stringtranslate.com

Rodopsina

La rodopsina , también conocida como púrpura visual , es una proteína codificada por el gen RHO [5] y un receptor acoplado a proteína G (GPCR). Es una proteína receptora sensible a la luz que desencadena la fototransducción visual en los bastones. La rodopsina media la visión con luz tenue y, por lo tanto, es extremadamente sensible a la luz. [6] Cuando la rodopsina se expone a la luz, se fotoblanquea inmediatamente . En los humanos, se regenera por completo en unos 30 minutos, después de lo cual los bastones son más sensibles. [7] Los defectos en el gen de la rodopsina causan enfermedades oculares como la retinitis pigmentosa y la ceguera nocturna estacionaria congénita .

Nombres

La rodopsina fue descubierta por Franz Christian Boll en 1876. [8] [9] [10] El nombre rodopsina deriva del griego antiguo ῥόδον ( rhódon ) para "rosa", debido a su color rosado, y ὄψις ( ópsis ) para "vista". [11] Fue acuñado en 1878 por el fisiólogo alemán Wilhelm Friedrich Kühne (1837-1900). [12] [13]

Cuando George Wald descubrió que la rodopsina es una holoproteína , compuesta de retinal y una apoproteína , la llamó opsina, que hoy en día se describiría de forma más estricta como apo-rodopsina. [14] Hoy en día, el término opsina se refiere de forma más amplia a la clase de receptores acoplados a proteína G que se unen al retinal y, como resultado, se convierten en un fotorreceptor sensible a la luz , incluidas todas las proteínas estrechamente relacionadas. [15] [16] [17] [a] Cuando Wald y sus colegas aislaron más tarde la yodopsina de las retinas de pollo, descubriendo así la primera opsina de cono conocida , llamaron a la apo-yodopsina fotopsina (por su relación con la visión fotópica ) y a la apo-rodopsina escotopsina (por su uso en la visión escotópica ). [18]

General

La rodopsina es una proteína que se encuentra en los discos del segmento externo de las células bastón . Media la visión escotópica , que es la visión monocromática en condiciones de poca luz. [7] [19] La rodopsina absorbe con mayor fuerza la luz verde-azul (~500 nm) [20] [21] y, por lo tanto, parece de color púrpura rojizo, de ahí el término arcaico "púrpura visual".

Varias opsinas estrechamente relacionadas difieren sólo en unos pocos aminoácidos y en las longitudes de onda de la luz que absorben con mayor intensidad. Los humanos tenemos, incluida la rodopsina, nueve opsinas [15] , así como criptocromo (sensible a la luz, pero no es una opsina). [22]

Estructura

Rodopsina del ganado

La rodopsina, al igual que otras opsinas, es un receptor acoplado a proteína G (GPCR). [23] [24] Los GPCR son quimiorreceptores que se incrustan en la bicapa lipídica de las membranas celulares y tienen siete dominios transmembrana que forman un bolsillo de unión para un ligando. [25] [26] El ligando para la rodopsina es el cromóforo basado en vitamina A 11- cis - retinal , [27] [28] [29] [30] [31] que se encuentra horizontalmente a la membrana celular [32] y está unido covalentemente a un residuo de lisina (lys296) [33] en el séptimo dominio transmembrana [34] [32] a través de una base de Schiff . [35] [36] Sin embargo, 11- cis -retinal solo bloquea el bolsillo de unión y no activa la rodopsina. Solo se activa cuando el 11- cis -retinal absorbe un fotón de luz y se isomeriza a todo -trans -retinal, [37] [38] la forma activadora del receptor, [39] [40] causando cambios conformes en la rodopsina (blanqueamiento), [39] que activan una cascada de fototransducción . [41] Por lo tanto, un quimiorreceptor se convierte en un receptor de luz o foto(n)receptor . [16]

La lisina de unión a la retina se conserva en casi todas las opsinas, y solo unas pocas la han perdido durante la evolución . [16] Las opsinas sin la lisina no son sensibles a la luz, [42] [43] [44] incluida la rodopsina. La rodopsina se activa de forma constitutiva (continua) mediante algunas de esas mutaciones incluso sin luz. [45] [46] [47] También la rodopsina de tipo salvaje es constitutivamente activa, si no se une 11- cis -retinal, pero mucho menos. [48] Por lo tanto, 11- cis -retinal es un agonista inverso . Tales mutaciones son una causa de retinitis pigmentosa autosómica dominante . [47] Artificialmente, la lisina de unión a la retina se puede desplazar a otras posiciones, incluso a otros dominios transmembrana, sin cambiar la actividad. [49]

La rodopsina del ganado tiene 348 aminoácidos , siendo la lisina de unión a la retina Lys296. Fue la primera opsina cuya secuencia de aminoácidos [50] y estructura 3D se determinaron. [32] Su estructura se ha estudiado en detalle mediante cristalografía de rayos X en cristales de rodopsina. [51] Varios modelos (por ejemplo, el mecanismo del pedal de la bicicleta , el mecanismo del hula-twist ) intentan explicar cómo el grupo retinal puede cambiar su conformación sin chocar con el bolsillo de la proteína envolvente de la rodopsina. [52] [53] [54] Datos recientes apoyan que la rodopsina es un monómero funcional, en lugar de un dímero, que fue el paradigma de los receptores acoplados a proteína G durante muchos años. [55]

Dentro de su membrana nativa, la rodopsina se encuentra en una alta densidad, lo que facilita su capacidad para capturar fotones. Debido a su densa densidad dentro de la membrana, existe una mayor probabilidad de que la rodopsina capture proteínas. Sin embargo, la alta densidad también presenta una desventaja en lo que respecta a la señalización de la proteína G, ya que la difusión se vuelve más difícil en una membrana abarrotada que está repleta del receptor, la rodopsina. [56]

Fototransducción

El ciclo visual sigue la renovación del cromóforo retiniano y transcurre en paralelo a la vía de fototransducción.

La rodopsina es un receptor acoplado a proteína G esencial en la fototransducción .

Activación

En la rodopsina, el grupo aldehído del retinal está unido covalentemente al grupo amino de un residuo de lisina en la proteína en una base de Schiff protonada (-NH + =CH-). [33] Cuando la rodopsina absorbe luz, su cofactor retinal se isomeriza de la configuración 11-cis a la configuración todo-trans, y la proteína posteriormente experimenta una serie de relajaciones para adaptarse a la forma alterada del cofactor isomerizado. Los intermediarios formados durante este proceso se investigaron por primera vez en el laboratorio de George Wald , quien recibió el premio Nobel por esta investigación en 1967. [57] La ​​dinámica de la fotoisomerización se ha investigado posteriormente con espectroscopia IR resuelta en el tiempo y espectroscopia UV/Vis . Un primer fotoproducto llamado fotorrodopsina se forma dentro de los 200 femtosegundos después de la irradiación, seguido en picosegundos por un segundo llamado batorrodopsina con enlaces todo-trans distorsionados. Este intermediario puede ser atrapado y estudiado a temperaturas criogénicas , y fue inicialmente denominado prelumirrodopsina. [58] En intermediarios posteriores lumirrodopsina y metarrodopsina I , el enlace de la base de Schiff al retinal todo-trans permanece protonado, y la proteína retiene su color rojizo. El cambio crítico que inicia la excitación neuronal involucra la conversión de metarrodopsina I a metarrodopsina II , que está asociada con la desprotonación de la base de Schiff y el cambio de color de rojo a amarillo. [59]

Cascada de fototransducción

El producto de la activación de la luz, la metarrodopsina II, inicia la vía del segundo mensajero de la fototransducción visual al estimular la transducina de la proteína G (G t ), lo que da como resultado la liberación de su subunidad α. Esta subunidad unida a GTP a su vez activa una fosfodiesterasa de cGMP . La fosfodiesterasa de cGMP hidroliza (descompone) cGMP , reduciendo su concentración local para que ya no pueda activar los canales de cationes dependientes de cGMP . Esto conduce a la hiperpolarización de las células fotorreceptoras, lo que cambia la velocidad a la que liberan transmisores. [60] [41]

Desactivación

Meta II (metarrodopsina II) se desactiva rápidamente después de activar la transducina por la rodopsina quinasa y la arrestina . [61] El pigmento de rodopsina debe regenerarse para que se produzca una mayor fototransducción. Esto significa reemplazar todo-trans-retinal con 11-cis-retinal y la descomposición de Meta II es crucial en este proceso. Durante la descomposición de Meta II, el enlace de base de Schiff que normalmente mantiene todo-trans-retinal y la apoproteína opsina (aporrodopsina) se hidroliza y se convierte en Meta III. En el segmento externo del bastón, Meta III se desintegra en todo-trans-retinal y opsina separados. [61] Un segundo producto de la descomposición de Meta II es un complejo de opsina todo-trans-retinal en el que el todo-trans-retinal ha sido translocado a segundos sitios de unión. Si la descomposición de Meta II se convierte en Meta III o en el complejo de opsina todo-trans-retinal parece depender del pH de la reacción. Un pH más alto tiende a impulsar la reacción de desintegración hacia Meta III. [61]

Enfermedades de la retina

Las mutaciones en el gen de la rodopsina contribuyen en gran medida a varias enfermedades de la retina, como la retinitis pigmentosa . En general, la rodopsina defectuosa se agrega con la ubiquitina en los cuerpos de inclusión, altera la red de filamentos intermedios y afecta la capacidad de la célula para degradar proteínas que no funcionan, lo que conduce a la apoptosis de los fotorreceptores . [62] Otras mutaciones en la rodopsina conducen a la ceguera nocturna estacionaria congénita ligada al cromosoma X , principalmente debido a la activación constitutiva, cuando las mutaciones ocurren alrededor del bolsillo de unión del cromóforo de la rodopsina. [63] Se han descubierto varios otros estados patológicos relacionados con la rodopsina, incluido el tráfico post-Golgi deficiente, la activación desreguladora, la inestabilidad del segmento externo de la varilla y la unión de la arrestina. [63]

Véase también

Notas explicativas

  1. ^ Hofmann y Lamb [17] utilizan el término opsina en general para referirse al grupo de las opsinas, aunque en su figura 4 también denominan opsina a la aporrodopsina.

Referencias

  1. ^ abc GRCh38: Lanzamiento de Ensembl 89: ENSG00000163914 – Ensembl , mayo de 2017
  2. ^ abc GRCm38: Lanzamiento de Ensembl 89: ENSMUSG00000030324 – Ensembl , mayo de 2017
  3. ^ "Referencia de PubMed humana:". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  4. ^ "Referencia de PubMed sobre ratón". Centro Nacional de Información Biotecnológica, Biblioteca Nacional de Medicina de EE. UU .
  5. ^ "RHO rhodopsin [Homo sapiens (human)]". NCBI . Consultado el 16 de noviembre de 2017 .
  6. ^ Litmann BJ, Mitchell DC (1996). "Estructura y función de la rodopsina". En Lee AG (ed.). Receptores vinculados a la rodopsina y la proteína G, parte A (volumen 2, 1996) (conjunto de 2 volúmenes) . Biomembranas: un tratado de varios volúmenes. Vol. 2. Greenwich, Connecticut: JAI Press. págs. 1–32. doi :10.1016/S1874-5342(07)80004-3. ISBN 978-1-55938-659-3.
  7. ^ ab Stuart JA, Brige RR (1996). "Caracterización de los eventos fotoquímicos primarios en la bacteriorrodopsina y la rodopsina". En Lee AG (ed.). Receptores ligados a la rodopsina y la proteína G, parte A (volumen 2, 1996) (conjunto de 2 volúmenes) . Biomembranas: un tratado de varios volúmenes. Vol. 2. Greenwich, Conn: JAI Press. págs. 33–140. doi :10.1016/S1874-5342(07)80005-5. ISBN 978-1-55938-659-3.
  8. ^ Enciclopedia de las ciencias neurológicas. Academic Press. 29 de abril de 2014. pp. 441–. ISBN 978-0-12-385158-1.
  9. ^ Giese AC (24 de septiembre de 2013). Fotofisiología: principios generales; acción de la luz sobre las plantas. Elsevier. p. 9. ISBN 978-1-4832-6227-7. Recuperado el 23 de septiembre de 2015 .
  10. ^ Bollo F (1877). "Zur Anatomie und Physiologie der Retina" [Sobre la anatomía y fisiología de la retina]. Archiv für Anatomie und Physiologie, Physiologische Abtheilung (en alemán): 4–35.
  11. ^ "Rodopsina: Historia y etimología de la rodopsina". Diccionario en línea Merriam-Webster .
  12. ^ Ver:
    • Diccionario en línea Merriam-Webster : Rodopsina: historia y etimología de la rodopsina
    • Ewald A, Kühne W (1878). "Untersuchungen über den Sehpurpur" [Investigaciones sobre la rodopsina]. Untersuchungen aus dem Physiologischen Institute der Universität Heidelberg (en alemán). 1 : 139–218. De la pág. 181: "Was den Sehpurpur im Dunkel ändert, pflegt es z. Th. [= zum Theil] in derselben Weise zu thun, wie das Licht, dh erst eine gelbe Materie, dann farblose Substanz hervorzubringen. Der Kürze wegen und um dem Auslande unsere Bezeichnungen zugänglich zu machen, kann man sagen, Rhodopsin werde erst in Xanthopsin, dieses in Leukopsin zersetzt." (Lo que altera el color púrpura visual en la oscuridad suele actuar en cierta medida de la misma manera que la luz, es decir, primero produce un material amarillo y luego una sustancia incolora. En aras de la brevedad y para que nuestras designaciones sean más accesibles Para los extranjeros, podemos decir que la rodopsina se degrada primero en xantopsina [- amarillo visual], y [luego] ésta se degrada en leucopsina [- blanco visual].)
  13. ^ Wade NJ (noviembre de 2008). "Visual purple (sehpurpur)". Percepción . 37 (11): 1617–1620. doi :10.1068/p3711ed. PMID  19189727. S2CID  19145558.
  14. ^ Wald G (diciembre de 1951). "La base fotoquímica de la visión de los bastones". Revista de la Sociedad Óptica de América . 41 (12): 949–956. Bibcode :1951JOSA...41..949W. doi :10.1364/josa.41.000949. PMID  14908734.
  15. ^ ab Terakita A (2005). "Las opsinas". Biología del genoma . 6 (3): 213. doi : 10.1186/gb-2005-6-3-213 . PMC 1088937 . PMID  15774036. 
  16. ^ abc Gühmann M, Porter ML, Bok MJ (agosto de 2022). "Las gluopsinas: opsinas sin la lisina de unión a la retina". Cells . 11 (15): 2441. doi : 10.3390/cells11152441 . PMC 9368030 . PMID  35954284.  El material fue copiado y adaptado de esta fuente, que está disponible bajo una Licencia Creative Commons Atribución 4.0 Internacional.
  17. ^ por Hofmann KP, Lamb TD (marzo de 2023). "Rodopsina, sensor de luz de la visión". Avances en la investigación de la retina y los ojos . 93 : 101116. doi : 10.1016/j.preteyeres.2022.101116 . PMID  36273969. S2CID  253041556.
  18. ^ Wald G, Brown PK, Smith PH (mayo de 1955). "Yodopsina". Revista de fisiología general . 38 (5): 623–681. doi :10.1085/jgp.38.5.623. PMC 2147498 . PMID  14367777. 
  19. ^ Rogers K. "Rhodopsin". Encyclopædia Britannica . Britannica.com . Consultado el 30 de enero de 2016 .
  20. ^ Wald G, Brown PK (enero de 1958). "Rodopsina humana". Science . 127 (3292): 222–226. Bibcode :1958Sci...127..222W. doi :10.1126/science.127.3292.222. PMID  13495499. S2CID  45459123.
  21. ^ Bowmaker JK, Dartnall HJ (enero de 1980). "Pigmentos visuales de bastones y conos en una retina humana". The Journal of Physiology . 298 (1): 501–511. doi :10.1113/jphysiol.1980.sp013097. PMC 1279132 . PMID  7359434. 
  22. ^ Foley LE, Gegear RJ, Reppert SM (junio de 2011). "El criptocromo humano exhibe magnetosensibilidad dependiente de la luz". Nature Communications . 2 : 356. Bibcode :2011NatCo...2..356F. doi :10.1038/ncomms1364. PMC 3128388 . PMID  21694704. 
  23. ^ Casey PJ, Gilman AG (febrero de 1988). "Participación de la proteína G en el acoplamiento receptor-efector". The Journal of Biological Chemistry . 263 (6): 2577–2580. doi : 10.1016/s0021-9258(18)69103-3 . PMID  2830256. S2CID  38970721.
  24. ^ Attwood TK, Findlay JB (febrero de 1994). "Huellas dactilares de receptores acoplados a proteína G". Ingeniería de proteínas . 7 (2): 195–203. doi :10.1093/protein/7.2.195. PMID  8170923.
  25. ^ Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, et al. (mayo de 1986). "Clonación del gen y ADNc del receptor beta-adrenérgico de mamíferos y homología con rodopsina". Nature . 321 (6065): 75–79. Bibcode :1986Natur.321...75D. doi :10.1038/321075a0. PMID  3010132. S2CID  4324074.
  26. ^ Dixon RA, Sigal IS, Rands E, Register RB, Candelore MR, Blake AD, et al. (marzo de 1987). "La unión del ligando al receptor beta-adrenérgico implica su núcleo similar a la rodopsina". Nature . 326 (6108): 73–77. Bibcode :1987Natur.326...73D. doi :10.1038/326073a0. PMID  2881211. S2CID  4352920.
  27. ^ Wald G (julio de 1934). "Carotenoides y el ciclo de la vitamina A en la visión". Nature . 134 (3376): 65. Bibcode :1934Natur.134...65W. doi : 10.1038/134065a0 . S2CID  4022911.
  28. ^ Wald G, Brown PK, Hubbard R, Oroshnik W (julio de 1955). "Isómeros cis impedidos de la vitamina A y el retineno: la estructura del isómero Neo-B". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 41 (7): 438–451. Bibcode :1955PNAS...41..438W. doi : 10.1073/pnas.41.7.438 . PMC 528115 . PMID  16589696. 
  29. ^ Brown PK, Wald G (octubre de 1956). "El isómero neo-b de la vitamina A y el retineno". The Journal of Biological Chemistry . 222 (2): 865–877. doi : 10.1016/S0021-9258(20)89944-X . PMID  13367054.
  30. ^ Oroshnik W (junio de 1956). "La síntesis y configuración de la vitamina A neo-B y la neorretinina b". Revista de la Sociedad Química Americana . 78 (11): 2651–2652. doi :10.1021/ja01592a095.
  31. ^ Oroshnik W, Brown PK, Hubbard R, Wald G (septiembre de 1956). "ISÓMEROS CIS IMPEDIDOS DE VITAMINA A Y RETINENE: LA ESTRUCTURA DEL ISÓMERO NEO-b". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 42 (9): 578–580. Bibcode :1956PNAS...42..578O. doi : 10.1073/pnas.42.9.578 . PMC 534254 . PMID  16589909. 
  32. ^ abc Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. (Agosto de 2000). "Estructura cristalina de rodopsina: receptor acoplado a proteína AG". Ciencia . 289 (5480): 739–745. Código bibliográfico : 2000Sci...289..739P. CiteSeerX 10.1.1.1012.2275 . doi : 10.1126/ciencia.289.5480.739. PMID  10926528. 
  33. ^ ab Bownds D (diciembre de 1967). "Sitio de unión del retinal a la rodopsina". Nature . 216 (5121): 1178–1181. Bibcode :1967Natur.216.1178B. doi :10.1038/2161178a0. PMID  4294735. S2CID  1657759.
  34. ^ Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, et al. (1983). "La estructura de la rodopsina bovina". Biofísica de la estructura y el mecanismo . 9 (4): 235–244. doi :10.1007/BF00535659. PMID  6342691. S2CID  20407577.
  35. ^ Collins FD (marzo de 1953). "Rodopsina y amarillo indicador". Nature . 171 (4350): 469–471. Código Bibliográfico :1953Natur.171..469C. doi :10.1038/171469a0. PMID  13046517. S2CID  4152360.
  36. ^ Pitt GA, Collins FD, Morton RA, Stok P (enero de 1955). "Estudios sobre rodopsina. VIII. Retinilidenmetilamina, un análogo indicador del amarillo". La revista bioquímica . 59 (1): 122-128. doi :10.1042/bj0590122. PMC 1216098 . PMID  14351151. 
  37. ^ Hubbard R, Kropf A (febrero de 1958). "La acción de la luz sobre la rodopsina". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 44 (2): 130–139. Bibcode :1958PNAS...44..130H. doi : 10.1073/pnas.44.2.130 . PMC 335377 . PMID  16590155. 
  38. ^ Kropf A, Hubbard R (noviembre de 1959). "El mecanismo de blanqueo de la rodopsina". Anales de la Academia de Ciencias de Nueva York . 74 (2): 266–280. Código Bibliográfico :1959NYASA..74..266K. doi :10.1111/j.1749-6632.1958.tb39550.x. PMID  13627857. S2CID  45830716.
  39. ^ ab Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, et al. (Marzo de 2011). "Estructura cristalina de metarrodopsina II". Naturaleza . 471 (7340): 651–655. Código Bib :2011Natur.471..651C. doi : 10.1038/naturaleza09789. PMID  21389988. S2CID  4302421.
  40. ^ Wald G (octubre de 1968). "Base molecular de la excitación visual". Science . 162 (3850): 230–239. Bibcode :1968Sci...162..230W. doi :10.1126/science.162.3850.230. PMID  4877437.
  41. ^ ab Terakita A, Kawano-Yamashita E, Koyanagi M (enero de 2012). "Evolución y diversidad de opsinas". Revisiones interdisciplinarias de Wiley: señalización y transporte de membranas . 1 (1): 104-111. doi : 10.1002/wmts.6 .
  42. ^ Katana R, Guan C, Zanini D, Larsen ME, Giraldo D, Geurten BR, et al. (septiembre de 2019). "Funciones independientes de cromóforos de las apoproteínas de opsina en los mecanorreceptores de Drosophila". Biología actual . 29 (17): 2961–2969.e4. Código Bib : 2019CBio...29E2961K. doi : 10.1016/j.cub.2019.07.036 . PMID  31447373. S2CID  201420079.
  43. ^ Leung NY, Thakur DP, Gurav AS, Kim SH, Di Pizio A, Niv MY, et al. (abril de 2020). "Funciones de las opsinas en el gusto de la Drosophila". Current Biology . 30 (8): 1367–1379.e6. Código Bibliográfico :2020CBio...30E1367L. doi :10.1016/j.cub.2020.01.068. PMC 7252503 . PMID  32243853. 
  44. ^ Kumbalasiri T, Rollag MD, Isoldi MC, Castrucci AM, Provencio I (marzo de 2007). "La melanopsina desencadena la liberación de depósitos internos de calcio en respuesta a la luz". Fotoquímica y fotobiología . 83 (2): 273–279. doi :10.1562/2006-07-11-RA-964. PMID  16961436. S2CID  23060331.
  45. ^ Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD (octubre de 1992). "Mutantes constitutivamente activos de la rodopsina". Neuron . 9 (4): 719–725. doi :10.1016/0896-6273(92)90034-b. PMID  1356370. S2CID  13172583.
  46. ^ Yang T, Snider BB, Oprian DD (diciembre de 1997). "Síntesis y caracterización de un nuevo inhibidor análogo de la retinilamina de mutantes de rodopsina constitutivamente activos encontrados en pacientes con retinitis pigmentosa autosómica dominante". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 94 (25): 13559–13564. Bibcode :1997PNAS...9413559Y. doi : 10.1073/pnas.94.25.13559 . PMC 28345 . PMID  9391065. 
  47. ^ ab Park PS (2014). "Rodopsina constitutivamente activa y enfermedad de la retina". Farmacología y terapéutica de receptores constitutivamente activos . Avances en farmacología. Vol. 70. págs. 1–36. doi :10.1016/B978-0-12-417197-8.00001-8. ISBN 978-0-12-417197-8. PMC  4120657 . PMID  24931191.
  48. ^ Melia TJ, Cowan CW, Angleson JK, Wensel TG (diciembre de 1997). "Una comparación de la eficiencia de la activación de la proteína G por formas de rodopsina activadas por luz y sin ligando". Biophysical Journal . 73 (6): 3182–3191. Bibcode :1997BpJ....73.3182M. doi :10.1016/S0006-3495(97)78344-9. PMC 1181221 . PMID  9414230. 
  49. ^ Devine EL, Oprian DD, Theobald DL (agosto de 2013). "Reubicación de la lisina del sitio activo en la rodopsina e implicaciones para la evolución de las proteínas retinilidén". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 110 (33): 13351–13355. Bibcode :2013PNAS..11013351D. doi : 10.1073/pnas.1306826110 . PMC 3746867 . PMID  23904486. 
  50. ^ Ovchinnikov YA (noviembre de 1982). "Rodopsina y bacteriorrodopsina: relaciones estructura-función". FEBS Letters . 148 (2): 179–191. doi : 10.1016/0014-5793(82)80805-3 . PMID  6759163. S2CID  85819100.
  51. ^ Gulati S, Jastrzebska B, Banerjee S, Placeres ÁL, Miszta P, Gao S, et al. (marzo de 2017). "Comportamiento fotocíclico de la rodopsina inducido por un mecanismo de isomerización atípico". Actas de la Academia Nacional de Ciencias de los Estados Unidos de América . 114 (13): E2608–E2615. Bibcode :2017PNAS..114E2608G. doi : 10.1073/pnas.1617446114 . PMC 5380078 . PMID  28289214. 
  52. ^ Nakamichi H, Okada T (junio de 2006). "Análisis cristalográfico de la fotoquímica visual primaria". Angewandte Chemie . 45 (26): 4270–4273. doi :10.1002/anie.200600595. PMID  16586416.
  53. ^ Schreiber M, Sugihara M, Okada T, Buss V (junio de 2006). "Estudios de mecánica cuántica sobre el modelo cristalográfico de batorrodopsina". Angewandte Chemie . 45 (26): 4274–4277. doi :10.1002/anie.200600585. PMID  16729349.
  54. ^ Weingart O (septiembre de 2007). "El enlace C11=C12 retorcido del cromóforo de rodopsina: un punto caliente fotoquímico". Journal of the American Chemical Society . 129 (35): 10618–10619. doi :10.1021/ja071793t. PMID  17691730.
  55. ^ Chabre M, le Maire M (julio de 2005). "Receptor acoplado a proteína G monomérico como unidad funcional". Bioquímica . 44 (27): 9395–9403. doi :10.1021/bi050720o. PMID  15996094.
  56. ^ Park PS (octubre de 2019). "Oligomerización y agregación de rodopsina". Revista de biología de membranas . 252 (4–5): 413–423. doi :10.1007/s00232-019-00078-1. PMC 6790290 . PMID  31286171. 
  57. ^ Fundación Nobel. «El Premio Nobel de Fisiología o Medicina 1967». Nobelprize.org . Nobel Media AB 2014. Consultado el 12 de diciembre de 2015 .
  58. ^ Yoshizawa T, Wald G (marzo de 1963). "Pre-lumirrodopsina y el blanqueamiento de los pigmentos visuales". Nature . 197 (30 de marzo): 1279–1286. Código Bibliográfico :1963Natur.197.1279Y. doi :10.1038/1971279a0. PMID  14002749. S2CID  4263392.
  59. ^ Matthews RG, Hubbard R, Brown PK, Wald G (noviembre de 1963). "Formas tautoméricas de metarrodopsina". The Journal of General Physiology . 47 (2): 215–240. doi :10.1085/jgp.47.2.215. PMC 2195338 . PMID  14080814. 
  60. ^ Hofmann KP, Heck M (1996). "Interacciones proteína-proteína inducidas por luz en la membrana del disco del fotorreceptor de bastón". En Lee AG (ed.). Receptores vinculados a la rodopsina y la proteína G, parte A (volumen 2, 1996) (conjunto de 2 volúmenes) . Biomembranas: un tratado de varios volúmenes. Vol. 2. Greenwich, Conn: JAI Press. págs. 141–198. doi :10.1016/S1874-5342(07)80006-7. ISBN 978-1-55938-659-3.
  61. ^ abc Heck M, Schädel SA, Maretzki D, Bartl FJ, Ritter E, Palczewski K, et al. (Enero de 2003). "Estados de señalización de la rodopsina. Formación de la forma de almacenamiento, metarrodopsina III, a partir de metarrodopsina II activa". La Revista de Química Biológica . 278 (5): 3162–3169. doi : 10.1074/jbc.M209675200 . PMC 1364529 . PMID  12427735. 
  62. ^ Saliba RS, Munro PM, Luthert PJ, Cheetham ME (julio de 2002). "El destino celular de la rodopsina mutante: control de calidad, degradación y formación de agresomas". Journal of Cell Science . 115 (Pt 14): 2907–2918. doi :10.1242/jcs.115.14.2907. PMID  12082151.
  63. ^ ab Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (abril de 2005). "Mecanismos de muerte celular en la retinitis pigmentosa por rodopsina: implicaciones para la terapia". Tendencias en medicina molecular . 11 (4): 177–185. doi :10.1016/j.molmed.2005.02.007. PMID  15823756.

Lectura adicional

Enlaces externos