , la velocidad de fase de la luz se vuelve

que suele ser [nota 5] menor que c .

Además, E y B son perpendiculares entre sí y a la dirección de propagación de la onda, y están en fase entre sí. Una onda plana sinusoidal es una solución especial de estas ecuaciones. Las ecuaciones de Maxwell explican cómo estas ondas pueden propagarse físicamente a través del espacio. El campo magnético cambiante crea un campo eléctrico cambiante mediante la ley de Faraday . A su vez, ese campo eléctrico crea un campo magnético cambiante mediante la adición de Maxwell a la ley de Ampère . Este ciclo perpetuo permite que estas ondas, ahora conocidas como radiación electromagnética , se muevan por el espacio a una velocidad c .

Formulación macroscópica

Las ecuaciones anteriores son la versión microscópica de las ecuaciones de Maxwell, que expresan los campos eléctrico y magnético en términos de cargas y corrientes (posiblemente a nivel atómico) presentes. A esto a veces se le llama forma "general", pero la versión macroscópica que aparece a continuación es igualmente general, siendo la diferencia la contabilidad.

La versión microscópica a veces se denomina "ecuaciones de Maxwell en el vacío": esto se refiere al hecho de que el medio material no está integrado en la estructura de las ecuaciones, sino que aparece sólo en los términos de carga y corriente. La versión microscópica fue introducida por Lorentz, quien intentó utilizarla para derivar las propiedades macroscópicas de la materia a partir de sus constituyentes microscópicos. [12] : 5 

Las "ecuaciones macroscópicas de Maxwell", también conocidas como ecuaciones de Maxwell en la materia , son más similares a las que el propio Maxwell presentó.

En las ecuaciones macroscópicas, la influencia de la carga ligada Q b y la corriente ligada I b se incorpora al campo de desplazamiento D y al campo magnetizante H , mientras que las ecuaciones dependen sólo de las cargas libres Q f y las corrientes libres If . Esto refleja una división de la carga eléctrica total Q y la corriente I (y sus densidades ρ y J ) en partes libres y ligadas:

El costo de esta división es que los campos adicionales D y H deben determinarse mediante ecuaciones constituyentes fenomenológicas que relacionan estos campos con el campo eléctrico E y el campo magnético B , junto con la carga y la corriente ligadas.

Consulte a continuación una descripción detallada de las diferencias entre las ecuaciones microscópicas, que tratan de la carga total y la corriente, incluidas las contribuciones de materiales, útiles en aire/vacío; [nota 6] y las ecuaciones macroscópicas, que tratan de carga libre y corriente, prácticas de usar dentro de materiales.

Carga y corriente ligadas

Izquierda: una vista esquemática de cómo un conjunto de dipolos microscópicos produce cargas superficiales opuestas, como se muestra en la parte superior e inferior. Derecha: Cómo se suma un conjunto de bucles de corriente microscópicos para producir un bucle de corriente macroscópicamente circulante. Dentro de los límites, las contribuciones individuales tienden a cancelarse, pero en los límites no se produce ninguna cancelación.

Cuando se aplica un campo eléctrico a un material dieléctrico, sus moléculas responden formando dipolos eléctricos microscópicos : sus núcleos atómicos se mueven una pequeña distancia en la dirección del campo, mientras que sus electrones se mueven una pequeña distancia en la dirección opuesta. Esto produce una carga macroscópica unida en el material a pesar de que todas las cargas involucradas están unidas a moléculas individuales. Por ejemplo, si cada molécula responde igual, similar a lo que se muestra en la figura, estos pequeños movimientos de carga se combinan para producir una capa de carga unida positiva en un lado del material y una capa de carga negativa en el otro lado. La carga ligada se describe más convenientemente en términos de la polarización P del material, su momento dipolar por unidad de volumen. Si P es uniforme, se produce una separación macroscópica de carga sólo en las superficies donde P entra y sale del material. Para P no uniforme , también se produce una carga en masa. [13]

De manera algo similar, en todos los materiales los átomos constituyentes exhiben momentos magnéticos que están intrínsecamente ligados al momento angular de los componentes de los átomos, más notablemente sus electrones . La conexión con el momento angular sugiere la imagen de un conjunto de bucles de corriente microscópicos. Fuera del material, un conjunto de tales bucles de corriente microscópicos no se diferencia de una corriente macroscópica que circula alrededor de la superficie del material, a pesar de que ninguna carga individual recorre una gran distancia. Estas corrientes ligadas se pueden describir utilizando la magnetización M . [14]

Por lo tanto, las cargas y corrientes ligadas, muy complicadas y granulares, se pueden representar en la escala macroscópica en términos de P y M , que promedian estas cargas y corrientes en una escala suficientemente grande como para no ver la granularidad de los átomos individuales, pero también lo suficientemente pequeños como para que varíen según la ubicación en el material. Como tal, las ecuaciones macroscópicas de Maxwell ignoran muchos detalles en una escala fina que pueden no ser importantes para comprender los asuntos en una escala gruesa mediante el cálculo de campos que se promedian sobre un volumen adecuado.

Campos auxiliares, polarización y magnetización.

Las definiciones de los campos auxiliares son:

donde P es el campo de polarización y M es el campo de magnetización , que se definen en términos de cargas microscópicas ligadas y corrientes ligadas, respectivamente. La densidad de carga macroscópica ligada ρ b y la densidad de corriente ligada J b en términos de polarización P y magnetización M se definen entonces como

Si definimos la carga total, ligada y libre y la densidad de corriente por

DH

Relaciones constitutivas

Para aplicar las 'ecuaciones macroscópicas de Maxwell', es necesario especificar las relaciones entre el campo de desplazamiento D y el campo eléctrico E , así como el campo magnetizante H y el campo magnético B. De manera equivalente, tenemos que especificar la dependencia de la polarización P (de ahí la carga ligada) y la magnetización M (de ahí la corriente ligada) del campo eléctrico y magnético aplicado. Las ecuaciones que especifican esta respuesta se llaman relaciones constitutivas . Para los materiales del mundo real, las relaciones constitutivas rara vez son simples, excepto aproximadamente, y generalmente se determinan mediante experimentos. Consulte el artículo principal sobre relaciones constitutivas para obtener una descripción más completa. [15] : 44–45 

Para materiales sin polarización ni magnetización, las relaciones constitutivas son (por definición) [9] : 2 

ε 0permitividadμ 0permeabilidad

Un punto de vista alternativo sobre las ecuaciones microscópicas es que son las ecuaciones macroscópicas junto con la afirmación de que el vacío se comporta como un "material" lineal perfecto sin polarización ni magnetización adicionales. De manera más general, para materiales lineales las relaciones constitutivas son [15] : 44–45 

εpermitividadμpermeabilidadD,Vla histéresis

Aún más generalmente, en el caso de materiales no lineales (ver, por ejemplo, óptica no lineal ), D y P no son necesariamente proporcionales a E , de manera similar, H o M no son necesariamente proporcionales a B. En general, D y H dependen tanto de E como de B , de la ubicación y el tiempo, y posiblemente de otras cantidades físicas.

En las aplicaciones, también es necesario describir cómo se comportan las corrientes libres y la densidad de carga en términos de E y B , posiblemente acoplados a otras cantidades físicas como la presión y la masa, la densidad numérica y la velocidad de las partículas portadoras de carga. Por ejemplo, las ecuaciones originales dadas por Maxwell (ver Historia de las ecuaciones de Maxwell ) incluían la ley de Ohm en la forma

Formulaciones alternativas

A continuación se muestra un resumen de algunos de los numerosos formalismos matemáticos para escribir las ecuaciones microscópicas de Maxwell, con las columnas que separan las dos ecuaciones homogéneas de Maxwell de las dos no homogéneas que involucran carga y corriente. Cada formulación tiene versiones directamente en términos de los campos eléctrico y magnético, e indirectamente en términos del potencial eléctrico φ y el potencial vectorial A. Los potenciales se introdujeron como una forma conveniente de resolver las ecuaciones homogéneas, pero se pensaba que toda la física observable estaba contenida en los campos eléctrico y magnético (o relativistamente, el tensor de Faraday). Sin embargo, los potenciales desempeñan un papel central en la mecánica cuántica y actúan mecánicamente con consecuencias observables incluso cuando los campos eléctrico y magnético desaparecen ( efecto Aharonov-Bohm ).

Cada tabla describe un formalismo. Consulte el artículo principal para obtener detalles de cada formulación. Se utilizan unidades SI en todas partes.

Formulaciones relativistas

Las ecuaciones de Maxwell también se pueden formular en un espacio-tiempo similar al espacio de Minkowski , donde el espacio y el tiempo se tratan en pie de igualdad. Las formulaciones espacio-temporales directas ponen de manifiesto que las ecuaciones de Maxwell son relativistas invariantes . Debido a esta simetría, los campos eléctrico y magnético se tratan en pie de igualdad y se reconocen como componentes del tensor de Faraday . Esto reduce las cuatro ecuaciones de Maxwell a dos, lo que las simplifica, aunque ya no podemos utilizar la conocida formulación vectorial. De hecho, las ecuaciones de Maxwell en la formulación espacio + tiempo no son invariantes de Galileo y tienen la invariancia de Lorentz como simetría oculta. Esta fue una importante fuente de inspiración para el desarrollo de la teoría de la relatividad. De hecho, incluso la formulación que trata el espacio y el tiempo por separado no es una aproximación no relativista y describe la misma física simplemente cambiando el nombre de las variables. Por esta razón, las ecuaciones invariantes relativistas suelen denominarse también ecuaciones de Maxwell.

Cada tabla siguiente describe un formalismo.

Otros formalismos incluyen la formulación del álgebra geométrica y una representación matricial de las ecuaciones de Maxwell . Históricamente, se utilizó una formulación cuaterniónica [17] [18] .

Soluciones

Las ecuaciones de Maxwell son ecuaciones diferenciales parciales que relacionan los campos eléctrico y magnético entre sí y con las cargas y corrientes eléctricas. A menudo, las cargas y corrientes dependen de los campos eléctricos y magnéticos a través de la ecuación de fuerza de Lorentz y las relaciones constitutivas. Todos ellos forman un conjunto de ecuaciones diferenciales parciales acopladas que a menudo son muy difíciles de resolver: las soluciones abarcan todos los diversos fenómenos del electromagnetismo clásico . A continuación se presentan algunas observaciones generales.

Como para cualquier ecuación diferencial, las condiciones de contorno [19] [20] [21] y las condiciones iniciales [22] son ​​necesarias para una solución única . Por ejemplo, incluso sin cargas ni corrientes en ningún lugar del espacio-tiempo, existen soluciones obvias para las cuales E y B son cero o constantes, pero también existen soluciones no triviales correspondientes a ondas electromagnéticas. En algunos casos, las ecuaciones de Maxwell se resuelven en todo el espacio y las condiciones de contorno se dan como límites asintóticos en el infinito. [23] En otros casos, las ecuaciones de Maxwell se resuelven en una región finita del espacio, con condiciones apropiadas en el límite de esa región, por ejemplo, un límite absorbente artificial que representa el resto del universo, [24] [25] o un límite periódico. condiciones o paredes que aíslan una pequeña región del mundo exterior (como con una guía de ondas o un resonador de cavidad ). [26]

Las ecuaciones de Jefimenko (o los potenciales de Liénard-Wiechert, estrechamente relacionados ) son la solución explícita a las ecuaciones de Maxwell para los campos eléctricos y magnéticos creados por cualquier distribución dada de cargas y corrientes. Asume condiciones iniciales específicas para obtener la llamada "solución retardada", donde los únicos campos presentes son los creados por las cargas. Sin embargo, las ecuaciones de Jefimenko no son útiles en situaciones en las que las cargas y las corrientes se ven afectadas por los campos que crean.

Se pueden utilizar métodos numéricos para ecuaciones diferenciales para calcular soluciones aproximadas de las ecuaciones de Maxwell cuando las soluciones exactas son imposibles. Estos incluyen el método de elementos finitos y el método de diferencias finitas en el dominio del tiempo . [19] [21] [27] [28] [29] Para obtener más detalles, consulte Electromagnetismo computacional .

Sobredeterminación de las ecuaciones de Maxwell.

Las ecuaciones de Maxwell parecen sobredeterminadas , en el sentido de que involucran seis incógnitas (las tres componentes de E y B ) pero ocho ecuaciones (una para cada una de las dos leyes de Gauss, tres componentes vectoriales para cada una de las leyes de Faraday y de Ampere). (Las corrientes y cargas no son desconocidas, y se pueden especificar libremente sujetas a la conservación de la carga ). Esto está relacionado con un cierto tipo limitado de redundancia en las ecuaciones de Maxwell: se puede demostrar que cualquier sistema que satisfaga la ley de Faraday y la ley de Ampere automáticamente también satisface las dos. Las leyes de Gauss, siempre que lo haga la condición inicial del sistema, y ​​suponiendo conservación de la carga y la inexistencia de monopolos magnéticos. [30] [31] Esta explicación fue introducida por primera vez por Julius Adams Stratton en 1941. [32]

Aunque es posible simplemente ignorar las dos leyes de Gauss en un algoritmo numérico (aparte de las condiciones iniciales), la precisión imperfecta de los cálculos puede conducir a violaciones cada vez mayores de esas leyes. Al introducir variables ficticias que caracterizan estas violaciones, las cuatro ecuaciones dejan de estar sobredeterminadas después de todo. La formulación resultante puede conducir a algoritmos más precisos que tengan en cuenta las cuatro leyes. [33]

Ambas identidades , que reducen ocho ecuaciones a seis independientes, son la verdadera razón de la sobredeterminación. [34] [35]

De manera equivalente, se puede considerar que la sobredeterminación implica la conservación de la carga eléctrica y magnética, tal como se requieren en la derivación descrita anteriormente pero están implícitas en las dos leyes de Gauss.

Para las ecuaciones algebraicas lineales, se pueden crear reglas "agradables" para reescribir las ecuaciones y las incógnitas. Las ecuaciones pueden ser linealmente dependientes. Pero en las ecuaciones diferenciales, y especialmente en las ecuaciones diferenciales parciales (EDP), se necesitan condiciones de frontera apropiadas, que dependen de maneras no tan obvias de las ecuaciones. Aún más, si uno las reescribe en términos de potencial vectorial y escalar, entonces las ecuaciones están subdeterminadas debido a la fijación del calibre .

Las ecuaciones de Maxwell y la mecánica cuántica.

Las ecuaciones de Maxwell son válidas tanto en el ámbito clásico como en el cuántico. En la representación de Heisenberg de la mecánica cuántica, las ecuaciones de los operadores E y B son precisamente las ecuaciones de Maxwell. Por supuesto, dado que los campos son operadores cuánticos, hay muchos aspectos que difieren de los campos clásicos. Por ejemplo, el campo E actúa como el momento conjugado de los componentes espaciales del potencial vectorial A. Esto, por supuesto, conduce a que muchos aspectos del campo electromagnético cuántico difieren de ellos como campos clásicos, pero aún obedecen a las mismas ecuaciones de evolución que el campo electromagnético cuántico. El campo clásico sí lo hace.

Por supuesto, una vez que se examinan los efectos de los campos electromagnéticos sobre la materia cargada, y esos efectos cambian el campo electromagnético, las ecuaciones de campo se vuelven no lineales y el comportamiento cuántico del campo no lineal puede ser muy diferente del clásico. comportamiento de los campos no lineales. Sin embargo, eso no altera el hecho de que si uno permanece en el régimen lineal, los campos obedecen a las ecuaciones de Maxwell.

Variaciones

Las variaciones populares de las ecuaciones de Maxwell como teoría clásica de los campos electromagnéticos son relativamente escasas porque las ecuaciones estándar han resistido notablemente bien la prueba del tiempo.

Monopolos magnéticos

Las ecuaciones de Maxwell postulan que hay carga eléctrica , pero no carga magnética (también llamada monopolos magnéticos ), en el universo. De hecho, nunca se ha observado carga magnética, a pesar de búsquedas exhaustivas, [nota 7] y es posible que no exista. Si existieran, sería necesario modificar tanto la ley de Gauss para el magnetismo como la ley de Faraday, y las cuatro ecuaciones resultantes serían completamente simétricas bajo el intercambio de campos eléctricos y magnéticos. [9] : 273–275 

Ver también

Notas explicatorias

  1. ↑ Los campos eléctrico y magnético , según la teoría de la relatividad , son los componentes de un único campo electromagnético.
  2. ^ En la relatividad general, sin embargo, deben entrar, a través de su tensor tensión-energía , en las ecuaciones de campo de Einstein que incluyen la curvatura del espacio-tiempo.
  3. ^ La ausencia de sumideros/fuentes del campo no implica que las líneas del campo deban cerrarse o escapar al infinito. También pueden envolverse indefinidamente, sin intersecciones. Además, alrededor de puntos donde el campo es cero (que no pueden ser intersecados por líneas de campo, porque su dirección no estaría definida), puede haber el inicio simultáneo de unas líneas y el final de otras. Esto sucede, por ejemplo, en el medio entre dos imanes cilíndricos idénticos, cuyos polos norte están enfrentados. En el medio entre esos imanes, el campo es cero y las líneas de campo axiales que provienen de los imanes terminan. Al mismo tiempo, desde este punto parten radialmente una infinidad de líneas divergentes. La presencia simultánea de líneas que terminan y comienzan alrededor del punto preserva el carácter libre de divergencia del campo. Para una discusión detallada de las líneas de campo no cerradas, consulte L. Zilberti "The Misconception of Closed Magnetic Flux Lines", IEEE Magnetics Letters, vol. 8, art. 1306005, 2017.
  4. ^ La cantidad que ahora llamaríamos 1/ ε 0 μ 0 , con unidades de velocidad, se midió directamente antes de las ecuaciones de Maxwell, en un experimento de 1855 realizado por Wilhelm Eduard Weber y Rudolf Kohlrausch . Cargaron una jarra de Leyden (una especie de condensador ), y midieron la fuerza electrostática asociada al potencial; luego, lo descargaron mientras medían la fuerza magnética de la corriente en el cable de descarga. Su resultado fue3,107 × 10 8  m/s , notablemente cerca de la velocidad de la luz. Véase Joseph F. Keithley, La historia de las mediciones eléctricas y magnéticas: desde el 500 a. C. hasta la década de 1940, pág. 115.
  5. ^ Hay casos ( dispersión anómala ) en los que la velocidad de fase puede exceder c , pero la "velocidad de la señal" seguirá siendo < c
  6. ^ En algunos libros, por ejemplo, en Basic Theoretical Physics de U. Krey y A. Owen (Springer 2007), se utiliza el término carga efectiva en lugar de carga total , mientras que carga libre se llama simplemente carga .
  7. ^ Ver monopolo magnético para una discusión sobre búsquedas de monopolo. Recientemente, los científicos han descubierto que algunos tipos de materia condensada, incluido el hielo de espín y los aislantes topológicos , muestran un comportamiento emergente parecido a los monopolos magnéticos. (Ver sciencemag.org y Nature.com.) Aunque estos fueron descritos en la prensa popular como el tan esperado descubrimiento de los monopolos magnéticos, sólo están relacionados superficialmente. Un monopolo magnético "verdadero" es algo donde ∇ ⋅ B ≠ 0 , mientras que en estos sistemas de materia condensada, ∇ ⋅ B = 0 mientras que solo ∇ ⋅ H ≠ 0 .

Referencias

  1. ^ Hampshire, Damian P. (29 de octubre de 2018). "Una derivación de las ecuaciones de Maxwell utilizando la notación de Heaviside". Transacciones filosóficas de la Royal Society A: Ciencias matemáticas, físicas y de ingeniería . 376 (2134). arXiv : 1510.04309 . Código Bib : 2018RSPTA.37670447H. doi :10.1098/rsta.2017.0447. ISSN  1364-503X. PMC  6232579 . PMID  30373937.
  2. ^ "La referencia del NIST sobre constantes, unidades e incertidumbre".
  3. ^ abc Jackson, John. "Ecuaciones de Maxwell". Glosario de vídeos científicos . Laboratorio de Berkeley. Archivado desde el original el 29 de enero de 2019 . Consultado el 4 de junio de 2016 .
  4. ^ JD Jackson, Electrodinámica clásica , sección 6.3
  5. ^ Principios de física: un texto basado en cálculo, por RA Serway, JW Jewett, página 809.
  6. ^ Bruce J. Hunt (1991) Los Maxwellianos , capítulo 5 y apéndice, Cornell University Press
  7. ^ "Ecuaciones de Maxwell". Wiki de Historia de la Ingeniería y la Tecnología. 29 de octubre de 2019 . Consultado el 4 de diciembre de 2021 .
  8. ^ Šolín, Pavel (2006). Ecuaciones diferenciales parciales y método de los elementos finitos. John Wiley e hijos. pag. 273.ISBN 978-0-471-72070-6.
  9. ^ abc JD Jackson (17 de octubre de 1975). Electrodinámica clásica (3ª ed.). Wiley. ISBN 978-0-471-43132-9.
  10. ^ Littlejohn, Robert (otoño de 2007). "Gaussiano, SI y otros sistemas de unidades en teoría electromagnética" (PDF) . Física 221A, notas de conferencias de la Universidad de California, Berkeley . Consultado el 6 de mayo de 2008 .
  11. ^ David J. Griffiths (1999). Introducción a la electrodinámica (Tercera ed.). Prentice Hall. págs. 559–562. ISBN 978-0-13-805326-0.
  12. ^ Kimball Milton; J. Schwinger (18 de junio de 2006). Radiación electromagnética: métodos variacionales, guías de ondas y aceleradores . Medios de ciencia y negocios de Springer. ISBN 978-3-540-29306-4.
  13. ^ Véase David J. Griffiths (1999). "4.2.2". Introducción a la electrodinámica (tercera ed.). Prentice Hall . ISBN 9780138053260.para obtener una buena descripción de cómo se relaciona P con la carga ligada .
  14. ^ Véase David J. Griffiths (1999). "6.2.2". Introducción a la electrodinámica (tercera ed.). Prentice Hall . ISBN 9780138053260.para obtener una buena descripción de cómo M se relaciona con la corriente ligada .
  15. ^ abcd Andrew Zangwill (2013). Electrodinámica moderna . Prensa de la Universidad de Cambridge. ISBN 978-0-521-89697-9.
  16. ^ abc Kittel, Charles (2005), Introducción a la física del estado sólido (8ª ed.), EE.UU.: John Wiley & Sons, Inc., ISBN 978-0-471-41526-8
  17. ^ Jack, primer ministro (2003). "El espacio físico como estructura de cuaternión I: ecuaciones de Maxwell. Una breve nota". arXiv : math-ph/0307038 .
  18. ^ A. Waser (2000). "Sobre la notación de las ecuaciones de campo de Maxwell" (PDF) . AW-Verlag.
  19. ^ ab Peter Monk (2003). Métodos de elementos finitos para las ecuaciones de Maxwell. Oxford Reino Unido: Oxford University Press. pag. 1 y siguientes ISBN 978-0-19-850888-5.
  20. ^ Thomas BA Senior y John Leonidas Volakis (1 de marzo de 1995). Condiciones de contorno aproximadas en electromagnética. Londres Reino Unido: Institución de Ingenieros Eléctricos. pag. 261 y sigs. ISBN 978-0-85296-849-9.
  21. ^ ab T Hagstrom (Björn Engquist y Gregory A. Kriegsmann, Eds.) (1997). Propagación computacional de ondas. Berlín: Springer. pag. 1 y siguientes ISBN 978-0-387-94874-4.
  22. ^ Henning F. Harmuth y Malek GM Hussain (1994). Propagación de Señales Electromagnéticas. Singapur: World Scientific. pag. 17.ISBN 978-981-02-1689-4.
  23. ^ David M Cook (2002). La teoría del campo electromagnético. Mineola NY: Publicaciones Courier Dover. pag. 335 y sigs. ISBN 978-0-486-42567-2.
  24. ^ Jean-Michel Lourtioz (23 de mayo de 2005). Cristales fotónicos: hacia dispositivos fotónicos a nanoescala. Berlín: Springer. pag. 84.ISBN 978-3-540-24431-8.
  25. ^ SG Johnson, Notes on Perfectly Matched Layers, notas del curso en línea del MIT (agosto de 2007).
  26. ^ SF Mahmoud (1991). Guías de ondas electromagnéticas: teoría y aplicaciones. Londres Reino Unido: Institución de Ingenieros Eléctricos. Capítulo 2. ISBN 978-0-86341-232-5.
  27. ^ John Leonidas Volakis, Arindam Chatterjee y Leo C. Kempel (1998). Método de elementos finitos para electromagnetismo: antenas, circuitos de microondas y aplicaciones de dispersión. Nueva York: Wiley IEEE. pag. 79 y sigs. ISBN 978-0-7803-3425-0.
  28. ^ Bernard Friedman (1990). Principios y Técnicas de Matemática Aplicada . Mineola Nueva York: Publicaciones de Dover. ISBN 978-0-486-66444-6.
  29. ^ Taflove A y Hagness SC (2005). Electrodinámica computacional: el método de diferencias finitas en el dominio del tiempo . Boston MA: Casa Artech . Capítulos 6 y 7. ISBN 978-1-58053-832-9.
  30. ^ H Freistühler y G Warnecke (2001). Problemas hiperbólicos: teoría, numérica, aplicaciones. Saltador. pag. 605.ISBN 9783764367107.
  31. ^ J Rosen (1980). "Redundancia y superfluidad para campos y potenciales electromagnéticos". Revista Estadounidense de Física . 48 (12): 1071. Código bibliográfico : 1980AmJPh..48.1071R. doi :10.1119/1.12289.
  32. ^ JA Stratton (1941). Teoría electromagnética. Compañía de libros McGraw-Hill. págs. 1–6. ISBN 9780470131534.
  33. ^ B Jiang, J Wu y LA Povinelli (1996). "El origen de las soluciones espurias en electromagnética computacional". Revista de Física Computacional . 125 (1): 104. Código bibliográfico : 1996JCoPh.125..104J. doi :10.1006/jcph.1996.0082. hdl : 2060/19950021305 .
  34. ^ Weinberg, Steven (1972). Gravitación y cosmología. Juan Wiley. págs. 161-162. ISBN 978-0-471-92567-5.
  35. ^ Courant, R. y Hilbert, D. (1962), Métodos de física matemática: ecuaciones diferenciales parciales, vol. II, Nueva York: Wiley-Interscience, págs. 15-18, ISBN 9783527617241

Otras lecturas

Publicaciones históricas

Los desarrollos antes de la relatividad:

enlaces externos

Tratamientos modernos

Otro