stringtranslate.com

Pruebas de COVID-19

Kit de prueba de laboratorio de los CDC para el 2019-nCoV.jpg
Kit de prueba de laboratorio para COVID-19 de los CDC de EE. UU.

Las pruebas de COVID-19 implican el análisis de muestras para evaluar la presencia actual o pasada del SARS-CoV-2 , el virus que causa COVID-19 y es responsable de la pandemia de COVID-19 . Los dos tipos principales de pruebas detectan la presencia del virus o los anticuerpos producidos en respuesta a la infección. [1] [2] Las pruebas moleculares para la presencia viral a través de sus componentes moleculares se utilizan para diagnosticar casos individuales y permitir que las autoridades de salud pública rastreen y contengan los brotes. Las pruebas de anticuerpos (inmunoensayos serológicos) en cambio muestran si alguien alguna vez tuvo la enfermedad. [3] Son menos útiles para diagnosticar infecciones actuales porque los anticuerpos pueden no desarrollarse hasta semanas después de la infección. [4] Se utiliza para evaluar la prevalencia de la enfermedad, lo que ayuda a estimar la tasa de letalidad de la infección . [5]

Las distintas jurisdicciones han adoptado distintos protocolos de prueba, que incluyen a quién realizar la prueba, con qué frecuencia, protocolos de análisis, recolección de muestras y usos de los resultados de las pruebas. [6] [7] [8] Esta variación probablemente haya afectado significativamente las estadísticas informadas, incluidos los números de casos y pruebas, las tasas de letalidad y la demografía de los casos. [9] [10] [11] [12] Debido a que la transmisión del SARS-CoV-2 ocurre días después de la exposición (y antes de la aparición de los síntomas), existe una necesidad urgente de vigilancia frecuente y disponibilidad rápida de los resultados. [13]

Los análisis de las pruebas suelen realizarse en laboratorios médicos automatizados y de alto rendimiento por científicos de laboratorios médicos . También se encuentran disponibles pruebas rápidas de autodiagnóstico y pruebas en el punto de atención , que pueden ofrecer un método más rápido y menos costoso para detectar el virus, aunque con una precisión menor. [14] [15]

Métodos

Explicación de la fisiopatología subyacente relacionada con el diagnóstico de COVID-19 [16]

Las pruebas virales positivas indican una infección actual, mientras que las pruebas de anticuerpos positivas indican una infección previa. [17] Otras técnicas incluyen una tomografía computarizada , la comprobación de la temperatura corporal elevada, la comprobación del nivel bajo de oxígeno en sangre y la detección mediante perros entrenados . [18] [19] [20]

Detección del virus

La detección del virus se realiza generalmente buscando el ARN interno del virus o fragmentos de proteína en el exterior del virus. Las pruebas que buscan los antígenos virales (partes del virus) se denominan pruebas de antígenos .

Existen varios tipos de pruebas que buscan el virus detectando la presencia de su ARN. Estas se denominan pruebas de ácidos nucleicos o moleculares , en honor a la biología molecular . A partir de 2021 , la forma más común de prueba molecular es la prueba de reacción en cadena de la polimerasa con transcripción inversa (RT-PCR). [21] Otros métodos utilizados en pruebas moleculares incluyen CRISPR , amplificación isotérmica de ácidos nucleicos , reacción en cadena de la polimerasa digital , análisis de microarrays y secuenciación de próxima generación . [21]

Prueba de reacción en cadena de la polimerasa con transcripción inversa (RT-PCR)

La reacción en cadena de la polimerasa (PCR) es un proceso que amplifica (replica) un segmento pequeño y bien definido de ADN cientos de miles de veces, creando una cantidad suficiente para su análisis. Las muestras de prueba se tratan con ciertas sustancias químicas [22] [23] que permiten extraer el ADN. La transcripción inversa convierte el ARN en ADN.

La reacción en cadena de la polimerasa con transcripción inversa (RT-PCR) utiliza primero la transcripción inversa para obtener ADN, seguida de PCR para amplificar ese ADN, creando lo suficiente para analizar. [23] De este modo, la RT-PCR puede detectar el SARS-CoV-2 , que contiene solo ARN. El proceso de RT-PCR generalmente requiere unas pocas horas. [24] Estas pruebas también se conocen como ensayos moleculares o genéticos. [3]

La PCR en tiempo real (qPCR) [25] ofrece ventajas como la automatización, un mayor rendimiento y una instrumentación más fiable. Se ha convertido en el método preferido. [26] [27]

La técnica combinada se ha descrito como RT-PCR en tiempo real [28] o RT-PCR cuantitativa [29] y a veces se abrevia como qRT-PCR [30] , rRT-PCR [31] o RT-qPCR [32] , aunque a veces se utilizan RT-PCR o PCR. Las directrices de la Información mínima para la publicación de experimentos de PCR cuantitativa en tiempo real (MIQE) proponen el término RT-qPCR [25] , pero no todos los autores se adhieren a esto.

La sensibilidad promedio de las pruebas moleculares rápidas depende de la marca. Para ID NOW, la sensibilidad promedio fue del 73,0% con una especificidad promedio del 99,7%; para Xpert Xpress, la sensibilidad promedio fue del 100% con una especificidad promedio del 97,2%. [33] [34]

En una prueba diagnóstica, la sensibilidad es una medida de la capacidad de una prueba para identificar verdaderos positivos y la especificidad es una medida de la capacidad de una prueba para identificar verdaderos negativos. En todas las pruebas, tanto diagnósticas como de detección, suele existir un equilibrio entre la sensibilidad y la especificidad, de modo que una mayor sensibilidad implicará una menor especificidad y viceversa.

Sensibilidad y especificidad

Una prueba con un 90% de especificidad identificará correctamente al 90% de aquellos que no están infectados, dejando al 10% con un resultado falso positivo.

Las muestras se pueden obtener por varios métodos, incluyendo un hisopo nasofaríngeo , esputo (material expectorado), [35] hisopos de garganta, [36] material de las vías respiratorias profundas recolectado a través de un catéter de succión [36] o saliva . [37] [38] Drosten et al. remarcó que para el SARS de 2003, "desde un punto de vista diagnóstico, es importante señalar que los hisopos nasales y de garganta parecen menos adecuados para el diagnóstico, ya que estos materiales contienen considerablemente menos ARN viral que el esputo, y el virus puede escapar a la detección si solo se prueban estos materiales". [39]

La sensibilidad de las muestras clínicas mediante RT-PCR es del 63% para el hisopado nasal, del 32% para el hisopado faríngeo, del 48% para las heces, del 72-75% para el esputo y del 93-95% para el lavado broncoalveolar . [40]

La probabilidad de detectar el virus depende del método de recolección y del tiempo transcurrido desde la infección. Según Drosten, las pruebas realizadas con hisopados de garganta son confiables solo en la primera semana. A partir de entonces, el virus puede abandonar la garganta y multiplicarse en los pulmones. En la segunda semana, es preferible la recolección de esputo o de las vías respiratorias profundas. [36]

La recolección de saliva puede ser tan eficaz como los hisopados nasales y faríngeos, [37] aunque no se sabe con certeza. [41] [38] La recolección de muestras de saliva puede reducir el riesgo para los profesionales de la salud al eliminar la interacción física cercana. [42] También es más cómodo para el paciente. [43] Las personas en cuarentena pueden recolectar sus propias muestras. [42] El valor diagnóstico de una prueba de saliva depende del sitio de la muestra (garganta profunda, cavidad oral o glándulas salivales). [38] Algunos estudios han descubierto que la saliva produjo una mayor sensibilidad y consistencia en comparación con las muestras de hisopado. [44] [45] [46]

El 15 de agosto de 2020, la FDA de EE. UU. otorgó una autorización de uso de emergencia para una prueba de saliva desarrollada en la Universidad de Yale que da resultados en horas. [47] [48]

El 4 de enero de 2021, la FDA de EE. UU. emitió una alerta sobre el riesgo de resultados falsos, en particular resultados falsos negativos, con la prueba RT-PCR en tiempo real Curative SARS-Cov-2 Assay. [49]

La carga viral medida en muestras de las vías respiratorias superiores disminuye después de la aparición de los síntomas. [50] Después de la recuperación, muchos pacientes ya no tienen ARN viral detectable en las muestras de las vías respiratorias superiores. Entre los que sí lo tienen, las concentraciones de ARN tres días después de la recuperación están generalmente por debajo del rango en el que se ha aislado de manera confiable el virus con capacidad de replicación. [51] No se ha descrito una correlación clara entre la duración de la enfermedad y la duración de la eliminación de ARN viral después de la recuperación en muestras de las vías respiratorias superiores. [52]

Otras pruebas moleculares

Las pruebas de amplificación isotérmica de ácidos nucleicos también amplifican el genoma del virus. Son más rápidas que la PCR porque no implican ciclos repetidos de calentamiento y enfriamiento. Estas pruebas suelen detectar el ADN mediante marcadores fluorescentes , que se leen con máquinas especializadas. [ cita requerida ]

La tecnología de edición genética CRISPR se modificó para realizar la detección: si la enzima CRISPR se une a la secuencia, colorea una tira de papel. Los investigadores esperan que la prueba resultante sea barata y fácil de usar en los centros de atención. [53] [54] La prueba amplifica el ARN directamente, sin el paso de conversión de ARN a ADN de la RT-PCR. [55]

Pruebas de antígenos

Kit de prueba rápida de antígeno COVID-19; el temporizador lo proporciona el usuario.
La mucosidad de la nariz o la garganta en un líquido de prueba se coloca en un dispositivo de prueba de diagnóstico rápido de antígeno COVID-19.
Pruebas rápidas de COVID-19 en Ruanda

Un antígeno es la parte de un patógeno que provoca una respuesta inmunitaria . Las pruebas de antígenos buscan proteínas antigénicas de la superficie viral. En el caso de un coronavirus , estas suelen ser proteínas de las espigas de la superficie . [56] Los antígenos del SARS-CoV-2 se pueden detectar antes de la aparición de los síntomas de la COVID-19 (tan pronto como las partículas del virus del SARS-CoV-2) con resultados de prueba más rápidos, pero con menos sensibilidad que las pruebas de PCR para el virus. [57]

Las pruebas rápidas de antígenos para la COVID-19 son inmunoensayos de flujo lateral que detectan la presencia de un antígeno viral específico , lo que indica una infección viral actual. Las pruebas de antígenos producen resultados rápidamente (en aproximadamente 15 a 30 minutos) y la mayoría se pueden utilizar en el punto de atención o como pruebas de autoevaluación. Las pruebas de autoevaluación son pruebas rápidas que se pueden realizar en casa o en cualquier lugar, son fáciles de usar y producen resultados rápidos. [58] Las pruebas de antígenos se pueden realizar en muestras nasofaríngeas, de hisopado nasal o de saliva. [15]

Las pruebas de antígenos que pueden identificar el SARS-CoV-2 ofrecen un método más rápido y menos costoso para detectar el virus. [14] Las pruebas de antígenos son generalmente menos sensibles que la reacción en cadena de la polimerasa con transcripción inversa en tiempo real (RT-PCR) y otras pruebas de amplificación de ácidos nucleicos (NAAT). [15]

Las pruebas de antígenos pueden ser una forma de ampliar las pruebas a niveles mucho mayores. [56] Las pruebas de amplificación de ácidos nucleicos isotérmicos pueden procesar solo una muestra a la vez por máquina. Las pruebas RT-PCR son precisas, pero requieren demasiado tiempo, energía y personal capacitado para realizar las pruebas. [56] "Nunca habrá la capacidad en una prueba [PCR] de hacer 300 millones de pruebas al día o de evaluar a todos antes de que vayan a trabajar o a la escuela", dijo Deborah Birx , jefa del Grupo de Trabajo sobre Coronavirus de la Casa Blanca , el 17 de abril de 2020. "Pero podría haberla con la prueba de antígenos". [59]

Las muestras se pueden recoger mediante un hisopado nasofaríngeo, un hisopado de las fosas nasales anteriores o de la saliva (obtenida mediante diversos métodos, incluidas las pruebas de piruleta para niños). [60] Luego, la muestra se expone a tiras de papel que contienen anticuerpos artificiales diseñados para unirse a los antígenos del coronavirus. Los antígenos se unen a las tiras y brindan una lectura visual. El proceso demora menos de 30 minutos, puede brindar resultados en el punto de atención y no requiere equipo costoso ni capacitación extensa. [56]

Los hisopos de virus respiratorios a menudo carecen de suficiente material antigénico para ser detectables. [61] Esto es especialmente cierto para pacientes asintomáticos que tienen poca o ninguna secreción nasal . Las proteínas virales no se amplifican en una prueba de antígeno. [56] [62] Una revisión Cochrane basada en 64 estudios que investigaron la eficacia de 16 pruebas de antígeno diferentes determinó que identificaron correctamente la infección por COVID-19 en un promedio del 72% de las personas con síntomas, en comparación con el 58% de las personas sin síntomas. [63] [ necesita actualización ] Las pruebas fueron más precisas (78%) cuando se usaron en la primera semana después de que se desarrollaron los primeros síntomas, probablemente porque las personas tienen la mayor cantidad de virus en su sistema en los primeros días después de estar infectadas. [63] Si bien algunos científicos dudan de que una prueba de antígeno pueda ser útil contra COVID-19, [62] otros han argumentado que las pruebas de antígeno son muy sensibles cuando la carga viral es alta y las personas son contagiosas, lo que las hace adecuadas para la detección de salud pública. [64] [65] Las pruebas de antígenos de rutina pueden identificar rápidamente cuándo las personas asintomáticas son contagiosas, mientras que se puede utilizar una PCR de seguimiento si se necesita un diagnóstico confirmatorio. [66]

Pruebas de anticuerpos

Izquierda: Analizador automático para inmunoensayos , utilizado, por ejemplo, para detectar anticuerpos contra el SARS-CoV-2. Derecha: Ejemplo de resultados cuantitativos de la prueba de anticuerpos contra el SARS-CoV-2.

El cuerpo responde a una infección viral produciendo anticuerpos que ayudan a neutralizar el virus. [67] Los análisis de sangre (también llamados pruebas serológicas o inmunoensayos serológicos [3] ) pueden detectar la presencia de dichos anticuerpos. [68] Las pruebas de anticuerpos se pueden utilizar para evaluar qué fracción de una población ha sido infectada alguna vez, lo que luego se puede utilizar para calcular la tasa de mortalidad de la enfermedad . [5] También se pueden utilizar para determinar cuánto anticuerpo hay contenido en una unidad de plasma convaleciente, para el tratamiento de COVID-19 o para verificar si una vacuna determinada genera una respuesta inmune adecuada. [69]

No se ha establecido la potencia ni el período de protección de los anticuerpos contra el SARS-CoV-2. [5] [70] Por lo tanto, una prueba de anticuerpos positiva puede no implicar inmunidad a una futura infección. Además, no se ha establecido si las infecciones leves o asintomáticas producen suficientes anticuerpos para que una prueba los detecte. [71] Los anticuerpos para algunas enfermedades persisten en el torrente sanguíneo durante muchos años, mientras que otros desaparecen. [56]

Los anticuerpos más notables son IgM e IgG . Los anticuerpos IgM son generalmente detectables varios días después de la infección inicial, aunque los niveles a lo largo de la infección y más allá no están bien caracterizados. [72] Los anticuerpos IgG generalmente se vuelven detectables 10-14 días después de la infección y normalmente alcanzan su punto máximo alrededor de los 28 días después de la infección. [73] [74] Este patrón de desarrollo de anticuerpos observado con otras infecciones, a menudo no se aplica al SARS-CoV-2, sin embargo, a veces aparece IgM después de IgG, junto con IgG o no aparece en absoluto. [75] Sin embargo, generalmente, la detección media de IgM ocurre 5 días después del inicio de los síntomas, mientras que la IgG se detecta una mediana de 14 días después del inicio de los síntomas. [76] Los niveles de IgG disminuyen significativamente después de dos o tres meses. [77]

Las pruebas genéticas verifican la infección antes que las pruebas de anticuerpos. Solo el 30% de quienes dieron positivo en una prueba genética dieron positivo en una prueba de anticuerpos el séptimo día de la infección. [71]

Tipos de pruebas de anticuerpos

Prueba de diagnóstico rápido (PDR)

Las pruebas rápidas de diagnóstico suelen utilizar un pequeño ensayo de flujo lateral positivo/negativo portátil que se puede realizar en el punto de atención. Las pruebas rápidas de diagnóstico pueden procesar muestras de sangre, muestras de saliva o fluidos de hisopados nasales. Las pruebas rápidas de diagnóstico producen líneas de colores para indicar resultados positivos o negativos. [78]

Ensayo inmunoabsorbente ligado a enzimas (ELISA)

Las pruebas ELISA pueden ser cualitativas o cuantitativas y generalmente requieren un laboratorio. Estas pruebas suelen utilizar muestras de sangre completa , plasma o suero . Se recubre una placa con una proteína viral, como la proteína de pico del SARS-CoV-2. Las muestras se incuban con la proteína, lo que permite que los anticuerpos se unan a ella. El complejo anticuerpo-proteína se puede detectar luego con otro lavado de anticuerpos que produce una lectura de color/fluorescencia. [78]

Ensayo de neutralización

Los ensayos de neutralización evalúan si los anticuerpos de muestra previenen la infección viral en las células de prueba. [67] Estas pruebas toman muestras de sangre, plasma o suero. La prueba cultiva células que permiten la reproducción viral (por ejemplo, células Vero E6 ). Al variar las concentraciones de anticuerpos, los investigadores pueden visualizar y cuantificar cuántos anticuerpos de prueba bloquean la replicación del virus. [78]

Inmunoensayo quimioluminiscente

Los inmunoensayos quimioluminiscentes son pruebas de laboratorio cuantitativas. Se toman muestras de sangre, plasma o suero. Las muestras se mezclan con una proteína viral conocida, reactivos tampón y anticuerpos específicos marcados con enzimas. El resultado es luminiscente. Un inmunoensayo quimioluminiscente de micropartículas utiliza micropartículas magnéticas recubiertas de proteínas. Los anticuerpos reaccionan con la proteína viral y forman un complejo. Se añaden anticuerpos secundarios marcados con enzimas que se unen a estos complejos. La reacción química resultante produce luz. La radiancia se utiliza para calcular la cantidad de anticuerpos. Esta prueba puede identificar varios tipos de anticuerpos, incluidos IgG, IgM e IgA . [78]

Anticuerpos neutralizantes frente a anticuerpos de unión

La mayoría de las pruebas de anticuerpos de COVID-19 a gran escala, si no todas, buscan solo anticuerpos de unión y no miden los anticuerpos neutralizantes (NAb) más importantes. [79] [80] [81] Un NAb es un anticuerpo que neutraliza la infectividad de una partícula de virus al bloquear su unión o entrada en una célula susceptible; los virus envueltos, como por ejemplo el SARS-CoV-2, se neutralizan mediante el bloqueo de los pasos en el ciclo replicativo hasta la fusión de la membrana incluida. [82] [67] Un anticuerpo no neutralizante no se une a las estructuras cruciales en la superficie del virus o se une pero deja la partícula del virus infecciosa; el anticuerpo aún puede contribuir a la destrucción de partículas de virus o células infectadas por el sistema inmunológico. [83] [67] Incluso puede mejorar la infectividad al interactuar con los receptores en los macrófagos . [84] Dado que la mayoría de las pruebas de anticuerpos de COVID-19 arrojan un resultado positivo si solo encuentran anticuerpos de unión, estas pruebas no pueden indicar que el sujeto ha generado NAb protectores que protegen contra la reinfección. [80] [81]

Se espera que los anticuerpos de unión impliquen la presencia de NAb [81] y, en el caso de muchas enfermedades virales, las respuestas de anticuerpos totales se correlacionan de alguna manera con las respuestas de NAb [85], pero esto no está establecido para la COVID-19. Un estudio de 175 pacientes recuperados en China que experimentaron síntomas leves informó que 10 personas no tenían NAb detectables al momento del alta o posteriormente. No se abordó cómo se recuperaron estos pacientes sin la ayuda de NAb ni si corrían el riesgo de volver a infectarse. [80] Una fuente adicional de incertidumbre es que, incluso si hay NAb presentes, los virus como el VIH pueden evadir las respuestas de NAb. [79]

Los estudios han indicado que los NAbs contra el virus SARS original (el predecesor del actual SARS-CoV-2) pueden permanecer activos durante dos años [86] y desaparecen después de seis años. [87] Sin embargo, las células de memoria, incluidas las células B y T de memoria [88], pueden durar mucho más y pueden tener la capacidad de reducir la gravedad de la reinfección. [87]

Otras pruebas

Pruebas de olfato

La pérdida repentina del olfato puede utilizarse para detectar a diario la COVID-19 en personas infectadas. Un estudio de los Institutos Nacionales de Salud demostró que las personas infectadas con el SARS-CoV-2 no podían oler una mezcla de etanol y agua al 25 %. [89] Dado que diversas afecciones pueden provocar la pérdida del sentido del olfato, una prueba de olfato no sería definitiva, pero indicaría la necesidad de una prueba de PCR. Dado que la pérdida del sentido del olfato se manifiesta antes que otros síntomas, se ha pedido que se realicen pruebas de olfato de forma generalizada. [90] Las burocracias de la atención sanitaria han ignorado en general las pruebas de olfato, aunque son rápidas, fáciles y se pueden realizar por uno mismo a diario. Esto ha llevado a algunas revistas médicas a escribir editoriales en apoyo de la adopción de las pruebas de olfato. [91]

Imágenes

Las características típicas visibles en la TC inicialmente incluyen opacidades en vidrio esmerilado multilobar bilaterales con una distribución periférica o posterior. [92] La COVID-19 se puede identificar con mayor precisión utilizando la TC que con la RT-PCR. [93]

A medida que la enfermedad evoluciona, pueden desarrollarse dominancia subpleural , empedrado loco y consolidación . [92] [94] No se recomiendan las tomografías computarizadas ni las radiografías de tórax para diagnosticar la COVID-19. Los hallazgos radiológicos en la COVID-19 carecen de especificidad. [92] [95]

Las radiografías de tórax, las tomografías computarizadas y las ecografías son formas de detectar la enfermedad por coronavirus.

La radiografía de tórax es una máquina portátil y liviana. Esta máquina suele estar más disponible que las tomografías computarizadas y las de reacción en cadena de la polimerasa. Solo toma aproximadamente 15 segundos por paciente. [96] Esto hace que la radiografía de tórax sea fácilmente accesible y económica. También tiene un tiempo de respuesta rápido y puede ser crucial para el equipo clínico en la detección de la enfermedad por coronavirus. [97] Las tomografías computarizadas implican mirar imágenes en 3D desde varios ángulos. Esto no está tan disponible como la radiografía de tórax, pero aún así solo toma unos 15 minutos por paciente. [96] La tomografía computarizada ha sido una exploración de rutina conocida para el diagnóstico de neumonía, por lo tanto, también se puede utilizar para diagnosticar la enfermedad por coronavirus. Las tomografías computarizadas pueden ayudar con el seguimiento continuo de la enfermedad durante el tratamiento. Los pacientes que tenían síntomas leves y temperaturas corporales altas revelaron indicaciones pulmonares significativas en sus tomografías computarizadas de tórax. Destacaron lo importante que son las tomografías computarizadas de tórax para determinar la gravedad de la infección por la enfermedad por coronavirus. [98]

La ecografía puede ser otra herramienta para detectar la enfermedad por coronavirus. La ecografía es un tipo de examen de diagnóstico por imágenes que produce imágenes mediante ondas sonoras. A diferencia de las tomografías computarizadas y los rayos X, la ecografía no utiliza radiación. Además, es económica, fácil de usar, repetible y tiene varias ventajas adicionales. Mediante el uso de un dispositivo portátil, los exámenes de ecografía se pueden realizar en una variedad de entornos de atención médica. [99]

Sin embargo, el uso de imágenes tiene algunas desventajas. El equipo necesario para las tomografías computarizadas no está disponible en la mayoría de los hospitales, lo que hace que no sea tan eficaz como algunas otras herramientas utilizadas para la detección de la enfermedad por coronavirus. [96] Una de las tareas difíciles en una pandemia es inspeccionar manualmente cada informe, lo que requiere de numerosos profesionales de radiología y tiempo. [100] Hubo varios problemas con los primeros estudios sobre el uso de tomografías computarizadas de tórax para diagnosticar el coronavirus. Algunos de estos problemas incluían que las características de gravedad de la enfermedad eran diferentes en los casos graves y hospitalizados. Los criterios para realizar una tomografía computarizada de tórax no estaban definidos. Tampoco había una caracterización de los resultados positivos de las tomografías computarizadas de tórax. Los hallazgos de las tomografías computarizadas no eran los mismos que los hallazgos positivos de las tomografías computarizadas de coronavirus. [99] En un entorno clínico típico, no se recomienda la obtención de imágenes de tórax para la detección sistemática de COVID-19. No se recomienda que los pacientes con síntomas asintomáticos o leves se sometan a pruebas mediante tomografías computarizadas de tórax. Sin embargo, sigue siendo crucial su uso, en particular para determinar complicaciones o progresión de la enfermedad. Las imágenes de tórax tampoco son siempre la primera vía a seguir en pacientes con factores de alto riesgo de COVID-19. En los pacientes de alto riesgo que presentaron síntomas leves, los hallazgos de las imágenes de tórax fueron limitados. Aunque una tomografía computarizada es una herramienta potente en el diagnóstico de COVID-19, no es suficiente para identificar COVID-19 por sí sola debido a la poca especificidad y las dificultades que los radiólogos pueden experimentar para distinguir COVID-19 de otras neumonías virales en las tomografías computarizadas de tórax. [98]

Pruebas serológicas (puntuación CoLab)

El análisis de sangre estándar (escaneo rápido) que se realiza en la sala de emergencias mide diferentes valores. Mediante el uso del escaneo rápido de sangre, se calcula la puntuación CoLab con un algoritmo desarrollado en función de cómo el coronavirus provoca cambios en la sangre. El software está diseñado para su uso en salas de emergencia para descartar rápidamente la presencia de la enfermedad en los pacientes que ingresan. Un resultado no negativo se sigue con una prueba de PCR ( reacción en cadena de la polimerasa ) o LAMP ( amplificación isotérmica mediada por asa ). [101]

Pruebas de aliento

La prueba de aliento con alcoholímetro para detectar el coronavirus es una prueba de detección previa para personas que no presentan síntomas o tienen síntomas leves de COVID-19. Si el resultado no es negativo, se realiza una prueba PCR o LAMP. [ cita requerida ]

Animales

En mayo de 2021, Reuters informó que investigadores holandeses de la Universidad de Wageningen habían demostrado que las abejas entrenadas podían detectar el virus en muestras infectadas en segundos y esto podría beneficiar a los países donde las instalaciones de prueba son escasas. [102] Un estudio de dos meses realizado por el hospital Necker-Cochin de París en conjunto con la escuela nacional de veterinaria francesa informó en mayo de 2021 que los perros eran más confiables que las pruebas de flujo lateral actuales. [103]

En marzo de 2022, investigadores de París informaron en un artículo preliminar que aún no ha sido revisado por pares que los perros entrenados eran muy eficaces para detectar rápidamente la presencia del SARS-Cov2 en personas, ya sea que presentaran síntomas o no. Se les presentaron a los perros muestras de sudor para que las olieran de 335 personas, de las cuales 78 con síntomas y 31 sin ellos dieron positivo por PCR. Los perros detectaron el 97% de las infecciones sintomáticas y el 100% de las asintomáticas. Tuvieron una precisión del 91% al identificar a los voluntarios que no estaban infectados y del 94% al descartar la infección en personas asintomáticas. Los autores dijeron que "las pruebas caninas no son invasivas y brindan resultados inmediatos y confiables. Los estudios futuros se centrarán en el olfateo directo por perros para evaluar a los perros rastreadores para pruebas previas masivas en aeropuertos, puertos, estaciones de tren, actividades culturales o eventos deportivos". [104] [105]

Ensayos funcionales

Tollotest es una prueba molecular que detecta la actividad de una proteasa del SARS-CoV2, que es un biomarcador de infección activa. [106]

Historia

Cronología del número total de pruebas en diferentes países [107]

En enero de 2020, científicos de China publicaron las primeras secuencias genéticas del SARS-CoV-2 a través de virological.org [108] , un "centro de datos previos a la publicación diseñado para ayudar con las actividades e investigaciones de salud pública". [109] Investigadores de todo el mundo utilizaron esos datos para crear pruebas moleculares para el virus. Posteriormente se desarrollaron pruebas basadas en antígenos y anticuerpos. [ cita requerida ]

Incluso cuando se crearon las primeras pruebas, el suministro era limitado. Como resultado, ningún país tenía datos confiables sobre la prevalencia del virus al comienzo de la pandemia. [110] La OMS y otros expertos pidieron que se intensificaran las pruebas como la mejor manera de frenar la propagación del virus. [111] [112] La escasez de reactivos y otros suministros de prueba se convirtió en un cuello de botella para las pruebas masivas en la UE, el Reino Unido y los EE. UU. [113] [114] [115] Las primeras pruebas también tuvieron problemas de confiabilidad. [116] [117]

Protocolos de prueba

Pruebas en el auto

En las pruebas desde el automóvil , la persona que se somete a la prueba permanece en un vehículo mientras un profesional de la salud se acerca al vehículo y obtiene una muestra, todo ello mientras toma las precauciones adecuadas, como usar equipo de protección personal (EPP). [118] [119] Los centros de pruebas desde el automóvil ayudaron a Corea del Sur a acelerar su programa de pruebas. [120]

Colección para el hogar

Un kit de prueba casera de PCR de Randox en el Reino Unido, que muestra el hisopo y el empaque de varias capas para entregarlo al laboratorio.
Un paquete de USPS que contiene pruebas de COVID-19 de la quinta ronda de distribuciones gratuitas en EE. UU. en el otoño de 2023, con instrucciones sobre las extensiones de la FDA de las fechas de vencimiento de las pruebas.

En Hong Kong, los sujetos de prueba pueden quedarse en casa y recibir un tubo con la muestra. Escupen en él, lo devuelven y luego obtienen el resultado. [121] Además, para el otoño de 2023, Estados Unidos había realizado seis rondas de envío por correo de pruebas gratuitas de COVID-19 a domicilio en todo el país. Las pruebas rápidas de antígenos, aunque menos precisas que las pruebas PCR, no requerían enviarlas por correo a los laboratorios para su análisis. [122] [123]

Pruebas agrupadas

Las pruebas agrupadas pueden mejorar el tiempo de respuesta, al combinar varias muestras para analizarlas juntas. Si el resultado de la prueba agrupada es negativo, todas las muestras serán negativas. Si el resultado de la prueba es positivo, será necesario analizar las muestras individualmente. [69]

En Israel, los investigadores del Technion y del Hospital Rambam desarrollaron un método para analizar muestras de 64 pacientes simultáneamente, agrupando las muestras y realizando más pruebas solo si la muestra combinada era positiva. [124] [125] [126] Las pruebas agrupadas se adoptaron luego en Israel, Alemania, Ghana [127] [128] [129] Corea del Sur, [130] Nebraska , [131] China [132] y los estados indios de Uttar Pradesh , [133] Bengala Occidental , [134] Punjab , [135] Chhattisgarh [136] y Maharashtra . [137]

Los diseños multiplexados de código abierto publicados por Origami Assays pueden analizar hasta 1122 muestras de pacientes utilizando solo 93 ensayos. [138] Estos diseños equilibrados se pueden ejecutar en laboratorios pequeños sin manipuladores de líquidos robóticos.

Pruebas de varios niveles

Un estudio propuso un ensayo de respuesta inmune rápida como prueba de detección, con una prueba de ácido nucleico confirmatoria para el diagnóstico, seguida de una prueba rápida de anticuerpos para determinar el curso de acción y evaluar la exposición de la población/inmunidad colectiva. [139]

Volumen requerido

Los niveles de pruebas requeridas dependen de la propagación de la enfermedad. Cuantos más casos haya, más pruebas se necesitarán para controlar el brote. La COVID-19 tiende a crecer exponencialmente al comienzo de un brote, lo que significa que la cantidad de pruebas requeridas inicialmente también crece exponencialmente. Si las pruebas dirigidas adecuadamente aumentan más rápidamente que los casos, se puede contener. [ cita requerida ]

La OMS recomienda aumentar las pruebas hasta que menos del 10% sean positivas en cualquier jurisdicción determinada. [140]

Estados Unidos

Número de pruebas realizadas por día en los EE. UU . , a abril de 2020.
Azul: laboratorio de los CDC
Naranja: laboratorio de salud pública
Gris: datos incompletos debido a la demora en la presentación de informes
No se muestra: pruebas en laboratorios privados; el total superó las 100 000 por día al 27 de marzo. [141]

El economista Paul Romer informó que Estados Unidos tiene la capacidad técnica para escalar hasta 20 millones de pruebas por día, que es su estimación de la escala necesaria para removilizar completamente la economía. [142] El Centro de Ética Edmond J. Safra estimó el 4 de abril de 2020 que esta capacidad podría estar disponible a fines de julio de 2020. [143] Romer señaló el equipo de secuenciación en tiempo real de una sola molécula de Pacific Biosciences [142] [144] y el equipo de secuenciación de próxima generación Ion Torrent de ThermoFisher Scientific . [142] [145] Según Romer, "Artículos de investigación recientes sugieren que cualquiera de estos tiene el potencial de escalar hasta millones de pruebas por día". Este plan requiere eliminar los obstáculos regulatorios. Romer estimó que $ 100 mil millones cubrirían los costos. [142]

Romer también afirmó que no se requiere una alta precisión en las pruebas si se realizan con la suficiente frecuencia. Realizó simulaciones de modelos en las que se realiza una prueba al 7% de la población todos los días utilizando una prueba con una tasa de falsos negativos del 20% y una tasa de falsos positivos del 1% . La persona promedio se haría la prueba aproximadamente cada dos semanas. Aquellos que dieran positivo entrarían en cuarentena. La simulación de Romer indicó que la fracción de la población que está infectada en un momento dado (conocida como la tasa de ataque ) alcanza un pico de aproximadamente el 8% en unos treinta días antes de disminuir gradualmente, llegando en la mayoría de las ejecuciones a cero a los 500 días, con una prevalencia acumulada que se mantiene por debajo del 20%. [146]

Pruebas masivas de instantáneas

Un estudio concluyó que, a pesar de una implementación posiblemente subóptima, el enfoque de pruebas masivas instantáneas aplicado por Eslovaquia , por el cual se realizó la prueba de COVID-19 a aproximadamente el 80% de su población en un fin de semana a fines de octubre de 2020, se consideró altamente eficaz, disminuyendo la prevalencia observada en un 58% en una semana y en un 70% en comparación con un escenario hipotético de no realizar pruebas masivas instantáneas. [147] [148] La reducción significativa fue resultado de un conjunto de medidas complementarias de confinamiento y cuarentena por las cuales los ciudadanos que dieron positivo fueron puestos en cuarentena sincrónicamente las semanas posteriores. [149] El país aumentó otras contramedidas al mismo tiempo, por lo que la inferencia era cuestionable. En los meses siguientes, la tasa de mortalidad por COVID-19 per cápita de Eslovaquia aumentó hasta estar entre las más altas del mundo. La investigación sobre pruebas masivas sugiere que las personas que dan negativo piensan que es seguro viajar y entrar en contacto con personas infectadas. En los EE. UU., el sistema de rastreo se vio desbordado. En el 70 por ciento de los días hubo más casos de los que los rastreadores tuvieron tiempo de contactar y las personas contactadas a menudo no cooperaron. [150]

Vigilancia y detección de poblaciones

A partir de agosto de 2020, la OMS reconoce la vigilancia de las aguas residuales del SARS-CoV-2 como una fuente potencialmente útil de información sobre la prevalencia y las tendencias temporales de la COVID-19 en las comunidades, al tiempo que destaca que deben abordarse las lagunas en la investigación, como las características de propagación del virus. [151] Es posible que estas pruebas agregadas hayan detectado casos tempranos. [152] Los estudios muestran que la epidemiología basada en aguas residuales tiene el potencial de un sistema de alerta temprana y de seguimiento de las infecciones por COVID-19. [153] [154] [155] [156] [157] Esto puede resultar especialmente útil una vez que una gran proporción de las poblaciones regionales estén vacunadas o recuperadas y no necesiten realizar pruebas rápidas, aunque en algunos casos sean infecciosas de todos modos. [158]

Pruebas disponibles

Un sitio de prueba temporal para COVID-19 con acceso desde el automóvil instalado con carpas en un estacionamiento

Países de todo el mundo desarrollaron pruebas de forma independiente y en colaboración con otros.

Pruebas de ácido nucleico

Hay pruebas disponibles que buscan ARN viral utilizando tecnología de reacción en cadena de la polimerasa (PCR) o de amplificación isotérmica mediada por bucle (LAMP).

Las pruebas desarrolladas en China, Francia, Alemania, Hong Kong, Japón, el Reino Unido y los Estados Unidos se dirigieron a diferentes partes del genoma viral. La OMS adoptó el sistema alemán para fabricar kits que se envían a países de bajos ingresos que no cuentan con los recursos para desarrollar los suyos propios. [ cita requerida ]

PowerChek Coronavirus busca el gen "E" compartido por todos los coronavirus beta y el gen RdRp específico del SARS-CoV-2. [159]

El presidente de Estados Unidos, Donald Trump, muestra un kit de prueba de COVID-19 de Abbott Laboratories en marzo de 2020.
Prueba de ácido nucleico realizada con un dispositivo ID Now de Abbott Laboratories

La prueba de ácido nucleico ID Now de Abbott Laboratories utiliza tecnología de amplificación isotérmica . [160] El ensayo amplifica una región única del gen RdRp del virus ; las copias resultantes se detectan luego con " balizas moleculares marcadas con fluorescencia ". [161] El kit de prueba utiliza el dispositivo ID Now "del tamaño de una tostadora" de la empresa, que se utiliza ampliamente en los EE. UU. [162] El dispositivo se puede utilizar en laboratorios o en entornos de atención médica y proporciona resultados en 13 minutos o menos. [161]

Primerdesign ofrece su sistema de prueba de PCR en tiempo real Genesig. Roche Molecular Systems ofrece los sistemas Cobas 6800/8800; son ofrecidos, entre otros, por las Naciones Unidas. [ cita requerida ]

Pruebas de antígenos

Kit de prueba rápida cualitativa de flujo lateral de antígeno SARS-CoV-2 de Innova que muestra un resultado negativo. Este dispositivo ha sido objeto de problemas de precisión y ha sido retirado del mercado en los Estados Unidos.

Las pruebas de antígenos están disponibles en todo el mundo y han sido aprobadas por varios reguladores sanitarios.

 El "Sofia 2 SARS Antigen FIA" de Quidel [66] [163] es una prueba de flujo lateral que utiliza anticuerpos monoclonales para detectar la proteína nucleocápside (N) del virus . [164] El resultado se lee mediante el  dispositivo Sofia 2 de la empresa mediante inmunofluorescencia . [164] La prueba es más sencilla y económica, pero menos precisa que las pruebas de ácido nucleico. Se puede implementar en laboratorios o en el punto de atención y da resultados en 15 minutos. [163] Se produce un resultado falso negativo si el nivel de antígeno de la muestra es positivo pero está por debajo del límite de detección de la prueba, lo que requiere confirmación con una prueba de ácido nucleico. [164]

La prueba cualitativa rápida de antígeno SARS-CoV-2 de Innova nunca fue aprobada para su uso en los Estados Unidos, pero la empresa la vendía de todos modos. La FDA inspeccionó las instalaciones de Innova en California en marzo y abril de 2021 y encontró una garantía de calidad inadecuada de las pruebas fabricadas en China. [165] El 23 de abril de 2021, la empresa emitió un retiro del mercado. La FDA advirtió a los consumidores que devolvieran o destruyeran los dispositivos porque la tasa de falsos positivos y falsos negativos encontrados en los ensayos clínicos era mayor que la tasa declarada por el empaque. [166] Se han distribuido más de mil millones de pruebas de la empresa en el Reino Unido, con una financiación de 3 mil millones de libras esterlinas como parte de la Operación Moonshot , y el MHRK ha autorizado el uso excepcional hasta al menos el 28 de agosto de 2021. [165] Los expertos preocupados señalaron que la precisión disminuyó significativamente cuando la detección la realizaba el público en lugar de un profesional médico, y que la prueba no estaba diseñada para detectar a personas asintomáticas. [165] Un estudio de 2020 encontró que el 79% de los casos positivos se detectaron cuando lo usaron científicos de laboratorio, pero solo el 58% cuando lo usó el público en general y el 40% cuando se usó para la detección en toda la ciudad de Liverpool . [167]

Pruebas serológicas (de anticuerpos)

Los anticuerpos suelen detectarse 14 días después del inicio de la infección. Varias jurisdicciones realizan encuestas a sus poblaciones mediante estas pruebas. [168] [169] La prueba requiere una muestra de sangre.

Los laboratorios privados estadounidenses, incluidos Quest Diagnostics y LabCorp, ofrecen pruebas de anticuerpos a pedido. [170]

Ciertas pruebas de anticuerpos están disponibles en varios países europeos y también en los EE. UU. [171] [172]

Roche ofrece una prueba serológica ELISA selectiva. [173]

Una revisión resumida en BMJ ha señalado que si bien algunas "pruebas serológicas... podrían ser más baratas y fáciles de implementar en el punto de atención [que la RT-PCR]", y dichas pruebas pueden identificar a personas previamente infectadas, "es necesario tener precaución... al utilizar pruebas serológicas para... vigilancia epidemiológica". La revisión pidió estudios de mayor calidad que evalúen la precisión con referencia a un estándar de "RT-PCR realizado en al menos dos muestras consecutivas y, cuando sea posible, que incluya cultivos virales". [174] [175] Los investigadores del CEBM han pedido que la "definición de caso" en el hospital registre "hallazgos pulmonares de TC y análisis de sangre asociados" [176] y que la OMS elabore un "protocolo para estandarizar el uso e interpretación de la PCR" con recalibración continua. [177]

Exactitud

La precisión se mide en términos de especificidad y selectividad. Los errores de prueba pueden ser falsos positivos (la prueba es positiva, pero el virus no está presente) o falsos negativos (la prueba es negativa, pero el virus está presente). [179] En un estudio de más de 900.000 pruebas rápidas de antígenos, se encontró que los falsos positivos ocurrían a una tasa del 0,05% o 1 en 2000. [180]

Sensibilidad y especificidad

La sensibilidad indica si la prueba identifica con precisión la presencia del virus. Cada prueba requiere un nivel mínimo de carga viral para producir un resultado positivo. Una prueba con una sensibilidad del 90 % identificará correctamente el 90 % de las infecciones y no detectará el 10 % restante (un falso negativo). Incluso tasas de sensibilidad relativamente altas pueden producir tasas altas de falsos negativos en poblaciones con tasas de incidencia bajas. [179]

En una prueba diagnóstica, la sensibilidad es una medida de la capacidad de una prueba para identificar verdaderos positivos y la especificidad es una medida de la capacidad de una prueba para identificar verdaderos negativos. En todas las pruebas, tanto diagnósticas como de detección, suele existir un equilibrio entre la sensibilidad y la especificidad, de modo que una mayor sensibilidad implicará una menor especificidad y viceversa.

Sensibilidad y especificidad

Una prueba con un 90% de especificidad identificará correctamente al 90% de las personas que no están infectadas, dejando al 10% con un resultado falso positivo. [ cita requerida ]

Las pruebas de baja especificidad tienen un valor predictivo positivo (VPP) bajo cuando la prevalencia es baja. Por ejemplo, supongamos que la incidencia es del 5%. Si se realiza una prueba a 100 personas al azar con una prueba que tiene una especificidad del 95%, se obtendrían en promedio 5 personas que son realmente negativas y que darían positivo incorrectamente. Como el 5% de los sujetos son realmente positivos, otros cinco también darían positivo correctamente, lo que totalizaría 10 resultados positivos. Por lo tanto, el VPP es del 50%, [181] un resultado que no se diferencia del lanzamiento de una moneda. En esta situación, suponiendo que el resultado de una segunda prueba es independiente de la primera, volver a realizar la prueba a aquellos que dieron un primer resultado positivo aumenta el VPP al 94,5%, lo que significa que solo el 4,5% de las segundas pruebas darían el resultado incorrecto, en promedio menos de 1 resultado incorrecto. [182]

Causas de error de prueba

La evolución temporal de la infección afecta la precisión de algunas pruebas. Las muestras pueden recogerse antes de que el virus haya tenido la oportunidad de establecerse o después de que el cuerpo haya comenzado a eliminarlo. Una revisión de mayo de 2020 de las pruebas PCR-RT encontró que la probabilidad media de un resultado falso negativo disminuyó del 100 % el día 1 al 67 % el día 4. El día del inicio de los síntomas, la probabilidad era del 38 %, que disminuyó al 20 % 3 días después. [183] ​​[ necesita actualización ]

Prueba basada en PCR

Detección de SARS-CoV-2 mediante hisopado nasal durante seis semanas en pacientes que experimentaron una enfermedad leve a moderada

La RT-PCR es la prueba diagnóstica más utilizada. [184] Las pruebas de PCR mediante hisopado nasofaríngeo tienen una sensibilidad del 73%, pero no se ha determinado un análisis sistemático de la especificidad debido a la falta de estudios de PCR con un grupo control. [185]

En un estudio, la sensibilidad fue más alta en la semana uno (100%), seguida por 89,3%, 66,1%, 32,1%, 5,4% y cero en la semana seis desde el inicio de los síntomas. [186] [ verificación fallida ] [187]

La sensibilidad también es una función del número de ciclos de PCR, así como del tiempo y la temperatura entre la recolección y el análisis de la muestra. [188] Un umbral de ciclo de 20 ciclos sería adecuado para detectar el SARS-Cov-2 en una persona altamente infecciosa. [188] Los umbrales de ciclo superiores a 34 tienen cada vez más probabilidades de dar falsos positivos fuera de instalaciones con altos niveles de bioseguridad. [188]

En julio de 2020, el Dr. Anthony Fauci, del NIH de EE. UU., indicó que los resultados positivos obtenidos de las pruebas de RT-PCR realizadas a más de 35 ciclos casi siempre eran "solo nucleótidos muertos". [189] En agosto de 2020, se informó que "en tres conjuntos de datos de pruebas que incluyen umbrales de ciclo, recopilados por funcionarios de Massachusetts, Nueva York y Nevada ... la mayoría de las pruebas establecen el límite en 40 [ciclos], algunas en 37" y que el CDC estaba examinando el uso de medidas de umbral de ciclo "para decisiones políticas", [190] El 21 de julio de 2021, el CDC, en su "Plan de diagnóstico de RT-PCR en tiempo real: instrucciones de uso", indicó que los resultados de las pruebas deben determinarse a 40 ciclos. [191]

Una investigación de laboratorio dirigida por el CDC holandés comparó siete kits de PCR. [192] Los kits de prueba fabricados por BGI, R-Biopharm AG, BGI, KH Medical y Seegene mostraron una alta sensibilidad. [193]

Se recomiendan kits de alta sensibilidad para evaluar a personas asintomáticas, mientras que pruebas de menor sensibilidad son adecuadas para diagnosticar a pacientes sintomáticos. [192]

El Centro de Medicina Basada en la Evidencia (CEBM) de la Universidad de Oxford ha señalado la creciente evidencia [194] [195] de que "una buena proporción de casos leves 'nuevos' y personas que vuelven a dar positivo mediante RT-PCR después de la cuarentena o el alta hospitalaria no son infecciosas, sino que simplemente están eliminando partículas virales inofensivas que su sistema inmunológico ha tratado de manera eficiente", y ha pedido "un esfuerzo internacional para estandarizar y calibrar periódicamente las pruebas". [176] El 7 de septiembre, el gobierno del Reino Unido emitió "una guía para los procedimientos que se deben implementar en los laboratorios para brindar garantías de resultados positivos de ARN del SARS-CoV-2 durante períodos de baja prevalencia, cuando hay una reducción en el valor predictivo de los resultados positivos de las pruebas". [196]

El 4 de enero de 2021, la FDA de EE. UU. emitió una alerta sobre el riesgo de resultados falsos, en particular resultados falsos negativos, con la prueba RT-PCR en tiempo real Curative SARS-Cov-2 Assay. [49]

Prueba de amplificación isotérmica de ácidos nucleicos

Un estudio informó que la prueba ID Now COVID-19 mostró una sensibilidad del 85,2 %. Abbott respondió que el problema podría haber sido causado por demoras en el análisis. [197] Otro estudio rechazó la prueba en su entorno clínico debido a esta baja sensibilidad. [198]

Pruebas de confirmación

La OMS recomienda que los países que no tienen capacidad de realizar pruebas y los laboratorios nacionales con experiencia limitada en COVID-19 envíen sus primeras cinco muestras positivas y las primeras diez negativas de COVID-19 a uno de los 16 laboratorios de referencia de la OMS para realizar pruebas de confirmación. [199] [200] De los dieciséis laboratorios de referencia, siete están en Asia, cinco en Europa, dos en África, uno en América del Norte y uno en Australia. [201]

Respuestas nacionales o regionales

Islandia

Islandia gestionó la pandemia con un rastreo agresivo de contactos, restricciones a los viajes entrantes, pruebas y cuarentenas, pero con confinamientos menos agresivos. [202]

India

Italia

Los investigadores realizaron pruebas a toda la población de Vo' , el lugar donde se produjo la primera muerte por COVID-19 en Italia. Realizaron pruebas a unas 3.400 personas dos veces, con un intervalo de diez días. Aproximadamente la mitad de las personas que dieron positivo no presentaban síntomas. Todos los casos descubiertos fueron puestos en cuarentena. Además de restringir los viajes a la comuna, se eliminaron las nuevas infecciones. [203]

Japón

A diferencia de otros países asiáticos, Japón no experimentó una pandemia de SARS o MERS , por lo que el sistema de pruebas de PCR del país no estaba bien desarrollado. [204] [205] Japón realizó pruebas preferenciales a los pacientes con enfermedades graves y sus contactos cercanos al principio. La Reunión de Expertos sobre el Nuevo Coronavirus de Japón eligió medidas de conglomerados para identificar los conglomerados de infecciones. [204] [205] La Reunión de Expertos analizó el brote de Wuhan e identificó las condiciones que conducen a los conglomerados (espacios cerrados, espacios abarrotados y contacto cercano), y pidió a las personas que los evitaran. [205] [206]

En enero, los rastreadores de contactos entraron en acción poco después de detectarse la primera infección. Al principio, solo se realizaron pruebas administrativas, hasta que el seguro comenzó a cubrir las pruebas de PCR el 6 de marzo. Las empresas privadas comenzaron a realizar pruebas y el sistema de pruebas se expandió gradualmente. [204] [207]

El 3 de abril, a quienes dieron positivo en las pruebas se les permitió legalmente recuperarse en casa o en un hotel si tenían una enfermedad asintomática o leve, poniendo fin a la escasez de camas de hospital. [208] La primera ola (de China) fue contenida, [209] pero una segunda ola (causada por repatriados de Europa y los EE. UU.) a mediados de marzo llevó a la propagación de la infección en abril. [205] El 7 de abril, Japón declaró un estado de emergencia (menos estricto que un confinamiento, porque no bloqueó ciudades ni restringió salidas). [205] [208] [210] El 13 de mayo, los kits de prueba de antígenos pasaron a estar cubiertos por el seguro y se combinaron con una prueba de PCR para el diagnóstico. [211] [212]

El recuento de pruebas PCR per cápita de Japón siguió siendo mucho menor que en otros países, aunque su tasa de pruebas positivas fue menor. En marzo se observó un exceso de mortalidad. [206] [ verificación fallida ] [210] [ verificación fallida ] [213] La Reunión de Expertos afirmó: "El sistema de atención sanitaria japonés originalmente lleva a cabo una vigilancia de la neumonía, lo que le permite detectar a la mayoría de los pacientes gravemente enfermos que desarrollan neumonía. Hay una gran cantidad de escáneres CT en Japón y se han extendido a pequeños hospitales en todo el país, por lo que rara vez se pasan por alto los pacientes con neumonía. En ese sentido, cumple los mismos estándares que otros países que realizan principalmente pruebas PCR". [206] [213] El grupo recomendó utilizar los datos de las tomografías computarizadas y los hallazgos del médico para el diagnóstico. [214] [215] En el crucero Diamond Princess, muchas personas que inicialmente dieron negativo en la prueba luego dieron positivo. La mitad de los positivos al coronavirus que permanecieron leves o asintomáticos tuvieron hallazgos de neumonía en las tomografías computarizadas y su imagen de TC mostró una sombra de vidrio esmerilado que es característica de la infección. [214] [216]

Al 18 de julio, la capacidad diaria de pruebas PCR de Japón era de aproximadamente 32.000, más de tres veces los 10.000 casos de abril. Si se añade la prueba de antígenos, la cifra es de aproximadamente 58.000. El número de pruebas por cada 1.000 personas en los Estados Unidos es aproximadamente 27 veces mayor que el de Japón, el Reino Unido es 20 veces, Italia es 8 veces y Corea del Sur es el doble (al 26 de julio). [217] [218] [219] El número de infectados por coronavirus y pacientes hospitalizados ha aumentado en julio, pero el número de casos graves no ha aumentado. Se cree que esto se debe a que las pruebas de los infectados en julio se realizaron correctamente en comparación con las de abril. En abril, el número de pruebas no pudo alcanzar el aumento del número de personas infectadas y los estándares de prueba eran estrictos, por lo que la tasa de positivos en las pruebas superó el 30% en el pico. Esto significa que hubo bastantes casos en los que los infectados no se sometieron a la prueba PCR. Se cree que se hizo una prueba preferencial a los casos graves, aunque hubo muchos casos leves y portadores asintomáticos, principalmente entre los jóvenes, durante la primera ola. En otras palabras, se hizo posible comprender la situación real de la infección mucho mejor que antes al fortalecer el sistema de pruebas. [220] A fines de julio, las instalaciones de alojamiento para portadores leves y asintomáticos se llenaron y las autoridades solicitaron a los hospitales que prepararan camas para los leves. Sin embargo, se volvió difícil tratar a los pacientes con otras enfermedades y mantener el sistema de UCI, incluido el personal, debido a la ocupación de las camas de hospital por pacientes con síntomas leves. [221] [222] [223]

Rusia

En abril de 2020, Rusia realizó pruebas a 3 millones de personas y tuvo 183.000 resultados positivos. [224] El 28 de abril, Anna Popova , jefa del Servicio Federal de Vigilancia en la Atención Sanitaria (Roszdravnadzor), declaró que 506 laboratorios estaban realizando pruebas; que el 45% de los que dieron positivo no tenían síntomas; que el 5% de los pacientes tenían una forma grave; y el 40% de las infecciones eran de miembros de la familia. La enfermedad mejoró de seis días a un día después de que aparecieron los síntomas. Se realizaron pruebas de anticuerpos a 3.200 médicos de Moscú, y se encontró un 20% de inmunidad. [225]

Singapur

Con el rastreo de contactos, las restricciones a los viajes entrantes, las pruebas y la cuarentena, Singapur detuvo la propagación inicial sin un confinamiento completo. [226]

Eslovaquia

En octubre de 2020, Eslovaquia realizó pruebas a 3,62 millones de personas en un fin de semana. De una población de 5,4 millones, lo que representa el 67% del total (o el 82% de la población adulta), 38.359 dieron positivo, lo que representa el 1,06% de los examinados. El gobierno consideró que las pruebas masivas ayudarían significativamente a controlar el virus y evitar un confinamiento y podría repetir la operación en una fecha posterior. [227]

Corea del Sur

La amplia estrategia de pruebas de Corea del Sur contribuyó a reducir la propagación. La capacidad de realizar pruebas, en gran medida en laboratorios del sector privado, fue desarrollada durante varios años por el gobierno surcoreano a principios de la década de 2000. [228]

El gobierno explotó el sistema de número de registro de residentes (RRN). Las autoridades movilizaron a hombres jóvenes que eran elegibles para el servicio militar como agentes de servicio social, médicos de seguridad y de salud pública. Los médicos de salud pública fueron enviados principalmente a centros de salud pública y centros de tratamiento de vida donde se alojaban pacientes con enfermedades leves. Realizaban pruebas de PCR y atendían a pacientes leves. Los agentes de servicio social trabajaban en farmacias para cubrir la escasez de personal. Las 10.000 pruebas de PCR por millón de habitantes de Corea fueron las más altas del mundo al 13 de abril, aumentando a 20.000 a mediados de junio. Veintisiete empresas coreanas exportaron kits de prueba por valor de 48,6 millones de dólares en marzo, y más de 120 países les pidieron que proporcionaran kits de prueba o asistencia humanitaria. Las autoridades coreanas establecieron un centro de tratamiento para aislar y tratar a pacientes con enfermedades asintomáticas y leves en una instalación con el fin de desocupar camas de hospital para los enfermos más graves.

Los centros se ubicaron principalmente en instalaciones nacionales y centros de capacitación corporativa. El fracaso de la cuarentena de MERS de Corea en mayo de 2015 dejó a Corea más preparada para COVID-19 que los países que no enfrentaron esa pandemia. La entonces presidenta Park Geun-hye permitió que el sector privado coreano aprobara pruebas para enfermedades infecciosas en 2016. Corea ya tenía un sistema para aislar, realizar pruebas y tratar a los pacientes con enfermedades infecciosas por separado de los demás. Los pacientes con enfermedades respiratorias pero sin relevancia epidemiológica fueron tratados en el Hospital Nacional, y aquellos con relevancia epidemiológica fueron tratados en clínicas seleccionadas. [229] [230] [231] [232 ] [233] [234] [235] [236] [237]

Corea estableció un programa de pruebas a gran escala de "servicio de atención al cliente en el automóvil o a pie". Sin embargo, el método más común fue el "examen móvil". En la ciudad de Daegu, el 54% de las muestras se recogieron hasta el 23 de marzo en el hogar o en el hospital. La recolección de muestras puerta a puerta evitó el riesgo de que los pacientes posiblemente infectados viajaran, pero requirió personal adicional. Corea resolvió el problema reclutando a más de 2.700 médicos de seguros públicos. [229] [233] [232]

El gobierno divulgó información personal al público a través de KCDC sin el consentimiento de los pacientes. Las autoridades utilizaron la vigilancia digital para rastrear la posible propagación. [230] [233] [234] [236] [237] [238] [239] [240] [241] [242] [ citas excesivas ]

Taiwán

Se utilizaron los números de identificación del seguro de salud y del documento nacional de identidad para rastrear los contactos. [243] [244] [245] [246]

Emiratos Árabes Unidos

En enero de 2021, los resultados de las pruebas de COVID-19 de los Emiratos Árabes Unidos fueron objeto de escrutinio, ya que Dinamarca suspendió los vuelos emiratíes durante cinco días. La nación europea dijo que prohibía los vuelos desde los Emiratos Árabes Unidos debido a la creciente sospecha de irregularidades en el proceso de pruebas que se sigue en la nación del Golfo. El ministro de Transporte de Dinamarca, Benny Engelbrecht, dijo que se estaban tomando el tiempo para garantizar que las pruebas negativas de los viajeros de los Emiratos fueran una evaluación real realizada de manera adecuada. [247]

Estados Unidos

Estado de Nueva York

Las medidas de control del estado de Nueva York consistieron en pruebas PCR, medidas de confinamiento y fortalecimiento del sistema de salud. El 29 de febrero, antes de que se detectara el primer caso, el estado permitió la realización de pruebas en el Centro Wordsworth. Consiguieron convencer a los CDC para que aprobaran las pruebas en los laboratorios estatales y a la FDA para que aprobara un kit de prueba. Al 13 de marzo, el estado estaba realizando más de 1.000 pruebas diarias, cifra que aumentó a 10.000/día el 19 de marzo. En abril, la cifra superó las 20.000. Muchas personas hicieron cola en los hospitales para hacerse la prueba. El 21 de marzo, los funcionarios de salud de la ciudad de Nueva York ordenaron a los proveedores médicos que realizaran pruebas solo a quienes ingresaran al hospital, por falta de EPP. [236] [248] [249] [250] [251] [ citas excesivas ]

USSTeodoro Roosevelt

Tras un brote, se realizó la prueba al 94% de los 4.800 tripulantes del portaaviones. Aproximadamente el 60% de los más de 600 marineros que dieron positivo eran asintomáticos. [252] Cinco marineros infectados que completaron la cuarentena desarrollaron posteriormente síntomas similares a los de la gripe y dieron positivo nuevamente. [253]

Nevada

En 2020, Nevada recibió una donación de 250.000 kits de prueba de Covid, que eran un producto de la empresa de genética líder de China, BGI Group . Group 42, una empresa con sede en los Emiratos Árabes Unidos propiedad de Tahnoun bin Zayed Al Nahyan , se asoció con BGI Group para suministrar los kits de prueba a Nevada . Sin embargo, el Departamento de Seguridad Nacional de EE. UU. y el Departamento de Estado advirtieron a los hospitales de Nevada que no utilizaran los kits de prueba fabricados en China, ya que existían preocupaciones en torno a la participación del gobierno chino, la precisión de las pruebas y la privacidad de los pacientes. [254]

Estadísticas de pruebas por país

Las estrategias de realización de pruebas varían según el país y a lo largo del tiempo [255] , y algunos países realizan pruebas de forma muy generalizada [8], mientras que otros se han centrado a veces en realizar pruebas solo a los enfermos graves [6] . El país que realiza pruebas solo a las personas que presentan síntomas tendrá una cifra más alta de "Confirmados"/"probados" que el país que también realiza pruebas a otros [256] . Si dos países son iguales en todos los aspectos, incluida la gente a la que realizan pruebas, el que realiza pruebas a más personas tendrá una cifra más alta de "Confirmados/población". Los estudios también han descubierto que los países que realizan más pruebas, en relación con el número de muertes, tienen tasas de letalidad estimadas más bajas [9] y distribuciones de casos por edad más jóvenes [11] .

See also

References

  1. ^ "Coronavirus Disease 2019 (COVID-19)". U.S. Centers for Disease Control and Prevention (CDC). 11 February 2020. Archived from the original on 14 March 2020. Retrieved 9 June 2020.
  2. ^ Kobokovich A, West R, Gronvall G. "Global Progress on COVID-19 Serology-Based Testing". Johns Hopkins Center for Health Security. Archived from the original on 9 June 2020. Retrieved 9 June 2020.
  3. ^ a b c Kubina R, Dziedzic A (June 2020). "Molecular and Serological Tests for COVID-19 a Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics". Diagnostics. 10 (6): 434. doi:10.3390/diagnostics10060434. PMC 7345211. PMID 32604919.
  4. ^ "Test for Past Infection". U.S. Centers for Disease Control and Prevention (CDC). 2020. Archived from the original on 16 May 2020. Retrieved 19 May 2020. Antibody blood tests, also called antibody tests, check your blood by looking for antibodies, which show if you had a previous infection with the virus. Depending on when someone was infected and the timing of the test, the test may not find antibodies in someone with a current COVID-19 infection.
  5. ^ a b c Abbasi J (May 2020). "The Promise and Peril of Antibody Testing for COVID-19". JAMA. 323 (19): 1881–1883. doi:10.1001/jama.2020.6170. PMID 32301958. Archived from the original on 20 April 2020. Retrieved 20 April 2020.
  6. ^ a b Brotschi M (7 March 2020). "Bund sucht nicht mehr alle Corona-Infizierten" [The federal government is no longer looking for all those infected with corona]. Der Bund (in German). ISSN 0774-6156. Archived from the original on 29 March 2020. Retrieved 9 June 2020.
  7. ^ Van Beusekom M (24 March 2020). "Italian doctors note high COVID-19 death rate, urge action". CIDRAP News. Archived from the original on 9 June 2020. Retrieved 9 June 2020.
  8. ^ a b Otmani M (22 March 2020). "COVID-19: First results of the voluntary screening in Iceland". Nordic Life Science. Archived from the original on 29 March 2020. Retrieved 9 June 2020.
  9. ^ a b Ward D (April 2020). "Sampling bias: explaining wide variations in COVID-19 case fatality rates". Preprint. Bern, Switzerland: WardEnvironment. doi:10.13140/RG.2.2.24953.62564/1.
  10. ^ Henriques M (2 April 2020). "Coronavirus: Why death and mortality rates differ". BBC News. Archived from the original on 2 April 2020. Retrieved 9 June 2020.
  11. ^ a b Ward D (May 2020). Sampling Bias: Explaining Variations in Age Distributions of COVID-19 Cases. Technical Report (Report). WardEnvironment. doi:10.13140/RG.2.2.27321.19047/2.
  12. ^ "Why More Younger People Are Testing Positive for COVID-19". Time. Archived from the original on 26 February 2021. Retrieved 18 August 2020.
  13. ^ Mina MJ, Parker R, Larremore DB (November 2020). "Rethinking Covid-19 Test Sensitivity - A Strategy for Containment". The New England Journal of Medicine. 383 (22): e120. doi:10.1056/NEJMp2025631. PMID 32997903. S2CID 222158786.
  14. ^ a b "Antigen-detection in the diagnosis of SARS-CoV-2 infection". www.who.int. Retrieved 12 July 2022.
  15. ^ a b c CDC (11 February 2020). "Guidance for Antigen Testing for SARS-CoV-2 for Healthcare Providers Testing Individuals in the Community". Centers for Disease Control and Prevention. Retrieved 12 July 2022.
  16. ^ "Siouxsie Wiles & Toby Morris: What we don't know about Covid-19". The Spinoff. 6 May 2020. Archived from the original on 22 August 2020. Retrieved 6 May 2020.
  17. ^ "Testing for COVID-19". U.S. Centers for Disease Control and Prevention (CDC). 20 May 2020. Archived from the original on 19 May 2020. Retrieved 20 May 2020. Two kinds of tests are available for COVID-19: viral tests and antibody tests.
  18. ^ Tanner T (23 September 2020). "Finland deploys coronavirus-sniffing dogs at main airport". Associated Press. Helsinki. Archived from the original on 27 October 2020. Retrieved 28 October 2020.
  19. ^ Jones RT, Guest C, Lindsay SW, Kleinschmidt I, Bradley J, Dewhirst S, et al. (December 2020). "Could bio-detection dogs be used to limit the spread of COVID-19 by travellers?". Journal of Travel Medicine. 27 (8). doi:10.1093/jtm/taaa131. PMC 7454791. PMID 32789466.
  20. ^ Jendrny P, Schulz C, Twele F, Meller S, von Köckritz-Blickwede M, Osterhaus AD, et al. (July 2020). "Scent dog identification of samples from COVID-19 patients - a pilot study". BMC Infectious Diseases. 20 (1): 536. doi:10.1186/s12879-020-05281-3. PMC 7376324. PMID 32703188.
  21. ^ a b Habibzadeh P, Mofatteh M, Silawi M, Ghavami S, Faghihi MA (September 2021). "Molecular diagnostic assays for COVID-19: an overview". Critical Reviews in Clinical Laboratory Sciences. 58 (6): 385–398. doi:10.1080/10408363.2021.1884640. PMC 7898297. PMID 33595397.
  22. ^ "RNA Extraction". AssayGenie. Archived from the original on 6 May 2020. Retrieved 7 May 2020.
  23. ^ a b "How is the COVID-19 Virus Detected using Real Time RT-PCR?". IAEA. 27 March 2020. Archived from the original on 1 May 2020. Retrieved 5 May 2020.
  24. ^ "Curetis Group Company Ares Genetics and BGI Group Collaborate to Offer Next-Generation Sequencing and PCR-based Coronavirus (2019-nCoV) Testing in Europe". GlobeNewswire News Room (Press release). 30 January 2020. Archived from the original on 31 January 2020. Retrieved 1 February 2020.
  25. ^ a b Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. (April 2009). "The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments". Clinical Chemistry. 55 (4): 611–622. doi:10.1373/clinchem.2008.112797. PMID 19246619.
  26. ^ "Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis" (PDF). Clinical Science. 23 September 2005. Archived (PDF) from the original on 24 November 2020. Retrieved 5 May 2020.
  27. ^ "The Basics: RT-PCR". ThermoFisher Scientific. Archived from the original on 14 April 2020. Retrieved 5 May 2020.
  28. ^ Kang XP, Jiang T, Li YQ, Lin F, Liu H, Chang GH, et al. (June 2010). "A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus". Virology Journal. 7: 113. doi:10.1186/1743-422X-7-113. PMC 2892456. PMID 20515509.
  29. ^ Joyce C (2002). "Quantitative RT-PCR: A Review of Current Methodologies". RT-PCR Protocols. Methods Mol. Biol. Vol. 193. pp. 83–92. doi:10.1385/1-59259-283-X:083. ISBN 978-1-59259-283-8. PMID 12325527.
  30. ^ Varkonyi-Gasic E, Hellens RP (2010). "QRT-PCR of Small RNAs". Plant Epigenetics. Methods in Molecular Biology. Vol. 631. pp. 109–22. doi:10.1007/978-1-60761-646-7_10. ISBN 978-1-60761-645-0. PMID 20204872.
  31. ^ "Accelerated Emergency Use Authorization (Eua) Summary Covid-19 Rt-Pcr Test (Laboratory Corporation of America)". FDA. Archived from the original on 16 January 2021. Retrieved 3 April 2020.
  32. ^ Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (April 2010). "A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines". Methods. 50 (4): S1–S5. doi:10.1016/j.ymeth.2010.01.005. PMID 20215014.
  33. ^ Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. (March 2021). "Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection". The Cochrane Database of Systematic Reviews. 3 (4): CD013705. doi:10.1002/14651858.CD013705.pub2. PMC 8078597. PMID 33760236.
  34. ^ Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, et al. (July 2022). "Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection". The Cochrane Database of Systematic Reviews. 2022 (7): CD013705. doi:10.1002/14651858.CD013705.pub3. PMC 9305720. PMID 35866452.
  35. ^ "Real-Time RT-PCR Panel for Detection 2019-nCoV". U.S. Centers for Disease Control and Prevention (CDC). 29 January 2020. Archived from the original on 30 January 2020. Retrieved 1 February 2020.
  36. ^ a b c Drosten C (26 March 2020). "Coronavirus-Update Folge 22" [Coronavirus update episode 22] (PDF). NDR. Archived (PDF) from the original on 31 March 2020. Retrieved 2 April 2020.
  37. ^ a b "Here's where things stand on COVID-19 tests in the U.S." Science News. ScienceNews. 17 April 2020. Archived from the original on 28 April 2020. Retrieved 6 May 2020.
  38. ^ a b c Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q (April 2020). "Saliva: potential diagnostic value and transmission of 2019-nCoV". International Journal of Oral Science. 12 (1): 11. doi:10.1038/s41368-020-0080-z. PMC 7162686. PMID 32300101.
  39. ^ Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. (May 2003). "Identification of a novel coronavirus in patients with severe acute respiratory syndrome". The New England Journal of Medicine. 348 (20): 1967–1976. doi:10.1056/NEJMoa030747. hdl:1765/8447. PMID 12690091.
  40. ^ Ghoshal U, Vasanth S, Tejan N (June 2020). "A guide to laboratory diagnosis of Corona Virus Disease-19 for the gastroenterologists". Indian Journal of Gastroenterology. 39 (3): 236–242. doi:10.1007/s12664-020-01082-3. PMC 7462729. PMID 32875524.
  41. ^ "COVID-19 saliva tests: What is the benefit?". Mayo Clinic. 16 April 2020. Archived from the original on 1 May 2020. Retrieved 6 May 2020.
  42. ^ a b "New Rutgers Saliva Test for Coronavirus Gets FDA Approval". Rutgers.edu. 13 April 2020. Archived from the original on 30 April 2020. Retrieved 1 May 2020.
  43. ^ "FDA authorizes Covid-19 saliva test for emergency use". CNN. 14 April 2020. Archived from the original on 27 April 2020. Retrieved 1 May 2020.
  44. ^ Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. (September 2020). "Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2". The New England Journal of Medicine. 383 (13): 1283–1286. doi:10.1056/NEJMc2016359. PMC 7484747. PMID 32857487. S2CID 221358482.
  45. ^ Service RF (August 2020). "Spit shines for easier coronavirus testing". Science. 369 (6507): 1041–1042. Bibcode:2020Sci...369.1041S. doi:10.1126/science.369.6507.1041. PMID 32855317. S2CID 221358939.
  46. ^ "Yale University School of Public Health finds saliva samples promising alternative to nasopharyngeal swab". Merck Manual. 29 April 2020. Archived from the original on 28 May 2020. Retrieved 6 April 2020.
  47. ^ "FDA gives emergency approval to 'game changer' COVID-19 saliva test". The Washington Times. Archived from the original on 16 August 2020. Retrieved 15 August 2020.
  48. ^ "Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization to Yale School of Public Health for SalivaDirect, Which Uses a New Method of Saliva Sample Processing". U.S. Food and Drug Administration (FDA) (Press release). 15 August 2020. Archived from the original on 16 August 2020. Retrieved 6 November 2020.
  49. ^ a b Public Domain One or more of the preceding sentences incorporates text from this source, which is in the public domain: "Risk of False Results with the Curative SARS-Cov-2 Test for COVID-19". U.S. Food and Drug Administration (FDA). 4 January 2021. Archived from the original on 4 January 2021. Retrieved 4 January 2021.
  50. ^ Symptom-Based Strategy to Discontinue Isolation for Persons with COVID-19 (2020) referenced
    • CDC unpublished data
    • COVID-19 Investigation Team (June 2020). "Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States". Nature Medicine. 26 (6): 861–868. doi:10.1038/s41591-020-0877-5. PMID 32327757.{{cite journal}}: CS1 maint: numeric names: authors list (link)
    • Young BE, Ong SW, Kalimuddin S, Low JG, Tan SY, Loh J, et al. (April 2020). "Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore". JAMA. 323 (15): 1488–1494. doi:10.1001/jama.2020.3204. PMC 7054855. PMID 32125362.
    • Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. (March 2020). "SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients". The New England Journal of Medicine. 382 (12): 1177–1179. doi:10.1056/NEJMc2001737. PMC 7121626. PMID 32074444.
    • Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. (May 2020). "Virological assessment of hospitalized patients with COVID-2019". Nature. 581 (7809): 465–469. Bibcode:2020Natur.581..465W. doi:10.1038/s41586-020-2196-x. PMID 32235945.
  51. ^ Symptom-Based Strategy to Discontinue Isolation for Persons with COVID-19 (2020) referenced
    • CDC unpublished data
    • Young et al. (2020)
  52. ^ Symptom-Based Strategy to Discontinue Isolation for Persons with COVID-19 (2020) referenced
    • CDC unpublished data
    • COVID-19 Investigation Team (June 2020). "Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States". Nature Medicine. 26 (6): 861–868. doi:10.1038/s41591-020-0877-5. PMID 32327757.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  53. ^ Zimmer C (5 May 2020). "With Crispr, a Possible Quick Test for the Coronavirus". The New York Times. ISSN 0362-4331. Archived from the original on 14 May 2020. Retrieved 14 May 2020.
  54. ^ "STOPCovid". stopcovid.science. Archived from the original on 10 June 2020. Retrieved 14 June 2020.
  55. ^ Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang MW, et al. (May 2020). "Point-of-care testing for COVID-19 using SHERLOCK diagnostics". medRxiv 10.1101/2020.05.04.20091231v1.
  56. ^ a b c d e f "Developing Antibodies and Antigens for COVID-19 Diagnostics". Technology Networks. 6 April 2020. Archived from the original on 30 April 2020. Retrieved 30 April 2020.
  57. ^ Guglielmi G (September 2020). "Fast coronavirus tests: what they can and can't do". Nature. 585 (7826): 496–498. Bibcode:2020Natur.585..496G. doi:10.1038/d41586-020-02661-2. PMID 32939084. S2CID 221768935.
  58. ^ CDC (11 February 2020). "COVID-19 and Your Health". Centers for Disease Control and Prevention. Retrieved 12 July 2022.
  59. ^ "Remarks by President Trump, Vice President Pence, and Members of the Coronavirus Task Force in Press Briefing". whitehouse.gov. 17 April 2020. Archived from the original on 20 January 2021. Retrieved 30 April 2020 – via National Archives.
  60. ^ Müllender F (11 March 2021). "Grundschulen – Corona-Pool-Tests gelten als kindgerecht, unkompliziert und sicher" (in German). Deutschlandfunk. Archived from the original on 24 July 2021. Retrieved 5 June 2021.
  61. ^ "NIH launches competition to speed COVID-19 diagnostics". AAAS. 29 April 2020. Archived from the original on 1 May 2020. Retrieved 1 May 2020.
  62. ^ a b "What to know about the three main types of coronavirus tests". CNN. 29 April 2020. Archived from the original on 10 May 2020. Retrieved 30 April 2020.
  63. ^ a b Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. (Cochrane COVID-19 Diagnostic Test Accuracy Group) (March 2021). "Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection". The Cochrane Database of Systematic Reviews. 3 (3): CD013705. doi:10.1002/14651858.CD013705.pub2. PMC 8078597. PMID 33760236.
  64. ^ "Rapid Tests". Rapid Tests. Archived from the original on 31 May 2021. Retrieved 2 July 2021.
  65. ^ Shaw J (3 August 2020). "Failing the Coronavirus-Testing Test". Harvard Magazine. Archived from the original on 30 June 2021. Retrieved 2 July 2021.
  66. ^ a b Office of the Commissioner (9 May 2020). "Coronavirus (COVID-19) Update: FDA Authorizes First Antigen Test to Help in the Rapid Detection of the Virus that Causes COVID-19 in Patients". FDA. Archived from the original on 29 May 2021. Retrieved 2 July 2021.
  67. ^ a b c d Klasse PJ (9 September 2014). "Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives". Advances in Biology. 2014. Hindawi Limited: 1–24. doi:10.1155/2014/157895. PMC 4835181. PMID 27099867.
  68. ^ "The next frontier in coronavirus testing: Identifying the full scope of the pandemic, not just individual infections". STAT. 27 March 2020. Archived from the original on 29 June 2020. Retrieved 30 April 2020.
  69. ^ a b Tang EW, Bobenchik AM, Lu S (September 2020). "Testing for SARS-CoV-2 (COVID-19): A General Review". Rhode Island Medical Journal. 103 (8): 20–23. PMID 32900007.
  70. ^ "What Immunity to COVID-19 Really Means". Scientific American. 10 April 2020. Archived from the original on 28 April 2020.
  71. ^ a b Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, et al. (17 November 2022). "Antibody tests for identification of current and past infection with SARS-CoV-2". The Cochrane Database of Systematic Reviews. 2022 (11): CD013652. doi:10.1002/14651858.CD013652.pub2. ISSN 1469-493X. PMC 9671206. PMID 36394900.
  72. ^ "Cellex Emergency Use Authorization". FDA. 1 April 2020. Archived from the original on 9 April 2020. Retrieved 10 April 2020.
  73. ^ "Will an Antibody Test Allow Us to Go Back to School or Work?". The New York Times. 10 April 2020. Archived from the original on 15 April 2020. Retrieved 15 April 2020.
  74. ^ "Mount Sinai Emergency Use Authorization". FDA. 15 April 2020. Retrieved 18 April 2020.
  75. ^ Bauer G (January 2021). "The variability of the serological response to SARS-corona virus-2: Potential resolution of ambiguity through determination of avidity (functional affinity)". Journal of Medical Virology. 93 (1): 311–322. doi:10.1002/jmv.26262. PMC 7361859. PMID 32633840.
  76. ^ Ravi N, Cortade DL, Ng E, Wang SX (October 2020). "Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape". Biosensors & Bioelectronics. 165: 112454. doi:10.1016/j.bios.2020.112454. PMC 7368663. PMID 32729549.
  77. ^ Goudouris ES (2020). "Laboratory diagnosis of COVID-19". Jornal de Pediatria. 97 (1): 7–12. doi:10.1016/j.jped.2020.08.001. PMC 7456621. PMID 32882235.
  78. ^ a b c d "Global Progress on COVID-19 Serology-Based Testing". Johns Hopkins Center for Health Security. Archived from the original on 14 June 2020. Retrieved 14 June 2020.
  79. ^ a b Tan CW, Chia WN, Qin X, Liu P, Chen MI, Tiu C, et al. (September 2020). "A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction". Nature Biotechnology. 38 (9): 1073–1078. doi:10.1038/s41587-020-0631-z. PMID 32704169. S2CID 220720953.
  80. ^ a b c Mallapaty S (April 2020). "Will antibody tests for the coronavirus really change everything?". Nature. 580 (7805): 571–572. Bibcode:2020Natur.580..571M. doi:10.1038/d41586-020-01115-z. PMID 32313159. S2CID 216048544. Archived from the original on 24 June 2020. Retrieved 20 April 2020.
  81. ^ a b c "Q&A on COVID-19 Antibody Tests". factcheck.org. 27 April 2020. Archived from the original on 27 April 2020. Retrieved 28 April 2020.
  82. ^ "Neutralising antibody". Biology-Online. 2008. Archived from the original on 8 July 2018. Retrieved 4 July 2009.
  83. ^ Schmaljohn AL (July 2013). "Protective antiviral antibodies that lack neutralizing activity: precedents and evolution of concepts". Current HIV Research. 11 (5): 345–353. doi:10.2174/1570162x113116660057. PMID 24191933.
  84. ^ Rhorer J, Ambrose CS, Dickinson S, Hamilton H, Oleka NA, Malinoski FJ, et al. (February 2009). "Efficacy of live attenuated influenza vaccine in children: A meta-analysis of nine randomized clinical trials". Vaccine. 27 (7). Virology Blog: 1101–1110. doi:10.1016/j.vaccine.2008.11.093. PMID 19095024. Archived from the original on 23 April 2020. Retrieved 29 April 2020.
  85. ^ "expert reaction to announcement by Roche of its new serology test for COVID-19 antibodies". Science Media Centre. 17 April 2020. Archived from the original on 30 April 2020. Retrieved 28 April 2020.
  86. ^ Cao WC, Liu W, Zhang PH, Zhang F, Richardus JH (September 2007). "Disappearance of antibodies to SARS-associated coronavirus after recovery". The New England Journal of Medicine. 357 (11). NEJM: 1162–1163. doi:10.1056/NEJMc070348. PMID 17855683.
  87. ^ a b "Lack of Peripheral Memory B Cell Responses in Recovered Patients with Severe Acute Respiratory Syndrome: A Six-Year Follow-Up Study" (PDF). Journal of Immunology. 19 April 2011. Archived (PDF) from the original on 1 May 2020. Retrieved 1 May 2020.
  88. ^ Leslie M (May 2020). "T cells found in coronavirus patients 'bode well' for long-term immunity". Science. 368 (6493): 809–810. Bibcode:2020Sci...368..809L. doi:10.1126/science.368.6493.809. PMID 32439770. S2CID 218834495.
  89. ^ Calvo-Henriquez C, Maldonado-Alvarado B, Chiesa-Estomba C, Rivero-Fernández I, Sanz-Rodriguez M, Villarreal IM, et al. (October 2020). "Ethyl alcohol threshold test: a fast, reliable and affordable olfactory Assessment tool for COVID-19 patients". European Archives of Oto-Rhino-Laryngology. 277 (10): 2783–2792. doi:10.1007/s00405-020-06131-3. PMC 7312102. PMID 32583183.
  90. ^ Hayes J, Exten C, State P (24 December 2020). "At-home DIY smell tests could catch Covid-19 cases". CNN Health. The Conversation. Retrieved 7 September 2021.
  91. ^ Menni C, Sudre CH, Steves CJ, Ourselin S, Spector TD (November 2020). "Widespread smell testing for COVID-19 has limited application - Authors' reply". Lancet. 396 (10263): 1630–1631. doi:10.1016/S0140-6736(20)32316-3. PMC 7832202. PMID 33157000.
  92. ^ a b c Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A (July 2020). "Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients". AJR. American Journal of Roentgenology. 215 (1): 87–93. doi:10.2214/AJR.20.23034. PMID 32174129. Known features of COVID-19 on initial CT include bilateral multilobar ground-glass opacification (GGO) with a peripheral or posterior distribution, mainly in the lower lobes and less frequently within the right middle lobe.
  93. ^ Manigandan S, Wu MT, Ponnusamy VK, Raghavendra VB, Pugazhendhi A, Brindhadevi K (November 2020). "A systematic review on recent trends in transmission, diagnosis, prevention and imaging features of COVID-19". Process Biochemistry. 98: 233–240. doi:10.1016/j.procbio.2020.08.016. PMC 7439988. PMID 32843849.
  94. ^ Lee EY, Ng MY, Khong PL (April 2020). "COVID-19 pneumonia: what has CT taught us?". The Lancet. Infectious Diseases. 20 (4): 384–385. doi:10.1016/S1473-3099(20)30134-1. PMC 7128449. PMID 32105641.
  95. ^ "ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection". American College of Radiology. 22 March 2020. Archived from the original on 13 May 2020. Retrieved 20 May 2020.
  96. ^ a b c Tabik S, Gomez-Rios A, Martin-Rodriguez JL, Sevillano-Garcia I, Rey-Area M, Charte D, et al. (December 2020). "COVIDGR Dataset and COVID-SDNet Methodology for Predicting COVID-19 Based on Chest X-Ray Images". IEEE Journal of Biomedical and Health Informatics. 24 (12): 3595–3605. doi:10.1109/JBHI.2020.3037127. hdl:10045/110797. PMC 8545181. PMID 33170789. S2CID 219179286.
  97. ^ Tay YX, Kothan S, Kada S, Cai S, Lai CW (May 2021). "Challenges and optimization strategies in medical imaging service delivery during COVID-19". World Journal of Radiology. 13 (5): 102–121. doi:10.4329/wjr.v13.i5.102. PMC 8188837. PMID 34141091.
  98. ^ a b Alsharif W, Qurashi A (May 2021). "Effectiveness of COVID-19 diagnosis and management tools: A review". Radiography. 27 (2): 682–687. doi:10.1016/j.radi.2020.09.010. PMC 7505601. PMID 33008761.
  99. ^ a b Inui S, Gonoi W, Kurokawa R, Nakai Y, Watanabe Y, Sakurai K, et al. (November 2021). "The role of chest imaging in the diagnosis, management, and monitoring of coronavirus disease 2019 (COVID-19)". Insights into Imaging. 12 (1): 155. doi:10.1186/s13244-021-01096-1. PMC 8561360. PMID 34727257.
  100. ^ Panwar H, Gupta PK, Siddiqui MK, Morales-Menendez R, Singh V (September 2020). "Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet". Chaos, Solitons and Fractals. 138: 109944. Bibcode:2020CSF...13809944P. doi:10.1016/j.chaos.2020.109944. PMC 7254021. PMID 32536759.
  101. ^ "Dutch corona blood test from Eindhoven goes international". 19 April 2021. Archived from the original on 27 April 2021. Retrieved 2 July 2021.
  102. ^ Biesemans B. "Bees in the Netherlands trained to detect COVID-19 infections". Reuters. Archived from the original on 30 June 2021. Retrieved 2 July 2021.
  103. ^ Henley J (20 May 2021). "Dogs can better detect Covid in humans than lateral flow tests, finds study". The Guardian. Archived from the original on 29 June 2021.
  104. ^ Grandjean D, Elie C, Gallet C, Julien C, Roger V, Desquilbet L, et al. (8 March 2022). "Diagnostic accuracy of non-invasive detection of SARS-CoV-2 infection by canine olfaction". PLOS ONE. 17 (6). Cold Spring Harbor Laboratory: e0268382. Bibcode:2022PLoSO..1768382G. doi:10.1371/journal.pone.0268382. medRxiv 10.1101/2022.03.07.22271219. PMC 9159600. PMID 35648737. S2CID 247291441.
  105. ^ "Dogs Sniff Out Coronavirus With High Accuracy". Medscape. Reuters. 10 March 2022.[permanent dead link]
  106. ^ "Todos Medical Announces Positive Data in Hospitalized and Outpatient Setting for TolloTest, a Novel SARS-CoV-2 3CL Protease Biomarker Assay". Yahoo. Archived from the original on 1 December 2021. Retrieved 1 December 2021.
  107. ^ Roser M, Ritchie H, Ortiz-Ospina E, Hasell J (4 March 2020). "Coronavirus Disease (COVID-19) – Statistics and Research". Our World in Data. Archived from the original on 19 March 2020. Retrieved 2 July 2021 – via ourworldindata.org.
  108. ^ "Novel 2019 coronavirus genome". Virological.org. 11 January 2020. Retrieved 12 April 2023.
  109. ^ Schnirring L (11 January 2020). "China releases genetic data on new coronavirus, now deadly". CIDRAP. Archived from the original on 11 January 2020. Retrieved 12 January 2020.
  110. ^ Ioannidis JP (17 March 2020). "A fiasco in the making? As the coronavirus pandemic takes hold, we are making decisions without reliable data". STAT. Archived from the original on 5 April 2020. Retrieved 22 March 2020.
  111. ^ "'Test, Test, Test': WHO Chief's Coronavirus Message to World". The New York Times. Reuters. 16 March 2020. Archived from the original on 20 March 2020. Retrieved 16 March 2020.
  112. ^ Farge E, Revill J (17 March 2020). "'Test, test, test': WHO chief's coronavirus message to world". Reuters. Archived from the original on 3 November 2020. Retrieved 6 November 2020.
  113. ^ "Coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK" (PDF). European Centre for Disease Prevention and Control. 25 March 2020. pp. 15–16. Archived (PDF) from the original on 26 March 2020. Retrieved 29 March 2020. the current shortages of laboratory consumables and reagents affect diagnostic capacity and hamper the epidemic response at the national and local levels. The laboratories have experienced delayed or missing deliveries of swabbing material, plastic consumables, RNA extraction and RT-PCR reagents, and PPE. This is affecting laboratories in all EU/EEA countries.
  114. ^ Baird RP (24 March 2020). "Why Widespread Coronavirus Testing Isn't Coming Anytime Soon". The New Yorker. Archived from the original on 28 March 2020. Retrieved 29 March 2020. South Dakota, said that her state's public-health laboratory—the only lab doing COVID-19 testing in the state—had so much trouble securing reagents that it was forced to temporarily stop testing altogether. also noted critical shortages of extraction kits, reagents, and test kits
  115. ^ Ossola A (25 March 2020). "Here are the coronavirus testing materials that are in short supply in the US". Quartz. Archived from the original on 26 March 2020. Retrieved 29 March 2020. extract the virus's genetic material—in this case, RNA—using a set of chemicals that usually come in pre-assembled kits. 'The big shortage is extraction kits' There are no easy replacements here: 'These reagents that are used in extraction are fairly complex chemicals. They have to be very pure, and they have to be in pure solution'
  116. ^ Temple-Raston D (6 November 2020). "CDC Report: Officials Knew Coronavirus Test Was Flawed But Released It Anyway". NPR. Archived from the original on 11 June 2021. Retrieved 20 March 2021.
  117. ^ Armario C (7 October 2020). "Peru bet heavily on cheap COVID tests; it didn't go well". Associated Press. Archived from the original on 14 January 2021. Retrieved 20 March 2021.
  118. ^ Kiger J (12 March 2020). "Mayo Clinic starts drive-thru testing for COVID-19". PostBulletin.com. Archived from the original on 12 March 2020. Retrieved 13 March 2020.
  119. ^ Hawkins AJ (11 March 2020). "Some states are offering drive-thru coronavirus testing". The Verge. Archived from the original on 11 March 2020. Retrieved 13 March 2020.
  120. ^ "South Korea's Drive-Through Testing For Coronavirus Is Fast – And Free". npr. 11 March 2020. Archived from the original on 20 March 2020. Retrieved 16 March 2020.
  121. ^ Beaubien J (23 February 2020). "In Age of COVID-19, Hong Kong Innovates To Test And Quarantine Thousands". NPR. Archived from the original on 24 February 2020. Retrieved 26 February 2020.
  122. ^ Nazzaro M (25 September 2023). "How to order free COVID test kits". The Hill. Archived from the original on 25 September 2023. Retrieved 25 September 2023.
  123. ^ Hafer N (10 November 2021). "What's the difference between a PCR and antigen COVID-19 test?". UMass Chan Medical School. Archived from the original on 17 August 2023. Retrieved 7 October 2023.
  124. ^ "Pooling method allows dozens of COVID-19 tests to run simultaneously". medicalxpress.com. Archived from the original on 22 March 2020. Retrieved 24 March 2020.
  125. ^ "Israeli team has coronavirus test kit to test dozens of people at once". The Jerusalem Post | JPost.com. Archived from the original on 23 March 2020. Retrieved 24 March 2020.
  126. ^ Israel21c Staff (19 March 2020). "Israelis introduce method for accelerated COVID-19 testing". Israel21c. Archived from the original on 22 March 2020. Retrieved 24 March 2020.{{cite news}}: CS1 maint: numeric names: authors list (link)
  127. ^ "We 'pool' coronavirus samples to test 1,000s at a go; we've done 30,000 since Sunday – Noguchi". GhanaWeb. 22 April 2020. Archived from the original on 15 May 2020. Retrieved 22 April 2020.
  128. ^ "Pooling samples boosts Ghana's COVID-19 testing". WHO Africa. 31 July 2020. Archived from the original on 5 August 2020. Retrieved 31 July 2020.
  129. ^ "Pooling samples boosts Ghana's COVID-19 testing". World Health Organization. 30 July 2020. Archived from the original on 21 August 2020. Retrieved 30 July 2020.
  130. ^ "[Coronavirus] Verified 'sample pooling' introduced to prevent herd infection in S. Korea". ajudaily.com. 9 April 2020. Archived from the original on 10 April 2020. Retrieved 19 April 2020.
  131. ^ "Gov. Ricketts provides update on coronavirus testing". KMTV. 24 March 2020. Archived from the original on 20 April 2020. Retrieved 19 April 2020.
  132. ^ Lanese N (28 May 2020). "Wuhan tested millions of people for COVID-19 in just days. Could US cities do the same?". livescience.com. Archived from the original on 28 June 2020. Retrieved 28 June 2020.
  133. ^ "Latest coronavirus update: UP to begin 'pool testing' of Covid suspects". Free Press Journal. Archived from the original on 17 April 2020. Retrieved 19 April 2020.
  134. ^ Yengkhom S. "West Bengal to start pool testing of samples in low-risk zones". The Times of India. Archived from the original on 20 April 2020. Retrieved 19 April 2020.
  135. ^ "Punjab launches pool testing". Archived from the original on 4 May 2020. Retrieved 19 April 2020.
  136. ^ "'Chhattisgarh to adopt pool sample testing': Health minister TS Singh Deo on Covid-19". Hindustan Times. 15 April 2020. Archived from the original on 19 April 2020. Retrieved 19 April 2020.
  137. ^ "Maharashtra to go for pool testing to defeat coronavirus". Deccan Herald. 12 April 2020. Archived from the original on 15 April 2020. Retrieved 19 April 2020.
  138. ^ "Origami Assays". Origami Assays. 2 April 2020. Archived from the original on 5 April 2020. Retrieved 7 April 2020.
  139. ^ Pulia MS, O'Brien TP, Hou PC, Schuman A, Sambursky R (August 2020). "Multi-tiered screening and diagnosis strategy for COVID-19: a model for sustainable testing capacity in response to pandemic". Annals of Medicine. 52 (5): 207–214. doi:10.1080/07853890.2020.1763449. PMC 7877955. PMID 32370561. S2CID 218519851.
  140. ^ "Which States Are Doing Enough Testing? This Benchmark Helps Settle The Debate". NPR.org. 22 April 2020. Archived from the original on 11 May 2020. Retrieved 11 May 2020.
  141. ^ Lee TB (2 April 2020). "America's COVID-19 testing has stalled, and that's a big problem". Ars Technica. Archived from the original on 14 June 2020. Retrieved 5 April 2020.
  142. ^ a b c d Romer P. "Roadmap to responsibly reopen America" (PDF). Archived (PDF) from the original on 11 May 2020. Retrieved 11 May 2020.
  143. ^ "ROADMAP TO PANDEMIC RESILIENCE" (PDF). Edmond J. Safra Center for Ethics. 20 April 2020. Archived (PDF) from the original on 20 May 2020. Retrieved 19 May 2020.
  144. ^ "Certified Service Providers". Pacific Biosciences. Archived from the original on 10 June 2020. Retrieved 18 May 2020.
  145. ^ "Service Provider Program – US". www.thermofisher.com. ThermoFisher Scientific. Archived from the original on 10 June 2020. Retrieved 18 May 2020.
  146. ^ "Paul Romer". paulromer.net. Simulating Covid-19: Part 2. Archived from the original on 18 May 2020. Retrieved 19 May 2020.
  147. ^ Lewis T. "Slovakia Offers a Lesson in How Rapid Testing Can Fight COVID". Scientific American. Archived from the original on 19 April 2021. Retrieved 19 April 2021.
  148. ^ Pavelka M, Van-Zandvoort K, Abbott S, Sherratt K, Majdan M, Jarčuška P, et al. (May 2021). "The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia". Science. 372 (6542): 635–641. Bibcode:2021Sci...372..635P. doi:10.1126/science.abf9648. PMC 8139426. PMID 33758017.
  149. ^ "Slovakia's mass Covid testing cut infection rate by 60%, researchers say". The Guardian. 7 December 2020. Archived from the original on 5 May 2021. Retrieved 30 April 2021.
  150. ^ Robertson LS (2023). "Roads to COVID-19 Containment and Spread". New York: Austin Macauley.
  151. ^ Sharif S, Ikram A, et al. (24 June 2020). "Detection of SARs-CoV-2 in wastewater, using the existing environmental surveillance network: An epidemiological gateway to an early warning for COVID-19 in communities". medRxiv 10.1101/2020.06.03.20121426v3.
  152. ^ "Coronavirus traces found in March 2019 sewage sample, Spanish study shows". Reuters. 26 June 2020. Retrieved 28 July 2021.
  153. ^ Kreier F (May 2021). "The myriad ways sewage surveillance is helping fight COVID around the world". Nature. doi:10.1038/d41586-021-01234-1. PMID 33972790. S2CID 234360319.
  154. ^ Agrawal S, Orschler L, Lackner S (March 2021). "Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in Southern Germany". Scientific Reports. 11 (1): 5372. Bibcode:2021NatSR..11.5372A. doi:10.1038/s41598-021-84914-2. PMC 7940401. PMID 33686189.
  155. ^ Rooney CM, Moura IB, Wilcox MH (January 2021). "Tracking COVID-19 via sewage". Current Opinion in Gastroenterology. 37 (1): 4–8. doi:10.1097/MOG.0000000000000692. PMID 33074996. S2CID 224811450.
  156. ^ Larsen DA, Wigginton KR (October 2020). "Tracking COVID-19 with wastewater". Nature Biotechnology. 38 (10): 1151–1153. doi:10.1038/s41587-020-0690-1. PMC 7505213. PMID 32958959.
  157. ^ Michael-Kordatou I, Karaolia P, Fatta-Kassinos D (October 2020). "Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification". Journal of Environmental Chemical Engineering. 8 (5): 104306. doi:10.1016/j.jece.2020.104306. PMC 7384408. PMID 32834990.
  158. ^ Seeger C. "Abwasserbasierte EpidemiologieAbwassermonitoring als Frühwarnsystem für Pandemien" (PDF). Retrieved 28 July 2021.
  159. ^ "[New Product] COVID-19 Kit". kogene.co.kr. 27 February 2020. Archived from the original on 23 April 2020.
  160. ^ "Letter from FDA". FDA. 27 March 2020. Archived from the original on 28 March 2020. Retrieved 2 April 2020.
  161. ^ a b ID NOW COVID-19 Archived 16 January 2021 at the Wayback Machine, Instruction for Use, FDA
  162. ^ "The scramble for the rapid coronavirus tests everybody wants". The Washington Post. 1 April 2020. Archived from the original on 10 February 2021. Retrieved 2 July 2021.
  163. ^ a b "FDA issues emergency approval of new antigen test that is cheaper, faster and simpler". The Washington Post. 9 May 2020. Archived from the original on 26 January 2021. Retrieved 2 July 2021.
  164. ^ a b c Sofia 2 SARS Antigen FIA Archived 2 April 2021 at the Wayback Machine Instructions for Use, FDA.gov
  165. ^ a b c Peplow M (14 June 2021). "COVID-19 test used in UK mass screening program receives stinging rebuke from FDA". Archived from the original on 15 June 2021. Retrieved 2 July 2021.
  166. ^ FDA Division of Industry and Consumer Education (10 June 2021). "Stop Using Innova Medical Group SARS-CoV-2 Antigen Rapid Qualitative Test: FDA Safety Communication". FDA. Archived from the original on 2 July 2021. Retrieved 2 July 2021.
  167. ^ Mina MJ, Peto TE, García-Fiñana M, Semple MG, Buchan IE (April 2021). "Clarifying the evidence on SARS-CoV-2 antigen rapid tests in public health responses to COVID-19". Lancet. 397 (10283): 1425–1427. doi:10.1016/S0140-6736(21)00425-6. PMC 8049601. PMID 33609444.
  168. ^ "NIH Begins Study to Quantify Undetected Cases of Coronavirus Infection | NIH: National Institute of Allergy and Infectious Diseases". niaid.nih.gov. 10 April 2020. Archived from the original on 10 April 2020. Retrieved 11 April 2020.
  169. ^ Mandavilli A, Thomas K (10 April 2020). "Will an Antibody Test Allow Us to Go Back to School or Work?". The New York Times. Archived from the original on 11 April 2020. Retrieved 11 April 2020.
  170. ^ "Quest Diagnostics Launches Consumer-Initiated COVID-19 Antibody Test Through QuestDirect™". Quest Diagnosics. 28 April 2020. Archived from the original on 17 May 2021. Retrieved 2 July 2021.
  171. ^ Fellmann F. (March 2020). (in German) "Jetzt beginnt die Suche nach den Genesenen" Archived 28 March 2020 at the Wayback Machine. Tages Anzeiger. Retrieved 28 March 2020.
  172. ^ Herrera T (27 October 2020). "What You Need to Know About the Covid-19 Antibody Test". The New York Times. Retrieved 18 July 2021.
  173. ^ "EUA Authorized Serology Test Performance". U.S. Food and Drug Administration (FDA). 7 May 2020. Archived from the original on 8 May 2020. Retrieved 8 May 2020.
  174. ^ Lisboa Bastos M, Tavaziva G, Abidi SK, Campbell JR, Haraoui LP, Johnston JC, et al. (July 2020). "Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis". BMJ. 370: m2516. doi:10.1136/bmj.m2516. PMC 7327913. PMID 32611558.
  175. ^ Spencer E, Henighan C (1 September 2020). "Overview of BMJ: Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis". CEBM. Archived from the original on 3 October 2020. Retrieved 24 September 2020.
  176. ^ a b Spencer E, Jefferson T, Brassey J, Heneghan C (11 September 2020). "When is Covid, Covid?". CEBM. Archived from the original on 19 September 2020. Retrieved 19 September 2020.
  177. ^ Jefferson T, Spencer E, Brassey J, Heneghan C (3 September 2020). "Viral cultures for COVID-19 infectivity assessment. Systematic review". medRxiv 10.1101/2020.08.04.20167932.
  178. ^ Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. (May 2020). "Detection of SARS-CoV-2 in Different Types of Clinical Specimens". JAMA. 323 (18): 1843–1844. doi:10.1001/jama.2020.3786. PMC 7066521. PMID 32159775.
  179. ^ a b Ferran M (7 May 2020). "COVID-19 tests are far from perfect, but accuracy isn't the biggest problem". Popular Science. Archived from the original on 11 May 2020. Retrieved 10 May 2020.
  180. ^ Gans JS, Goldfarb A, Agrawal AK, Sennik S, Stein J, Rosella L (1 February 2022). "False-Positive Results in Rapid Antigen Tests for SARS-CoV-2". JAMA. 327 (5): 485–486. doi:10.1001/jama.2021.24355. ISSN 0098-7484. PMC 8742218. PMID 34994775.
  181. ^ "Serological testing for SARS-CoV-2 antibodies". American Medical Association. 14 May 2020. Archived from the original on 28 May 2020. Retrieved 29 May 2020.
  182. ^ "Interim Guidelines for COVID-19 Antibody Testing". U.S. Centers for Disease Control and Prevention (CDC). 23 May 2020. Archived from the original on 29 May 2020. Retrieved 29 May 2020.
  183. ^ Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J (August 2020). "Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure". Annals of Internal Medicine. 173 (4): 262–267. doi:10.7326/M20-1495. PMC 7240870. PMID 32422057.
  184. ^ "RT-PCR Testing". www.idsociety.org. Archived from the original on 24 June 2021. Retrieved 16 February 2021.
  185. ^ Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R (January 2021). "Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19". American Journal of Infection Control. 49 (1): 21–29. doi:10.1016/j.ajic.2020.07.011. PMC 7350782. PMID 32659413.
  186. ^ "Symptom-Based Strategy to Discontinue Isolation for Persons with COVID-19". U.S. Centers for Disease Control and Prevention (CDC). 30 April 2020. Archived from the original on 6 June 2021. Retrieved 28 August 2021.
  187. ^ Xiao AT, Tong YX, Zhang S (November 2020). "Profile of RT-PCR for SARS-CoV-2: A Preliminary Study From 56 COVID-19 Patients". Clinical Infectious Diseases. 71 (16): 2249–2251. doi:10.1093/cid/ciaa460. PMC 7188124. PMID 32306036.
  188. ^ a b c Engelmann I, Alidjinou EK, Ogiez J, Pagneux Q, Miloudi S, Benhalima I, et al. (March 2021). "Preanalytical Issues and Cycle Threshold Values in SARS-CoV-2 Real-Time RT-PCR Testing: Should Test Results Include These?". ACS Omega. 6 (10): 6528–6536. doi:10.1021/acsomega.1c00166. PMC 7970463. PMID 33748564.
  189. ^ Fauci A (16 July 2020). "This Week in Virology". YouTube. 4:20.
  190. ^ Mandavilli A (29 August 2020). "Your Coronavirus Test Is Positive. Maybe It Shouldn't Be". The New York Times. ISSN 0362-4331. Retrieved 30 August 2021.
  191. ^ US CDC (20 July 2021). "Real-Time RT-PCR Diagnostic Panel: Instructions for Use". Food and Drug Administration. p. 35. Retrieved 30 August 2021.
  192. ^ a b van Kasteren PB, van der Veer B, van den Brink S, Wijsman L, de Jonge J, van den Brandt A, et al. (July 2020). "Comparison of seven commercial RT-PCR diagnostic kits for COVID-19". Journal of Clinical Virology. 128: 104412. doi:10.1016/j.jcv.2020.104412. PMC 7206434. PMID 32416600.
  193. ^ "Chinese Covid-19 test kit outstrips alternatives in Dutch study". South China Morning Post. 20 May 2020. Archived from the original on 23 May 2020. Retrieved 23 May 2020.
  194. ^ Heneghan C, Jefferson T (1 September 2020). "Virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR". CEBM. Archived from the original on 18 June 2021. Retrieved 19 September 2020.
  195. ^ Lu J, Peng J, Xiong Q, Liu Z, Lin H, Tan X, et al. (September 2020). "Clinical, immunological and virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR". eBioMedicine. 59: 102960. doi:10.1016/j.ebiom.2020.102960. PMC 7444471. PMID 32853988.
  196. ^ "SARS-CoV-2 RNA testing: assurance of positive results during periods of low prevalence". GOV.UK. Archived from the original on 6 May 2021. Retrieved 19 September 2020.
  197. ^ "Study Raises Questions About False Negatives From Quick COVID-19 Test". NPR. 21 April 2020. Archived from the original on 1 May 2020. Retrieved 1 May 2020.
  198. ^ Thomas K (13 May 2020). "Coronavirus Testing Used by the White House Could Miss Infections". The New York Times. ISSN 0362-4331. Archived from the original on 13 May 2020. Retrieved 14 May 2020.
  199. ^ "National laboratories". who.int. Archived from the original on 31 January 2020. Retrieved 2 March 2020.
  200. ^ "PHE novel coronavirus diagnostic test rolled out across UK". GOV.UK. Archived from the original on 7 February 2020. Retrieved 12 April 2020. In addition to processing samples from suspected cases in this country, PHE is now working as a reference laboratory for WHO, testing samples from countries that do not have assured testing capabilities.
  201. ^ "Specimen referral for COVID-19 – operational details of WHO reference laboratories providing confirmatory testing for COVID-19" (PDF). World Health Organization. Archived (PDF) from the original on 5 March 2020. Retrieved 29 March 2020.
  202. ^ "COVID-19: First results of the voluntary screening in Iceland". Nordic Life Science. 27 March 2020. Archived from the original on 29 March 2020. Retrieved 5 April 2020.
  203. ^ "How an experiment helped one Italian town find 'submerged infections,' cut new COVID-19 cases to zero". Nationalpost. 19 March 2020. Retrieved 29 March 2020.
  204. ^ a b c "PCR拡充が必要 専門家会議が会見 (全文1)" [PCR expansion required Expert meeting (Full text 1)]. THE PAGE (in Japanese). Yahoo!ニュース. 5 May 2020. p. 5. Archived from the original on 8 June 2020. Retrieved 27 May 2020.
  205. ^ a b c d e "「新型コロナウイルス感染拡大阻止 最前線からの報告" [Report from the front line to prevent the spread of new coronavirus infection]. NHK (in Japanese). 15 April 2020. Archived from the original on 19 April 2020. Retrieved 27 May 2020.
  206. ^ a b c "Did Japan Just Beat the Virus Without Lockdowns or Mass Testing?". Bloomberg.com. 23 May 2020. Archived from the original on 8 June 2020. Retrieved 27 May 2020.
  207. ^ "PCR拡充が必要 専門家会議が会見 (全文1)" [PCR expansion required Expert meeting (Full text 1)]. THE PAGE (in Japanese). Yahoo!ニュース. 5 May 2020. p. 3. Archived from the original on 8 June 2020. Retrieved 27 May 2020.
  208. ^ a b "新型コロナウイルス 感染爆発をどう防ぐか" [How to prevent the outbreak of new coronavirus infection]. NHK (in Japanese). 8 April 2020. Archived from the original on 8 April 2020. Retrieved 27 May 2020.
  209. ^ "第1波は終息するも欧米からの帰国者経由の第2波が拡大" [The first wave is over, but the second wave is expanding via returnees from Europe and the United States]. 日経メディカル (Nikkei Medical) (in Japanese). 12 May 2020. Archived from the original on 8 June 2020. Retrieved 27 May 2020.
  210. ^ a b "専門家に聞く"新型コロナウイルス"との闘い方と対策" [Ask experts how to fight the "new coronavirus" and countermeasures]. NHK (in Japanese). 27 March 2020. Archived from the original on 8 April 2020. Retrieved 27 May 2020.
  211. ^ "新型コロナ抗原検査キット、13日から実用化 加藤厚労相が発表 PCRとの併用を想定" [New corona antigen test kit put into practical use from 13th. Minister of Health, Labor and Welfare Kato announced that it will be used in combination with PCR]. 毎日新聞 (Mainichi newspaper ) (in Japanese). 12 May 2020. Archived from the original on 27 May 2020. Retrieved 27 May 2020.
  212. ^ "コロナ抗原検査が使用可能に、陽性のみ確定診断" [Corona antigen test available, positive only definitive diagnosis]. 日経メディカル (Nikkei Medical) (in Japanese). 12 May 2020. Archived from the original on 21 May 2020. Retrieved 15 May 2020.
  213. ^ a b "PCR拡充が必要 専門家会議が会見 (全文1)" [PCR expansion required Expert meeting (Full text 1)]. THE PAGE (in Japanese). Yahoo!ニュース. 5 May 2020. p. 4. Archived from the original on 8 June 2020. Retrieved 27 May 2020.
  214. ^ a b "クルーズ船112人治療で「院内感染」ゼロ!「自衛隊中央病院」はなぜ奇跡を起こせたのか" [No "nosocomial infection" with treatment of 112 cruise ships! Why did "Self-Defense Forces Central Hospital" cause a miracle?]. 週刊新潮 (Shukan Shincho) (in Japanese). 30 April 2020. Archived from the original on 8 June 2020. Retrieved 27 May 2020.
  215. ^ "「PCR検査数少ないが、死亡者数・率低い」専門家会議" ["The number of PCR tests is small, but the number of deaths and rate is low" Expert meeting]. m3.com (in Japanese). 5 May 2020. Archived from the original on 8 June 2020. Retrieved 27 May 2020.
  216. ^ "調査報告クルーズ船 ウイルス対策のカギは?" [Survey Report What is the key to anti-virus measures for cruise ships?]. NHK (in Japanese). 7 May 2020. Archived from the original on 12 May 2020. Retrieved 24 May 2020.
  217. ^ "新型コロナウイルス感染症の現在の状況と厚生労働省の対応について(令和2年7月20日版)" [Current status of new coronavirus infection and response by the Ministry of Health, Labor and Welfare (Reiwa 20 July, 2nd edition)] (in Japanese). 厚生労働省. 20 July 2000. Archived from the original on 4 August 2020. Retrieved 1 August 2020.
  218. ^ "PCR検査能力、4月の3倍 それでも受けにくいわけは" [PCR test capacity, 3 times that of April]. Asahi Shimbun (in Japanese). 28 July 2020. Archived from the original on 31 July 2020. Retrieved 1 August 2020.
  219. ^ "日本のコロナ検査能力、米英の1割どまり" [Japan's corona inspection ability, only 10% of the US and UK] (in Japanese). The Nikkei. 21 July 2020. Archived from the original on 31 July 2020. Retrieved 1 August 2020.
  220. ^ "新型コロナが弱毒化しているという根拠はない" [There is no evidence that the new corona is attenuated] (in Japanese). Yahoo!ニュース. 26 July 2020. Archived from the original on 27 July 2020. Retrieved 1 August 2020.
  221. ^ "軽症者施設、23都府県で不足 コロナ第2波推計" [Facility for mildly ill people, Insufficient in 23 prefectures Corona second wave estimation] (in Japanese). The Nikkei. 21 July 2020. Archived from the original on 31 July 2020. Retrieved 1 August 2020.
  222. ^ "患者急増、埋まりつつあるベッド 増床要請に頭抱える病院...スタッフは?一般患者は?経営は?" [The number of patients is increasing rapidly, and the beds are being filled up. Hospitals are having a request to increase the floor space ... Staff? General patients? Management?]. Mainichi Shimbun (in Japanese). 22 July 2020. Archived from the original on 29 July 2020. Retrieved 1 August 2020.
  223. ^ "軽症患者ICUを圧迫 クラスターはほぼ終息 新型コロナで兵庫県対策協" [Squeezing ICU for mildly ill patients The cluster is almost over With the new corona] (in Japanese). 神戸新聞. 25 March 2020. Archived from the original on 22 October 2020. Retrieved 1 August 2020.
  224. ^ "Over 3 mln COVID-19 tests conducted in Russia". TASS. 27 April 2020. Archived from the original on 11 May 2020. Retrieved 29 April 2020.
  225. ^ "Popova said explosive growth in incidence was not allowed due to measures taken". TASS. 28 April 2020. Archived from the original on 29 August 2020. Retrieved 29 April 2020.
  226. ^ "COVID-19 outbreak: Petition to close schools in Singapore garners 7,700 signatures to date". msn.com. Archived from the original on 29 March 2020. Retrieved 29 March 2020.
  227. ^ "More than 3.6 million people tested during the weekend". The Slovak Spectator. 1 November 2020. Archived from the original on 2 January 2020. Retrieved 2 July 2021.
  228. ^ Kuhn A (12 March 2020). "Experts Credit South Korea's Extensive Testing For Curbing Coronavirus Spread". NPR.org. Archived from the original on 16 March 2020. Retrieved 28 June 2020.
  229. ^ a b "日本が韓国の新型コロナウイルス対策から学べること──(1)検査体制" [What Japan can learn from Korea's measures against the new coronavirus ── (1) Inspection system]. Newsweek Japan (in Japanese). 2 April 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  230. ^ a b "日本が韓国の新型コロナウイルス対策から学べること──(3)情報公開" [What Japan can learn from Korea's measures against the new coronavirus ── (3) Information disclosure]. Newsweek日本版 (in Japanese). 21 April 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  231. ^ "日本が韓国の新型コロナウイルス対策から学べること──(4)軽症者の隔離・管理対策: 「生活治療センター」" [What Japan can learn from Korea's measures against the new coronavirus ── (4) Isolation and management measures for mildly ill people: "Life Treatment Center"]. Newsweek Japan (in Japanese). 11 May 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  232. ^ a b "韓国のコロナ対策を称える日本に欠ける視点" [Japan's lack of perspective to praise South Korea's measures against corona]. Newsweek Japan (in Japanese). 2 May 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  233. ^ a b c "韓国式大量検査は徴兵制の賜物...新型コロナが揺さぶる「自由」の価値" [Korean-style mass inspection is a gift of conscription ... The value of "freedom" that the new corona shakes] (in Japanese). FNNプライム. 14 April 2020. Archived from the original on 27 April 2020. Retrieved 5 June 2020.
  234. ^ a b "韓国における新型コロナウィルス防疫事情(韓国)" [New Coronavirus Epidemic Prevention Circumstances in South Korea (Korea)] (in Japanese). 日本商工会議所. 10 May 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  235. ^ "韓国製PCR検査キットが新型コロナから世界を救う日" [The day when the Korean PCR test kit saves the world from the new corona]. Newsweek Japan (in Japanese). 14 April 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  236. ^ a b c "新型ウイルス"パンデミック" 医療崩壊を防ぐには" [New virus "pandemic" How to prevent medical collapse]. NHK (in Japanese). 9 April 2020. Archived from the original on 19 April 2020. Retrieved 2 June 2020.
  237. ^ a b "IT活用でコロナ追跡 韓国、感染者の経路公開" [Corona tracking by utilizing IT South Korea, route disclosure of infected people]. Mainichi Shimbun (in Japanese). 16 April 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  238. ^ "コロナ対策で浮かび上がる「監視社会」韓国 個人情報をここまでさらしてよいのか" ["Surveillance society" that emerges from corona measures Can South Korea expose personal information to this extent?]. Tokyo Shimbun (in Japanese). 1 April 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  239. ^ "新型コロナ: 「感染追跡」デジタル監視とプライバシーの新しい日常" [New Corona: "Infection Tracking" New Everyday Life in Digital Surveillance and Privacy] (in Japanese). Yahoo!ニュース. 26 March 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  240. ^ "韓国、コロナ隔離者に監視腕輪 「人権侵害」の声" [South Korea, Corona quarantine voice of surveillance bracelet "human rights violations"] (in Japanese). The Nikkei. 17 April 2020. Archived from the original on 29 May 2020. Retrieved 29 May 2020.
  241. ^ "South Korea is watching quarantined citizens with a smartphone app". MIT Technology Review. 6 March 2020. Archived from the original on 5 June 2020. Retrieved 5 June 2020.
  242. ^ "Coronavirus privacy: Are South Korea's alerts too revealing?". BBC. 5 March 2020. Archived from the original on 6 June 2020. Retrieved 5 June 2020.
  243. ^ "台湾がコロナ「優等生」になった理由.閣僚に医師出身、デジタル化の一方で強まる監視" [The reason why Taiwan became a corona "honor student". A doctor from a minister, increasing surveillance while digitizing]. Business Insider (in Japanese). 1 May 2020. Archived from the original on 8 June 2020. Retrieved 6 June 2020.
  244. ^ "台湾の新型コロナ対策が「善戦」しているワケ" [The reason why Taiwan's new corona measures are "good fight"]. Wedge Infinity (in Japanese). 28 February 2020. Archived from the original on 8 June 2020. Retrieved 6 June 2020.
  245. ^ "台湾が新型コロナの感染拡大を抑制できている理由" [Why Taiwan is able to curb the spread of the new corona]. Wedge Infinity (in Japanese). 28 February 2020. Archived from the original on 8 June 2020. Retrieved 6 June 2020.
  246. ^ "新型コロナ対応の「優等生」は「台湾・韓国・ドイツ」" [Why Taiwan is able to curb the spread of the new corona ...] (in Japanese). 日経ビジネス (Nikkei Business). 21 April 2020. Archived from the original on 8 June 2020. Retrieved 6 June 2020.
  247. ^ "Covid-19: Denmark suspends flights from the Emirates". Le Figaro. Archived from the original on 2 January 2020. Retrieved 22 January 2021.
  248. ^ "COVID-19 Public Policies #2 ニューヨークはいかにして検査数を増やしたのか" [COVID-19 Public Policies #2 How New York increased the number of inspections]. Office of the City of Yokohama Representative to the Americas (in Japanese). 14 May 2020. Archived from the original on 8 June 2020. Retrieved 2 June 2020.
  249. ^ "Coronavirus New York: health officials provide limits on testing patients for COVID-19". Eyewitness News. 21 March 2020. Archived from the original on 8 June 2020. Retrieved 2 June 2020.
  250. ^ "マスクも防護服も足りない! ニューヨークの病院で看護師が新型コロナウイルスに感染、死亡" [Not enough masks and protective clothing! A nurse is infected with a new coronavirus and dies at a hospital in New York]. Business Insider Japan (in Japanese). 27 March 2020. Archived from the original on 8 June 2020. Retrieved 2 June 2020.
  251. ^ "NY州感染者数、全米2位に 感染爆発で2週間封じ込め作戦へ" [The number of infected people in New York ranks second in the United States.]. Yahoo!ニュース (in Japanese). 11 March 2020. Archived from the original on 8 June 2020. Retrieved 2 June 2020.
  252. ^ "Coronavirus clue? Most cases aboard U.S. aircraft carrier are symptom-free". Reuters. 16 April 2020. Archived from the original on 11 December 2020. Retrieved 2 July 2021.
  253. ^ "Sailors on sidelined USS Theodore Roosevelt get virus for second time". NBC News. 15 May 2020. Archived from the original on 21 May 2020. Retrieved 21 May 2020.
  254. ^ "US warned Nevada not to use Chinese COVID tests from UAE". Associated Press. 15 October 2020. Retrieved 15 October 2020.
  255. ^ "Special Report: Italy and South Korea virus outbreaks reveal disparity in deaths and tactics". Reuters. 13 March 2020. Archived from the original on 22 April 2020. Retrieved 22 June 2020.
  256. ^ "Want to know how many people have the coronavirus? Test randomly". The Conversation. 13 April 2020. Archived from the original on 9 May 2020. Retrieved 7 May 2020.
  257. ^ "M&E – Health Information System General Directorate – National Diseases Surveillance and Response". MoPH Data Warehouse – Dashboard. 17 December 2020.
  258. ^ "COVID19/ Ministria e Shëndetësisë: 736 të vaksinuar, 3935 testime, 991 të shëruar, 1112 raste të reja dhe 17 humbje jete në 24 orët e fundit". Ministria e Shëndetësisë dhe Mbrojtjes Sociale [Ministry of Health and Social Protection] (in Albanian). 18 February 2021.
  259. ^ a b c d e f g h i j k l "Coronavirus Disease 2019 (COVID-19)". Africa CDC.
  260. ^ "Documentation: Rapport de Situation Sur L'Epidemie de Coronavirus COVID-19". Ministère de la Santé de la Population et de la Réforme Hospitalière [Ministry of Health, Population and Hospital Reform] (in French). 2 November 2020.
  261. ^ "COVID-19 Dashboard". Government of Andorra. 1 March 2022.
  262. ^ "COVID-19: Angola Com 58 Novas Infecções e 44 Recuperados". Agência Angola Press (in Portuguese). 4 March 2021.
  263. ^ "COVID-19 Antigua & Barbuda Dashboard". Official Facebook page of the Ministry of Health & The Environment, Antigua and Barbuda. 6 March 2021.
  264. ^ "Sala de Situaciόn Coronavirus online" (PDF). Argentina.gob.ar (in Spanish). 16 April 2022.
  265. ^ Կորոնավիրուսային հիվանդություն (COVID-19). Հիվանդությունների վերահսկման և կանխարգելման ազգային կենտրոն [National Center for Disease Control and Prevention] (in Armenian). 30 May 2022.
  266. ^ "Coronavirus (COVID-19) current situation and case numbers". Department of Health. 10 September 2022.
  267. ^ "Coronavirus". AGES Dashboard COVID19 (in German). 2 February 2023.
  268. ^ "Azərbaycanda Carı Vəzıyyət". Azərbaycan Respublikasının Nazirlər Kabineti [Cabinet of Ministers of the Republic of Azerbaijan] (in Azerbaijani). 11 May 2022.
  269. ^ "News and Press Releases: COVID-19 Report Update". Government of the Bahamas. 29 November 2022.
  270. ^ الموقع الرسمي للمستجدات الصحية، مملكة الب9رين. وزارة الصحة [Ministry of Health] (in Arabic). 3 December 2022.
  271. ^ "Bangladesh Covid-19 Update". Institute of Epidemiology, Disease Control and Research. 24 July 2021.
  272. ^ "COVID-19 Update". Barbados Government Information Service. 15 October 2022.
  273. ^ Официальный Минздрав. Официальный канал Министерства здравоохранения Республики Беларусь [Telegram channel of the Ministry of Health of the Republic of Belarus] (in Russian). 9 May 2022.
  274. ^ "Epistat COVID19 Belgian Dashboard". Sciensano. 25 January 2023.
  275. ^ "COVID-19 Update". Facebook account of the Ministry of Health and Wellness Belize. 1 November 2021.
  276. ^ "Coronavirus (COVID-19) By the Numbers". Statistical Institute of Belize. 9 June 2022.
  277. ^ "Informations coronavirus (covid-19)". Gouvernement de la République du Bénin [Government of the Republic of Benin] (in French). 5 May 2021.
  278. ^ "National Situational Update on COVID-19". Ministry of Health. 28 February 2022.
  279. ^ "Reporte COVID-19 en Bolivia". Ministerio de Salud [Ministry of Health] (in Spanish). 5 June 2022.
  280. ^ "Službene informacije o koronavirusu u BiH". Ministarstvo civilnih poslova Bosne i Hercegovine [Ministry of Civil Affairs of Bosnia and Herzegovina] (in Bosnian). 28 September 2022.
  281. ^ "COVID-19 Botswana Dashboard". Government of Botswana. 11 January 2022.
  282. ^ "BW government on Facebook". Government of Botswana. 3 December 2020.
  283. ^ "COVID-19 Testes". Ministério da Saúde [Ministry of Health] (in Portuguese). 19 February 2021.
  284. ^ "Coronavírus Brasil". Ministério da Saúde [Ministry of Health] (in Portuguese). 19 February 2021.
  285. ^ "Press Release on the Current Situation of the COVID-19 Infection in Brunei Darussalam". Ministry of Health Brunei Darussalam. 2 August 2021.
  286. ^ COVID-19: Единен информационен портал. COVID-19: Единен информационен портал [COVID-19: United information portal] (in Bulgarian). 3 February 2023.
  287. ^ "Communiqué Coronavirus (COVID-19) au Burkina Faso". Facebook account of the Service d'Information du Gouvernement (SIG) [Government Information Service] (in French). 5 March 2021.
  288. ^ "Update on COVID-19". Facebook account of the Ministère de la Santé Publique Burundi [Ministry of Public Health Burundi] (in French). 5 January 2021.
  289. ^ បច្ចុប្បន្នភាពនៃជំងឺកូរ៉ូណាថ្មី COVID-19 នៅប្រទេសកម្ពុជា. Communicable Disease Control Department, Ministry of Health (Cambodia) (in Khmer). 1 August 2021.
  290. ^ "Coronavirus disease (COVID-19): Outbreak update". Government of Canada. Retrieved 5 December 2022.
  291. ^ "Communiqué N*320 de la Coordination Nationale de Riposte Sanitaire". Official Facebook account of the Ministère de la Santé Publique du Tchad [Ministry of Public Health of Chad] (in French). 2 March 2021.
  292. ^ "Cifras Oficiales: COVID-19". Gobierno de Chile [Government of Chile] (in Spanish). 2 February 2023.
  293. ^ 我国核酸日检测能力达484万份. 中华人民共和国中央人民政府 [The Central People's Government of the People's Republic of China] (in Chinese). 6 August 2020.
  294. ^ "Aug 1: Daily briefing on novel coronavirus cases in China". National Health Commission of the People's Republic of China. 1 August 2020.
  295. ^ "#COVID19 en Colombia 28-01-2021". Instituto Nacional de Salud de Colombia [Colombia's National Institute of Health] (in Spanish). 17 January 2021.
  296. ^ "#ReporteCOVID19". Cuenta Oficial del Ministerio de Salud y Protección Social de Colombia [Official Account of Health and Social Protection Ministry of Columbia] (in Spanish). 24 November 2022.
  297. ^ "Situación Nacional COVID-19". Geovisión; Ministerio de Salud, Costa Rica [Ministry of Health, Costa Rica] (in Spanish). 2 November 2021.
  298. ^ "xxx novih slučajeva u protekla 24 sata". Koronavirus.hr (in Croatian). 3 February 2023.
  299. ^ "Covid19CubaData". Covid19CubaData (in Spanish). 21 July 2021.
  300. ^ "Coronavirus en Cuba". Ministerio de Salud Pública [Ministry of Public Health] (in Spanish). 3 February 2023.
  301. ^ Η εξάπλωση της COVID-19 στην Κύπρο. Πανεπιστήμιο Κύπρου [University of Cyprus] (in Greek). 3 February 2023.
  302. ^ "Přehled situace v ČR: COVID-19". Ministerstvo zdravotnictví České republiky [The Ministry of Health of the Czech Republic] (in Czech). 2 February 2023.
  303. ^ "Tal og overvågning over coronavirus/COVID-19 – Sundhedsstyrelsen". Sundhedsstyrelsen [The National Board of Health] (in Danish). 1 February 2023.
  304. ^ "Statens Serum Institut COVID-19 – Danmark". State20 Serum Institut [The National Board of Health] (in Danish). 15 November 2022.
  305. ^ "Poit de Presse Sur La Situation COVID19 Par Le Secrétaire De La Santé Dr Meeke Mohamed Moussa". Official Facebook account of the Ministere de la Santé de Djibouti [Djibouti Ministry of Health] (in French). 28 April 2022.
  306. ^ "Commonwealth of Dominica Coronavirus [COVID-19] Report". Facebook account of the Ministry of Health, Wellness and New Health Investment. 21 June 2022.
  307. ^ "Boletin Especial 484 COVID 19". Dirección General de Epidemiología [General Directorate of Epidemiology] (in Spanish). 23 July 2022.
  308. ^ "Situation Épidémiologique en RDC". Stop Coronavirus COVID-19 RDC (in French). 28 February 2021.
  309. ^ "Situación Nacional Por COVID-19 Infografía N°400" (PDF). Ministerio de Salud Pública [Ministry of Public Health] (in Spanish). 23 July 2021.
  310. ^ "facebook.com/EgyMohpSpokes". Facebook page for the Egyptian Ministry of Health and Population (MOHP) spokesperson (in Arabic). 23 July 2021.
  311. ^ "Situación nacional COVID-19". Gobierno de El Salvador [Government of El Salvador] (in Spanish). 19 March 2022.
  312. ^ "Estadísticas COVID-19" [Ministry of Health and Social Welfare]. Ministerio de Sanidad y Bienestar Social (in Spanish). Equatorial Guinea. 31 January 2023.
  313. ^ "Koroonakaart". Koroonakaart. 31 January 2023.
  314. ^ "COVID-19 Eswatini Dashboard". 8 December 2021.
  315. ^ የኢትዮጵያ የተቀናጀ የኮቪድ-19 መቆጣጠሪያ ስርዓት. covid19.et (in Amharic). 24 July 2021.
  316. ^ "Corona í Føroyum". Føroya Landsstýri [The Government of the Faroe Islands]. 27 February 2022.
  317. ^ "COVID-19 Update". Ministry o10 Health & Medical Services. Fiji. 2 January 2023.
  318. ^ "Confirmed coronavirus cases (COVID-19) in Finland". Terveyden ja hyvinvoinnin laitos (ArcGIS) [National Institute for Health and Welfare (ArcGIS)]. 14 January 2022.
  319. ^ "info coronavirus covid-19-carte et donnes covid 19 en france". Gouvernement.fr (in French). 15 May 2022.
  320. ^ "Situation Épidémiologique au Gabon". Info Covid19 Gabon (in French). 23 July 2021.
  321. ^ "The Gambia COVID-19 Outbreak Situational Report" (PDF). Ministry of Health. 15 February 2021.
  322. ^ COVID-19 სტატისტიკური მონაცემები. დაავადებათა კონტროლისა და საზოგადოებრივი ჯანმრთელობის ეროვნული ცენტრი [National Center for Disease Control and Public Health] (in Georgian). 3 November 2021.
  323. ^ "Robert Koch-Institut: COVID-19-Dashboard". Robert Koch-Institut [Robert Koch Institute]. 7 July 2021.
  324. ^ "Tabellen zu Testzahlen, Testkapazitäten und Probenrückstau pro Woche" (XLSX). Robert Koch-Institut [Robert Koch Institute]. 7 July 2021.
  325. ^ "Situation Update, COVID-19 Outbreak in Ghana". Ghana Health Service. 3 July 2021.
  326. ^ Ημερήσια έκθεση επιδημιολογικής επιτήρησης λοίμωξης από το νέο κορωνοϊό (COVID-19). Εθνικός Οργανισμός Δημόσιας Υγείας [National Public Health Organization] (in Greek). 20 December 2022.
  327. ^ "Coronavirus i Grønland". Naalakkersuisut [Government of Greenland] (in Danish). 30 January 2022.
  328. ^ "COVID-19 Update | Grenada Dashboard". Ministry of Health Grenada (Facebook). 11 May 2021.
  329. ^ "Situación de COVID-19 en Guatemala". Ministerio de Salud Pública y Asistencia Social [Ministry of Public Health and Social Assistance] (in Spanish). 7 January 2023.
  330. ^ "Republique de Guinee COVID-19 Décompte des cas". Official Twitter account of the Agence Nationale de Sécurité Sanitaire [National Agency for Health Security] (in French). 23 July 2021.
  331. ^ "Situação Epidemiológica Da Covid-19 Na Guiné-Bissau". Official Facebook page of the Alto Comissariado para o Covid-19 [High Commissioner for Covid-19] (in Portuguese). 8 July 2022.
  332. ^ "Guyana COVID-19 Dashboard". Ministry of Health. 16 June 2022.
  333. ^ "Surveillance de la COVID-19, Haiti, 2020-2021". Ministère de la Santé Publique et de la Population [Ministry of Public Health and Population] (in French). 7 December 2022.
  334. ^ "Estadística Nacional de Coronavirus COVID-19". Biblio3eca Virtual en Salud de Honduras [Virtual Health Library of Honduras] (in Spanish). 26 November 2021.
  335. ^ "Tájékoztató oldal a koronavírusról". Tájékoztató oldal a koronavírusról [Coronavirus Information Page] (in Hungarian). Cabinet Office of the Prime Minister. 11 May 2022.
  336. ^ "COVID-19 in Iceland – Statistics". Covid.is. 9 August 2022.
  337. ^ "SARS-CoV-2 (COVID-19) Testing: Status Update". Indian Council of Medical Research.
  338. ^ "Ministry of Health and Family Welfare". Ministry of Health and Family Welfare.
  339. ^ "Health Ministry's Updates on COVID-19". Government of the Islamic Republic of Iran. 1 June 2022.
  340. ^ "الموقف الوبائي اليومي لجائحة كورونا في العراق ليوم السبت الموافق ٥ كانون الاول ٢٠٢٠". وزارة الصحة العراقية (Facebook) [Iraqi Ministry of Health (Facebook)] (in Arabic). 3 August 2022.
  341. ^ "Ireland's COVID-19 Data Hub". gov.ie. 1 February 2023.
  342. ^ קורונה – לוח בקרה. נגיף הקורונה [Coronavirus] (in Hebrew). Ministry of Health. 17 January 2022.
  343. ^ "17 marzo 2023 – Aggiornamento casi Covid-19" (PDF). Dipartimento della Protezione Civile (GitHub) [Civil Protection Department (GitHub)] (in Italian). 16 March 2023.
  344. ^ "Point de la situation de la COVID-19 au 3/03/2021". Official Facebook channel of Le Ministère de la Santé et de l’Hygiène Publique [Ministry of Health and Public Hygiene, Ivory Coast] (in French). 3 March 2021.
  345. ^ "COVID-19 Clinical Management Summary". Ministry of Health & Wellness. 3 October 2022.
  346. ^ 新型コロナウイルス感染症の現在の状況と厚生労働省の対応について(令和3年3月1日版). 厚生労働省 [The Ministry of Health, Labour and Welfare] (in Japanese). 1 March 2021.
  347. ^ "corona.moh.gov.jo/en". Jordan Ministry of Health. 6 June 2021.
  348. ^ Данные по COVID-19 в Казахстане. Национальный центр общественного здравоохранения Министерства здравоохранения Республики Казахстан [National Center of Public Health of the Ministry of Healthcare of the Republic of Kazakhstan] (in Russian). 29 May 2021.
  349. ^ "twitter.com/MOH_Kenya". Official Twitter Account of the Ministry of Health Kenya. 5 March 2021.
  350. ^ "facebook.com/IKSHPK". Official Facebook account of the Instituti Kombëtar i Shëndetësisë Publike të Kosovës [National Institute of Public Health of Kosova] (in Albanian). 31 May 2021.
  351. ^ "twitter.com/KUWAIT_MOH". Kuwait Ministry of Health (Twitter). 9 March 2022.
  352. ^ За сутки проведено 3436 ПЦР-исследований на коронавирус. Insta official (in Kyrgyz). 10 February 2021.
  353. ^ "ຄະນະສະເພາະກິດ COVID-19". COVID-19 Task Force (in Lao). 1 March 2021.
  354. ^ "Covid-19 infekcijas izplatība Latvijā". Slimību profilakses un kontroles centrs (ArcGIS) [Center for Disease Prevention and Control (ArcGIS)] (in Latvian). 5 September 2021.
  355. ^ آخر اﻹحصاءات. فيروس كورونا: COVID-19 [Coronavirus: COVID-19] (in Arabic). Ministry of Information. 14 June 2021.
  356. ^ "COVID-19 Statistics". Official Twitter account of the National COVID-19 Secretariat (NACOSEC). 31 March 2022.
  357. ^ "#LiBCOVID19 Case Update". Official Facebook account of the National Public Health Institute of Liberia-NPHIL. 19 July 2021.
  358. ^ اليومي للوضع الوبائي المحلي لفيروس كورونا المستجد ليوم الأحد 28 فبراير 2021. Official Facebook account of the National Centre for Disease Control (NCDC) - Libya (in Arabic). 16 April 2022.
  359. ^ "Koronavirusas (COVID-19)". Lietuvos Respublikos sveikatos apsaugos ministerija [Ministry of Health of the Republic of Lithuania] (in Lithuanian). 1 February 2023.
  360. ^ "Korona Stop". Korona Stop. 16 May 2021.
  361. ^ "Coronavirus – Rapport Journalier" (PDF). La plate-forme de données luxembourgeoise [The luxembourgish data platform] (in French). Government of Luxembourg. 13 May 2022.
  362. ^ "COVID-19: Fivoaran'ny antontan'isa teto Madagasikara ny 13 Febroary ka hatramin'ny 19 Febroary 2021". Facebook account of the Ministère de la Santé Publique Madagascar [Ministry of Public Health Madagascar] (in French and Malagasy). 22 February 2021.
  363. ^ "COVID-19 Daily info update". Facebook page of the Ministry Of Health - Malawi. 29 November 2022.
  364. ^ "Situasi Terkini". Kementerian Kesihatan Malaysia [Ministry of Health Malaysia] (in Malay). 7 September 2021.
  365. ^ "COVID-19 Case Updates". Health Protection Agency (Twitter). 13 March 2022.
  366. ^ "COVID-19 Local Updates". Ministry of Health. 29 January 2021.
  367. ^ "Communique N°364 du Ministere de la Sante et du Développement Social Sur Le Suivi des Actions de Prevention et de Riposte Face a la Maladie a Coronavirus". Ministère de la Santé et du Développement Social du Mali [Ministry of Health and Social Development of Mali] (in French). 7 July 2021.
  368. ^ "COVID-19 Malta". Times of Malta (ArcGIS). 8 September 2021.
  369. ^ "المعطيات العامة للحالة الوبائية". Official Facebook page of the Ministère de la santé /وزارة الصحة [Ministry of Health] (in Arabic). Mauritania. 17 April 2021.
  370. ^ "Covid-19 : Communiqués". Republic of Mauritius. 23 October 2020.
  371. ^ "Covid-19 México". Gobierno de México [Government of Mexico] (in Spanish). 15 October 2021.
  372. ^ "Comunicate". Ministerul Sănătății Muncii și Protecției Sociale [Ministry of Health, Labour and Social Protection] (in Romanian). Moldova. 21 April 2022.
  373. ^ Нөхцөл байдлын мэдээ COVID-19. Эрүүл Мэндийн Яам [Ministry of Health] (in Mongolian). 10 July 2021.
  374. ^ "Uživo: COVID-19". Institut za javno zdravlje Crne Gore [Institute of Public Health of Montenegro] (in Montenegrin). 28 July 2020.
  375. ^ "Novosti". Institut za javno zdravlje Crne Gore [Institute of Public Health of Montenegro] (in Montenegrin). 11 May 2021.
  376. ^ مرض فيروس كورونا المستجد: الرصد الصحي بالمغرب. البوابة الرسمية لفيروس كورونا بالمغرب [The official portal of coronavirus in Morocco] (in Arabic). 7 January 2023.
  377. ^ "Boletim diário COVID-19 Nº379". Ministério da Saúde [Ministry of Health] (in Portuguese). 22 July 2021.
  378. ^ "Coronavirus Disease 2019 (COVID-19) Surveillance Dashboard (Myanmar)". Ministry of Health and Sports (in Burmese). 16 September 2021.
  379. ^ "COVID-19 update". Official Facebook account of the Ministry of Health and Social Services-Namibia. 5 July 2022.
  380. ^ "COVID-19 Dashboard". Ministry of Health and Population (Nepal). Retrieved 26 July 2022.
  381. ^ "Epidemiologische situatie van COVID-19 in Nederland" (PDF). Rijksinstituut voor Volksgezondheid en Milieu [National Institute for Public Health and the Environment] (in Dutch). 6 July 2021.
  382. ^ "Info coronavirus Covid-19". Gouvernement de la Nouvelle-Calédonie [Government of New Caledonia] (in French). 4 September 2021.
  383. ^ "COVID-19: Testing data". Ministry of Health. 30 January 2023.
  384. ^ "COVID-19: Current cases". Ministry of Health. 30 January 2023.
  385. ^ "#Covid19Niger Bilan du 22/02/2021". Facebook account of the Ministère de la Santé Publique [Ministry of Public Health] (in French). 22 February 2021.
  386. ^ "Coronavirus COVID-19 Microsite". Nigeria Centre for Disease Control. 28 February 2021.
  387. ^ КНДР ввела максимальный уровень карантина. KBS World Radio (in Russian). 2 December 2020.
  388. ^ Регистрирани 237 Нови Случаи На Ковид 19 – Вкупно Дијагностицирани 84024, Оӡдравени 460 Пациенти – Починати 8 Лица. Министерство за здравство [Ministry of Health] (in Macedonian). 1 July 2021.
  389. ^ Во последните 24 часа. Министерство за здравство [Ministry of Health] (in Macedonian). 27 June 2021.
  390. ^ "COVID-19 Genel Durum". Kuzey Kıbrıs Türk Cumhuriyeti Sağlık Bakanlığı [Turkish Republic of Northern Cyprus Ministry of Health] (in Turkish). 13 July 2022.
  391. ^ "Dags- og ukerapporter om koronavirussykdom (covid-19)". Folkehelseinstituttet [Norwegian Institute of Public Health] (in Norwegian). 20 January 2022.
  392. ^ "Oman conducts over 500,000 COVID-19 tests since the start of pandemic". The Arabian Stories. 28 October 2020.
  393. ^ "Pakistan Cases Details". COVID-19 Health Advisory Platform. Ministry of National Health Services Regulations and Coordination. 5 March 2021.
  394. ^ فايروس كورونا (COVID-19) في فلسطين. فايروس كورونا (COVID-19) في فلسطين [Coronavirus (COVID-19) in Palestine] (in Arabic). 5 February 2022.
  395. ^ "Compartimos la actualización de datos sobre #COVID19 en nuestro país. Parte 1". Cuenta Oficial de Twitter del Ministerio de Salud de Panama [Official Twitter Account of the Ministry of Health Panama] (in Spanish). 31 January 2023.
  396. ^ "Official COVID-19 Info Website". Papua New Guinea Joint Agency Task Force, National Control Centre for COVID-19. 20 February 2021.
  397. ^ "Reportes – COVID19" (in Spanish). Ministe132 280rio de Salud Pública y Bienestar Social (Ministry of Public Health and Social Welfare). 28 March 2022.
  398. ^ "Sala Situacional". Covid-19 en ″el Perú [Covid-19 in Peru] (in Spanish). 19 November 2022.
  399. ^ "COVID-19 Tracker". Department of Health (Philippines). 7 January 2023.
  400. ^ "COVID-19 Tracker". Department of Health (Philippines). 16 April 2021.
  401. ^ "diagnostyka pod kątem koronawirusa". Official Twitter account of the Ministerstwo Zdrowia [Ministry of Health] (in Polish). 27 April 2022.
  402. ^ "Ponto de Situação Atual em Portugal". COVID-19 (in Portuguese). Ministry of Health. 5 January 2022.
  403. ^ "COVID19 Home". Ministry of Public Health. 12 November 2022.
  404. ^ "Buletin informativ". Ministerul Sănătăţii [Ministry of Health] (in Romanian). 29 January 2021.
  405. ^ Информационный бюллетень о ситуации и принимаемых мерах по недопущению распространения заболеваний, вызванных новым коронавирусом. Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека (Роспотребнадзор) [Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)] (in Russian). 7 June 2022.
  406. ^ стопкоронавирус. Оперативные данные [Stop Coronavirus] (in Russian). 4 June 2022.
  407. ^ "Amakuru Mashya | Update". Twitter account of the Ministry of Health-Rwanda. 6 October 2021.
  408. ^ "COVID-19 Updates". Government of St. Kitts and Nevis. 27 August 2021.
  409. ^ "Saint Lucia's COVID-19 Dashboard". Ministry of Health and Wellness. 7 October 2022.
  410. ^ "COVID-19 Report". Ministry of Health, Wellness and the Environment (St. Vincent and the Grenadines). 30 January 2023.
  411. ^ "Aggiornamento Epidemia COVID-19". Istituto per la Sicurezza Sociale [Institute for Social Security] (in Italian). 30 January 2023.
  412. ^ "COVID 19 Dashboard: Saudi Arabia". Ministry of Health. 26 April 2022.
  413. ^ "Riposte à l'épidémie du nouveau coronavirus COVID-19, Sénégal" (PDF). Ministère de la Santé et l'Action sociale [Ministry of Health and Social Action] (in French). 12 July 2021.
  414. ^ "Coronavirus COVID-19". Ministry of Health of the Republic of Serbia. 3 February 2023.
  415. ^ "Updates on COVID-19 (Coronavirus Disease 2019) Local Situation". Ministry of Health. 3 August 2021.
  416. ^ "COVID-19 Situation Report". Ministry of Health. 2 March 2020.
  417. ^ "Covid-19 in graphs". korona.gov.sk. Office of the Deputy Prime Minister of the Slovak Republic for Investments and Informatization. 3 February 2023.
  418. ^ "Dnevno spremljanje okužb s SARS-CoV-2 (COVID-19)". Nacionalni inštitut za javno zdravje [National Institute of Public Health] (in Slovenian). 2 February 2023.
  419. ^ "COVID-19 South African coronavirus news and information". South African Government. 24 May 2021.
  420. ^ "COVID-19 statistics in South Africa". South Africa Health Twitter Account. 24 May 2021.
  421. ^ 코로나바이러스감염증-19(COVID-19). 코로나바이러스감염증-19(COVID-19) [Coronavirus infection-19 (COVID-19)] (in Korean). Ministry of Health and Welfare. 1 March 2021.
  422. ^ "Update on COVID-19 Response". Ministry of Health - South Sudan. 26 May 2021.
  423. ^ "La pandemia del coronavirus, en datos, mapas y gráficos". RTVE ( Radio y Televisión Española) [RTVE ( Spanish Radio and Television)] (in Spanish). 1 July 2021.
  424. ^ "Resumen de la situación - Pruebas de laboratorio". Ministerio de Sanidad, Consumo y Bienestar Social [Ministry of Health, Consumption and Social Welfare] (in Spanish). 5 July 2021.
  425. ^ "COVID-19 Situation Report". Health Promotion Bureau, Sri Lanka. 31 March 2021.
  426. ^ "COVID-19 : Live Situational Analysis Dashboard of Sri Lanka". Health Promotion Bureau, Sri Lanka. 31 March 2021.
  427. ^ "Veckorapport om covid-19, vecka 20" (PDF). folkhalsomyndigheten.se (in Swedish). Public Health Agency of Sweden. 28 May 2021. p. 18.
  428. ^ "Folkhalsomyndigheten Antal fall av Covid-19". folkhalsomyndigheten.se (in Swedish). Public Health Agency of Sweden. 1 February 2021.
  429. ^ "COVID-19 Switzerland". Federal Office of Public Health FOPH. 8 November 2022.
  430. ^ "Taiwan Centers for Disease Control". Taiwan Centers for Disease Control. 4 February 2023.
  431. ^ รายงานสถานการณ์โรคติดเชื้อไวรัสโคโรนา 2019 ฉบับที่ 426 วันที่ 4 มีนาคม 2564 (PDF). Department of Disease Control (in Thai). 4 March 2021.
  432. ^ "Coronavirus Au Togo". Government of Togo (in French). 7 January 2023.
  433. ^ "COVID-19 Update Trinidad and Tobago". Ministry of Health. 3 January 2022.
  434. ^ الأرقام الرئيسيّة المسجّلة بتاريخ 03 فيفري 2021 #كوفيد_19. Official Facebook account of the Ministére de la Santé وزارة الصحة [Ministry of Health, Tunisia] (in Arabic and French). 24 August 2021.
  435. ^ "Türkıye COVID-19 Hasta Tablosu". Türkiye Cumhuriyeti Sağlık Bakanlığı [Republic of Turkey Ministry of Health] (in Turkish). 2 July 2021.
  436. ^ "COVID-19 Daily Updates". Facebook page of the Ministry of Health - Uganda. 12 February 2021.
  437. ^ "COVID-19 pandemic in Ukraine". COVID-19 pandemic in Ukraine. Cabinet of Ministers of Ukraine. 24 November 2021.
  438. ^ "COVID-19 Updates – Ministry of Health and Prevention – UAE". Ministry of Health & Prevention. 2 February 2023.
  439. ^ "Coronavirus (COVID-19) in the UK". GOV.UK. 19 May 2022.
  440. ^ "COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University". coronavirus.jhu.edu. 9 August 2021.
  441. ^ "COVID Data Tracker Weekly Review". Centers for Disease Control and Prevention. 30 July 2022. Retrieved 3 August 2022.
  442. ^ "Visualizador de casos coronavirus COVID-19 en Uruguay". Sistema Nacional de Emergencias [National Emergency System] (in Spanish). 16 April 2022.
  443. ^ Дневной прирост случаев COVID-19 продолжает увеличиваться. Gazeta.uz Газета.uz (in Russian). 11 September 2020.
  444. ^ "Día 353 de la lucha contra la COVID-19". COVID-19 Patria (in Spanish). 30 March 2021.
  445. ^ "COVID-19 in Viet Nam Situation Report 32". WHO. 30 August 2022. Retrieved 1 September 2022.
  446. ^ "Daily #COVID19 update". Official Twitter account of the Zambia National Public Health Institute. 10 March 2022.
  447. ^ "COVID-19 update". Official Twitter account of the Ministry of Health and Child Care (Zimbabwe). 16 October 2022.

Further reading

External links