La física de polímeros es el campo de la física que estudia los polímeros , sus fluctuaciones, propiedades mecánicas , así como la cinética de las reacciones que implican la degradación de polímeros y la polimerización de monómeros . [1] [2] [3] [4]
Aunque se centra en la perspectiva de la física de la materia condensada , la física de polímeros fue originalmente una rama de la física estadística . La física de polímeros y la química de polímeros también están relacionadas con el campo de la ciencia de polímeros , que se considera la parte aplicativa de los polímeros.
Los polímeros son moléculas grandes y, por lo tanto, su resolución con un método determinista es muy complicada. Sin embargo, los métodos estadísticos pueden arrojar resultados y, a menudo, son pertinentes, ya que los polímeros grandes (es decir, polímeros con muchos monómeros ) se pueden describir de manera eficiente en el límite termodinámico de una cantidad infinita de monómeros (aunque el tamaño real es claramente finito).
Las fluctuaciones térmicas afectan continuamente la forma de los polímeros en soluciones líquidas, y para modelar su efecto es necesario aplicar principios de mecánica y dinámica estadística. Como corolario, la temperatura afecta fuertemente el comportamiento físico de los polímeros en solución, provocando transiciones de fase, fusiones, etc.
El enfoque estadístico para la física de polímeros se basa en una analogía entre el comportamiento del polímero y el movimiento browniano u otro tipo de paseo aleatorio , el paseo autoevitativo . El modelo de polímero más simple posible se presenta mediante la cadena ideal , que corresponde a un paseo aleatorio simple. Los enfoques experimentales para caracterizar polímeros también son comunes, utilizando métodos de caracterización de polímeros , como cromatografía de exclusión por tamaño , viscosimetría , dispersión dinámica de luz y Monitoreo automático continuo en línea de reacciones de polimerización (ACOMP) [5] [6] para determinar las propiedades químicas, físicas y materiales de los polímeros. Estos métodos experimentales ayudan al modelado matemático de polímeros y brindan una mejor comprensión de las propiedades de los polímeros.
Los modelos de cadenas de polímeros se dividen en dos tipos: modelos "ideales" y modelos "reales". Los modelos de cadena ideal suponen que no hay interacciones entre los monómeros de la cadena. Esta suposición es válida para ciertos sistemas poliméricos, donde las interacciones positivas y negativas entre los monómeros se cancelan de manera efectiva. Los modelos de cadena ideal proporcionan un buen punto de partida para la investigación de sistemas más complejos y son más adecuados para ecuaciones con más parámetros.
Las interacciones entre los monómeros de la cadena se pueden modelar como volumen excluido . Esto provoca una reducción en las posibilidades conformacionales de la cadena y conduce a un recorrido aleatorio autoevitativo. Los recorridos aleatorios autoevitativos tienen estadísticas diferentes a los recorridos aleatorios simples.
Las estadísticas de una cadena de polímero simple dependen de la solubilidad del polímero en el solvente. Para un solvente en el que el polímero es muy soluble (un solvente "bueno"), la cadena está más expandida, mientras que para un solvente en el que el polímero es insoluble o apenas soluble (un solvente "malo"), los segmentos de la cadena permanecen cerca uno del otro. En el límite de un solvente muy malo, la cadena de polímero simplemente colapsa para formar una esfera dura, mientras que en un buen solvente la cadena se hincha para maximizar el número de contactos polímero-fluido. Para este caso, el radio de giro se aproxima utilizando el enfoque de campo medio de Flory, que produce una escala para el radio de giro de:
donde es el radio de giro del polímero, es el número de segmentos de enlace (igual al grado de polimerización) de la cadena y es el exponente de Flory.
Para un buen disolvente, ; para un disolvente deficiente, . Por lo tanto, el polímero en un buen disolvente tiene un tamaño mayor y se comporta como un objeto fractal . En un disolvente deficiente se comporta como una esfera sólida.
En el llamado disolvente , que es el resultado de un simple paseo aleatorio, la cadena se comporta como si fuera una cadena ideal.
La calidad del disolvente también depende de la temperatura. En el caso de un polímero flexible, una temperatura baja puede corresponder a una mala calidad, mientras que una temperatura alta hace que el mismo disolvente sea de buena calidad. A una temperatura determinada denominada temperatura theta (θ), el disolvente se comporta como una cadena ideal .
El modelo de cadena ideal supone que los segmentos de polímero pueden superponerse entre sí como si la cadena fuera una cadena fantasma. En realidad, dos segmentos no pueden ocupar el mismo espacio al mismo tiempo. Esta interacción entre segmentos se denomina interacción de volumen excluido .
La formulación más simple del volumen excluido es el paseo aleatorio autoevitativo, un paseo aleatorio que no puede repetir su camino anterior. Un camino de este paseo de N pasos en tres dimensiones representa una conformación de un polímero con interacción de volumen excluido. Debido a la naturaleza autoevitativa de este modelo, el número de conformaciones posibles se reduce significativamente. El radio de giro es generalmente mayor que el de la cadena ideal.
La flexibilidad o no de un polímero depende de la escala de interés. Por ejemplo, la longitud de persistencia del ADN bicatenario es de unos 50 nm. Si se observa una escala de longitud inferior a 50 nm, se comporta más o menos como una varilla rígida. [12] En una escala de longitud mucho mayor que 50 nm, se comporta como una cadena flexible.
La reptación es el movimiento térmico de macromoléculas lineales muy largas y enredadas básicamente en polímeros fundidos o soluciones poliméricas concentradas. Derivado de la palabra reptil , reptación sugiere el movimiento de cadenas de polímeros enredadas como análogo a serpientes deslizándose unas sobre otras. [13] Pierre-Gilles de Gennes introdujo (y nombró) el concepto de reptación en la física de polímeros en 1971 para explicar la dependencia de la movilidad de una macromolécula en su longitud. La reptación se utiliza como un mecanismo para explicar el flujo viscoso en un polímero amorfo. [14] [15] Sir Sam Edwards y Masao Doi refinaron posteriormente la teoría de reptación. [16] [17] La teoría consistente del movimiento térmico de los polímeros fue dada por Vladimir Pokrovskii [18] . [19] [20] Fenómenos similares también ocurren en las proteínas. [21]
El estudio de los polímeros de cadena larga ha sido una fuente de problemas en el ámbito de la mecánica estadística desde aproximadamente la década de 1950. Sin embargo, una de las razones por las que los científicos estaban interesados en su estudio es que las ecuaciones que gobiernan el comportamiento de una cadena de polímeros son independientes de la química de la cadena. Es más, la ecuación gobernante resulta ser un paseo aleatorio , o paseo difusivo, en el espacio. De hecho, la ecuación de Schrödinger es en sí misma una ecuación de difusión en tiempo imaginario, t' = it .
El primer ejemplo de un paseo aleatorio es uno en el espacio, en el que una partícula experimenta un movimiento aleatorio debido a fuerzas externas en el medio que la rodea. Un ejemplo típico sería un grano de polen en un vaso de agua. Si se pudiera "teñir" de alguna manera el camino que ha seguido el grano de polen, el camino observado se definiría como un paseo aleatorio.
Consideremos un problema de juguete, en el que un tren se desplaza a lo largo de una vía unidimensional en la dirección x. Supongamos que el tren se desplaza una distancia de + b o − b ( b es la misma para cada paso), dependiendo de si una moneda cae cara o cruz al lanzarla. Comencemos por considerar las estadísticas de los pasos que da el tren de juguete (donde S i es el i-ésimo paso dado):
La segunda cantidad se conoce como la función de correlación . El delta es el delta de Kronecker que nos dice que si los índices i y j son diferentes, entonces el resultado es 0, pero si i = j entonces el delta de Kronecker es 1, por lo que la función de correlación devuelve un valor de b 2 . Esto tiene sentido, porque si i = j entonces estamos considerando el mismo paso. De manera bastante trivial, se puede demostrar que el desplazamiento promedio del tren en el eje x es 0;
Como se indicó , la suma sigue siendo 0. También se puede demostrar, utilizando el mismo método que se demostró anteriormente, que se calcula el valor de la raíz cuadrada media del problema. El resultado de este cálculo se muestra a continuación.
A partir de la ecuación de difusión se puede demostrar que la distancia que recorre una partícula que se difunde en un medio es proporcional a la raíz del tiempo que lleva difundiendo el sistema, donde la constante de proporcionalidad es la raíz de la constante de difusión. La relación anterior, aunque cosméticamente diferente, revela una física similar, donde N es simplemente el número de pasos recorridos (está vagamente relacionado con el tiempo) y b es la longitud característica del paso. En consecuencia, podemos considerar la difusión como un proceso de paseo aleatorio.
Los paseos aleatorios en el espacio pueden considerarse instantáneas del camino que sigue un caminante aleatorio en el tiempo. Un ejemplo de ello es la configuración espacial de los polímeros de cadena larga.
Existen dos tipos de recorrido aleatorio en el espacio: recorrido aleatorio autoevitativo , en el que los eslabones de la cadena de polímeros interactúan y no se superponen en el espacio, y recorrido aleatorio puro , en el que los eslabones de la cadena de polímeros no interactúan y los eslabones pueden colocarse uno sobre el otro. El primer tipo es más aplicable a los sistemas físicos, pero sus soluciones son más difíciles de obtener a partir de los primeros principios.
Al considerar una cadena de polímero libremente unida y sin interacción, el vector de extremo a extremo es
donde r i es la posición vectorial del i -ésimo eslabón de la cadena. Como resultado del teorema del límite central , si N ≫ 1 entonces esperamos una distribución gaussiana para el vector de extremo a extremo. También podemos hacer afirmaciones sobre las estadísticas de los propios eslabones;
Utilizando las estadísticas de los enlaces individuales, se demuestra fácilmente que
Tenga en cuenta que este último resultado es el mismo que el encontrado para caminatas aleatorias en el tiempo.
Suponiendo, como se indicó, que la distribución de vectores de extremo a extremo para un número muy grande de cadenas de polímeros idénticas es gaussiana, la distribución de probabilidad tiene la siguiente forma
¿De qué nos sirve esto? Recordemos que, según el principio de probabilidades a priori igualmente probables , el número de microestados, Ω, en algún valor físico es directamente proporcional a la distribución de probabilidad en ese valor físico, es decir :
donde c es una constante de proporcionalidad arbitraria. Dada nuestra función de distribución, hay un máximo correspondiente a R = 0. Físicamente, esto equivale a que hay más microestados que tienen un vector de extremo a extremo de 0 que cualquier otro microestado. Ahora, al considerar
donde F es la energía libre de Helmholtz , y se puede demostrar que
que tiene la misma forma que la energía potencial de un resorte, obedeciendo la ley de Hooke .
Este resultado se conoce como el resultado del resorte entrópico y equivale a decir que al estirar una cadena de polímeros se está realizando un trabajo sobre el sistema para alejarlo de su estado de equilibrio (preferido). Un ejemplo de esto es una banda elástica común, compuesta de polímeros de cadena larga (caucho). Al estirar la banda elástica se está realizando un trabajo sobre el sistema y la banda se comporta como un resorte convencional, excepto que a diferencia del caso de un resorte de metal, todo el trabajo realizado aparece inmediatamente como energía térmica, de forma muy similar a lo que ocurre en el caso termodinámicamente similar de comprimir un gas ideal en un pistón.
Al principio puede resultar sorprendente que el trabajo realizado al estirar la cadena de polímero pueda relacionarse completamente con el cambio de entropía del sistema como resultado del estiramiento. Sin embargo, esto es típico de los sistemas que no almacenan energía como energía potencial, como los gases ideales. El hecho de que tales sistemas estén completamente impulsados por cambios de entropía a una temperatura dada se puede ver siempre que se les permita realizar trabajo sobre el entorno (como cuando una banda elástica realiza trabajo sobre el entorno al contraerse, o un gas ideal realiza trabajo sobre el entorno al expandirse). Debido a que el cambio de energía libre en tales casos se deriva completamente del cambio de entropía en lugar de la conversión de energía (potencial) interna, en ambos casos el trabajo realizado puede extraerse completamente de la energía térmica en el polímero, con un 100% de eficiencia de conversión de energía térmica en trabajo. Tanto en el gas ideal como en el polímero, esto es posible gracias a un aumento de entropía del material por la contracción que compensa la pérdida de entropía por la absorción de la energía térmica y el enfriamiento del material.
Una teoría basada en el movimiento serpenteante por el que se mueven las cadenas de monómeros en la masa fundida está mejorando nuestra comprensión de la reología, la difusión, la soldadura polímero-polímero, la cinética química y la biotecnología.